]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/tx.c
mac80211: set CLEAR_PS for pspolled frames
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / tx.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 *
12 * Transmit and frame generation functions.
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/skbuff.h>
18 #include <linux/etherdevice.h>
19 #include <linux/bitmap.h>
20 #include <linux/rcupdate.h>
21 #include <net/net_namespace.h>
22 #include <net/ieee80211_radiotap.h>
23 #include <net/cfg80211.h>
24 #include <net/mac80211.h>
25 #include <asm/unaligned.h>
26
27 #include "ieee80211_i.h"
28 #include "led.h"
29 #include "mesh.h"
30 #include "wep.h"
31 #include "wpa.h"
32 #include "wme.h"
33 #include "rate.h"
34
35 #define IEEE80211_TX_OK 0
36 #define IEEE80211_TX_AGAIN 1
37 #define IEEE80211_TX_PENDING 2
38
39 /* misc utils */
40
41 static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr,
42 int next_frag_len)
43 {
44 int rate, mrate, erp, dur, i;
45 struct ieee80211_rate *txrate;
46 struct ieee80211_local *local = tx->local;
47 struct ieee80211_supported_band *sband;
48 struct ieee80211_hdr *hdr;
49 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
50
51 /* assume HW handles this */
52 if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
53 return 0;
54
55 /* uh huh? */
56 if (WARN_ON_ONCE(info->control.rates[0].idx < 0))
57 return 0;
58
59 sband = local->hw.wiphy->bands[tx->channel->band];
60 txrate = &sband->bitrates[info->control.rates[0].idx];
61
62 erp = txrate->flags & IEEE80211_RATE_ERP_G;
63
64 /*
65 * data and mgmt (except PS Poll):
66 * - during CFP: 32768
67 * - during contention period:
68 * if addr1 is group address: 0
69 * if more fragments = 0 and addr1 is individual address: time to
70 * transmit one ACK plus SIFS
71 * if more fragments = 1 and addr1 is individual address: time to
72 * transmit next fragment plus 2 x ACK plus 3 x SIFS
73 *
74 * IEEE 802.11, 9.6:
75 * - control response frame (CTS or ACK) shall be transmitted using the
76 * same rate as the immediately previous frame in the frame exchange
77 * sequence, if this rate belongs to the PHY mandatory rates, or else
78 * at the highest possible rate belonging to the PHY rates in the
79 * BSSBasicRateSet
80 */
81 hdr = (struct ieee80211_hdr *)tx->skb->data;
82 if (ieee80211_is_ctl(hdr->frame_control)) {
83 /* TODO: These control frames are not currently sent by
84 * mac80211, but should they be implemented, this function
85 * needs to be updated to support duration field calculation.
86 *
87 * RTS: time needed to transmit pending data/mgmt frame plus
88 * one CTS frame plus one ACK frame plus 3 x SIFS
89 * CTS: duration of immediately previous RTS minus time
90 * required to transmit CTS and its SIFS
91 * ACK: 0 if immediately previous directed data/mgmt had
92 * more=0, with more=1 duration in ACK frame is duration
93 * from previous frame minus time needed to transmit ACK
94 * and its SIFS
95 * PS Poll: BIT(15) | BIT(14) | aid
96 */
97 return 0;
98 }
99
100 /* data/mgmt */
101 if (0 /* FIX: data/mgmt during CFP */)
102 return cpu_to_le16(32768);
103
104 if (group_addr) /* Group address as the destination - no ACK */
105 return 0;
106
107 /* Individual destination address:
108 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
109 * CTS and ACK frames shall be transmitted using the highest rate in
110 * basic rate set that is less than or equal to the rate of the
111 * immediately previous frame and that is using the same modulation
112 * (CCK or OFDM). If no basic rate set matches with these requirements,
113 * the highest mandatory rate of the PHY that is less than or equal to
114 * the rate of the previous frame is used.
115 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
116 */
117 rate = -1;
118 /* use lowest available if everything fails */
119 mrate = sband->bitrates[0].bitrate;
120 for (i = 0; i < sband->n_bitrates; i++) {
121 struct ieee80211_rate *r = &sband->bitrates[i];
122
123 if (r->bitrate > txrate->bitrate)
124 break;
125
126 if (tx->sdata->vif.bss_conf.basic_rates & BIT(i))
127 rate = r->bitrate;
128
129 switch (sband->band) {
130 case IEEE80211_BAND_2GHZ: {
131 u32 flag;
132 if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
133 flag = IEEE80211_RATE_MANDATORY_G;
134 else
135 flag = IEEE80211_RATE_MANDATORY_B;
136 if (r->flags & flag)
137 mrate = r->bitrate;
138 break;
139 }
140 case IEEE80211_BAND_5GHZ:
141 if (r->flags & IEEE80211_RATE_MANDATORY_A)
142 mrate = r->bitrate;
143 break;
144 case IEEE80211_NUM_BANDS:
145 WARN_ON(1);
146 break;
147 }
148 }
149 if (rate == -1) {
150 /* No matching basic rate found; use highest suitable mandatory
151 * PHY rate */
152 rate = mrate;
153 }
154
155 /* Time needed to transmit ACK
156 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
157 * to closest integer */
158
159 dur = ieee80211_frame_duration(local, 10, rate, erp,
160 tx->sdata->vif.bss_conf.use_short_preamble);
161
162 if (next_frag_len) {
163 /* Frame is fragmented: duration increases with time needed to
164 * transmit next fragment plus ACK and 2 x SIFS. */
165 dur *= 2; /* ACK + SIFS */
166 /* next fragment */
167 dur += ieee80211_frame_duration(local, next_frag_len,
168 txrate->bitrate, erp,
169 tx->sdata->vif.bss_conf.use_short_preamble);
170 }
171
172 return cpu_to_le16(dur);
173 }
174
175 static int inline is_ieee80211_device(struct ieee80211_local *local,
176 struct net_device *dev)
177 {
178 return local == wdev_priv(dev->ieee80211_ptr);
179 }
180
181 /* tx handlers */
182
183 static ieee80211_tx_result debug_noinline
184 ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx)
185 {
186
187 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
188 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
189 u32 sta_flags;
190
191 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED))
192 return TX_CONTINUE;
193
194 if (unlikely(tx->local->sw_scanning) &&
195 !ieee80211_is_probe_req(hdr->frame_control) &&
196 !ieee80211_is_nullfunc(hdr->frame_control))
197 /*
198 * When software scanning only nullfunc frames (to notify
199 * the sleep state to the AP) and probe requests (for the
200 * active scan) are allowed, all other frames should not be
201 * sent and we should not get here, but if we do
202 * nonetheless, drop them to avoid sending them
203 * off-channel. See the link below and
204 * ieee80211_start_scan() for more.
205 *
206 * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089
207 */
208 return TX_DROP;
209
210 if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
211 return TX_CONTINUE;
212
213 if (tx->flags & IEEE80211_TX_PS_BUFFERED)
214 return TX_CONTINUE;
215
216 sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0;
217
218 if (likely(tx->flags & IEEE80211_TX_UNICAST)) {
219 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
220 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
221 ieee80211_is_data(hdr->frame_control))) {
222 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
223 printk(KERN_DEBUG "%s: dropped data frame to not "
224 "associated station %pM\n",
225 tx->dev->name, hdr->addr1);
226 #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */
227 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
228 return TX_DROP;
229 }
230 } else {
231 if (unlikely(ieee80211_is_data(hdr->frame_control) &&
232 tx->local->num_sta == 0 &&
233 tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) {
234 /*
235 * No associated STAs - no need to send multicast
236 * frames.
237 */
238 return TX_DROP;
239 }
240 return TX_CONTINUE;
241 }
242
243 return TX_CONTINUE;
244 }
245
246 /* This function is called whenever the AP is about to exceed the maximum limit
247 * of buffered frames for power saving STAs. This situation should not really
248 * happen often during normal operation, so dropping the oldest buffered packet
249 * from each queue should be OK to make some room for new frames. */
250 static void purge_old_ps_buffers(struct ieee80211_local *local)
251 {
252 int total = 0, purged = 0;
253 struct sk_buff *skb;
254 struct ieee80211_sub_if_data *sdata;
255 struct sta_info *sta;
256
257 /*
258 * virtual interfaces are protected by RCU
259 */
260 rcu_read_lock();
261
262 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
263 struct ieee80211_if_ap *ap;
264 if (sdata->vif.type != NL80211_IFTYPE_AP)
265 continue;
266 ap = &sdata->u.ap;
267 skb = skb_dequeue(&ap->ps_bc_buf);
268 if (skb) {
269 purged++;
270 dev_kfree_skb(skb);
271 }
272 total += skb_queue_len(&ap->ps_bc_buf);
273 }
274
275 list_for_each_entry_rcu(sta, &local->sta_list, list) {
276 skb = skb_dequeue(&sta->ps_tx_buf);
277 if (skb) {
278 purged++;
279 dev_kfree_skb(skb);
280 }
281 total += skb_queue_len(&sta->ps_tx_buf);
282 }
283
284 rcu_read_unlock();
285
286 local->total_ps_buffered = total;
287 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
288 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
289 wiphy_name(local->hw.wiphy), purged);
290 #endif
291 }
292
293 static ieee80211_tx_result
294 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx)
295 {
296 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
297 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
298
299 /*
300 * broadcast/multicast frame
301 *
302 * If any of the associated stations is in power save mode,
303 * the frame is buffered to be sent after DTIM beacon frame.
304 * This is done either by the hardware or us.
305 */
306
307 /* powersaving STAs only in AP/VLAN mode */
308 if (!tx->sdata->bss)
309 return TX_CONTINUE;
310
311 /* no buffering for ordered frames */
312 if (ieee80211_has_order(hdr->frame_control))
313 return TX_CONTINUE;
314
315 /* no stations in PS mode */
316 if (!atomic_read(&tx->sdata->bss->num_sta_ps))
317 return TX_CONTINUE;
318
319 /* buffered in mac80211 */
320 if (tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING) {
321 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
322 purge_old_ps_buffers(tx->local);
323 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
324 AP_MAX_BC_BUFFER) {
325 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
326 if (net_ratelimit()) {
327 printk(KERN_DEBUG "%s: BC TX buffer full - "
328 "dropping the oldest frame\n",
329 tx->dev->name);
330 }
331 #endif
332 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
333 } else
334 tx->local->total_ps_buffered++;
335 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
336 return TX_QUEUED;
337 }
338
339 /* buffered in hardware */
340 info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM;
341
342 return TX_CONTINUE;
343 }
344
345 static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta,
346 struct sk_buff *skb)
347 {
348 if (!ieee80211_is_mgmt(fc))
349 return 0;
350
351 if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP))
352 return 0;
353
354 if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *)
355 skb->data))
356 return 0;
357
358 return 1;
359 }
360
361 static ieee80211_tx_result
362 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx)
363 {
364 struct sta_info *sta = tx->sta;
365 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
366 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
367 u32 staflags;
368
369 if (unlikely(!sta || ieee80211_is_probe_resp(hdr->frame_control)))
370 return TX_CONTINUE;
371
372 staflags = get_sta_flags(sta);
373
374 if (unlikely((staflags & WLAN_STA_PS) &&
375 !(staflags & WLAN_STA_PSPOLL))) {
376 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
377 printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries "
378 "before %d)\n",
379 sta->sta.addr, sta->sta.aid,
380 skb_queue_len(&sta->ps_tx_buf));
381 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
382 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
383 purge_old_ps_buffers(tx->local);
384 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
385 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
386 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
387 if (net_ratelimit()) {
388 printk(KERN_DEBUG "%s: STA %pM TX "
389 "buffer full - dropping oldest frame\n",
390 tx->dev->name, sta->sta.addr);
391 }
392 #endif
393 dev_kfree_skb(old);
394 } else
395 tx->local->total_ps_buffered++;
396
397 /* Queue frame to be sent after STA sends an PS Poll frame */
398 if (skb_queue_empty(&sta->ps_tx_buf))
399 sta_info_set_tim_bit(sta);
400
401 info->control.jiffies = jiffies;
402 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
403 return TX_QUEUED;
404 }
405 #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
406 else if (unlikely(test_sta_flags(sta, WLAN_STA_PS))) {
407 printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll "
408 "set -> send frame\n", tx->dev->name,
409 sta->sta.addr);
410 }
411 #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
412 if (test_and_clear_sta_flags(sta, WLAN_STA_PSPOLL)) {
413 /*
414 * The sleeping station with pending data is now snoozing.
415 * It queried us for its buffered frames and will go back
416 * to deep sleep once it got everything.
417 *
418 * inform the driver, in case the hardware does powersave
419 * frame filtering and keeps a station blacklist on its own
420 * (e.g: p54), so that frames can be delivered unimpeded.
421 *
422 * Note: It should be save to disable the filter now.
423 * As, it is really unlikely that we still have any pending
424 * frame for this station in the hw's buffers/fifos left,
425 * that is not rejected with a unsuccessful tx_status yet.
426 */
427
428 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
429 }
430 return TX_CONTINUE;
431 }
432
433 static ieee80211_tx_result debug_noinline
434 ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx)
435 {
436 if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED))
437 return TX_CONTINUE;
438
439 if (tx->flags & IEEE80211_TX_UNICAST)
440 return ieee80211_tx_h_unicast_ps_buf(tx);
441 else
442 return ieee80211_tx_h_multicast_ps_buf(tx);
443 }
444
445 static ieee80211_tx_result debug_noinline
446 ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx)
447 {
448 struct ieee80211_key *key;
449 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
450 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
451
452 if (unlikely(tx->skb->do_not_encrypt))
453 tx->key = NULL;
454 else if (tx->sta && (key = rcu_dereference(tx->sta->key)))
455 tx->key = key;
456 else if (ieee80211_is_mgmt(hdr->frame_control) &&
457 (key = rcu_dereference(tx->sdata->default_mgmt_key)))
458 tx->key = key;
459 else if ((key = rcu_dereference(tx->sdata->default_key)))
460 tx->key = key;
461 else if (tx->sdata->drop_unencrypted &&
462 (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) &&
463 !(info->flags & IEEE80211_TX_CTL_INJECTED) &&
464 (!ieee80211_is_robust_mgmt_frame(hdr) ||
465 (ieee80211_is_action(hdr->frame_control) &&
466 tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) {
467 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
468 return TX_DROP;
469 } else
470 tx->key = NULL;
471
472 if (tx->key) {
473 tx->key->tx_rx_count++;
474 /* TODO: add threshold stuff again */
475
476 switch (tx->key->conf.alg) {
477 case ALG_WEP:
478 if (ieee80211_is_auth(hdr->frame_control))
479 break;
480 case ALG_TKIP:
481 if (!ieee80211_is_data_present(hdr->frame_control))
482 tx->key = NULL;
483 break;
484 case ALG_CCMP:
485 if (!ieee80211_is_data_present(hdr->frame_control) &&
486 !ieee80211_use_mfp(hdr->frame_control, tx->sta,
487 tx->skb))
488 tx->key = NULL;
489 break;
490 case ALG_AES_CMAC:
491 if (!ieee80211_is_mgmt(hdr->frame_control))
492 tx->key = NULL;
493 break;
494 }
495 }
496
497 if (!tx->key || !(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
498 tx->skb->do_not_encrypt = 1;
499
500 return TX_CONTINUE;
501 }
502
503 static ieee80211_tx_result debug_noinline
504 ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx)
505 {
506 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
507 struct ieee80211_hdr *hdr = (void *)tx->skb->data;
508 struct ieee80211_supported_band *sband;
509 struct ieee80211_rate *rate;
510 int i, len;
511 bool inval = false, rts = false, short_preamble = false;
512 struct ieee80211_tx_rate_control txrc;
513
514 memset(&txrc, 0, sizeof(txrc));
515
516 sband = tx->local->hw.wiphy->bands[tx->channel->band];
517
518 len = min_t(int, tx->skb->len + FCS_LEN,
519 tx->local->fragmentation_threshold);
520
521 /* set up the tx rate control struct we give the RC algo */
522 txrc.hw = local_to_hw(tx->local);
523 txrc.sband = sband;
524 txrc.bss_conf = &tx->sdata->vif.bss_conf;
525 txrc.skb = tx->skb;
526 txrc.reported_rate.idx = -1;
527 txrc.max_rate_idx = tx->sdata->max_ratectrl_rateidx;
528
529 /* set up RTS protection if desired */
530 if (tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD &&
531 len > tx->local->rts_threshold) {
532 txrc.rts = rts = true;
533 }
534
535 /*
536 * Use short preamble if the BSS can handle it, but not for
537 * management frames unless we know the receiver can handle
538 * that -- the management frame might be to a station that
539 * just wants a probe response.
540 */
541 if (tx->sdata->vif.bss_conf.use_short_preamble &&
542 (ieee80211_is_data(hdr->frame_control) ||
543 (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE))))
544 txrc.short_preamble = short_preamble = true;
545
546
547 rate_control_get_rate(tx->sdata, tx->sta, &txrc);
548
549 if (unlikely(info->control.rates[0].idx < 0))
550 return TX_DROP;
551
552 if (txrc.reported_rate.idx < 0)
553 txrc.reported_rate = info->control.rates[0];
554
555 if (tx->sta)
556 tx->sta->last_tx_rate = txrc.reported_rate;
557
558 if (unlikely(!info->control.rates[0].count))
559 info->control.rates[0].count = 1;
560
561 if (is_multicast_ether_addr(hdr->addr1)) {
562 /*
563 * XXX: verify the rate is in the basic rateset
564 */
565 return TX_CONTINUE;
566 }
567
568 /*
569 * set up the RTS/CTS rate as the fastest basic rate
570 * that is not faster than the data rate
571 *
572 * XXX: Should this check all retry rates?
573 */
574 if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) {
575 s8 baserate = 0;
576
577 rate = &sband->bitrates[info->control.rates[0].idx];
578
579 for (i = 0; i < sband->n_bitrates; i++) {
580 /* must be a basic rate */
581 if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i)))
582 continue;
583 /* must not be faster than the data rate */
584 if (sband->bitrates[i].bitrate > rate->bitrate)
585 continue;
586 /* maximum */
587 if (sband->bitrates[baserate].bitrate <
588 sband->bitrates[i].bitrate)
589 baserate = i;
590 }
591
592 info->control.rts_cts_rate_idx = baserate;
593 }
594
595 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
596 /*
597 * make sure there's no valid rate following
598 * an invalid one, just in case drivers don't
599 * take the API seriously to stop at -1.
600 */
601 if (inval) {
602 info->control.rates[i].idx = -1;
603 continue;
604 }
605 if (info->control.rates[i].idx < 0) {
606 inval = true;
607 continue;
608 }
609
610 /*
611 * For now assume MCS is already set up correctly, this
612 * needs to be fixed.
613 */
614 if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) {
615 WARN_ON(info->control.rates[i].idx > 76);
616 continue;
617 }
618
619 /* set up RTS protection if desired */
620 if (rts)
621 info->control.rates[i].flags |=
622 IEEE80211_TX_RC_USE_RTS_CTS;
623
624 /* RC is busted */
625 if (WARN_ON_ONCE(info->control.rates[i].idx >=
626 sband->n_bitrates)) {
627 info->control.rates[i].idx = -1;
628 continue;
629 }
630
631 rate = &sband->bitrates[info->control.rates[i].idx];
632
633 /* set up short preamble */
634 if (short_preamble &&
635 rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
636 info->control.rates[i].flags |=
637 IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
638
639 /* set up G protection */
640 if (!rts && tx->sdata->vif.bss_conf.use_cts_prot &&
641 rate->flags & IEEE80211_RATE_ERP_G)
642 info->control.rates[i].flags |=
643 IEEE80211_TX_RC_USE_CTS_PROTECT;
644 }
645
646 return TX_CONTINUE;
647 }
648
649 static ieee80211_tx_result debug_noinline
650 ieee80211_tx_h_misc(struct ieee80211_tx_data *tx)
651 {
652 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
653
654 if (tx->sta)
655 info->control.sta = &tx->sta->sta;
656
657 return TX_CONTINUE;
658 }
659
660 static ieee80211_tx_result debug_noinline
661 ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx)
662 {
663 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb);
664 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data;
665 u16 *seq;
666 u8 *qc;
667 int tid;
668
669 /*
670 * Packet injection may want to control the sequence
671 * number, if we have no matching interface then we
672 * neither assign one ourselves nor ask the driver to.
673 */
674 if (unlikely(!info->control.vif))
675 return TX_CONTINUE;
676
677 if (unlikely(ieee80211_is_ctl(hdr->frame_control)))
678 return TX_CONTINUE;
679
680 if (ieee80211_hdrlen(hdr->frame_control) < 24)
681 return TX_CONTINUE;
682
683 /*
684 * Anything but QoS data that has a sequence number field
685 * (is long enough) gets a sequence number from the global
686 * counter.
687 */
688 if (!ieee80211_is_data_qos(hdr->frame_control)) {
689 /* driver should assign sequence number */
690 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
691 /* for pure STA mode without beacons, we can do it */
692 hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number);
693 tx->sdata->sequence_number += 0x10;
694 tx->sdata->sequence_number &= IEEE80211_SCTL_SEQ;
695 return TX_CONTINUE;
696 }
697
698 /*
699 * This should be true for injected/management frames only, for
700 * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ
701 * above since they are not QoS-data frames.
702 */
703 if (!tx->sta)
704 return TX_CONTINUE;
705
706 /* include per-STA, per-TID sequence counter */
707
708 qc = ieee80211_get_qos_ctl(hdr);
709 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
710 seq = &tx->sta->tid_seq[tid];
711
712 hdr->seq_ctrl = cpu_to_le16(*seq);
713
714 /* Increase the sequence number. */
715 *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ;
716
717 return TX_CONTINUE;
718 }
719
720 static int ieee80211_fragment(struct ieee80211_local *local,
721 struct sk_buff *skb, int hdrlen,
722 int frag_threshold)
723 {
724 struct sk_buff *tail = skb, *tmp;
725 int per_fragm = frag_threshold - hdrlen - FCS_LEN;
726 int pos = hdrlen + per_fragm;
727 int rem = skb->len - hdrlen - per_fragm;
728
729 if (WARN_ON(rem < 0))
730 return -EINVAL;
731
732 while (rem) {
733 int fraglen = per_fragm;
734
735 if (fraglen > rem)
736 fraglen = rem;
737 rem -= fraglen;
738 tmp = dev_alloc_skb(local->tx_headroom +
739 frag_threshold +
740 IEEE80211_ENCRYPT_HEADROOM +
741 IEEE80211_ENCRYPT_TAILROOM);
742 if (!tmp)
743 return -ENOMEM;
744 tail->next = tmp;
745 tail = tmp;
746 skb_reserve(tmp, local->tx_headroom +
747 IEEE80211_ENCRYPT_HEADROOM);
748 /* copy control information */
749 memcpy(tmp->cb, skb->cb, sizeof(tmp->cb));
750 skb_copy_queue_mapping(tmp, skb);
751 tmp->priority = skb->priority;
752 tmp->do_not_encrypt = skb->do_not_encrypt;
753 tmp->dev = skb->dev;
754 tmp->iif = skb->iif;
755
756 /* copy header and data */
757 memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen);
758 memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen);
759
760 pos += fraglen;
761 }
762
763 skb->len = hdrlen + per_fragm;
764 return 0;
765 }
766
767 static ieee80211_tx_result debug_noinline
768 ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx)
769 {
770 struct sk_buff *skb = tx->skb;
771 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
772 struct ieee80211_hdr *hdr = (void *)skb->data;
773 int frag_threshold = tx->local->fragmentation_threshold;
774 int hdrlen;
775 int fragnum;
776
777 if (!(tx->flags & IEEE80211_TX_FRAGMENTED))
778 return TX_CONTINUE;
779
780 /*
781 * Warn when submitting a fragmented A-MPDU frame and drop it.
782 * This scenario is handled in __ieee80211_tx_prepare but extra
783 * caution taken here as fragmented ampdu may cause Tx stop.
784 */
785 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
786 return TX_DROP;
787
788 hdrlen = ieee80211_hdrlen(hdr->frame_control);
789
790 /* internal error, why is TX_FRAGMENTED set? */
791 if (WARN_ON(skb->len <= frag_threshold))
792 return TX_DROP;
793
794 /*
795 * Now fragment the frame. This will allocate all the fragments and
796 * chain them (using skb as the first fragment) to skb->next.
797 * During transmission, we will remove the successfully transmitted
798 * fragments from this list. When the low-level driver rejects one
799 * of the fragments then we will simply pretend to accept the skb
800 * but store it away as pending.
801 */
802 if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold))
803 return TX_DROP;
804
805 /* update duration/seq/flags of fragments */
806 fragnum = 0;
807 do {
808 int next_len;
809 const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS);
810
811 hdr = (void *)skb->data;
812 info = IEEE80211_SKB_CB(skb);
813
814 if (skb->next) {
815 hdr->frame_control |= morefrags;
816 next_len = skb->next->len;
817 /*
818 * No multi-rate retries for fragmented frames, that
819 * would completely throw off the NAV at other STAs.
820 */
821 info->control.rates[1].idx = -1;
822 info->control.rates[2].idx = -1;
823 info->control.rates[3].idx = -1;
824 info->control.rates[4].idx = -1;
825 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
826 info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE;
827 } else {
828 hdr->frame_control &= ~morefrags;
829 next_len = 0;
830 }
831 hdr->duration_id = ieee80211_duration(tx, 0, next_len);
832 hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG);
833 fragnum++;
834 } while ((skb = skb->next));
835
836 return TX_CONTINUE;
837 }
838
839 static ieee80211_tx_result debug_noinline
840 ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx)
841 {
842 if (!tx->key)
843 return TX_CONTINUE;
844
845 switch (tx->key->conf.alg) {
846 case ALG_WEP:
847 return ieee80211_crypto_wep_encrypt(tx);
848 case ALG_TKIP:
849 return ieee80211_crypto_tkip_encrypt(tx);
850 case ALG_CCMP:
851 return ieee80211_crypto_ccmp_encrypt(tx);
852 case ALG_AES_CMAC:
853 return ieee80211_crypto_aes_cmac_encrypt(tx);
854 }
855
856 /* not reached */
857 WARN_ON(1);
858 return TX_DROP;
859 }
860
861 static ieee80211_tx_result debug_noinline
862 ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx)
863 {
864 struct sk_buff *skb = tx->skb;
865 struct ieee80211_hdr *hdr;
866 int next_len;
867 bool group_addr;
868
869 do {
870 hdr = (void *) skb->data;
871 next_len = skb->next ? skb->next->len : 0;
872 group_addr = is_multicast_ether_addr(hdr->addr1);
873
874 hdr->duration_id =
875 ieee80211_duration(tx, group_addr, next_len);
876 } while ((skb = skb->next));
877
878 return TX_CONTINUE;
879 }
880
881 static ieee80211_tx_result debug_noinline
882 ieee80211_tx_h_stats(struct ieee80211_tx_data *tx)
883 {
884 struct sk_buff *skb = tx->skb;
885
886 if (!tx->sta)
887 return TX_CONTINUE;
888
889 tx->sta->tx_packets++;
890 do {
891 tx->sta->tx_fragments++;
892 tx->sta->tx_bytes += skb->len;
893 } while ((skb = skb->next));
894
895 return TX_CONTINUE;
896 }
897
898 /* actual transmit path */
899
900 /*
901 * deal with packet injection down monitor interface
902 * with Radiotap Header -- only called for monitor mode interface
903 */
904 static ieee80211_tx_result
905 __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx,
906 struct sk_buff *skb)
907 {
908 /*
909 * this is the moment to interpret and discard the radiotap header that
910 * must be at the start of the packet injected in Monitor mode
911 *
912 * Need to take some care with endian-ness since radiotap
913 * args are little-endian
914 */
915
916 struct ieee80211_radiotap_iterator iterator;
917 struct ieee80211_radiotap_header *rthdr =
918 (struct ieee80211_radiotap_header *) skb->data;
919 struct ieee80211_supported_band *sband;
920 int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len);
921
922 sband = tx->local->hw.wiphy->bands[tx->channel->band];
923
924 skb->do_not_encrypt = 1;
925 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
926
927 /*
928 * for every radiotap entry that is present
929 * (ieee80211_radiotap_iterator_next returns -ENOENT when no more
930 * entries present, or -EINVAL on error)
931 */
932
933 while (!ret) {
934 ret = ieee80211_radiotap_iterator_next(&iterator);
935
936 if (ret)
937 continue;
938
939 /* see if this argument is something we can use */
940 switch (iterator.this_arg_index) {
941 /*
942 * You must take care when dereferencing iterator.this_arg
943 * for multibyte types... the pointer is not aligned. Use
944 * get_unaligned((type *)iterator.this_arg) to dereference
945 * iterator.this_arg for type "type" safely on all arches.
946 */
947 case IEEE80211_RADIOTAP_FLAGS:
948 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) {
949 /*
950 * this indicates that the skb we have been
951 * handed has the 32-bit FCS CRC at the end...
952 * we should react to that by snipping it off
953 * because it will be recomputed and added
954 * on transmission
955 */
956 if (skb->len < (iterator.max_length + FCS_LEN))
957 return TX_DROP;
958
959 skb_trim(skb, skb->len - FCS_LEN);
960 }
961 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP)
962 tx->skb->do_not_encrypt = 0;
963 if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG)
964 tx->flags |= IEEE80211_TX_FRAGMENTED;
965 break;
966
967 /*
968 * Please update the file
969 * Documentation/networking/mac80211-injection.txt
970 * when parsing new fields here.
971 */
972
973 default:
974 break;
975 }
976 }
977
978 if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */
979 return TX_DROP;
980
981 /*
982 * remove the radiotap header
983 * iterator->max_length was sanity-checked against
984 * skb->len by iterator init
985 */
986 skb_pull(skb, iterator.max_length);
987
988 return TX_CONTINUE;
989 }
990
991 /*
992 * initialises @tx
993 */
994 static ieee80211_tx_result
995 __ieee80211_tx_prepare(struct ieee80211_tx_data *tx,
996 struct sk_buff *skb,
997 struct net_device *dev)
998 {
999 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1000 struct ieee80211_hdr *hdr;
1001 struct ieee80211_sub_if_data *sdata;
1002 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1003 int hdrlen, tid;
1004 u8 *qc, *state;
1005 bool queued = false;
1006
1007 memset(tx, 0, sizeof(*tx));
1008 tx->skb = skb;
1009 tx->dev = dev; /* use original interface */
1010 tx->local = local;
1011 tx->sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1012 tx->channel = local->hw.conf.channel;
1013 /*
1014 * Set this flag (used below to indicate "automatic fragmentation"),
1015 * it will be cleared/left by radiotap as desired.
1016 */
1017 tx->flags |= IEEE80211_TX_FRAGMENTED;
1018
1019 /* process and remove the injection radiotap header */
1020 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1021 if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) {
1022 if (__ieee80211_parse_tx_radiotap(tx, skb) == TX_DROP)
1023 return TX_DROP;
1024
1025 /*
1026 * __ieee80211_parse_tx_radiotap has now removed
1027 * the radiotap header that was present and pre-filled
1028 * 'tx' with tx control information.
1029 */
1030 }
1031
1032 /*
1033 * If this flag is set to true anywhere, and we get here,
1034 * we are doing the needed processing, so remove the flag
1035 * now.
1036 */
1037 info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1038
1039 hdr = (struct ieee80211_hdr *) skb->data;
1040
1041 tx->sta = sta_info_get(local, hdr->addr1);
1042
1043 if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) &&
1044 (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) {
1045 unsigned long flags;
1046 struct tid_ampdu_tx *tid_tx;
1047
1048 qc = ieee80211_get_qos_ctl(hdr);
1049 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
1050
1051 spin_lock_irqsave(&tx->sta->lock, flags);
1052 /*
1053 * XXX: This spinlock could be fairly expensive, but see the
1054 * comment in agg-tx.c:ieee80211_agg_tx_operational().
1055 * One way to solve this would be to do something RCU-like
1056 * for managing the tid_tx struct and using atomic bitops
1057 * for the actual state -- by introducing an actual
1058 * 'operational' bit that would be possible. It would
1059 * require changing ieee80211_agg_tx_operational() to
1060 * set that bit, and changing the way tid_tx is managed
1061 * everywhere, including races between that bit and
1062 * tid_tx going away (tid_tx being added can be easily
1063 * committed to memory before the 'operational' bit).
1064 */
1065 tid_tx = tx->sta->ampdu_mlme.tid_tx[tid];
1066 state = &tx->sta->ampdu_mlme.tid_state_tx[tid];
1067 if (*state == HT_AGG_STATE_OPERATIONAL) {
1068 info->flags |= IEEE80211_TX_CTL_AMPDU;
1069 } else if (*state != HT_AGG_STATE_IDLE) {
1070 /* in progress */
1071 queued = true;
1072 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
1073 __skb_queue_tail(&tid_tx->pending, skb);
1074 }
1075 spin_unlock_irqrestore(&tx->sta->lock, flags);
1076
1077 if (unlikely(queued))
1078 return TX_QUEUED;
1079 }
1080
1081 if (is_multicast_ether_addr(hdr->addr1)) {
1082 tx->flags &= ~IEEE80211_TX_UNICAST;
1083 info->flags |= IEEE80211_TX_CTL_NO_ACK;
1084 } else {
1085 tx->flags |= IEEE80211_TX_UNICAST;
1086 info->flags &= ~IEEE80211_TX_CTL_NO_ACK;
1087 }
1088
1089 if (tx->flags & IEEE80211_TX_FRAGMENTED) {
1090 if ((tx->flags & IEEE80211_TX_UNICAST) &&
1091 skb->len + FCS_LEN > local->fragmentation_threshold &&
1092 !(info->flags & IEEE80211_TX_CTL_AMPDU))
1093 tx->flags |= IEEE80211_TX_FRAGMENTED;
1094 else
1095 tx->flags &= ~IEEE80211_TX_FRAGMENTED;
1096 }
1097
1098 if (!tx->sta)
1099 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1100 else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT))
1101 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1102
1103 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1104 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1105 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1106 tx->ethertype = (pos[0] << 8) | pos[1];
1107 }
1108 info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT;
1109
1110 return TX_CONTINUE;
1111 }
1112
1113 /*
1114 * NB: @tx is uninitialised when passed in here
1115 */
1116 static int ieee80211_tx_prepare(struct ieee80211_local *local,
1117 struct ieee80211_tx_data *tx,
1118 struct sk_buff *skb)
1119 {
1120 struct net_device *dev;
1121
1122 dev = dev_get_by_index(&init_net, skb->iif);
1123 if (unlikely(dev && !is_ieee80211_device(local, dev))) {
1124 dev_put(dev);
1125 dev = NULL;
1126 }
1127 if (unlikely(!dev))
1128 return -ENODEV;
1129 /*
1130 * initialises tx with control
1131 *
1132 * return value is safe to ignore here because this function
1133 * can only be invoked for multicast frames
1134 *
1135 * XXX: clean up
1136 */
1137 __ieee80211_tx_prepare(tx, skb, dev);
1138 dev_put(dev);
1139 return 0;
1140 }
1141
1142 static int __ieee80211_tx(struct ieee80211_local *local,
1143 struct sk_buff **skbp,
1144 struct sta_info *sta)
1145 {
1146 struct sk_buff *skb = *skbp, *next;
1147 struct ieee80211_tx_info *info;
1148 int ret, len;
1149 bool fragm = false;
1150
1151 local->mdev->trans_start = jiffies;
1152
1153 while (skb) {
1154 if (ieee80211_queue_stopped(&local->hw,
1155 skb_get_queue_mapping(skb)))
1156 return IEEE80211_TX_PENDING;
1157
1158 info = IEEE80211_SKB_CB(skb);
1159
1160 if (fragm)
1161 info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
1162 IEEE80211_TX_CTL_FIRST_FRAGMENT);
1163
1164 next = skb->next;
1165 len = skb->len;
1166 ret = local->ops->tx(local_to_hw(local), skb);
1167 if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) {
1168 dev_kfree_skb(skb);
1169 ret = NETDEV_TX_OK;
1170 }
1171 if (ret != NETDEV_TX_OK)
1172 return IEEE80211_TX_AGAIN;
1173 *skbp = skb = next;
1174 ieee80211_led_tx(local, 1);
1175 fragm = true;
1176 }
1177
1178 return IEEE80211_TX_OK;
1179 }
1180
1181 /*
1182 * Invoke TX handlers, return 0 on success and non-zero if the
1183 * frame was dropped or queued.
1184 */
1185 static int invoke_tx_handlers(struct ieee80211_tx_data *tx)
1186 {
1187 struct sk_buff *skb = tx->skb;
1188 ieee80211_tx_result res = TX_DROP;
1189
1190 #define CALL_TXH(txh) \
1191 res = txh(tx); \
1192 if (res != TX_CONTINUE) \
1193 goto txh_done;
1194
1195 CALL_TXH(ieee80211_tx_h_check_assoc)
1196 CALL_TXH(ieee80211_tx_h_ps_buf)
1197 CALL_TXH(ieee80211_tx_h_select_key)
1198 CALL_TXH(ieee80211_tx_h_michael_mic_add)
1199 CALL_TXH(ieee80211_tx_h_rate_ctrl)
1200 CALL_TXH(ieee80211_tx_h_misc)
1201 CALL_TXH(ieee80211_tx_h_sequence)
1202 CALL_TXH(ieee80211_tx_h_fragment)
1203 /* handlers after fragment must be aware of tx info fragmentation! */
1204 CALL_TXH(ieee80211_tx_h_encrypt)
1205 CALL_TXH(ieee80211_tx_h_calculate_duration)
1206 CALL_TXH(ieee80211_tx_h_stats)
1207 #undef CALL_TXH
1208
1209 txh_done:
1210 if (unlikely(res == TX_DROP)) {
1211 I802_DEBUG_INC(tx->local->tx_handlers_drop);
1212 while (skb) {
1213 struct sk_buff *next;
1214
1215 next = skb->next;
1216 dev_kfree_skb(skb);
1217 skb = next;
1218 }
1219 return -1;
1220 } else if (unlikely(res == TX_QUEUED)) {
1221 I802_DEBUG_INC(tx->local->tx_handlers_queued);
1222 return -1;
1223 }
1224
1225 return 0;
1226 }
1227
1228 static void ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1229 bool txpending)
1230 {
1231 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1232 struct sta_info *sta;
1233 struct ieee80211_tx_data tx;
1234 ieee80211_tx_result res_prepare;
1235 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1236 struct sk_buff *next;
1237 unsigned long flags;
1238 int ret, retries;
1239 u16 queue;
1240
1241 queue = skb_get_queue_mapping(skb);
1242
1243 WARN_ON(!txpending && !skb_queue_empty(&local->pending[queue]));
1244
1245 if (unlikely(skb->len < 10)) {
1246 dev_kfree_skb(skb);
1247 return;
1248 }
1249
1250 rcu_read_lock();
1251
1252 /* initialises tx */
1253 res_prepare = __ieee80211_tx_prepare(&tx, skb, dev);
1254
1255 if (unlikely(res_prepare == TX_DROP)) {
1256 dev_kfree_skb(skb);
1257 rcu_read_unlock();
1258 return;
1259 } else if (unlikely(res_prepare == TX_QUEUED)) {
1260 rcu_read_unlock();
1261 return;
1262 }
1263
1264 sta = tx.sta;
1265 tx.channel = local->hw.conf.channel;
1266 info->band = tx.channel->band;
1267
1268 if (invoke_tx_handlers(&tx))
1269 goto out;
1270
1271 retries = 0;
1272 retry:
1273 ret = __ieee80211_tx(local, &tx.skb, tx.sta);
1274 switch (ret) {
1275 case IEEE80211_TX_OK:
1276 break;
1277 case IEEE80211_TX_AGAIN:
1278 /*
1279 * Since there are no fragmented frames on A-MPDU
1280 * queues, there's no reason for a driver to reject
1281 * a frame there, warn and drop it.
1282 */
1283 if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU))
1284 goto drop;
1285 /* fall through */
1286 case IEEE80211_TX_PENDING:
1287 skb = tx.skb;
1288
1289 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1290
1291 if (__netif_subqueue_stopped(local->mdev, queue)) {
1292 do {
1293 next = skb->next;
1294 skb->next = NULL;
1295 if (unlikely(txpending))
1296 skb_queue_head(&local->pending[queue],
1297 skb);
1298 else
1299 skb_queue_tail(&local->pending[queue],
1300 skb);
1301 } while ((skb = next));
1302
1303 /*
1304 * Make sure nobody will enable the queue on us
1305 * (without going through the tasklet) nor disable the
1306 * netdev queue underneath the pending handling code.
1307 */
1308 __set_bit(IEEE80211_QUEUE_STOP_REASON_PENDING,
1309 &local->queue_stop_reasons[queue]);
1310
1311 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1312 flags);
1313 } else {
1314 spin_unlock_irqrestore(&local->queue_stop_reason_lock,
1315 flags);
1316
1317 retries++;
1318 if (WARN(retries > 10, "tx refused but queue active"))
1319 goto drop;
1320 goto retry;
1321 }
1322 }
1323 out:
1324 rcu_read_unlock();
1325 return;
1326
1327 drop:
1328 rcu_read_unlock();
1329
1330 skb = tx.skb;
1331 while (skb) {
1332 next = skb->next;
1333 dev_kfree_skb(skb);
1334 skb = next;
1335 }
1336 }
1337
1338 /* device xmit handlers */
1339
1340 static int ieee80211_skb_resize(struct ieee80211_local *local,
1341 struct sk_buff *skb,
1342 int head_need, bool may_encrypt)
1343 {
1344 int tail_need = 0;
1345
1346 /*
1347 * This could be optimised, devices that do full hardware
1348 * crypto (including TKIP MMIC) need no tailroom... But we
1349 * have no drivers for such devices currently.
1350 */
1351 if (may_encrypt) {
1352 tail_need = IEEE80211_ENCRYPT_TAILROOM;
1353 tail_need -= skb_tailroom(skb);
1354 tail_need = max_t(int, tail_need, 0);
1355 }
1356
1357 if (head_need || tail_need) {
1358 /* Sorry. Can't account for this any more */
1359 skb_orphan(skb);
1360 }
1361
1362 if (skb_header_cloned(skb))
1363 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1364 else
1365 I802_DEBUG_INC(local->tx_expand_skb_head);
1366
1367 if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) {
1368 printk(KERN_DEBUG "%s: failed to reallocate TX buffer\n",
1369 wiphy_name(local->hw.wiphy));
1370 return -ENOMEM;
1371 }
1372
1373 /* update truesize too */
1374 skb->truesize += head_need + tail_need;
1375
1376 return 0;
1377 }
1378
1379 int ieee80211_master_start_xmit(struct sk_buff *skb, struct net_device *dev)
1380 {
1381 struct ieee80211_master_priv *mpriv = netdev_priv(dev);
1382 struct ieee80211_local *local = mpriv->local;
1383 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1384 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1385 struct net_device *odev = NULL;
1386 struct ieee80211_sub_if_data *osdata;
1387 int headroom;
1388 bool may_encrypt;
1389 enum {
1390 NOT_MONITOR,
1391 FOUND_SDATA,
1392 UNKNOWN_ADDRESS,
1393 } monitor_iface = NOT_MONITOR;
1394
1395 if (skb->iif)
1396 odev = dev_get_by_index(&init_net, skb->iif);
1397 if (unlikely(odev && !is_ieee80211_device(local, odev))) {
1398 dev_put(odev);
1399 odev = NULL;
1400 }
1401 if (unlikely(!odev)) {
1402 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1403 printk(KERN_DEBUG "%s: Discarded packet with nonexistent "
1404 "originating device\n", dev->name);
1405 #endif
1406 dev_kfree_skb(skb);
1407 return NETDEV_TX_OK;
1408 }
1409
1410 if ((local->hw.flags & IEEE80211_HW_PS_NULLFUNC_STACK) &&
1411 local->hw.conf.dynamic_ps_timeout > 0) {
1412 if (local->hw.conf.flags & IEEE80211_CONF_PS) {
1413 ieee80211_stop_queues_by_reason(&local->hw,
1414 IEEE80211_QUEUE_STOP_REASON_PS);
1415 queue_work(local->hw.workqueue,
1416 &local->dynamic_ps_disable_work);
1417 }
1418
1419 mod_timer(&local->dynamic_ps_timer, jiffies +
1420 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
1421 }
1422
1423 memset(info, 0, sizeof(*info));
1424
1425 info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS;
1426
1427 osdata = IEEE80211_DEV_TO_SUB_IF(odev);
1428
1429 if (ieee80211_vif_is_mesh(&osdata->vif) &&
1430 ieee80211_is_data(hdr->frame_control)) {
1431 if (is_multicast_ether_addr(hdr->addr3))
1432 memcpy(hdr->addr1, hdr->addr3, ETH_ALEN);
1433 else
1434 if (mesh_nexthop_lookup(skb, osdata)) {
1435 dev_put(odev);
1436 return NETDEV_TX_OK;
1437 }
1438 if (memcmp(odev->dev_addr, hdr->addr4, ETH_ALEN) != 0)
1439 IEEE80211_IFSTA_MESH_CTR_INC(&osdata->u.mesh,
1440 fwded_frames);
1441 } else if (unlikely(osdata->vif.type == NL80211_IFTYPE_MONITOR)) {
1442 struct ieee80211_sub_if_data *sdata;
1443 int hdrlen;
1444 u16 len_rthdr;
1445
1446 info->flags |= IEEE80211_TX_CTL_INJECTED;
1447 monitor_iface = UNKNOWN_ADDRESS;
1448
1449 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1450 hdr = (struct ieee80211_hdr *)skb->data + len_rthdr;
1451 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1452
1453 /* check the header is complete in the frame */
1454 if (likely(skb->len >= len_rthdr + hdrlen)) {
1455 /*
1456 * We process outgoing injected frames that have a
1457 * local address we handle as though they are our
1458 * own frames.
1459 * This code here isn't entirely correct, the local
1460 * MAC address is not necessarily enough to find
1461 * the interface to use; for that proper VLAN/WDS
1462 * support we will need a different mechanism.
1463 */
1464
1465 rcu_read_lock();
1466 list_for_each_entry_rcu(sdata, &local->interfaces,
1467 list) {
1468 if (!netif_running(sdata->dev))
1469 continue;
1470 if (sdata->vif.type != NL80211_IFTYPE_AP)
1471 continue;
1472 if (compare_ether_addr(sdata->dev->dev_addr,
1473 hdr->addr2)) {
1474 dev_hold(sdata->dev);
1475 dev_put(odev);
1476 osdata = sdata;
1477 odev = osdata->dev;
1478 skb->iif = sdata->dev->ifindex;
1479 monitor_iface = FOUND_SDATA;
1480 break;
1481 }
1482 }
1483 rcu_read_unlock();
1484 }
1485 }
1486
1487 may_encrypt = !skb->do_not_encrypt;
1488
1489 headroom = osdata->local->tx_headroom;
1490 if (may_encrypt)
1491 headroom += IEEE80211_ENCRYPT_HEADROOM;
1492 headroom -= skb_headroom(skb);
1493 headroom = max_t(int, 0, headroom);
1494
1495 if (ieee80211_skb_resize(osdata->local, skb, headroom, may_encrypt)) {
1496 dev_kfree_skb(skb);
1497 dev_put(odev);
1498 return NETDEV_TX_OK;
1499 }
1500
1501 if (osdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1502 osdata = container_of(osdata->bss,
1503 struct ieee80211_sub_if_data,
1504 u.ap);
1505 if (likely(monitor_iface != UNKNOWN_ADDRESS))
1506 info->control.vif = &osdata->vif;
1507
1508 ieee80211_tx(odev, skb, false);
1509 dev_put(odev);
1510
1511 return NETDEV_TX_OK;
1512 }
1513
1514 int ieee80211_monitor_start_xmit(struct sk_buff *skb,
1515 struct net_device *dev)
1516 {
1517 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
1518 struct ieee80211_channel *chan = local->hw.conf.channel;
1519 struct ieee80211_radiotap_header *prthdr =
1520 (struct ieee80211_radiotap_header *)skb->data;
1521 u16 len_rthdr;
1522
1523 /*
1524 * Frame injection is not allowed if beaconing is not allowed
1525 * or if we need radar detection. Beaconing is usually not allowed when
1526 * the mode or operation (Adhoc, AP, Mesh) does not support DFS.
1527 * Passive scan is also used in world regulatory domains where
1528 * your country is not known and as such it should be treated as
1529 * NO TX unless the channel is explicitly allowed in which case
1530 * your current regulatory domain would not have the passive scan
1531 * flag.
1532 *
1533 * Since AP mode uses monitor interfaces to inject/TX management
1534 * frames we can make AP mode the exception to this rule once it
1535 * supports radar detection as its implementation can deal with
1536 * radar detection by itself. We can do that later by adding a
1537 * monitor flag interfaces used for AP support.
1538 */
1539 if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR |
1540 IEEE80211_CHAN_PASSIVE_SCAN)))
1541 goto fail;
1542
1543 /* check for not even having the fixed radiotap header part */
1544 if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header)))
1545 goto fail; /* too short to be possibly valid */
1546
1547 /* is it a header version we can trust to find length from? */
1548 if (unlikely(prthdr->it_version))
1549 goto fail; /* only version 0 is supported */
1550
1551 /* then there must be a radiotap header with a length we can use */
1552 len_rthdr = ieee80211_get_radiotap_len(skb->data);
1553
1554 /* does the skb contain enough to deliver on the alleged length? */
1555 if (unlikely(skb->len < len_rthdr))
1556 goto fail; /* skb too short for claimed rt header extent */
1557
1558 skb->dev = local->mdev;
1559
1560 /* needed because we set skb device to master */
1561 skb->iif = dev->ifindex;
1562
1563 /* sometimes we do encrypt injected frames, will be fixed
1564 * up in radiotap parser if not wanted */
1565 skb->do_not_encrypt = 0;
1566
1567 /*
1568 * fix up the pointers accounting for the radiotap
1569 * header still being in there. We are being given
1570 * a precooked IEEE80211 header so no need for
1571 * normal processing
1572 */
1573 skb_set_mac_header(skb, len_rthdr);
1574 /*
1575 * these are just fixed to the end of the rt area since we
1576 * don't have any better information and at this point, nobody cares
1577 */
1578 skb_set_network_header(skb, len_rthdr);
1579 skb_set_transport_header(skb, len_rthdr);
1580
1581 /* pass the radiotap header up to the next stage intact */
1582 dev_queue_xmit(skb);
1583 return NETDEV_TX_OK;
1584
1585 fail:
1586 dev_kfree_skb(skb);
1587 return NETDEV_TX_OK; /* meaning, we dealt with the skb */
1588 }
1589
1590 /**
1591 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1592 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1593 * @skb: packet to be sent
1594 * @dev: incoming interface
1595 *
1596 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1597 * not be freed, and caller is responsible for either retrying later or freeing
1598 * skb).
1599 *
1600 * This function takes in an Ethernet header and encapsulates it with suitable
1601 * IEEE 802.11 header based on which interface the packet is coming in. The
1602 * encapsulated packet will then be passed to master interface, wlan#.11, for
1603 * transmission (through low-level driver).
1604 */
1605 int ieee80211_subif_start_xmit(struct sk_buff *skb,
1606 struct net_device *dev)
1607 {
1608 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1609 struct ieee80211_local *local = sdata->local;
1610 int ret = 1, head_need;
1611 u16 ethertype, hdrlen, meshhdrlen = 0;
1612 __le16 fc;
1613 struct ieee80211_hdr hdr;
1614 struct ieee80211s_hdr mesh_hdr;
1615 const u8 *encaps_data;
1616 int encaps_len, skip_header_bytes;
1617 int nh_pos, h_pos;
1618 struct sta_info *sta;
1619 u32 sta_flags = 0;
1620
1621 if (unlikely(skb->len < ETH_HLEN)) {
1622 ret = 0;
1623 goto fail;
1624 }
1625
1626 nh_pos = skb_network_header(skb) - skb->data;
1627 h_pos = skb_transport_header(skb) - skb->data;
1628
1629 /* convert Ethernet header to proper 802.11 header (based on
1630 * operation mode) */
1631 ethertype = (skb->data[12] << 8) | skb->data[13];
1632 fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
1633
1634 switch (sdata->vif.type) {
1635 case NL80211_IFTYPE_AP:
1636 case NL80211_IFTYPE_AP_VLAN:
1637 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
1638 /* DA BSSID SA */
1639 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1640 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1641 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1642 hdrlen = 24;
1643 break;
1644 case NL80211_IFTYPE_WDS:
1645 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1646 /* RA TA DA SA */
1647 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1648 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1649 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1650 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1651 hdrlen = 30;
1652 break;
1653 #ifdef CONFIG_MAC80211_MESH
1654 case NL80211_IFTYPE_MESH_POINT:
1655 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS);
1656 if (!sdata->u.mesh.mshcfg.dot11MeshTTL) {
1657 /* Do not send frames with mesh_ttl == 0 */
1658 sdata->u.mesh.mshstats.dropped_frames_ttl++;
1659 ret = 0;
1660 goto fail;
1661 }
1662 memset(&mesh_hdr, 0, sizeof(mesh_hdr));
1663
1664 if (compare_ether_addr(dev->dev_addr,
1665 skb->data + ETH_ALEN) == 0) {
1666 /* RA TA DA SA */
1667 memset(hdr.addr1, 0, ETH_ALEN);
1668 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1669 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1670 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1671 meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, sdata);
1672 } else {
1673 /* packet from other interface */
1674 struct mesh_path *mppath;
1675
1676 memset(hdr.addr1, 0, ETH_ALEN);
1677 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1678 memcpy(hdr.addr4, dev->dev_addr, ETH_ALEN);
1679
1680 if (is_multicast_ether_addr(skb->data))
1681 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1682 else {
1683 rcu_read_lock();
1684 mppath = mpp_path_lookup(skb->data, sdata);
1685 if (mppath)
1686 memcpy(hdr.addr3, mppath->mpp, ETH_ALEN);
1687 else
1688 memset(hdr.addr3, 0xff, ETH_ALEN);
1689 rcu_read_unlock();
1690 }
1691
1692 mesh_hdr.flags |= MESH_FLAGS_AE_A5_A6;
1693 mesh_hdr.ttl = sdata->u.mesh.mshcfg.dot11MeshTTL;
1694 put_unaligned(cpu_to_le32(sdata->u.mesh.mesh_seqnum), &mesh_hdr.seqnum);
1695 memcpy(mesh_hdr.eaddr1, skb->data, ETH_ALEN);
1696 memcpy(mesh_hdr.eaddr2, skb->data + ETH_ALEN, ETH_ALEN);
1697 sdata->u.mesh.mesh_seqnum++;
1698 meshhdrlen = 18;
1699 }
1700 hdrlen = 30;
1701 break;
1702 #endif
1703 case NL80211_IFTYPE_STATION:
1704 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
1705 /* BSSID SA DA */
1706 memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN);
1707 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1708 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1709 hdrlen = 24;
1710 break;
1711 case NL80211_IFTYPE_ADHOC:
1712 /* DA SA BSSID */
1713 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1714 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1715 memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN);
1716 hdrlen = 24;
1717 break;
1718 default:
1719 ret = 0;
1720 goto fail;
1721 }
1722
1723 /*
1724 * There's no need to try to look up the destination
1725 * if it is a multicast address (which can only happen
1726 * in AP mode)
1727 */
1728 if (!is_multicast_ether_addr(hdr.addr1)) {
1729 rcu_read_lock();
1730 sta = sta_info_get(local, hdr.addr1);
1731 if (sta)
1732 sta_flags = get_sta_flags(sta);
1733 rcu_read_unlock();
1734 }
1735
1736 /* receiver and we are QoS enabled, use a QoS type frame */
1737 if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) {
1738 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1739 hdrlen += 2;
1740 }
1741
1742 /*
1743 * Drop unicast frames to unauthorised stations unless they are
1744 * EAPOL frames from the local station.
1745 */
1746 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
1747 unlikely(!is_multicast_ether_addr(hdr.addr1) &&
1748 !(sta_flags & WLAN_STA_AUTHORIZED) &&
1749 !(ethertype == ETH_P_PAE &&
1750 compare_ether_addr(dev->dev_addr,
1751 skb->data + ETH_ALEN) == 0))) {
1752 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
1753 if (net_ratelimit())
1754 printk(KERN_DEBUG "%s: dropped frame to %pM"
1755 " (unauthorized port)\n", dev->name,
1756 hdr.addr1);
1757 #endif
1758
1759 I802_DEBUG_INC(local->tx_handlers_drop_unauth_port);
1760
1761 ret = 0;
1762 goto fail;
1763 }
1764
1765 hdr.frame_control = fc;
1766 hdr.duration_id = 0;
1767 hdr.seq_ctrl = 0;
1768
1769 skip_header_bytes = ETH_HLEN;
1770 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1771 encaps_data = bridge_tunnel_header;
1772 encaps_len = sizeof(bridge_tunnel_header);
1773 skip_header_bytes -= 2;
1774 } else if (ethertype >= 0x600) {
1775 encaps_data = rfc1042_header;
1776 encaps_len = sizeof(rfc1042_header);
1777 skip_header_bytes -= 2;
1778 } else {
1779 encaps_data = NULL;
1780 encaps_len = 0;
1781 }
1782
1783 skb_pull(skb, skip_header_bytes);
1784 nh_pos -= skip_header_bytes;
1785 h_pos -= skip_header_bytes;
1786
1787 head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb);
1788
1789 /*
1790 * So we need to modify the skb header and hence need a copy of
1791 * that. The head_need variable above doesn't, so far, include
1792 * the needed header space that we don't need right away. If we
1793 * can, then we don't reallocate right now but only after the
1794 * frame arrives at the master device (if it does...)
1795 *
1796 * If we cannot, however, then we will reallocate to include all
1797 * the ever needed space. Also, if we need to reallocate it anyway,
1798 * make it big enough for everything we may ever need.
1799 */
1800
1801 if (head_need > 0 || skb_cloned(skb)) {
1802 head_need += IEEE80211_ENCRYPT_HEADROOM;
1803 head_need += local->tx_headroom;
1804 head_need = max_t(int, 0, head_need);
1805 if (ieee80211_skb_resize(local, skb, head_need, true))
1806 goto fail;
1807 }
1808
1809 if (encaps_data) {
1810 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1811 nh_pos += encaps_len;
1812 h_pos += encaps_len;
1813 }
1814
1815 if (meshhdrlen > 0) {
1816 memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen);
1817 nh_pos += meshhdrlen;
1818 h_pos += meshhdrlen;
1819 }
1820
1821 if (ieee80211_is_data_qos(fc)) {
1822 __le16 *qos_control;
1823
1824 qos_control = (__le16*) skb_push(skb, 2);
1825 memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2);
1826 /*
1827 * Maybe we could actually set some fields here, for now just
1828 * initialise to zero to indicate no special operation.
1829 */
1830 *qos_control = 0;
1831 } else
1832 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1833
1834 nh_pos += hdrlen;
1835 h_pos += hdrlen;
1836
1837 skb->iif = dev->ifindex;
1838
1839 skb->dev = local->mdev;
1840 dev->stats.tx_packets++;
1841 dev->stats.tx_bytes += skb->len;
1842
1843 /* Update skb pointers to various headers since this modified frame
1844 * is going to go through Linux networking code that may potentially
1845 * need things like pointer to IP header. */
1846 skb_set_mac_header(skb, 0);
1847 skb_set_network_header(skb, nh_pos);
1848 skb_set_transport_header(skb, h_pos);
1849
1850 dev->trans_start = jiffies;
1851 dev_queue_xmit(skb);
1852
1853 return 0;
1854
1855 fail:
1856 if (!ret)
1857 dev_kfree_skb(skb);
1858
1859 return ret;
1860 }
1861
1862
1863 /*
1864 * ieee80211_clear_tx_pending may not be called in a context where
1865 * it is possible that it packets could come in again.
1866 */
1867 void ieee80211_clear_tx_pending(struct ieee80211_local *local)
1868 {
1869 int i;
1870
1871 for (i = 0; i < local->hw.queues; i++)
1872 skb_queue_purge(&local->pending[i]);
1873 }
1874
1875 static bool ieee80211_tx_pending_skb(struct ieee80211_local *local,
1876 struct sk_buff *skb)
1877 {
1878 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1879 struct ieee80211_sub_if_data *sdata;
1880 struct sta_info *sta;
1881 struct ieee80211_hdr *hdr;
1882 struct net_device *dev;
1883 int ret;
1884 bool result = true;
1885
1886 /* does interface still exist? */
1887 dev = dev_get_by_index(&init_net, skb->iif);
1888 if (!dev) {
1889 dev_kfree_skb(skb);
1890 return true;
1891 }
1892
1893 /* validate info->control.vif against skb->iif */
1894 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1895 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1896 sdata = container_of(sdata->bss,
1897 struct ieee80211_sub_if_data,
1898 u.ap);
1899
1900 if (unlikely(info->control.vif && info->control.vif != &sdata->vif)) {
1901 dev_kfree_skb(skb);
1902 result = true;
1903 goto out;
1904 }
1905
1906 if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) {
1907 ieee80211_tx(dev, skb, true);
1908 } else {
1909 hdr = (struct ieee80211_hdr *)skb->data;
1910 sta = sta_info_get(local, hdr->addr1);
1911
1912 ret = __ieee80211_tx(local, &skb, sta);
1913 if (ret != IEEE80211_TX_OK)
1914 result = false;
1915 }
1916
1917 out:
1918 dev_put(dev);
1919
1920 return result;
1921 }
1922
1923 /*
1924 * Transmit all pending packets. Called from tasklet, locks master device
1925 * TX lock so that no new packets can come in.
1926 */
1927 void ieee80211_tx_pending(unsigned long data)
1928 {
1929 struct ieee80211_local *local = (struct ieee80211_local *)data;
1930 struct net_device *dev = local->mdev;
1931 unsigned long flags;
1932 int i;
1933 bool next;
1934
1935 rcu_read_lock();
1936 netif_tx_lock_bh(dev);
1937
1938 for (i = 0; i < local->hw.queues; i++) {
1939 /*
1940 * If queue is stopped by something other than due to pending
1941 * frames, or we have no pending frames, proceed to next queue.
1942 */
1943 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
1944 next = false;
1945 if (local->queue_stop_reasons[i] !=
1946 BIT(IEEE80211_QUEUE_STOP_REASON_PENDING) ||
1947 skb_queue_empty(&local->pending[i]))
1948 next = true;
1949 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
1950
1951 if (next)
1952 continue;
1953
1954 /*
1955 * start the queue now to allow processing our packets,
1956 * we're under the tx lock here anyway so nothing will
1957 * happen as a result of this
1958 */
1959 netif_start_subqueue(local->mdev, i);
1960
1961 while (!skb_queue_empty(&local->pending[i])) {
1962 struct sk_buff *skb = skb_dequeue(&local->pending[i]);
1963
1964 if (!ieee80211_tx_pending_skb(local, skb)) {
1965 skb_queue_head(&local->pending[i], skb);
1966 break;
1967 }
1968 }
1969
1970 /* Start regular packet processing again. */
1971 if (skb_queue_empty(&local->pending[i]))
1972 ieee80211_wake_queue_by_reason(&local->hw, i,
1973 IEEE80211_QUEUE_STOP_REASON_PENDING);
1974 }
1975
1976 netif_tx_unlock_bh(dev);
1977 rcu_read_unlock();
1978 }
1979
1980 /* functions for drivers to get certain frames */
1981
1982 static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss,
1983 struct sk_buff *skb,
1984 struct beacon_data *beacon)
1985 {
1986 u8 *pos, *tim;
1987 int aid0 = 0;
1988 int i, have_bits = 0, n1, n2;
1989
1990 /* Generate bitmap for TIM only if there are any STAs in power save
1991 * mode. */
1992 if (atomic_read(&bss->num_sta_ps) > 0)
1993 /* in the hope that this is faster than
1994 * checking byte-for-byte */
1995 have_bits = !bitmap_empty((unsigned long*)bss->tim,
1996 IEEE80211_MAX_AID+1);
1997
1998 if (bss->dtim_count == 0)
1999 bss->dtim_count = beacon->dtim_period - 1;
2000 else
2001 bss->dtim_count--;
2002
2003 tim = pos = (u8 *) skb_put(skb, 6);
2004 *pos++ = WLAN_EID_TIM;
2005 *pos++ = 4;
2006 *pos++ = bss->dtim_count;
2007 *pos++ = beacon->dtim_period;
2008
2009 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf))
2010 aid0 = 1;
2011
2012 if (have_bits) {
2013 /* Find largest even number N1 so that bits numbered 1 through
2014 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
2015 * (N2 + 1) x 8 through 2007 are 0. */
2016 n1 = 0;
2017 for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) {
2018 if (bss->tim[i]) {
2019 n1 = i & 0xfe;
2020 break;
2021 }
2022 }
2023 n2 = n1;
2024 for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) {
2025 if (bss->tim[i]) {
2026 n2 = i;
2027 break;
2028 }
2029 }
2030
2031 /* Bitmap control */
2032 *pos++ = n1 | aid0;
2033 /* Part Virt Bitmap */
2034 memcpy(pos, bss->tim + n1, n2 - n1 + 1);
2035
2036 tim[1] = n2 - n1 + 4;
2037 skb_put(skb, n2 - n1);
2038 } else {
2039 *pos++ = aid0; /* Bitmap control */
2040 *pos++ = 0; /* Part Virt Bitmap */
2041 }
2042 }
2043
2044 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
2045 struct ieee80211_vif *vif)
2046 {
2047 struct ieee80211_local *local = hw_to_local(hw);
2048 struct sk_buff *skb = NULL;
2049 struct ieee80211_tx_info *info;
2050 struct ieee80211_sub_if_data *sdata = NULL;
2051 struct ieee80211_if_ap *ap = NULL;
2052 struct beacon_data *beacon;
2053 struct ieee80211_supported_band *sband;
2054 enum ieee80211_band band = local->hw.conf.channel->band;
2055
2056 sband = local->hw.wiphy->bands[band];
2057
2058 rcu_read_lock();
2059
2060 sdata = vif_to_sdata(vif);
2061
2062 if (sdata->vif.type == NL80211_IFTYPE_AP) {
2063 ap = &sdata->u.ap;
2064 beacon = rcu_dereference(ap->beacon);
2065 if (ap && beacon) {
2066 /*
2067 * headroom, head length,
2068 * tail length and maximum TIM length
2069 */
2070 skb = dev_alloc_skb(local->tx_headroom +
2071 beacon->head_len +
2072 beacon->tail_len + 256);
2073 if (!skb)
2074 goto out;
2075
2076 skb_reserve(skb, local->tx_headroom);
2077 memcpy(skb_put(skb, beacon->head_len), beacon->head,
2078 beacon->head_len);
2079
2080 /*
2081 * Not very nice, but we want to allow the driver to call
2082 * ieee80211_beacon_get() as a response to the set_tim()
2083 * callback. That, however, is already invoked under the
2084 * sta_lock to guarantee consistent and race-free update
2085 * of the tim bitmap in mac80211 and the driver.
2086 */
2087 if (local->tim_in_locked_section) {
2088 ieee80211_beacon_add_tim(ap, skb, beacon);
2089 } else {
2090 unsigned long flags;
2091
2092 spin_lock_irqsave(&local->sta_lock, flags);
2093 ieee80211_beacon_add_tim(ap, skb, beacon);
2094 spin_unlock_irqrestore(&local->sta_lock, flags);
2095 }
2096
2097 if (beacon->tail)
2098 memcpy(skb_put(skb, beacon->tail_len),
2099 beacon->tail, beacon->tail_len);
2100 } else
2101 goto out;
2102 } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) {
2103 struct ieee80211_if_ibss *ifibss = &sdata->u.ibss;
2104 struct ieee80211_hdr *hdr;
2105
2106 if (!ifibss->probe_resp)
2107 goto out;
2108
2109 skb = skb_copy(ifibss->probe_resp, GFP_ATOMIC);
2110 if (!skb)
2111 goto out;
2112
2113 hdr = (struct ieee80211_hdr *) skb->data;
2114 hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2115 IEEE80211_STYPE_BEACON);
2116
2117 } else if (ieee80211_vif_is_mesh(&sdata->vif)) {
2118 struct ieee80211_mgmt *mgmt;
2119 u8 *pos;
2120
2121 /* headroom, head length, tail length and maximum TIM length */
2122 skb = dev_alloc_skb(local->tx_headroom + 400);
2123 if (!skb)
2124 goto out;
2125
2126 skb_reserve(skb, local->hw.extra_tx_headroom);
2127 mgmt = (struct ieee80211_mgmt *)
2128 skb_put(skb, 24 + sizeof(mgmt->u.beacon));
2129 memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
2130 mgmt->frame_control =
2131 cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
2132 memset(mgmt->da, 0xff, ETH_ALEN);
2133 memcpy(mgmt->sa, sdata->dev->dev_addr, ETH_ALEN);
2134 /* BSSID is left zeroed, wildcard value */
2135 mgmt->u.beacon.beacon_int =
2136 cpu_to_le16(local->hw.conf.beacon_int);
2137 mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */
2138
2139 pos = skb_put(skb, 2);
2140 *pos++ = WLAN_EID_SSID;
2141 *pos++ = 0x0;
2142
2143 mesh_mgmt_ies_add(skb, sdata);
2144 } else {
2145 WARN_ON(1);
2146 goto out;
2147 }
2148
2149 info = IEEE80211_SKB_CB(skb);
2150
2151 skb->do_not_encrypt = 1;
2152
2153 info->band = band;
2154 /*
2155 * XXX: For now, always use the lowest rate
2156 */
2157 info->control.rates[0].idx = 0;
2158 info->control.rates[0].count = 1;
2159 info->control.rates[1].idx = -1;
2160 info->control.rates[2].idx = -1;
2161 info->control.rates[3].idx = -1;
2162 info->control.rates[4].idx = -1;
2163 BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5);
2164
2165 info->control.vif = vif;
2166
2167 info->flags |= IEEE80211_TX_CTL_NO_ACK;
2168 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2169 info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
2170 out:
2171 rcu_read_unlock();
2172 return skb;
2173 }
2174 EXPORT_SYMBOL(ieee80211_beacon_get);
2175
2176 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2177 const void *frame, size_t frame_len,
2178 const struct ieee80211_tx_info *frame_txctl,
2179 struct ieee80211_rts *rts)
2180 {
2181 const struct ieee80211_hdr *hdr = frame;
2182
2183 rts->frame_control =
2184 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
2185 rts->duration = ieee80211_rts_duration(hw, vif, frame_len,
2186 frame_txctl);
2187 memcpy(rts->ra, hdr->addr1, sizeof(rts->ra));
2188 memcpy(rts->ta, hdr->addr2, sizeof(rts->ta));
2189 }
2190 EXPORT_SYMBOL(ieee80211_rts_get);
2191
2192 void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2193 const void *frame, size_t frame_len,
2194 const struct ieee80211_tx_info *frame_txctl,
2195 struct ieee80211_cts *cts)
2196 {
2197 const struct ieee80211_hdr *hdr = frame;
2198
2199 cts->frame_control =
2200 cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
2201 cts->duration = ieee80211_ctstoself_duration(hw, vif,
2202 frame_len, frame_txctl);
2203 memcpy(cts->ra, hdr->addr1, sizeof(cts->ra));
2204 }
2205 EXPORT_SYMBOL(ieee80211_ctstoself_get);
2206
2207 struct sk_buff *
2208 ieee80211_get_buffered_bc(struct ieee80211_hw *hw,
2209 struct ieee80211_vif *vif)
2210 {
2211 struct ieee80211_local *local = hw_to_local(hw);
2212 struct sk_buff *skb = NULL;
2213 struct sta_info *sta;
2214 struct ieee80211_tx_data tx;
2215 struct ieee80211_sub_if_data *sdata;
2216 struct ieee80211_if_ap *bss = NULL;
2217 struct beacon_data *beacon;
2218 struct ieee80211_tx_info *info;
2219
2220 sdata = vif_to_sdata(vif);
2221 bss = &sdata->u.ap;
2222
2223 if (!bss)
2224 return NULL;
2225
2226 rcu_read_lock();
2227 beacon = rcu_dereference(bss->beacon);
2228
2229 if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head)
2230 goto out;
2231
2232 if (bss->dtim_count != 0)
2233 goto out; /* send buffered bc/mc only after DTIM beacon */
2234
2235 while (1) {
2236 skb = skb_dequeue(&bss->ps_bc_buf);
2237 if (!skb)
2238 goto out;
2239 local->total_ps_buffered--;
2240
2241 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
2242 struct ieee80211_hdr *hdr =
2243 (struct ieee80211_hdr *) skb->data;
2244 /* more buffered multicast/broadcast frames ==> set
2245 * MoreData flag in IEEE 802.11 header to inform PS
2246 * STAs */
2247 hdr->frame_control |=
2248 cpu_to_le16(IEEE80211_FCTL_MOREDATA);
2249 }
2250
2251 if (!ieee80211_tx_prepare(local, &tx, skb))
2252 break;
2253 dev_kfree_skb_any(skb);
2254 }
2255
2256 info = IEEE80211_SKB_CB(skb);
2257
2258 sta = tx.sta;
2259 tx.flags |= IEEE80211_TX_PS_BUFFERED;
2260 tx.channel = local->hw.conf.channel;
2261 info->band = tx.channel->band;
2262
2263 if (invoke_tx_handlers(&tx))
2264 skb = NULL;
2265 out:
2266 rcu_read_unlock();
2267
2268 return skb;
2269 }
2270 EXPORT_SYMBOL(ieee80211_get_buffered_bc);