]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/mac80211/util.c
Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac802...
[mirror_ubuntu-artful-kernel.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * utilities for mac80211
12 */
13
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 struct ieee80211_local *local;
42 BUG_ON(!wiphy);
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 enum nl80211_iftype type)
51 {
52 __le16 fc = hdr->frame_control;
53
54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 if (len < 16)
56 return NULL;
57
58 if (ieee80211_is_data(fc)) {
59 if (len < 24) /* drop incorrect hdr len (data) */
60 return NULL;
61
62 if (ieee80211_has_a4(fc))
63 return NULL;
64 if (ieee80211_has_tods(fc))
65 return hdr->addr1;
66 if (ieee80211_has_fromds(fc))
67 return hdr->addr2;
68
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_mgmt(fc)) {
73 if (len < 24) /* drop incorrect hdr len (mgmt) */
74 return NULL;
75 return hdr->addr3;
76 }
77
78 if (ieee80211_is_ctl(fc)) {
79 if(ieee80211_is_pspoll(fc))
80 return hdr->addr1;
81
82 if (ieee80211_is_back_req(fc)) {
83 switch (type) {
84 case NL80211_IFTYPE_STATION:
85 return hdr->addr2;
86 case NL80211_IFTYPE_AP:
87 case NL80211_IFTYPE_AP_VLAN:
88 return hdr->addr1;
89 default:
90 break; /* fall through to the return */
91 }
92 }
93 }
94
95 return NULL;
96 }
97
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 struct sk_buff *skb;
101 struct ieee80211_hdr *hdr;
102
103 skb_queue_walk(&tx->skbs, skb) {
104 hdr = (struct ieee80211_hdr *) skb->data;
105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 }
107 }
108
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 int rate, int erp, int short_preamble)
111 {
112 int dur;
113
114 /* calculate duration (in microseconds, rounded up to next higher
115 * integer if it includes a fractional microsecond) to send frame of
116 * len bytes (does not include FCS) at the given rate. Duration will
117 * also include SIFS.
118 *
119 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 * DIV_ROUND_UP() operations.
121 */
122
123 if (band == IEEE80211_BAND_5GHZ || erp) {
124 /*
125 * OFDM:
126 *
127 * N_DBPS = DATARATE x 4
128 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 * (16 = SIGNAL time, 6 = tail bits)
130 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 *
132 * T_SYM = 4 usec
133 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 * signal ext = 6 usec
136 */
137 dur = 16; /* SIFS + signal ext */
138 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 4 * rate); /* T_SYM x N_SYM */
142 } else {
143 /*
144 * 802.11b or 802.11g with 802.11b compatibility:
145 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 *
148 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 * aSIFSTime = 10 usec
150 * aPreambleLength = 144 usec or 72 usec with short preamble
151 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 */
153 dur = 10; /* aSIFSTime = 10 usec */
154 dur += short_preamble ? (72 + 24) : (144 + 48);
155
156 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 }
158
159 return dur;
160 }
161
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 struct ieee80211_vif *vif,
165 enum ieee80211_band band,
166 size_t frame_len,
167 struct ieee80211_rate *rate)
168 {
169 struct ieee80211_sub_if_data *sdata;
170 u16 dur;
171 int erp;
172 bool short_preamble = false;
173
174 erp = 0;
175 if (vif) {
176 sdata = vif_to_sdata(vif);
177 short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 erp = rate->flags & IEEE80211_RATE_ERP_G;
180 }
181
182 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 short_preamble);
184
185 return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 struct ieee80211_vif *vif, size_t frame_len,
191 const struct ieee80211_tx_info *frame_txctl)
192 {
193 struct ieee80211_local *local = hw_to_local(hw);
194 struct ieee80211_rate *rate;
195 struct ieee80211_sub_if_data *sdata;
196 bool short_preamble;
197 int erp;
198 u16 dur;
199 struct ieee80211_supported_band *sband;
200
201 sband = local->hw.wiphy->bands[frame_txctl->band];
202
203 short_preamble = false;
204
205 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206
207 erp = 0;
208 if (vif) {
209 sdata = vif_to_sdata(vif);
210 short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 erp = rate->flags & IEEE80211_RATE_ERP_G;
213 }
214
215 /* CTS duration */
216 dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 erp, short_preamble);
218 /* Data frame duration */
219 dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 erp, short_preamble);
221 /* ACK duration */
222 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 erp, short_preamble);
224
225 return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 struct ieee80211_vif *vif,
231 size_t frame_len,
232 const struct ieee80211_tx_info *frame_txctl)
233 {
234 struct ieee80211_local *local = hw_to_local(hw);
235 struct ieee80211_rate *rate;
236 struct ieee80211_sub_if_data *sdata;
237 bool short_preamble;
238 int erp;
239 u16 dur;
240 struct ieee80211_supported_band *sband;
241
242 sband = local->hw.wiphy->bands[frame_txctl->band];
243
244 short_preamble = false;
245
246 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 erp = 0;
248 if (vif) {
249 sdata = vif_to_sdata(vif);
250 short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 erp = rate->flags & IEEE80211_RATE_ERP_G;
253 }
254
255 /* Data frame duration */
256 dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 erp, short_preamble);
258 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 /* ACK duration */
260 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 erp, short_preamble);
262 }
263
264 return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 struct ieee80211_sub_if_data *sdata;
271 int n_acs = IEEE80211_NUM_ACS;
272
273 if (local->hw.queues < IEEE80211_NUM_ACS)
274 n_acs = 1;
275
276 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 int ac;
278
279 if (!sdata->dev)
280 continue;
281
282 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 continue;
284
285 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 continue;
288
289 for (ac = 0; ac < n_acs; ac++) {
290 int ac_queue = sdata->vif.hw_queue[ac];
291
292 if (ac_queue == queue ||
293 (sdata->vif.cab_queue == queue &&
294 local->queue_stop_reasons[ac_queue] == 0 &&
295 skb_queue_empty(&local->pending[ac_queue])))
296 netif_wake_subqueue(sdata->dev, ac);
297 }
298 }
299 }
300
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 enum queue_stop_reason reason)
303 {
304 struct ieee80211_local *local = hw_to_local(hw);
305
306 trace_wake_queue(local, queue, reason);
307
308 if (WARN_ON(queue >= hw->queues))
309 return;
310
311 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 return;
313
314 __clear_bit(reason, &local->queue_stop_reasons[queue]);
315
316 if (local->queue_stop_reasons[queue] != 0)
317 /* someone still has this queue stopped */
318 return;
319
320 if (skb_queue_empty(&local->pending[queue])) {
321 rcu_read_lock();
322 ieee80211_propagate_queue_wake(local, queue);
323 rcu_read_unlock();
324 } else
325 tasklet_schedule(&local->tx_pending_tasklet);
326 }
327
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 enum queue_stop_reason reason)
330 {
331 struct ieee80211_local *local = hw_to_local(hw);
332 unsigned long flags;
333
334 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 __ieee80211_wake_queue(hw, queue, reason);
336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 ieee80211_wake_queue_by_reason(hw, queue,
342 IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 enum queue_stop_reason reason)
348 {
349 struct ieee80211_local *local = hw_to_local(hw);
350 struct ieee80211_sub_if_data *sdata;
351 int n_acs = IEEE80211_NUM_ACS;
352
353 trace_stop_queue(local, queue, reason);
354
355 if (WARN_ON(queue >= hw->queues))
356 return;
357
358 if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 return;
360
361 __set_bit(reason, &local->queue_stop_reasons[queue]);
362
363 if (local->hw.queues < IEEE80211_NUM_ACS)
364 n_acs = 1;
365
366 rcu_read_lock();
367 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 int ac;
369
370 if (!sdata->dev)
371 continue;
372
373 for (ac = 0; ac < n_acs; ac++) {
374 if (sdata->vif.hw_queue[ac] == queue ||
375 sdata->vif.cab_queue == queue)
376 netif_stop_subqueue(sdata->dev, ac);
377 }
378 }
379 rcu_read_unlock();
380 }
381
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 enum queue_stop_reason reason)
384 {
385 struct ieee80211_local *local = hw_to_local(hw);
386 unsigned long flags;
387
388 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 __ieee80211_stop_queue(hw, queue, reason);
390 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 ieee80211_stop_queue_by_reason(hw, queue,
396 IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 struct sk_buff *skb)
402 {
403 struct ieee80211_hw *hw = &local->hw;
404 unsigned long flags;
405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 int queue = info->hw_queue;
407
408 if (WARN_ON(!info->control.vif)) {
409 ieee80211_free_txskb(&local->hw, skb);
410 return;
411 }
412
413 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 __skb_queue_tail(&local->pending[queue], skb);
416 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 struct sk_buff_head *skbs,
422 void (*fn)(void *data), void *data)
423 {
424 struct ieee80211_hw *hw = &local->hw;
425 struct sk_buff *skb;
426 unsigned long flags;
427 int queue, i;
428
429 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 while ((skb = skb_dequeue(skbs))) {
431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432
433 if (WARN_ON(!info->control.vif)) {
434 ieee80211_free_txskb(&local->hw, skb);
435 continue;
436 }
437
438 queue = info->hw_queue;
439
440 __ieee80211_stop_queue(hw, queue,
441 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442
443 __skb_queue_tail(&local->pending[queue], skb);
444 }
445
446 if (fn)
447 fn(data);
448
449 for (i = 0; i < hw->queues; i++)
450 __ieee80211_wake_queue(hw, i,
451 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 enum queue_stop_reason reason)
457 {
458 struct ieee80211_local *local = hw_to_local(hw);
459 unsigned long flags;
460 int i;
461
462 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
463
464 for (i = 0; i < hw->queues; i++)
465 __ieee80211_stop_queue(hw, i, reason);
466
467 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
468 }
469
470 void ieee80211_stop_queues(struct ieee80211_hw *hw)
471 {
472 ieee80211_stop_queues_by_reason(hw,
473 IEEE80211_QUEUE_STOP_REASON_DRIVER);
474 }
475 EXPORT_SYMBOL(ieee80211_stop_queues);
476
477 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
478 {
479 struct ieee80211_local *local = hw_to_local(hw);
480 unsigned long flags;
481 int ret;
482
483 if (WARN_ON(queue >= hw->queues))
484 return true;
485
486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
487 ret = !!local->queue_stop_reasons[queue];
488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
489 return ret;
490 }
491 EXPORT_SYMBOL(ieee80211_queue_stopped);
492
493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
494 enum queue_stop_reason reason)
495 {
496 struct ieee80211_local *local = hw_to_local(hw);
497 unsigned long flags;
498 int i;
499
500 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
501
502 for (i = 0; i < hw->queues; i++)
503 __ieee80211_wake_queue(hw, i, reason);
504
505 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
506 }
507
508 void ieee80211_wake_queues(struct ieee80211_hw *hw)
509 {
510 ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
511 }
512 EXPORT_SYMBOL(ieee80211_wake_queues);
513
514 void ieee80211_iterate_active_interfaces(
515 struct ieee80211_hw *hw, u32 iter_flags,
516 void (*iterator)(void *data, u8 *mac,
517 struct ieee80211_vif *vif),
518 void *data)
519 {
520 struct ieee80211_local *local = hw_to_local(hw);
521 struct ieee80211_sub_if_data *sdata;
522
523 mutex_lock(&local->iflist_mtx);
524
525 list_for_each_entry(sdata, &local->interfaces, list) {
526 switch (sdata->vif.type) {
527 case NL80211_IFTYPE_MONITOR:
528 case NL80211_IFTYPE_AP_VLAN:
529 continue;
530 default:
531 break;
532 }
533 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
534 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
535 continue;
536 if (ieee80211_sdata_running(sdata))
537 iterator(data, sdata->vif.addr,
538 &sdata->vif);
539 }
540
541 sdata = rcu_dereference_protected(local->monitor_sdata,
542 lockdep_is_held(&local->iflist_mtx));
543 if (sdata &&
544 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
545 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
546 iterator(data, sdata->vif.addr, &sdata->vif);
547
548 mutex_unlock(&local->iflist_mtx);
549 }
550 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
551
552 void ieee80211_iterate_active_interfaces_atomic(
553 struct ieee80211_hw *hw, u32 iter_flags,
554 void (*iterator)(void *data, u8 *mac,
555 struct ieee80211_vif *vif),
556 void *data)
557 {
558 struct ieee80211_local *local = hw_to_local(hw);
559 struct ieee80211_sub_if_data *sdata;
560
561 rcu_read_lock();
562
563 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 switch (sdata->vif.type) {
565 case NL80211_IFTYPE_MONITOR:
566 case NL80211_IFTYPE_AP_VLAN:
567 continue;
568 default:
569 break;
570 }
571 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
572 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
573 continue;
574 if (ieee80211_sdata_running(sdata))
575 iterator(data, sdata->vif.addr,
576 &sdata->vif);
577 }
578
579 sdata = rcu_dereference(local->monitor_sdata);
580 if (sdata &&
581 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
582 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
583 iterator(data, sdata->vif.addr, &sdata->vif);
584
585 rcu_read_unlock();
586 }
587 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
588
589 /*
590 * Nothing should have been stuffed into the workqueue during
591 * the suspend->resume cycle. If this WARN is seen then there
592 * is a bug with either the driver suspend or something in
593 * mac80211 stuffing into the workqueue which we haven't yet
594 * cleared during mac80211's suspend cycle.
595 */
596 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
597 {
598 if (WARN(local->suspended && !local->resuming,
599 "queueing ieee80211 work while going to suspend\n"))
600 return false;
601
602 return true;
603 }
604
605 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
606 {
607 struct ieee80211_local *local = hw_to_local(hw);
608
609 if (!ieee80211_can_queue_work(local))
610 return;
611
612 queue_work(local->workqueue, work);
613 }
614 EXPORT_SYMBOL(ieee80211_queue_work);
615
616 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
617 struct delayed_work *dwork,
618 unsigned long delay)
619 {
620 struct ieee80211_local *local = hw_to_local(hw);
621
622 if (!ieee80211_can_queue_work(local))
623 return;
624
625 queue_delayed_work(local->workqueue, dwork, delay);
626 }
627 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
628
629 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
630 struct ieee802_11_elems *elems,
631 u64 filter, u32 crc)
632 {
633 size_t left = len;
634 u8 *pos = start;
635 bool calc_crc = filter != 0;
636 DECLARE_BITMAP(seen_elems, 256);
637
638 bitmap_zero(seen_elems, 256);
639 memset(elems, 0, sizeof(*elems));
640 elems->ie_start = start;
641 elems->total_len = len;
642
643 while (left >= 2) {
644 u8 id, elen;
645 bool elem_parse_failed;
646
647 id = *pos++;
648 elen = *pos++;
649 left -= 2;
650
651 if (elen > left) {
652 elems->parse_error = true;
653 break;
654 }
655
656 switch (id) {
657 case WLAN_EID_SSID:
658 case WLAN_EID_SUPP_RATES:
659 case WLAN_EID_FH_PARAMS:
660 case WLAN_EID_DS_PARAMS:
661 case WLAN_EID_CF_PARAMS:
662 case WLAN_EID_TIM:
663 case WLAN_EID_IBSS_PARAMS:
664 case WLAN_EID_CHALLENGE:
665 case WLAN_EID_RSN:
666 case WLAN_EID_ERP_INFO:
667 case WLAN_EID_EXT_SUPP_RATES:
668 case WLAN_EID_HT_CAPABILITY:
669 case WLAN_EID_HT_OPERATION:
670 case WLAN_EID_VHT_CAPABILITY:
671 case WLAN_EID_VHT_OPERATION:
672 case WLAN_EID_MESH_ID:
673 case WLAN_EID_MESH_CONFIG:
674 case WLAN_EID_PEER_MGMT:
675 case WLAN_EID_PREQ:
676 case WLAN_EID_PREP:
677 case WLAN_EID_PERR:
678 case WLAN_EID_RANN:
679 case WLAN_EID_CHANNEL_SWITCH:
680 case WLAN_EID_EXT_CHANSWITCH_ANN:
681 case WLAN_EID_COUNTRY:
682 case WLAN_EID_PWR_CONSTRAINT:
683 case WLAN_EID_TIMEOUT_INTERVAL:
684 if (test_bit(id, seen_elems)) {
685 elems->parse_error = true;
686 left -= elen;
687 pos += elen;
688 continue;
689 }
690 break;
691 }
692
693 if (calc_crc && id < 64 && (filter & (1ULL << id)))
694 crc = crc32_be(crc, pos - 2, elen + 2);
695
696 elem_parse_failed = false;
697
698 switch (id) {
699 case WLAN_EID_SSID:
700 elems->ssid = pos;
701 elems->ssid_len = elen;
702 break;
703 case WLAN_EID_SUPP_RATES:
704 elems->supp_rates = pos;
705 elems->supp_rates_len = elen;
706 break;
707 case WLAN_EID_FH_PARAMS:
708 elems->fh_params = pos;
709 elems->fh_params_len = elen;
710 break;
711 case WLAN_EID_DS_PARAMS:
712 elems->ds_params = pos;
713 elems->ds_params_len = elen;
714 break;
715 case WLAN_EID_CF_PARAMS:
716 elems->cf_params = pos;
717 elems->cf_params_len = elen;
718 break;
719 case WLAN_EID_TIM:
720 if (elen >= sizeof(struct ieee80211_tim_ie)) {
721 elems->tim = (void *)pos;
722 elems->tim_len = elen;
723 } else
724 elem_parse_failed = true;
725 break;
726 case WLAN_EID_IBSS_PARAMS:
727 elems->ibss_params = pos;
728 elems->ibss_params_len = elen;
729 break;
730 case WLAN_EID_CHALLENGE:
731 elems->challenge = pos;
732 elems->challenge_len = elen;
733 break;
734 case WLAN_EID_VENDOR_SPECIFIC:
735 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
736 pos[2] == 0xf2) {
737 /* Microsoft OUI (00:50:F2) */
738
739 if (calc_crc)
740 crc = crc32_be(crc, pos - 2, elen + 2);
741
742 if (pos[3] == 1) {
743 /* OUI Type 1 - WPA IE */
744 elems->wpa = pos;
745 elems->wpa_len = elen;
746 } else if (elen >= 5 && pos[3] == 2) {
747 /* OUI Type 2 - WMM IE */
748 if (pos[4] == 0) {
749 elems->wmm_info = pos;
750 elems->wmm_info_len = elen;
751 } else if (pos[4] == 1) {
752 elems->wmm_param = pos;
753 elems->wmm_param_len = elen;
754 }
755 }
756 }
757 break;
758 case WLAN_EID_RSN:
759 elems->rsn = pos;
760 elems->rsn_len = elen;
761 break;
762 case WLAN_EID_ERP_INFO:
763 elems->erp_info = pos;
764 elems->erp_info_len = elen;
765 break;
766 case WLAN_EID_EXT_SUPP_RATES:
767 elems->ext_supp_rates = pos;
768 elems->ext_supp_rates_len = elen;
769 break;
770 case WLAN_EID_HT_CAPABILITY:
771 if (elen >= sizeof(struct ieee80211_ht_cap))
772 elems->ht_cap_elem = (void *)pos;
773 else
774 elem_parse_failed = true;
775 break;
776 case WLAN_EID_HT_OPERATION:
777 if (elen >= sizeof(struct ieee80211_ht_operation))
778 elems->ht_operation = (void *)pos;
779 else
780 elem_parse_failed = true;
781 break;
782 case WLAN_EID_VHT_CAPABILITY:
783 if (elen >= sizeof(struct ieee80211_vht_cap))
784 elems->vht_cap_elem = (void *)pos;
785 else
786 elem_parse_failed = true;
787 break;
788 case WLAN_EID_VHT_OPERATION:
789 if (elen >= sizeof(struct ieee80211_vht_operation))
790 elems->vht_operation = (void *)pos;
791 else
792 elem_parse_failed = true;
793 break;
794 case WLAN_EID_MESH_ID:
795 elems->mesh_id = pos;
796 elems->mesh_id_len = elen;
797 break;
798 case WLAN_EID_MESH_CONFIG:
799 if (elen >= sizeof(struct ieee80211_meshconf_ie))
800 elems->mesh_config = (void *)pos;
801 else
802 elem_parse_failed = true;
803 break;
804 case WLAN_EID_PEER_MGMT:
805 elems->peering = pos;
806 elems->peering_len = elen;
807 break;
808 case WLAN_EID_PREQ:
809 elems->preq = pos;
810 elems->preq_len = elen;
811 break;
812 case WLAN_EID_PREP:
813 elems->prep = pos;
814 elems->prep_len = elen;
815 break;
816 case WLAN_EID_PERR:
817 elems->perr = pos;
818 elems->perr_len = elen;
819 break;
820 case WLAN_EID_RANN:
821 if (elen >= sizeof(struct ieee80211_rann_ie))
822 elems->rann = (void *)pos;
823 else
824 elem_parse_failed = true;
825 break;
826 case WLAN_EID_CHANNEL_SWITCH:
827 if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
828 elem_parse_failed = true;
829 break;
830 }
831 elems->ch_switch_ie = (void *)pos;
832 break;
833 case WLAN_EID_QUIET:
834 if (!elems->quiet_elem) {
835 elems->quiet_elem = pos;
836 elems->quiet_elem_len = elen;
837 }
838 elems->num_of_quiet_elem++;
839 break;
840 case WLAN_EID_COUNTRY:
841 elems->country_elem = pos;
842 elems->country_elem_len = elen;
843 break;
844 case WLAN_EID_PWR_CONSTRAINT:
845 if (elen != 1) {
846 elem_parse_failed = true;
847 break;
848 }
849 elems->pwr_constr_elem = pos;
850 break;
851 case WLAN_EID_TIMEOUT_INTERVAL:
852 elems->timeout_int = pos;
853 elems->timeout_int_len = elen;
854 break;
855 default:
856 break;
857 }
858
859 if (elem_parse_failed)
860 elems->parse_error = true;
861 else
862 __set_bit(id, seen_elems);
863
864 left -= elen;
865 pos += elen;
866 }
867
868 if (left != 0)
869 elems->parse_error = true;
870
871 return crc;
872 }
873
874 void ieee802_11_parse_elems(u8 *start, size_t len,
875 struct ieee802_11_elems *elems)
876 {
877 ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
878 }
879
880 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
881 bool bss_notify)
882 {
883 struct ieee80211_local *local = sdata->local;
884 struct ieee80211_tx_queue_params qparam;
885 struct ieee80211_chanctx_conf *chanctx_conf;
886 int ac;
887 bool use_11b, enable_qos;
888 int aCWmin, aCWmax;
889
890 if (!local->ops->conf_tx)
891 return;
892
893 if (local->hw.queues < IEEE80211_NUM_ACS)
894 return;
895
896 memset(&qparam, 0, sizeof(qparam));
897
898 rcu_read_lock();
899 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
900 use_11b = (chanctx_conf &&
901 chanctx_conf->channel->band == IEEE80211_BAND_2GHZ) &&
902 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
903 rcu_read_unlock();
904
905 /*
906 * By default disable QoS in STA mode for old access points, which do
907 * not support 802.11e. New APs will provide proper queue parameters,
908 * that we will configure later.
909 */
910 enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
911
912 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
913 /* Set defaults according to 802.11-2007 Table 7-37 */
914 aCWmax = 1023;
915 if (use_11b)
916 aCWmin = 31;
917 else
918 aCWmin = 15;
919
920 if (enable_qos) {
921 switch (ac) {
922 case IEEE80211_AC_BK:
923 qparam.cw_max = aCWmax;
924 qparam.cw_min = aCWmin;
925 qparam.txop = 0;
926 qparam.aifs = 7;
927 break;
928 /* never happens but let's not leave undefined */
929 default:
930 case IEEE80211_AC_BE:
931 qparam.cw_max = aCWmax;
932 qparam.cw_min = aCWmin;
933 qparam.txop = 0;
934 qparam.aifs = 3;
935 break;
936 case IEEE80211_AC_VI:
937 qparam.cw_max = aCWmin;
938 qparam.cw_min = (aCWmin + 1) / 2 - 1;
939 if (use_11b)
940 qparam.txop = 6016/32;
941 else
942 qparam.txop = 3008/32;
943 qparam.aifs = 2;
944 break;
945 case IEEE80211_AC_VO:
946 qparam.cw_max = (aCWmin + 1) / 2 - 1;
947 qparam.cw_min = (aCWmin + 1) / 4 - 1;
948 if (use_11b)
949 qparam.txop = 3264/32;
950 else
951 qparam.txop = 1504/32;
952 qparam.aifs = 2;
953 break;
954 }
955 } else {
956 /* Confiure old 802.11b/g medium access rules. */
957 qparam.cw_max = aCWmax;
958 qparam.cw_min = aCWmin;
959 qparam.txop = 0;
960 qparam.aifs = 2;
961 }
962
963 qparam.uapsd = false;
964
965 sdata->tx_conf[ac] = qparam;
966 drv_conf_tx(local, sdata, ac, &qparam);
967 }
968
969 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
970 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
971 sdata->vif.bss_conf.qos = enable_qos;
972 if (bss_notify)
973 ieee80211_bss_info_change_notify(sdata,
974 BSS_CHANGED_QOS);
975 }
976 }
977
978 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
979 const size_t supp_rates_len,
980 const u8 *supp_rates)
981 {
982 struct ieee80211_chanctx_conf *chanctx_conf;
983 int i, have_higher_than_11mbit = 0;
984
985 /* cf. IEEE 802.11 9.2.12 */
986 for (i = 0; i < supp_rates_len; i++)
987 if ((supp_rates[i] & 0x7f) * 5 > 110)
988 have_higher_than_11mbit = 1;
989
990 rcu_read_lock();
991 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
992
993 if (chanctx_conf &&
994 chanctx_conf->channel->band == IEEE80211_BAND_2GHZ &&
995 have_higher_than_11mbit)
996 sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
997 else
998 sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
999 rcu_read_unlock();
1000
1001 ieee80211_set_wmm_default(sdata, true);
1002 }
1003
1004 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
1005 enum ieee80211_band band)
1006 {
1007 struct ieee80211_supported_band *sband;
1008 struct ieee80211_rate *bitrates;
1009 u32 mandatory_rates;
1010 enum ieee80211_rate_flags mandatory_flag;
1011 int i;
1012
1013 sband = local->hw.wiphy->bands[band];
1014 if (WARN_ON(!sband))
1015 return 1;
1016
1017 if (band == IEEE80211_BAND_2GHZ)
1018 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
1019 else
1020 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
1021
1022 bitrates = sband->bitrates;
1023 mandatory_rates = 0;
1024 for (i = 0; i < sband->n_bitrates; i++)
1025 if (bitrates[i].flags & mandatory_flag)
1026 mandatory_rates |= BIT(i);
1027 return mandatory_rates;
1028 }
1029
1030 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1031 u16 transaction, u16 auth_alg, u16 status,
1032 u8 *extra, size_t extra_len, const u8 *da,
1033 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
1034 {
1035 struct ieee80211_local *local = sdata->local;
1036 struct sk_buff *skb;
1037 struct ieee80211_mgmt *mgmt;
1038 int err;
1039
1040 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1041 sizeof(*mgmt) + 6 + extra_len);
1042 if (!skb)
1043 return;
1044
1045 skb_reserve(skb, local->hw.extra_tx_headroom);
1046
1047 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1048 memset(mgmt, 0, 24 + 6);
1049 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1050 IEEE80211_STYPE_AUTH);
1051 memcpy(mgmt->da, da, ETH_ALEN);
1052 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1053 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1054 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1055 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1056 mgmt->u.auth.status_code = cpu_to_le16(status);
1057 if (extra)
1058 memcpy(skb_put(skb, extra_len), extra, extra_len);
1059
1060 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1061 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1062 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1063 WARN_ON(err);
1064 }
1065
1066 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1067 ieee80211_tx_skb(sdata, skb);
1068 }
1069
1070 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1071 const u8 *bssid, u16 stype, u16 reason,
1072 bool send_frame, u8 *frame_buf)
1073 {
1074 struct ieee80211_local *local = sdata->local;
1075 struct sk_buff *skb;
1076 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1077
1078 /* build frame */
1079 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1080 mgmt->duration = 0; /* initialize only */
1081 mgmt->seq_ctrl = 0; /* initialize only */
1082 memcpy(mgmt->da, bssid, ETH_ALEN);
1083 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1084 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1085 /* u.deauth.reason_code == u.disassoc.reason_code */
1086 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1087
1088 if (send_frame) {
1089 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1090 IEEE80211_DEAUTH_FRAME_LEN);
1091 if (!skb)
1092 return;
1093
1094 skb_reserve(skb, local->hw.extra_tx_headroom);
1095
1096 /* copy in frame */
1097 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1098 mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1099
1100 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1101 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1102 IEEE80211_SKB_CB(skb)->flags |=
1103 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1104
1105 ieee80211_tx_skb(sdata, skb);
1106 }
1107 }
1108
1109 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1110 const u8 *ie, size_t ie_len,
1111 enum ieee80211_band band, u32 rate_mask,
1112 u8 channel)
1113 {
1114 struct ieee80211_supported_band *sband;
1115 u8 *pos;
1116 size_t offset = 0, noffset;
1117 int supp_rates_len, i;
1118 u8 rates[32];
1119 int num_rates;
1120 int ext_rates_len;
1121
1122 sband = local->hw.wiphy->bands[band];
1123 if (WARN_ON_ONCE(!sband))
1124 return 0;
1125
1126 pos = buffer;
1127
1128 num_rates = 0;
1129 for (i = 0; i < sband->n_bitrates; i++) {
1130 if ((BIT(i) & rate_mask) == 0)
1131 continue; /* skip rate */
1132 rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1133 }
1134
1135 supp_rates_len = min_t(int, num_rates, 8);
1136
1137 *pos++ = WLAN_EID_SUPP_RATES;
1138 *pos++ = supp_rates_len;
1139 memcpy(pos, rates, supp_rates_len);
1140 pos += supp_rates_len;
1141
1142 /* insert "request information" if in custom IEs */
1143 if (ie && ie_len) {
1144 static const u8 before_extrates[] = {
1145 WLAN_EID_SSID,
1146 WLAN_EID_SUPP_RATES,
1147 WLAN_EID_REQUEST,
1148 };
1149 noffset = ieee80211_ie_split(ie, ie_len,
1150 before_extrates,
1151 ARRAY_SIZE(before_extrates),
1152 offset);
1153 memcpy(pos, ie + offset, noffset - offset);
1154 pos += noffset - offset;
1155 offset = noffset;
1156 }
1157
1158 ext_rates_len = num_rates - supp_rates_len;
1159 if (ext_rates_len > 0) {
1160 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1161 *pos++ = ext_rates_len;
1162 memcpy(pos, rates + supp_rates_len, ext_rates_len);
1163 pos += ext_rates_len;
1164 }
1165
1166 if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1167 *pos++ = WLAN_EID_DS_PARAMS;
1168 *pos++ = 1;
1169 *pos++ = channel;
1170 }
1171
1172 /* insert custom IEs that go before HT */
1173 if (ie && ie_len) {
1174 static const u8 before_ht[] = {
1175 WLAN_EID_SSID,
1176 WLAN_EID_SUPP_RATES,
1177 WLAN_EID_REQUEST,
1178 WLAN_EID_EXT_SUPP_RATES,
1179 WLAN_EID_DS_PARAMS,
1180 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1181 };
1182 noffset = ieee80211_ie_split(ie, ie_len,
1183 before_ht, ARRAY_SIZE(before_ht),
1184 offset);
1185 memcpy(pos, ie + offset, noffset - offset);
1186 pos += noffset - offset;
1187 offset = noffset;
1188 }
1189
1190 if (sband->ht_cap.ht_supported)
1191 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1192 sband->ht_cap.cap);
1193
1194 /*
1195 * If adding more here, adjust code in main.c
1196 * that calculates local->scan_ies_len.
1197 */
1198
1199 /* add any remaining custom IEs */
1200 if (ie && ie_len) {
1201 noffset = ie_len;
1202 memcpy(pos, ie + offset, noffset - offset);
1203 pos += noffset - offset;
1204 }
1205
1206 if (sband->vht_cap.vht_supported)
1207 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1208 sband->vht_cap.cap);
1209
1210 return pos - buffer;
1211 }
1212
1213 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1214 u8 *dst, u32 ratemask,
1215 struct ieee80211_channel *chan,
1216 const u8 *ssid, size_t ssid_len,
1217 const u8 *ie, size_t ie_len,
1218 bool directed)
1219 {
1220 struct ieee80211_local *local = sdata->local;
1221 struct sk_buff *skb;
1222 struct ieee80211_mgmt *mgmt;
1223 size_t buf_len;
1224 u8 *buf;
1225 u8 chan_no;
1226
1227 /* FIXME: come up with a proper value */
1228 buf = kmalloc(200 + ie_len, GFP_KERNEL);
1229 if (!buf)
1230 return NULL;
1231
1232 /*
1233 * Do not send DS Channel parameter for directed probe requests
1234 * in order to maximize the chance that we get a response. Some
1235 * badly-behaved APs don't respond when this parameter is included.
1236 */
1237 if (directed)
1238 chan_no = 0;
1239 else
1240 chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1241
1242 buf_len = ieee80211_build_preq_ies(local, buf, ie, ie_len, chan->band,
1243 ratemask, chan_no);
1244
1245 skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1246 ssid, ssid_len,
1247 buf, buf_len);
1248 if (!skb)
1249 goto out;
1250
1251 if (dst) {
1252 mgmt = (struct ieee80211_mgmt *) skb->data;
1253 memcpy(mgmt->da, dst, ETH_ALEN);
1254 memcpy(mgmt->bssid, dst, ETH_ALEN);
1255 }
1256
1257 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1258
1259 out:
1260 kfree(buf);
1261
1262 return skb;
1263 }
1264
1265 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1266 const u8 *ssid, size_t ssid_len,
1267 const u8 *ie, size_t ie_len,
1268 u32 ratemask, bool directed, bool no_cck,
1269 struct ieee80211_channel *channel, bool scan)
1270 {
1271 struct sk_buff *skb;
1272
1273 skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1274 ssid, ssid_len,
1275 ie, ie_len, directed);
1276 if (skb) {
1277 if (no_cck)
1278 IEEE80211_SKB_CB(skb)->flags |=
1279 IEEE80211_TX_CTL_NO_CCK_RATE;
1280 if (scan)
1281 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1282 else
1283 ieee80211_tx_skb(sdata, skb);
1284 }
1285 }
1286
1287 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1288 struct ieee802_11_elems *elems,
1289 enum ieee80211_band band, u32 *basic_rates)
1290 {
1291 struct ieee80211_supported_band *sband;
1292 struct ieee80211_rate *bitrates;
1293 size_t num_rates;
1294 u32 supp_rates;
1295 int i, j;
1296 sband = local->hw.wiphy->bands[band];
1297
1298 if (WARN_ON(!sband))
1299 return 1;
1300
1301 bitrates = sband->bitrates;
1302 num_rates = sband->n_bitrates;
1303 supp_rates = 0;
1304 for (i = 0; i < elems->supp_rates_len +
1305 elems->ext_supp_rates_len; i++) {
1306 u8 rate = 0;
1307 int own_rate;
1308 bool is_basic;
1309 if (i < elems->supp_rates_len)
1310 rate = elems->supp_rates[i];
1311 else if (elems->ext_supp_rates)
1312 rate = elems->ext_supp_rates
1313 [i - elems->supp_rates_len];
1314 own_rate = 5 * (rate & 0x7f);
1315 is_basic = !!(rate & 0x80);
1316
1317 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1318 continue;
1319
1320 for (j = 0; j < num_rates; j++) {
1321 if (bitrates[j].bitrate == own_rate) {
1322 supp_rates |= BIT(j);
1323 if (basic_rates && is_basic)
1324 *basic_rates |= BIT(j);
1325 }
1326 }
1327 }
1328 return supp_rates;
1329 }
1330
1331 void ieee80211_stop_device(struct ieee80211_local *local)
1332 {
1333 ieee80211_led_radio(local, false);
1334 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1335
1336 cancel_work_sync(&local->reconfig_filter);
1337
1338 flush_workqueue(local->workqueue);
1339 drv_stop(local);
1340 }
1341
1342 int ieee80211_reconfig(struct ieee80211_local *local)
1343 {
1344 struct ieee80211_hw *hw = &local->hw;
1345 struct ieee80211_sub_if_data *sdata;
1346 struct ieee80211_chanctx *ctx;
1347 struct sta_info *sta;
1348 int res, i;
1349
1350 #ifdef CONFIG_PM
1351 if (local->suspended)
1352 local->resuming = true;
1353
1354 if (local->wowlan) {
1355 local->wowlan = false;
1356 res = drv_resume(local);
1357 if (res < 0) {
1358 local->resuming = false;
1359 return res;
1360 }
1361 if (res == 0)
1362 goto wake_up;
1363 WARN_ON(res > 1);
1364 /*
1365 * res is 1, which means the driver requested
1366 * to go through a regular reset on wakeup.
1367 */
1368 }
1369 #endif
1370 /* everything else happens only if HW was up & running */
1371 if (!local->open_count)
1372 goto wake_up;
1373
1374 /*
1375 * Upon resume hardware can sometimes be goofy due to
1376 * various platform / driver / bus issues, so restarting
1377 * the device may at times not work immediately. Propagate
1378 * the error.
1379 */
1380 res = drv_start(local);
1381 if (res) {
1382 WARN(local->suspended, "Hardware became unavailable "
1383 "upon resume. This could be a software issue "
1384 "prior to suspend or a hardware issue.\n");
1385 return res;
1386 }
1387
1388 /* setup fragmentation threshold */
1389 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1390
1391 /* setup RTS threshold */
1392 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1393
1394 /* reset coverage class */
1395 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1396
1397 ieee80211_led_radio(local, true);
1398 ieee80211_mod_tpt_led_trig(local,
1399 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1400
1401 /* add interfaces */
1402 sdata = rtnl_dereference(local->monitor_sdata);
1403 if (sdata) {
1404 res = drv_add_interface(local, sdata);
1405 if (WARN_ON(res)) {
1406 rcu_assign_pointer(local->monitor_sdata, NULL);
1407 synchronize_net();
1408 kfree(sdata);
1409 }
1410 }
1411
1412 list_for_each_entry(sdata, &local->interfaces, list) {
1413 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1414 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1415 ieee80211_sdata_running(sdata))
1416 res = drv_add_interface(local, sdata);
1417 }
1418
1419 /* add channel contexts */
1420 if (local->use_chanctx) {
1421 mutex_lock(&local->chanctx_mtx);
1422 list_for_each_entry(ctx, &local->chanctx_list, list)
1423 WARN_ON(drv_add_chanctx(local, ctx));
1424 mutex_unlock(&local->chanctx_mtx);
1425 }
1426
1427 list_for_each_entry(sdata, &local->interfaces, list) {
1428 struct ieee80211_chanctx_conf *ctx_conf;
1429
1430 if (!ieee80211_sdata_running(sdata))
1431 continue;
1432
1433 mutex_lock(&local->chanctx_mtx);
1434 ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1435 lockdep_is_held(&local->chanctx_mtx));
1436 if (ctx_conf) {
1437 ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1438 conf);
1439 drv_assign_vif_chanctx(local, sdata, ctx);
1440 }
1441 mutex_unlock(&local->chanctx_mtx);
1442 }
1443
1444 sdata = rtnl_dereference(local->monitor_sdata);
1445 if (sdata && local->use_chanctx && ieee80211_sdata_running(sdata)) {
1446 struct ieee80211_chanctx_conf *ctx_conf;
1447
1448 mutex_lock(&local->chanctx_mtx);
1449 ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1450 lockdep_is_held(&local->chanctx_mtx));
1451 if (ctx_conf) {
1452 ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1453 conf);
1454 drv_assign_vif_chanctx(local, sdata, ctx);
1455 }
1456 mutex_unlock(&local->chanctx_mtx);
1457 }
1458
1459 /* add STAs back */
1460 mutex_lock(&local->sta_mtx);
1461 list_for_each_entry(sta, &local->sta_list, list) {
1462 enum ieee80211_sta_state state;
1463
1464 if (!sta->uploaded)
1465 continue;
1466
1467 /* AP-mode stations will be added later */
1468 if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1469 continue;
1470
1471 for (state = IEEE80211_STA_NOTEXIST;
1472 state < sta->sta_state; state++)
1473 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1474 state + 1));
1475 }
1476 mutex_unlock(&local->sta_mtx);
1477
1478 /* reconfigure tx conf */
1479 if (hw->queues >= IEEE80211_NUM_ACS) {
1480 list_for_each_entry(sdata, &local->interfaces, list) {
1481 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1482 sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1483 !ieee80211_sdata_running(sdata))
1484 continue;
1485
1486 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1487 drv_conf_tx(local, sdata, i,
1488 &sdata->tx_conf[i]);
1489 }
1490 }
1491
1492 /* reconfigure hardware */
1493 ieee80211_hw_config(local, ~0);
1494
1495 ieee80211_configure_filter(local);
1496
1497 /* Finally also reconfigure all the BSS information */
1498 list_for_each_entry(sdata, &local->interfaces, list) {
1499 u32 changed;
1500
1501 if (!ieee80211_sdata_running(sdata))
1502 continue;
1503
1504 /* common change flags for all interface types */
1505 changed = BSS_CHANGED_ERP_CTS_PROT |
1506 BSS_CHANGED_ERP_PREAMBLE |
1507 BSS_CHANGED_ERP_SLOT |
1508 BSS_CHANGED_HT |
1509 BSS_CHANGED_BASIC_RATES |
1510 BSS_CHANGED_BEACON_INT |
1511 BSS_CHANGED_BSSID |
1512 BSS_CHANGED_CQM |
1513 BSS_CHANGED_QOS |
1514 BSS_CHANGED_IDLE |
1515 BSS_CHANGED_TXPOWER;
1516
1517 switch (sdata->vif.type) {
1518 case NL80211_IFTYPE_STATION:
1519 changed |= BSS_CHANGED_ASSOC |
1520 BSS_CHANGED_ARP_FILTER |
1521 BSS_CHANGED_PS;
1522 mutex_lock(&sdata->u.mgd.mtx);
1523 ieee80211_bss_info_change_notify(sdata, changed);
1524 mutex_unlock(&sdata->u.mgd.mtx);
1525 break;
1526 case NL80211_IFTYPE_ADHOC:
1527 changed |= BSS_CHANGED_IBSS;
1528 /* fall through */
1529 case NL80211_IFTYPE_AP:
1530 changed |= BSS_CHANGED_SSID;
1531
1532 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1533 changed |= BSS_CHANGED_AP_PROBE_RESP;
1534
1535 if (rcu_access_pointer(sdata->u.ap.beacon))
1536 drv_start_ap(local, sdata);
1537 }
1538
1539 /* fall through */
1540 case NL80211_IFTYPE_MESH_POINT:
1541 changed |= BSS_CHANGED_BEACON |
1542 BSS_CHANGED_BEACON_ENABLED;
1543 ieee80211_bss_info_change_notify(sdata, changed);
1544 break;
1545 case NL80211_IFTYPE_WDS:
1546 break;
1547 case NL80211_IFTYPE_AP_VLAN:
1548 case NL80211_IFTYPE_MONITOR:
1549 /* ignore virtual */
1550 break;
1551 case NL80211_IFTYPE_P2P_DEVICE:
1552 changed = BSS_CHANGED_IDLE;
1553 break;
1554 case NL80211_IFTYPE_UNSPECIFIED:
1555 case NUM_NL80211_IFTYPES:
1556 case NL80211_IFTYPE_P2P_CLIENT:
1557 case NL80211_IFTYPE_P2P_GO:
1558 WARN_ON(1);
1559 break;
1560 }
1561 }
1562
1563 ieee80211_recalc_ps(local, -1);
1564
1565 /*
1566 * The sta might be in psm against the ap (e.g. because
1567 * this was the state before a hw restart), so we
1568 * explicitly send a null packet in order to make sure
1569 * it'll sync against the ap (and get out of psm).
1570 */
1571 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1572 list_for_each_entry(sdata, &local->interfaces, list) {
1573 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1574 continue;
1575 if (!sdata->u.mgd.associated)
1576 continue;
1577
1578 ieee80211_send_nullfunc(local, sdata, 0);
1579 }
1580 }
1581
1582 /* APs are now beaconing, add back stations */
1583 mutex_lock(&local->sta_mtx);
1584 list_for_each_entry(sta, &local->sta_list, list) {
1585 enum ieee80211_sta_state state;
1586
1587 if (!sta->uploaded)
1588 continue;
1589
1590 if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1591 continue;
1592
1593 for (state = IEEE80211_STA_NOTEXIST;
1594 state < sta->sta_state; state++)
1595 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1596 state + 1));
1597 }
1598 mutex_unlock(&local->sta_mtx);
1599
1600 /* add back keys */
1601 list_for_each_entry(sdata, &local->interfaces, list)
1602 if (ieee80211_sdata_running(sdata))
1603 ieee80211_enable_keys(sdata);
1604
1605 wake_up:
1606 local->in_reconfig = false;
1607 barrier();
1608
1609 /*
1610 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1611 * sessions can be established after a resume.
1612 *
1613 * Also tear down aggregation sessions since reconfiguring
1614 * them in a hardware restart scenario is not easily done
1615 * right now, and the hardware will have lost information
1616 * about the sessions, but we and the AP still think they
1617 * are active. This is really a workaround though.
1618 */
1619 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1620 mutex_lock(&local->sta_mtx);
1621
1622 list_for_each_entry(sta, &local->sta_list, list) {
1623 ieee80211_sta_tear_down_BA_sessions(sta, true);
1624 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1625 }
1626
1627 mutex_unlock(&local->sta_mtx);
1628 }
1629
1630 ieee80211_wake_queues_by_reason(hw,
1631 IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1632
1633 /*
1634 * If this is for hw restart things are still running.
1635 * We may want to change that later, however.
1636 */
1637 if (!local->suspended) {
1638 drv_restart_complete(local);
1639 return 0;
1640 }
1641
1642 #ifdef CONFIG_PM
1643 /* first set suspended false, then resuming */
1644 local->suspended = false;
1645 mb();
1646 local->resuming = false;
1647
1648 list_for_each_entry(sdata, &local->interfaces, list) {
1649 switch(sdata->vif.type) {
1650 case NL80211_IFTYPE_STATION:
1651 ieee80211_sta_restart(sdata);
1652 break;
1653 case NL80211_IFTYPE_ADHOC:
1654 ieee80211_ibss_restart(sdata);
1655 break;
1656 case NL80211_IFTYPE_MESH_POINT:
1657 ieee80211_mesh_restart(sdata);
1658 break;
1659 default:
1660 break;
1661 }
1662 }
1663
1664 mod_timer(&local->sta_cleanup, jiffies + 1);
1665
1666 mutex_lock(&local->sta_mtx);
1667 list_for_each_entry(sta, &local->sta_list, list)
1668 mesh_plink_restart(sta);
1669 mutex_unlock(&local->sta_mtx);
1670 #else
1671 WARN_ON(1);
1672 #endif
1673 return 0;
1674 }
1675
1676 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1677 {
1678 struct ieee80211_sub_if_data *sdata;
1679 struct ieee80211_local *local;
1680 struct ieee80211_key *key;
1681
1682 if (WARN_ON(!vif))
1683 return;
1684
1685 sdata = vif_to_sdata(vif);
1686 local = sdata->local;
1687
1688 if (WARN_ON(!local->resuming))
1689 return;
1690
1691 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1692 return;
1693
1694 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1695
1696 mutex_lock(&local->key_mtx);
1697 list_for_each_entry(key, &sdata->key_list, list)
1698 key->flags |= KEY_FLAG_TAINTED;
1699 mutex_unlock(&local->key_mtx);
1700 }
1701 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1702
1703 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1704 {
1705 struct ieee80211_local *local = sdata->local;
1706 struct ieee80211_chanctx_conf *chanctx_conf;
1707 struct ieee80211_chanctx *chanctx;
1708
1709 mutex_lock(&local->chanctx_mtx);
1710
1711 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1712 lockdep_is_held(&local->chanctx_mtx));
1713
1714 if (WARN_ON_ONCE(!chanctx_conf))
1715 goto unlock;
1716
1717 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1718 ieee80211_recalc_smps_chanctx(local, chanctx);
1719 unlock:
1720 mutex_unlock(&local->chanctx_mtx);
1721 }
1722
1723 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1724 {
1725 int i;
1726
1727 for (i = 0; i < n_ids; i++)
1728 if (ids[i] == id)
1729 return true;
1730 return false;
1731 }
1732
1733 /**
1734 * ieee80211_ie_split - split an IE buffer according to ordering
1735 *
1736 * @ies: the IE buffer
1737 * @ielen: the length of the IE buffer
1738 * @ids: an array with element IDs that are allowed before
1739 * the split
1740 * @n_ids: the size of the element ID array
1741 * @offset: offset where to start splitting in the buffer
1742 *
1743 * This function splits an IE buffer by updating the @offset
1744 * variable to point to the location where the buffer should be
1745 * split.
1746 *
1747 * It assumes that the given IE buffer is well-formed, this
1748 * has to be guaranteed by the caller!
1749 *
1750 * It also assumes that the IEs in the buffer are ordered
1751 * correctly, if not the result of using this function will not
1752 * be ordered correctly either, i.e. it does no reordering.
1753 *
1754 * The function returns the offset where the next part of the
1755 * buffer starts, which may be @ielen if the entire (remainder)
1756 * of the buffer should be used.
1757 */
1758 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1759 const u8 *ids, int n_ids, size_t offset)
1760 {
1761 size_t pos = offset;
1762
1763 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1764 pos += 2 + ies[pos + 1];
1765
1766 return pos;
1767 }
1768
1769 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1770 {
1771 size_t pos = offset;
1772
1773 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1774 pos += 2 + ies[pos + 1];
1775
1776 return pos;
1777 }
1778
1779 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1780 int rssi_min_thold,
1781 int rssi_max_thold)
1782 {
1783 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1784
1785 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1786 return;
1787
1788 /*
1789 * Scale up threshold values before storing it, as the RSSI averaging
1790 * algorithm uses a scaled up value as well. Change this scaling
1791 * factor if the RSSI averaging algorithm changes.
1792 */
1793 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1794 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1795 }
1796
1797 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1798 int rssi_min_thold,
1799 int rssi_max_thold)
1800 {
1801 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1802
1803 WARN_ON(rssi_min_thold == rssi_max_thold ||
1804 rssi_min_thold > rssi_max_thold);
1805
1806 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1807 rssi_max_thold);
1808 }
1809 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1810
1811 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1812 {
1813 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1814
1815 _ieee80211_enable_rssi_reports(sdata, 0, 0);
1816 }
1817 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1818
1819 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1820 u16 cap)
1821 {
1822 __le16 tmp;
1823
1824 *pos++ = WLAN_EID_HT_CAPABILITY;
1825 *pos++ = sizeof(struct ieee80211_ht_cap);
1826 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1827
1828 /* capability flags */
1829 tmp = cpu_to_le16(cap);
1830 memcpy(pos, &tmp, sizeof(u16));
1831 pos += sizeof(u16);
1832
1833 /* AMPDU parameters */
1834 *pos++ = ht_cap->ampdu_factor |
1835 (ht_cap->ampdu_density <<
1836 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1837
1838 /* MCS set */
1839 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1840 pos += sizeof(ht_cap->mcs);
1841
1842 /* extended capabilities */
1843 pos += sizeof(__le16);
1844
1845 /* BF capabilities */
1846 pos += sizeof(__le32);
1847
1848 /* antenna selection */
1849 pos += sizeof(u8);
1850
1851 return pos;
1852 }
1853
1854 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1855 u32 cap)
1856 {
1857 __le32 tmp;
1858
1859 *pos++ = WLAN_EID_VHT_CAPABILITY;
1860 *pos++ = sizeof(struct ieee80211_vht_cap);
1861 memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1862
1863 /* capability flags */
1864 tmp = cpu_to_le32(cap);
1865 memcpy(pos, &tmp, sizeof(u32));
1866 pos += sizeof(u32);
1867
1868 /* VHT MCS set */
1869 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1870 pos += sizeof(vht_cap->vht_mcs);
1871
1872 return pos;
1873 }
1874
1875 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1876 struct ieee80211_channel *channel,
1877 enum nl80211_channel_type channel_type,
1878 u16 prot_mode)
1879 {
1880 struct ieee80211_ht_operation *ht_oper;
1881 /* Build HT Information */
1882 *pos++ = WLAN_EID_HT_OPERATION;
1883 *pos++ = sizeof(struct ieee80211_ht_operation);
1884 ht_oper = (struct ieee80211_ht_operation *)pos;
1885 ht_oper->primary_chan =
1886 ieee80211_frequency_to_channel(channel->center_freq);
1887 switch (channel_type) {
1888 case NL80211_CHAN_HT40MINUS:
1889 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1890 break;
1891 case NL80211_CHAN_HT40PLUS:
1892 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1893 break;
1894 case NL80211_CHAN_HT20:
1895 default:
1896 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1897 break;
1898 }
1899 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1900 channel_type != NL80211_CHAN_NO_HT &&
1901 channel_type != NL80211_CHAN_HT20)
1902 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1903
1904 ht_oper->operation_mode = cpu_to_le16(prot_mode);
1905 ht_oper->stbc_param = 0x0000;
1906
1907 /* It seems that Basic MCS set and Supported MCS set
1908 are identical for the first 10 bytes */
1909 memset(&ht_oper->basic_set, 0, 16);
1910 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1911
1912 return pos + sizeof(struct ieee80211_ht_operation);
1913 }
1914
1915 enum nl80211_channel_type
1916 ieee80211_ht_oper_to_channel_type(struct ieee80211_ht_operation *ht_oper)
1917 {
1918 enum nl80211_channel_type channel_type;
1919
1920 if (!ht_oper)
1921 return NL80211_CHAN_NO_HT;
1922
1923 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1924 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1925 channel_type = NL80211_CHAN_HT20;
1926 break;
1927 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1928 channel_type = NL80211_CHAN_HT40PLUS;
1929 break;
1930 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1931 channel_type = NL80211_CHAN_HT40MINUS;
1932 break;
1933 default:
1934 channel_type = NL80211_CHAN_NO_HT;
1935 }
1936
1937 return channel_type;
1938 }
1939
1940 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
1941 struct sk_buff *skb, bool need_basic,
1942 enum ieee80211_band band)
1943 {
1944 struct ieee80211_local *local = sdata->local;
1945 struct ieee80211_supported_band *sband;
1946 int rate;
1947 u8 i, rates, *pos;
1948 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1949
1950 sband = local->hw.wiphy->bands[band];
1951 rates = sband->n_bitrates;
1952 if (rates > 8)
1953 rates = 8;
1954
1955 if (skb_tailroom(skb) < rates + 2)
1956 return -ENOMEM;
1957
1958 pos = skb_put(skb, rates + 2);
1959 *pos++ = WLAN_EID_SUPP_RATES;
1960 *pos++ = rates;
1961 for (i = 0; i < rates; i++) {
1962 u8 basic = 0;
1963 if (need_basic && basic_rates & BIT(i))
1964 basic = 0x80;
1965 rate = sband->bitrates[i].bitrate;
1966 *pos++ = basic | (u8) (rate / 5);
1967 }
1968
1969 return 0;
1970 }
1971
1972 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
1973 struct sk_buff *skb, bool need_basic,
1974 enum ieee80211_band band)
1975 {
1976 struct ieee80211_local *local = sdata->local;
1977 struct ieee80211_supported_band *sband;
1978 int rate;
1979 u8 i, exrates, *pos;
1980 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1981
1982 sband = local->hw.wiphy->bands[band];
1983 exrates = sband->n_bitrates;
1984 if (exrates > 8)
1985 exrates -= 8;
1986 else
1987 exrates = 0;
1988
1989 if (skb_tailroom(skb) < exrates + 2)
1990 return -ENOMEM;
1991
1992 if (exrates) {
1993 pos = skb_put(skb, exrates + 2);
1994 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1995 *pos++ = exrates;
1996 for (i = 8; i < sband->n_bitrates; i++) {
1997 u8 basic = 0;
1998 if (need_basic && basic_rates & BIT(i))
1999 basic = 0x80;
2000 rate = sband->bitrates[i].bitrate;
2001 *pos++ = basic | (u8) (rate / 5);
2002 }
2003 }
2004 return 0;
2005 }
2006
2007 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2008 {
2009 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2010 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2011
2012 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2013 /* non-managed type inferfaces */
2014 return 0;
2015 }
2016 return ifmgd->ave_beacon_signal;
2017 }
2018 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2019
2020 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2021 {
2022 if (!mcs)
2023 return 1;
2024
2025 /* TODO: consider rx_highest */
2026
2027 if (mcs->rx_mask[3])
2028 return 4;
2029 if (mcs->rx_mask[2])
2030 return 3;
2031 if (mcs->rx_mask[1])
2032 return 2;
2033 return 1;
2034 }
2035
2036 /**
2037 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2038 * @local: mac80211 hw info struct
2039 * @status: RX status
2040 * @mpdu_len: total MPDU length (including FCS)
2041 * @mpdu_offset: offset into MPDU to calculate timestamp at
2042 *
2043 * This function calculates the RX timestamp at the given MPDU offset, taking
2044 * into account what the RX timestamp was. An offset of 0 will just normalize
2045 * the timestamp to TSF at beginning of MPDU reception.
2046 */
2047 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2048 struct ieee80211_rx_status *status,
2049 unsigned int mpdu_len,
2050 unsigned int mpdu_offset)
2051 {
2052 u64 ts = status->mactime;
2053 struct rate_info ri;
2054 u16 rate;
2055
2056 if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2057 return 0;
2058
2059 memset(&ri, 0, sizeof(ri));
2060
2061 /* Fill cfg80211 rate info */
2062 if (status->flag & RX_FLAG_HT) {
2063 ri.mcs = status->rate_idx;
2064 ri.flags |= RATE_INFO_FLAGS_MCS;
2065 if (status->flag & RX_FLAG_40MHZ)
2066 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2067 if (status->flag & RX_FLAG_SHORT_GI)
2068 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2069 } else {
2070 struct ieee80211_supported_band *sband;
2071
2072 sband = local->hw.wiphy->bands[status->band];
2073 ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2074 }
2075
2076 rate = cfg80211_calculate_bitrate(&ri);
2077
2078 /* rewind from end of MPDU */
2079 if (status->flag & RX_FLAG_MACTIME_END)
2080 ts -= mpdu_len * 8 * 10 / rate;
2081
2082 ts += mpdu_offset * 8 * 10 / rate;
2083
2084 return ts;
2085 }