]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/mac80211/util.c
Merge branch 'x86/mce' into x86/ras
[mirror_ubuntu-zesty-kernel.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * utilities for mac80211
12 */
13
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 struct ieee80211_local *local;
42 BUG_ON(!wiphy);
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 enum nl80211_iftype type)
51 {
52 __le16 fc = hdr->frame_control;
53
54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 if (len < 16)
56 return NULL;
57
58 if (ieee80211_is_data(fc)) {
59 if (len < 24) /* drop incorrect hdr len (data) */
60 return NULL;
61
62 if (ieee80211_has_a4(fc))
63 return NULL;
64 if (ieee80211_has_tods(fc))
65 return hdr->addr1;
66 if (ieee80211_has_fromds(fc))
67 return hdr->addr2;
68
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_mgmt(fc)) {
73 if (len < 24) /* drop incorrect hdr len (mgmt) */
74 return NULL;
75 return hdr->addr3;
76 }
77
78 if (ieee80211_is_ctl(fc)) {
79 if(ieee80211_is_pspoll(fc))
80 return hdr->addr1;
81
82 if (ieee80211_is_back_req(fc)) {
83 switch (type) {
84 case NL80211_IFTYPE_STATION:
85 return hdr->addr2;
86 case NL80211_IFTYPE_AP:
87 case NL80211_IFTYPE_AP_VLAN:
88 return hdr->addr1;
89 default:
90 break; /* fall through to the return */
91 }
92 }
93 }
94
95 return NULL;
96 }
97
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 struct sk_buff *skb;
101 struct ieee80211_hdr *hdr;
102
103 skb_queue_walk(&tx->skbs, skb) {
104 hdr = (struct ieee80211_hdr *) skb->data;
105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 }
107 }
108
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 int rate, int erp, int short_preamble)
111 {
112 int dur;
113
114 /* calculate duration (in microseconds, rounded up to next higher
115 * integer if it includes a fractional microsecond) to send frame of
116 * len bytes (does not include FCS) at the given rate. Duration will
117 * also include SIFS.
118 *
119 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 * DIV_ROUND_UP() operations.
121 */
122
123 if (band == IEEE80211_BAND_5GHZ || erp) {
124 /*
125 * OFDM:
126 *
127 * N_DBPS = DATARATE x 4
128 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 * (16 = SIGNAL time, 6 = tail bits)
130 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 *
132 * T_SYM = 4 usec
133 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 * signal ext = 6 usec
136 */
137 dur = 16; /* SIFS + signal ext */
138 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 4 * rate); /* T_SYM x N_SYM */
142 } else {
143 /*
144 * 802.11b or 802.11g with 802.11b compatibility:
145 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 *
148 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 * aSIFSTime = 10 usec
150 * aPreambleLength = 144 usec or 72 usec with short preamble
151 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 */
153 dur = 10; /* aSIFSTime = 10 usec */
154 dur += short_preamble ? (72 + 24) : (144 + 48);
155
156 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 }
158
159 return dur;
160 }
161
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 struct ieee80211_vif *vif,
165 enum ieee80211_band band,
166 size_t frame_len,
167 struct ieee80211_rate *rate)
168 {
169 struct ieee80211_sub_if_data *sdata;
170 u16 dur;
171 int erp;
172 bool short_preamble = false;
173
174 erp = 0;
175 if (vif) {
176 sdata = vif_to_sdata(vif);
177 short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 erp = rate->flags & IEEE80211_RATE_ERP_G;
180 }
181
182 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 short_preamble);
184
185 return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 struct ieee80211_vif *vif, size_t frame_len,
191 const struct ieee80211_tx_info *frame_txctl)
192 {
193 struct ieee80211_local *local = hw_to_local(hw);
194 struct ieee80211_rate *rate;
195 struct ieee80211_sub_if_data *sdata;
196 bool short_preamble;
197 int erp;
198 u16 dur;
199 struct ieee80211_supported_band *sband;
200
201 sband = local->hw.wiphy->bands[frame_txctl->band];
202
203 short_preamble = false;
204
205 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206
207 erp = 0;
208 if (vif) {
209 sdata = vif_to_sdata(vif);
210 short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 erp = rate->flags & IEEE80211_RATE_ERP_G;
213 }
214
215 /* CTS duration */
216 dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 erp, short_preamble);
218 /* Data frame duration */
219 dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 erp, short_preamble);
221 /* ACK duration */
222 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 erp, short_preamble);
224
225 return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 struct ieee80211_vif *vif,
231 size_t frame_len,
232 const struct ieee80211_tx_info *frame_txctl)
233 {
234 struct ieee80211_local *local = hw_to_local(hw);
235 struct ieee80211_rate *rate;
236 struct ieee80211_sub_if_data *sdata;
237 bool short_preamble;
238 int erp;
239 u16 dur;
240 struct ieee80211_supported_band *sband;
241
242 sband = local->hw.wiphy->bands[frame_txctl->band];
243
244 short_preamble = false;
245
246 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 erp = 0;
248 if (vif) {
249 sdata = vif_to_sdata(vif);
250 short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 erp = rate->flags & IEEE80211_RATE_ERP_G;
253 }
254
255 /* Data frame duration */
256 dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 erp, short_preamble);
258 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 /* ACK duration */
260 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 erp, short_preamble);
262 }
263
264 return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 struct ieee80211_sub_if_data *sdata;
271 int n_acs = IEEE80211_NUM_ACS;
272
273 if (local->hw.queues < IEEE80211_NUM_ACS)
274 n_acs = 1;
275
276 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 int ac;
278
279 if (!sdata->dev)
280 continue;
281
282 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 continue;
284
285 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 continue;
288
289 for (ac = 0; ac < n_acs; ac++) {
290 int ac_queue = sdata->vif.hw_queue[ac];
291
292 if (ac_queue == queue ||
293 (sdata->vif.cab_queue == queue &&
294 local->queue_stop_reasons[ac_queue] == 0 &&
295 skb_queue_empty(&local->pending[ac_queue])))
296 netif_wake_subqueue(sdata->dev, ac);
297 }
298 }
299 }
300
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 enum queue_stop_reason reason)
303 {
304 struct ieee80211_local *local = hw_to_local(hw);
305
306 trace_wake_queue(local, queue, reason);
307
308 if (WARN_ON(queue >= hw->queues))
309 return;
310
311 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 return;
313
314 __clear_bit(reason, &local->queue_stop_reasons[queue]);
315
316 if (local->queue_stop_reasons[queue] != 0)
317 /* someone still has this queue stopped */
318 return;
319
320 if (skb_queue_empty(&local->pending[queue])) {
321 rcu_read_lock();
322 ieee80211_propagate_queue_wake(local, queue);
323 rcu_read_unlock();
324 } else
325 tasklet_schedule(&local->tx_pending_tasklet);
326 }
327
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 enum queue_stop_reason reason)
330 {
331 struct ieee80211_local *local = hw_to_local(hw);
332 unsigned long flags;
333
334 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 __ieee80211_wake_queue(hw, queue, reason);
336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 ieee80211_wake_queue_by_reason(hw, queue,
342 IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 enum queue_stop_reason reason)
348 {
349 struct ieee80211_local *local = hw_to_local(hw);
350 struct ieee80211_sub_if_data *sdata;
351 int n_acs = IEEE80211_NUM_ACS;
352
353 trace_stop_queue(local, queue, reason);
354
355 if (WARN_ON(queue >= hw->queues))
356 return;
357
358 if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 return;
360
361 __set_bit(reason, &local->queue_stop_reasons[queue]);
362
363 if (local->hw.queues < IEEE80211_NUM_ACS)
364 n_acs = 1;
365
366 rcu_read_lock();
367 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 int ac;
369
370 if (!sdata->dev)
371 continue;
372
373 for (ac = 0; ac < n_acs; ac++) {
374 if (sdata->vif.hw_queue[ac] == queue ||
375 sdata->vif.cab_queue == queue)
376 netif_stop_subqueue(sdata->dev, ac);
377 }
378 }
379 rcu_read_unlock();
380 }
381
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 enum queue_stop_reason reason)
384 {
385 struct ieee80211_local *local = hw_to_local(hw);
386 unsigned long flags;
387
388 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 __ieee80211_stop_queue(hw, queue, reason);
390 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 ieee80211_stop_queue_by_reason(hw, queue,
396 IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 struct sk_buff *skb)
402 {
403 struct ieee80211_hw *hw = &local->hw;
404 unsigned long flags;
405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 int queue = info->hw_queue;
407
408 if (WARN_ON(!info->control.vif)) {
409 ieee80211_free_txskb(&local->hw, skb);
410 return;
411 }
412
413 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 __skb_queue_tail(&local->pending[queue], skb);
416 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 struct sk_buff_head *skbs,
422 void (*fn)(void *data), void *data)
423 {
424 struct ieee80211_hw *hw = &local->hw;
425 struct sk_buff *skb;
426 unsigned long flags;
427 int queue, i;
428
429 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 while ((skb = skb_dequeue(skbs))) {
431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432
433 if (WARN_ON(!info->control.vif)) {
434 ieee80211_free_txskb(&local->hw, skb);
435 continue;
436 }
437
438 queue = info->hw_queue;
439
440 __ieee80211_stop_queue(hw, queue,
441 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442
443 __skb_queue_tail(&local->pending[queue], skb);
444 }
445
446 if (fn)
447 fn(data);
448
449 for (i = 0; i < hw->queues; i++)
450 __ieee80211_wake_queue(hw, i,
451 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 unsigned long queues,
457 enum queue_stop_reason reason)
458 {
459 struct ieee80211_local *local = hw_to_local(hw);
460 unsigned long flags;
461 int i;
462
463 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
464
465 for_each_set_bit(i, &queues, hw->queues)
466 __ieee80211_stop_queue(hw, i, reason);
467
468 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
469 }
470
471 void ieee80211_stop_queues(struct ieee80211_hw *hw)
472 {
473 ieee80211_stop_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
474 IEEE80211_QUEUE_STOP_REASON_DRIVER);
475 }
476 EXPORT_SYMBOL(ieee80211_stop_queues);
477
478 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
479 {
480 struct ieee80211_local *local = hw_to_local(hw);
481 unsigned long flags;
482 int ret;
483
484 if (WARN_ON(queue >= hw->queues))
485 return true;
486
487 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
488 ret = test_bit(IEEE80211_QUEUE_STOP_REASON_DRIVER,
489 &local->queue_stop_reasons[queue]);
490 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
491 return ret;
492 }
493 EXPORT_SYMBOL(ieee80211_queue_stopped);
494
495 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
496 unsigned long queues,
497 enum queue_stop_reason reason)
498 {
499 struct ieee80211_local *local = hw_to_local(hw);
500 unsigned long flags;
501 int i;
502
503 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
504
505 for_each_set_bit(i, &queues, hw->queues)
506 __ieee80211_wake_queue(hw, i, reason);
507
508 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
509 }
510
511 void ieee80211_wake_queues(struct ieee80211_hw *hw)
512 {
513 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
514 IEEE80211_QUEUE_STOP_REASON_DRIVER);
515 }
516 EXPORT_SYMBOL(ieee80211_wake_queues);
517
518 void ieee80211_flush_queues(struct ieee80211_local *local,
519 struct ieee80211_sub_if_data *sdata)
520 {
521 u32 queues;
522
523 if (!local->ops->flush)
524 return;
525
526 if (sdata && local->hw.flags & IEEE80211_HW_QUEUE_CONTROL) {
527 int ac;
528
529 queues = 0;
530
531 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++)
532 queues |= BIT(sdata->vif.hw_queue[ac]);
533 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE)
534 queues |= BIT(sdata->vif.cab_queue);
535 } else {
536 /* all queues */
537 queues = BIT(local->hw.queues) - 1;
538 }
539
540 ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
541 IEEE80211_QUEUE_STOP_REASON_FLUSH);
542
543 drv_flush(local, queues, false);
544
545 ieee80211_wake_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP,
546 IEEE80211_QUEUE_STOP_REASON_FLUSH);
547 }
548
549 void ieee80211_iterate_active_interfaces(
550 struct ieee80211_hw *hw, u32 iter_flags,
551 void (*iterator)(void *data, u8 *mac,
552 struct ieee80211_vif *vif),
553 void *data)
554 {
555 struct ieee80211_local *local = hw_to_local(hw);
556 struct ieee80211_sub_if_data *sdata;
557
558 mutex_lock(&local->iflist_mtx);
559
560 list_for_each_entry(sdata, &local->interfaces, list) {
561 switch (sdata->vif.type) {
562 case NL80211_IFTYPE_MONITOR:
563 if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE))
564 continue;
565 break;
566 case NL80211_IFTYPE_AP_VLAN:
567 continue;
568 default:
569 break;
570 }
571 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
572 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
573 continue;
574 if (ieee80211_sdata_running(sdata))
575 iterator(data, sdata->vif.addr,
576 &sdata->vif);
577 }
578
579 sdata = rcu_dereference_protected(local->monitor_sdata,
580 lockdep_is_held(&local->iflist_mtx));
581 if (sdata &&
582 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
583 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
584 iterator(data, sdata->vif.addr, &sdata->vif);
585
586 mutex_unlock(&local->iflist_mtx);
587 }
588 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
589
590 void ieee80211_iterate_active_interfaces_atomic(
591 struct ieee80211_hw *hw, u32 iter_flags,
592 void (*iterator)(void *data, u8 *mac,
593 struct ieee80211_vif *vif),
594 void *data)
595 {
596 struct ieee80211_local *local = hw_to_local(hw);
597 struct ieee80211_sub_if_data *sdata;
598
599 rcu_read_lock();
600
601 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
602 switch (sdata->vif.type) {
603 case NL80211_IFTYPE_MONITOR:
604 if (!(sdata->u.mntr_flags & MONITOR_FLAG_ACTIVE))
605 continue;
606 break;
607 case NL80211_IFTYPE_AP_VLAN:
608 continue;
609 default:
610 break;
611 }
612 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
613 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
614 continue;
615 if (ieee80211_sdata_running(sdata))
616 iterator(data, sdata->vif.addr,
617 &sdata->vif);
618 }
619
620 sdata = rcu_dereference(local->monitor_sdata);
621 if (sdata &&
622 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
623 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
624 iterator(data, sdata->vif.addr, &sdata->vif);
625
626 rcu_read_unlock();
627 }
628 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
629
630 /*
631 * Nothing should have been stuffed into the workqueue during
632 * the suspend->resume cycle. If this WARN is seen then there
633 * is a bug with either the driver suspend or something in
634 * mac80211 stuffing into the workqueue which we haven't yet
635 * cleared during mac80211's suspend cycle.
636 */
637 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
638 {
639 if (WARN(local->suspended && !local->resuming,
640 "queueing ieee80211 work while going to suspend\n"))
641 return false;
642
643 return true;
644 }
645
646 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
647 {
648 struct ieee80211_local *local = hw_to_local(hw);
649
650 if (!ieee80211_can_queue_work(local))
651 return;
652
653 queue_work(local->workqueue, work);
654 }
655 EXPORT_SYMBOL(ieee80211_queue_work);
656
657 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
658 struct delayed_work *dwork,
659 unsigned long delay)
660 {
661 struct ieee80211_local *local = hw_to_local(hw);
662
663 if (!ieee80211_can_queue_work(local))
664 return;
665
666 queue_delayed_work(local->workqueue, dwork, delay);
667 }
668 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
669
670 u32 ieee802_11_parse_elems_crc(const u8 *start, size_t len, bool action,
671 struct ieee802_11_elems *elems,
672 u64 filter, u32 crc)
673 {
674 size_t left = len;
675 const u8 *pos = start;
676 bool calc_crc = filter != 0;
677 DECLARE_BITMAP(seen_elems, 256);
678 const u8 *ie;
679
680 bitmap_zero(seen_elems, 256);
681 memset(elems, 0, sizeof(*elems));
682 elems->ie_start = start;
683 elems->total_len = len;
684
685 while (left >= 2) {
686 u8 id, elen;
687 bool elem_parse_failed;
688
689 id = *pos++;
690 elen = *pos++;
691 left -= 2;
692
693 if (elen > left) {
694 elems->parse_error = true;
695 break;
696 }
697
698 switch (id) {
699 case WLAN_EID_SSID:
700 case WLAN_EID_SUPP_RATES:
701 case WLAN_EID_FH_PARAMS:
702 case WLAN_EID_DS_PARAMS:
703 case WLAN_EID_CF_PARAMS:
704 case WLAN_EID_TIM:
705 case WLAN_EID_IBSS_PARAMS:
706 case WLAN_EID_CHALLENGE:
707 case WLAN_EID_RSN:
708 case WLAN_EID_ERP_INFO:
709 case WLAN_EID_EXT_SUPP_RATES:
710 case WLAN_EID_HT_CAPABILITY:
711 case WLAN_EID_HT_OPERATION:
712 case WLAN_EID_VHT_CAPABILITY:
713 case WLAN_EID_VHT_OPERATION:
714 case WLAN_EID_MESH_ID:
715 case WLAN_EID_MESH_CONFIG:
716 case WLAN_EID_PEER_MGMT:
717 case WLAN_EID_PREQ:
718 case WLAN_EID_PREP:
719 case WLAN_EID_PERR:
720 case WLAN_EID_RANN:
721 case WLAN_EID_CHANNEL_SWITCH:
722 case WLAN_EID_EXT_CHANSWITCH_ANN:
723 case WLAN_EID_COUNTRY:
724 case WLAN_EID_PWR_CONSTRAINT:
725 case WLAN_EID_TIMEOUT_INTERVAL:
726 case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
727 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
728 /*
729 * not listing WLAN_EID_CHANNEL_SWITCH_WRAPPER -- it seems possible
730 * that if the content gets bigger it might be needed more than once
731 */
732 if (test_bit(id, seen_elems)) {
733 elems->parse_error = true;
734 left -= elen;
735 pos += elen;
736 continue;
737 }
738 break;
739 }
740
741 if (calc_crc && id < 64 && (filter & (1ULL << id)))
742 crc = crc32_be(crc, pos - 2, elen + 2);
743
744 elem_parse_failed = false;
745
746 switch (id) {
747 case WLAN_EID_SSID:
748 elems->ssid = pos;
749 elems->ssid_len = elen;
750 break;
751 case WLAN_EID_SUPP_RATES:
752 elems->supp_rates = pos;
753 elems->supp_rates_len = elen;
754 break;
755 case WLAN_EID_DS_PARAMS:
756 if (elen >= 1)
757 elems->ds_params = pos;
758 else
759 elem_parse_failed = true;
760 break;
761 case WLAN_EID_TIM:
762 if (elen >= sizeof(struct ieee80211_tim_ie)) {
763 elems->tim = (void *)pos;
764 elems->tim_len = elen;
765 } else
766 elem_parse_failed = true;
767 break;
768 case WLAN_EID_CHALLENGE:
769 elems->challenge = pos;
770 elems->challenge_len = elen;
771 break;
772 case WLAN_EID_VENDOR_SPECIFIC:
773 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
774 pos[2] == 0xf2) {
775 /* Microsoft OUI (00:50:F2) */
776
777 if (calc_crc)
778 crc = crc32_be(crc, pos - 2, elen + 2);
779
780 if (elen >= 5 && pos[3] == 2) {
781 /* OUI Type 2 - WMM IE */
782 if (pos[4] == 0) {
783 elems->wmm_info = pos;
784 elems->wmm_info_len = elen;
785 } else if (pos[4] == 1) {
786 elems->wmm_param = pos;
787 elems->wmm_param_len = elen;
788 }
789 }
790 }
791 break;
792 case WLAN_EID_RSN:
793 elems->rsn = pos;
794 elems->rsn_len = elen;
795 break;
796 case WLAN_EID_ERP_INFO:
797 if (elen >= 1)
798 elems->erp_info = pos;
799 else
800 elem_parse_failed = true;
801 break;
802 case WLAN_EID_EXT_SUPP_RATES:
803 elems->ext_supp_rates = pos;
804 elems->ext_supp_rates_len = elen;
805 break;
806 case WLAN_EID_HT_CAPABILITY:
807 if (elen >= sizeof(struct ieee80211_ht_cap))
808 elems->ht_cap_elem = (void *)pos;
809 else
810 elem_parse_failed = true;
811 break;
812 case WLAN_EID_HT_OPERATION:
813 if (elen >= sizeof(struct ieee80211_ht_operation))
814 elems->ht_operation = (void *)pos;
815 else
816 elem_parse_failed = true;
817 break;
818 case WLAN_EID_VHT_CAPABILITY:
819 if (elen >= sizeof(struct ieee80211_vht_cap))
820 elems->vht_cap_elem = (void *)pos;
821 else
822 elem_parse_failed = true;
823 break;
824 case WLAN_EID_VHT_OPERATION:
825 if (elen >= sizeof(struct ieee80211_vht_operation))
826 elems->vht_operation = (void *)pos;
827 else
828 elem_parse_failed = true;
829 break;
830 case WLAN_EID_OPMODE_NOTIF:
831 if (elen > 0)
832 elems->opmode_notif = pos;
833 else
834 elem_parse_failed = true;
835 break;
836 case WLAN_EID_MESH_ID:
837 elems->mesh_id = pos;
838 elems->mesh_id_len = elen;
839 break;
840 case WLAN_EID_MESH_CONFIG:
841 if (elen >= sizeof(struct ieee80211_meshconf_ie))
842 elems->mesh_config = (void *)pos;
843 else
844 elem_parse_failed = true;
845 break;
846 case WLAN_EID_PEER_MGMT:
847 elems->peering = pos;
848 elems->peering_len = elen;
849 break;
850 case WLAN_EID_MESH_AWAKE_WINDOW:
851 if (elen >= 2)
852 elems->awake_window = (void *)pos;
853 break;
854 case WLAN_EID_PREQ:
855 elems->preq = pos;
856 elems->preq_len = elen;
857 break;
858 case WLAN_EID_PREP:
859 elems->prep = pos;
860 elems->prep_len = elen;
861 break;
862 case WLAN_EID_PERR:
863 elems->perr = pos;
864 elems->perr_len = elen;
865 break;
866 case WLAN_EID_RANN:
867 if (elen >= sizeof(struct ieee80211_rann_ie))
868 elems->rann = (void *)pos;
869 else
870 elem_parse_failed = true;
871 break;
872 case WLAN_EID_CHANNEL_SWITCH:
873 if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
874 elem_parse_failed = true;
875 break;
876 }
877 elems->ch_switch_ie = (void *)pos;
878 break;
879 case WLAN_EID_EXT_CHANSWITCH_ANN:
880 if (elen != sizeof(struct ieee80211_ext_chansw_ie)) {
881 elem_parse_failed = true;
882 break;
883 }
884 elems->ext_chansw_ie = (void *)pos;
885 break;
886 case WLAN_EID_SECONDARY_CHANNEL_OFFSET:
887 if (elen != sizeof(struct ieee80211_sec_chan_offs_ie)) {
888 elem_parse_failed = true;
889 break;
890 }
891 elems->sec_chan_offs = (void *)pos;
892 break;
893 case WLAN_EID_WIDE_BW_CHANNEL_SWITCH:
894 if (!action ||
895 elen != sizeof(*elems->wide_bw_chansw_ie)) {
896 elem_parse_failed = true;
897 break;
898 }
899 elems->wide_bw_chansw_ie = (void *)pos;
900 break;
901 case WLAN_EID_CHANNEL_SWITCH_WRAPPER:
902 if (action) {
903 elem_parse_failed = true;
904 break;
905 }
906 /*
907 * This is a bit tricky, but as we only care about
908 * the wide bandwidth channel switch element, so
909 * just parse it out manually.
910 */
911 ie = cfg80211_find_ie(WLAN_EID_WIDE_BW_CHANNEL_SWITCH,
912 pos, elen);
913 if (ie) {
914 if (ie[1] == sizeof(*elems->wide_bw_chansw_ie))
915 elems->wide_bw_chansw_ie =
916 (void *)(ie + 2);
917 else
918 elem_parse_failed = true;
919 }
920 break;
921 case WLAN_EID_COUNTRY:
922 elems->country_elem = pos;
923 elems->country_elem_len = elen;
924 break;
925 case WLAN_EID_PWR_CONSTRAINT:
926 if (elen != 1) {
927 elem_parse_failed = true;
928 break;
929 }
930 elems->pwr_constr_elem = pos;
931 break;
932 case WLAN_EID_TIMEOUT_INTERVAL:
933 if (elen >= sizeof(struct ieee80211_timeout_interval_ie))
934 elems->timeout_int = (void *)pos;
935 else
936 elem_parse_failed = true;
937 break;
938 default:
939 break;
940 }
941
942 if (elem_parse_failed)
943 elems->parse_error = true;
944 else
945 __set_bit(id, seen_elems);
946
947 left -= elen;
948 pos += elen;
949 }
950
951 if (left != 0)
952 elems->parse_error = true;
953
954 return crc;
955 }
956
957 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
958 bool bss_notify)
959 {
960 struct ieee80211_local *local = sdata->local;
961 struct ieee80211_tx_queue_params qparam;
962 struct ieee80211_chanctx_conf *chanctx_conf;
963 int ac;
964 bool use_11b, enable_qos;
965 int aCWmin, aCWmax;
966
967 if (!local->ops->conf_tx)
968 return;
969
970 if (local->hw.queues < IEEE80211_NUM_ACS)
971 return;
972
973 memset(&qparam, 0, sizeof(qparam));
974
975 rcu_read_lock();
976 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
977 use_11b = (chanctx_conf &&
978 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
979 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
980 rcu_read_unlock();
981
982 /*
983 * By default disable QoS in STA mode for old access points, which do
984 * not support 802.11e. New APs will provide proper queue parameters,
985 * that we will configure later.
986 */
987 enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
988
989 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
990 /* Set defaults according to 802.11-2007 Table 7-37 */
991 aCWmax = 1023;
992 if (use_11b)
993 aCWmin = 31;
994 else
995 aCWmin = 15;
996
997 if (enable_qos) {
998 switch (ac) {
999 case IEEE80211_AC_BK:
1000 qparam.cw_max = aCWmax;
1001 qparam.cw_min = aCWmin;
1002 qparam.txop = 0;
1003 qparam.aifs = 7;
1004 break;
1005 /* never happens but let's not leave undefined */
1006 default:
1007 case IEEE80211_AC_BE:
1008 qparam.cw_max = aCWmax;
1009 qparam.cw_min = aCWmin;
1010 qparam.txop = 0;
1011 qparam.aifs = 3;
1012 break;
1013 case IEEE80211_AC_VI:
1014 qparam.cw_max = aCWmin;
1015 qparam.cw_min = (aCWmin + 1) / 2 - 1;
1016 if (use_11b)
1017 qparam.txop = 6016/32;
1018 else
1019 qparam.txop = 3008/32;
1020 qparam.aifs = 2;
1021 break;
1022 case IEEE80211_AC_VO:
1023 qparam.cw_max = (aCWmin + 1) / 2 - 1;
1024 qparam.cw_min = (aCWmin + 1) / 4 - 1;
1025 if (use_11b)
1026 qparam.txop = 3264/32;
1027 else
1028 qparam.txop = 1504/32;
1029 qparam.aifs = 2;
1030 break;
1031 }
1032 } else {
1033 /* Confiure old 802.11b/g medium access rules. */
1034 qparam.cw_max = aCWmax;
1035 qparam.cw_min = aCWmin;
1036 qparam.txop = 0;
1037 qparam.aifs = 2;
1038 }
1039
1040 qparam.uapsd = false;
1041
1042 sdata->tx_conf[ac] = qparam;
1043 drv_conf_tx(local, sdata, ac, &qparam);
1044 }
1045
1046 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1047 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
1048 sdata->vif.bss_conf.qos = enable_qos;
1049 if (bss_notify)
1050 ieee80211_bss_info_change_notify(sdata,
1051 BSS_CHANGED_QOS);
1052 }
1053 }
1054
1055 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
1056 const size_t supp_rates_len,
1057 const u8 *supp_rates)
1058 {
1059 struct ieee80211_chanctx_conf *chanctx_conf;
1060 int i, have_higher_than_11mbit = 0;
1061
1062 /* cf. IEEE 802.11 9.2.12 */
1063 for (i = 0; i < supp_rates_len; i++)
1064 if ((supp_rates[i] & 0x7f) * 5 > 110)
1065 have_higher_than_11mbit = 1;
1066
1067 rcu_read_lock();
1068 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
1069
1070 if (chanctx_conf &&
1071 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
1072 have_higher_than_11mbit)
1073 sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
1074 else
1075 sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
1076 rcu_read_unlock();
1077
1078 ieee80211_set_wmm_default(sdata, true);
1079 }
1080
1081 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1082 u16 transaction, u16 auth_alg, u16 status,
1083 const u8 *extra, size_t extra_len, const u8 *da,
1084 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx,
1085 u32 tx_flags)
1086 {
1087 struct ieee80211_local *local = sdata->local;
1088 struct sk_buff *skb;
1089 struct ieee80211_mgmt *mgmt;
1090 int err;
1091
1092 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1093 sizeof(*mgmt) + 6 + extra_len);
1094 if (!skb)
1095 return;
1096
1097 skb_reserve(skb, local->hw.extra_tx_headroom);
1098
1099 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1100 memset(mgmt, 0, 24 + 6);
1101 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1102 IEEE80211_STYPE_AUTH);
1103 memcpy(mgmt->da, da, ETH_ALEN);
1104 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1105 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1106 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1107 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1108 mgmt->u.auth.status_code = cpu_to_le16(status);
1109 if (extra)
1110 memcpy(skb_put(skb, extra_len), extra, extra_len);
1111
1112 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1113 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1114 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1115 WARN_ON(err);
1116 }
1117
1118 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT |
1119 tx_flags;
1120 ieee80211_tx_skb(sdata, skb);
1121 }
1122
1123 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1124 const u8 *bssid, u16 stype, u16 reason,
1125 bool send_frame, u8 *frame_buf)
1126 {
1127 struct ieee80211_local *local = sdata->local;
1128 struct sk_buff *skb;
1129 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1130
1131 /* build frame */
1132 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1133 mgmt->duration = 0; /* initialize only */
1134 mgmt->seq_ctrl = 0; /* initialize only */
1135 memcpy(mgmt->da, bssid, ETH_ALEN);
1136 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1137 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1138 /* u.deauth.reason_code == u.disassoc.reason_code */
1139 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1140
1141 if (send_frame) {
1142 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1143 IEEE80211_DEAUTH_FRAME_LEN);
1144 if (!skb)
1145 return;
1146
1147 skb_reserve(skb, local->hw.extra_tx_headroom);
1148
1149 /* copy in frame */
1150 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1151 mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1152
1153 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1154 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1155 IEEE80211_SKB_CB(skb)->flags |=
1156 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1157
1158 ieee80211_tx_skb(sdata, skb);
1159 }
1160 }
1161
1162 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1163 size_t buffer_len, const u8 *ie, size_t ie_len,
1164 enum ieee80211_band band, u32 rate_mask,
1165 u8 channel)
1166 {
1167 struct ieee80211_supported_band *sband;
1168 u8 *pos = buffer, *end = buffer + buffer_len;
1169 size_t offset = 0, noffset;
1170 int supp_rates_len, i;
1171 u8 rates[32];
1172 int num_rates;
1173 int ext_rates_len;
1174
1175 sband = local->hw.wiphy->bands[band];
1176 if (WARN_ON_ONCE(!sband))
1177 return 0;
1178
1179 num_rates = 0;
1180 for (i = 0; i < sband->n_bitrates; i++) {
1181 if ((BIT(i) & rate_mask) == 0)
1182 continue; /* skip rate */
1183 rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1184 }
1185
1186 supp_rates_len = min_t(int, num_rates, 8);
1187
1188 if (end - pos < 2 + supp_rates_len)
1189 goto out_err;
1190 *pos++ = WLAN_EID_SUPP_RATES;
1191 *pos++ = supp_rates_len;
1192 memcpy(pos, rates, supp_rates_len);
1193 pos += supp_rates_len;
1194
1195 /* insert "request information" if in custom IEs */
1196 if (ie && ie_len) {
1197 static const u8 before_extrates[] = {
1198 WLAN_EID_SSID,
1199 WLAN_EID_SUPP_RATES,
1200 WLAN_EID_REQUEST,
1201 };
1202 noffset = ieee80211_ie_split(ie, ie_len,
1203 before_extrates,
1204 ARRAY_SIZE(before_extrates),
1205 offset);
1206 if (end - pos < noffset - offset)
1207 goto out_err;
1208 memcpy(pos, ie + offset, noffset - offset);
1209 pos += noffset - offset;
1210 offset = noffset;
1211 }
1212
1213 ext_rates_len = num_rates - supp_rates_len;
1214 if (ext_rates_len > 0) {
1215 if (end - pos < 2 + ext_rates_len)
1216 goto out_err;
1217 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1218 *pos++ = ext_rates_len;
1219 memcpy(pos, rates + supp_rates_len, ext_rates_len);
1220 pos += ext_rates_len;
1221 }
1222
1223 if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1224 if (end - pos < 3)
1225 goto out_err;
1226 *pos++ = WLAN_EID_DS_PARAMS;
1227 *pos++ = 1;
1228 *pos++ = channel;
1229 }
1230
1231 /* insert custom IEs that go before HT */
1232 if (ie && ie_len) {
1233 static const u8 before_ht[] = {
1234 WLAN_EID_SSID,
1235 WLAN_EID_SUPP_RATES,
1236 WLAN_EID_REQUEST,
1237 WLAN_EID_EXT_SUPP_RATES,
1238 WLAN_EID_DS_PARAMS,
1239 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1240 };
1241 noffset = ieee80211_ie_split(ie, ie_len,
1242 before_ht, ARRAY_SIZE(before_ht),
1243 offset);
1244 if (end - pos < noffset - offset)
1245 goto out_err;
1246 memcpy(pos, ie + offset, noffset - offset);
1247 pos += noffset - offset;
1248 offset = noffset;
1249 }
1250
1251 if (sband->ht_cap.ht_supported) {
1252 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1253 goto out_err;
1254 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1255 sband->ht_cap.cap);
1256 }
1257
1258 /*
1259 * If adding more here, adjust code in main.c
1260 * that calculates local->scan_ies_len.
1261 */
1262
1263 /* add any remaining custom IEs */
1264 if (ie && ie_len) {
1265 noffset = ie_len;
1266 if (end - pos < noffset - offset)
1267 goto out_err;
1268 memcpy(pos, ie + offset, noffset - offset);
1269 pos += noffset - offset;
1270 }
1271
1272 if (sband->vht_cap.vht_supported) {
1273 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1274 goto out_err;
1275 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1276 sband->vht_cap.cap);
1277 }
1278
1279 return pos - buffer;
1280 out_err:
1281 WARN_ONCE(1, "not enough space for preq IEs\n");
1282 return pos - buffer;
1283 }
1284
1285 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1286 u8 *dst, u32 ratemask,
1287 struct ieee80211_channel *chan,
1288 const u8 *ssid, size_t ssid_len,
1289 const u8 *ie, size_t ie_len,
1290 bool directed)
1291 {
1292 struct ieee80211_local *local = sdata->local;
1293 struct sk_buff *skb;
1294 struct ieee80211_mgmt *mgmt;
1295 u8 chan_no;
1296 int ies_len;
1297
1298 /*
1299 * Do not send DS Channel parameter for directed probe requests
1300 * in order to maximize the chance that we get a response. Some
1301 * badly-behaved APs don't respond when this parameter is included.
1302 */
1303 if (directed)
1304 chan_no = 0;
1305 else
1306 chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1307
1308 skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1309 ssid, ssid_len, 100 + ie_len);
1310 if (!skb)
1311 return NULL;
1312
1313 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1314 skb_tailroom(skb),
1315 ie, ie_len, chan->band,
1316 ratemask, chan_no);
1317 skb_put(skb, ies_len);
1318
1319 if (dst) {
1320 mgmt = (struct ieee80211_mgmt *) skb->data;
1321 memcpy(mgmt->da, dst, ETH_ALEN);
1322 memcpy(mgmt->bssid, dst, ETH_ALEN);
1323 }
1324
1325 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1326
1327 return skb;
1328 }
1329
1330 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1331 const u8 *ssid, size_t ssid_len,
1332 const u8 *ie, size_t ie_len,
1333 u32 ratemask, bool directed, u32 tx_flags,
1334 struct ieee80211_channel *channel, bool scan)
1335 {
1336 struct sk_buff *skb;
1337
1338 skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1339 ssid, ssid_len,
1340 ie, ie_len, directed);
1341 if (skb) {
1342 IEEE80211_SKB_CB(skb)->flags |= tx_flags;
1343 if (scan)
1344 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1345 else
1346 ieee80211_tx_skb(sdata, skb);
1347 }
1348 }
1349
1350 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1351 struct ieee802_11_elems *elems,
1352 enum ieee80211_band band, u32 *basic_rates)
1353 {
1354 struct ieee80211_supported_band *sband;
1355 struct ieee80211_rate *bitrates;
1356 size_t num_rates;
1357 u32 supp_rates;
1358 int i, j;
1359 sband = local->hw.wiphy->bands[band];
1360
1361 if (WARN_ON(!sband))
1362 return 1;
1363
1364 bitrates = sband->bitrates;
1365 num_rates = sband->n_bitrates;
1366 supp_rates = 0;
1367 for (i = 0; i < elems->supp_rates_len +
1368 elems->ext_supp_rates_len; i++) {
1369 u8 rate = 0;
1370 int own_rate;
1371 bool is_basic;
1372 if (i < elems->supp_rates_len)
1373 rate = elems->supp_rates[i];
1374 else if (elems->ext_supp_rates)
1375 rate = elems->ext_supp_rates
1376 [i - elems->supp_rates_len];
1377 own_rate = 5 * (rate & 0x7f);
1378 is_basic = !!(rate & 0x80);
1379
1380 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1381 continue;
1382
1383 for (j = 0; j < num_rates; j++) {
1384 if (bitrates[j].bitrate == own_rate) {
1385 supp_rates |= BIT(j);
1386 if (basic_rates && is_basic)
1387 *basic_rates |= BIT(j);
1388 }
1389 }
1390 }
1391 return supp_rates;
1392 }
1393
1394 void ieee80211_stop_device(struct ieee80211_local *local)
1395 {
1396 ieee80211_led_radio(local, false);
1397 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1398
1399 cancel_work_sync(&local->reconfig_filter);
1400
1401 flush_workqueue(local->workqueue);
1402 drv_stop(local);
1403 }
1404
1405 static void ieee80211_assign_chanctx(struct ieee80211_local *local,
1406 struct ieee80211_sub_if_data *sdata)
1407 {
1408 struct ieee80211_chanctx_conf *conf;
1409 struct ieee80211_chanctx *ctx;
1410
1411 if (!local->use_chanctx)
1412 return;
1413
1414 mutex_lock(&local->chanctx_mtx);
1415 conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1416 lockdep_is_held(&local->chanctx_mtx));
1417 if (conf) {
1418 ctx = container_of(conf, struct ieee80211_chanctx, conf);
1419 drv_assign_vif_chanctx(local, sdata, ctx);
1420 }
1421 mutex_unlock(&local->chanctx_mtx);
1422 }
1423
1424 int ieee80211_reconfig(struct ieee80211_local *local)
1425 {
1426 struct ieee80211_hw *hw = &local->hw;
1427 struct ieee80211_sub_if_data *sdata;
1428 struct ieee80211_chanctx *ctx;
1429 struct sta_info *sta;
1430 int res, i;
1431 bool reconfig_due_to_wowlan = false;
1432
1433 #ifdef CONFIG_PM
1434 if (local->suspended)
1435 local->resuming = true;
1436
1437 if (local->wowlan) {
1438 local->wowlan = false;
1439 res = drv_resume(local);
1440 if (res < 0) {
1441 local->resuming = false;
1442 return res;
1443 }
1444 if (res == 0)
1445 goto wake_up;
1446 WARN_ON(res > 1);
1447 /*
1448 * res is 1, which means the driver requested
1449 * to go through a regular reset on wakeup.
1450 */
1451 reconfig_due_to_wowlan = true;
1452 }
1453 #endif
1454 /* everything else happens only if HW was up & running */
1455 if (!local->open_count)
1456 goto wake_up;
1457
1458 /*
1459 * Upon resume hardware can sometimes be goofy due to
1460 * various platform / driver / bus issues, so restarting
1461 * the device may at times not work immediately. Propagate
1462 * the error.
1463 */
1464 res = drv_start(local);
1465 if (res) {
1466 WARN(local->suspended, "Hardware became unavailable "
1467 "upon resume. This could be a software issue "
1468 "prior to suspend or a hardware issue.\n");
1469 return res;
1470 }
1471
1472 /* setup fragmentation threshold */
1473 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1474
1475 /* setup RTS threshold */
1476 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1477
1478 /* reset coverage class */
1479 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1480
1481 ieee80211_led_radio(local, true);
1482 ieee80211_mod_tpt_led_trig(local,
1483 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1484
1485 /* add interfaces */
1486 sdata = rtnl_dereference(local->monitor_sdata);
1487 if (sdata) {
1488 /* in HW restart it exists already */
1489 WARN_ON(local->resuming);
1490 res = drv_add_interface(local, sdata);
1491 if (WARN_ON(res)) {
1492 rcu_assign_pointer(local->monitor_sdata, NULL);
1493 synchronize_net();
1494 kfree(sdata);
1495 }
1496 }
1497
1498 list_for_each_entry(sdata, &local->interfaces, list) {
1499 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1500 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1501 ieee80211_sdata_running(sdata))
1502 res = drv_add_interface(local, sdata);
1503 }
1504
1505 /* add channel contexts */
1506 if (local->use_chanctx) {
1507 mutex_lock(&local->chanctx_mtx);
1508 list_for_each_entry(ctx, &local->chanctx_list, list)
1509 WARN_ON(drv_add_chanctx(local, ctx));
1510 mutex_unlock(&local->chanctx_mtx);
1511 }
1512
1513 list_for_each_entry(sdata, &local->interfaces, list) {
1514 if (!ieee80211_sdata_running(sdata))
1515 continue;
1516 ieee80211_assign_chanctx(local, sdata);
1517 }
1518
1519 sdata = rtnl_dereference(local->monitor_sdata);
1520 if (sdata && ieee80211_sdata_running(sdata))
1521 ieee80211_assign_chanctx(local, sdata);
1522
1523 /* add STAs back */
1524 mutex_lock(&local->sta_mtx);
1525 list_for_each_entry(sta, &local->sta_list, list) {
1526 enum ieee80211_sta_state state;
1527
1528 if (!sta->uploaded)
1529 continue;
1530
1531 /* AP-mode stations will be added later */
1532 if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1533 continue;
1534
1535 for (state = IEEE80211_STA_NOTEXIST;
1536 state < sta->sta_state; state++)
1537 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1538 state + 1));
1539 }
1540 mutex_unlock(&local->sta_mtx);
1541
1542 /* reconfigure tx conf */
1543 if (hw->queues >= IEEE80211_NUM_ACS) {
1544 list_for_each_entry(sdata, &local->interfaces, list) {
1545 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1546 sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1547 !ieee80211_sdata_running(sdata))
1548 continue;
1549
1550 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1551 drv_conf_tx(local, sdata, i,
1552 &sdata->tx_conf[i]);
1553 }
1554 }
1555
1556 /* reconfigure hardware */
1557 ieee80211_hw_config(local, ~0);
1558
1559 ieee80211_configure_filter(local);
1560
1561 /* Finally also reconfigure all the BSS information */
1562 list_for_each_entry(sdata, &local->interfaces, list) {
1563 u32 changed;
1564
1565 if (!ieee80211_sdata_running(sdata))
1566 continue;
1567
1568 /* common change flags for all interface types */
1569 changed = BSS_CHANGED_ERP_CTS_PROT |
1570 BSS_CHANGED_ERP_PREAMBLE |
1571 BSS_CHANGED_ERP_SLOT |
1572 BSS_CHANGED_HT |
1573 BSS_CHANGED_BASIC_RATES |
1574 BSS_CHANGED_BEACON_INT |
1575 BSS_CHANGED_BSSID |
1576 BSS_CHANGED_CQM |
1577 BSS_CHANGED_QOS |
1578 BSS_CHANGED_IDLE |
1579 BSS_CHANGED_TXPOWER;
1580
1581 switch (sdata->vif.type) {
1582 case NL80211_IFTYPE_STATION:
1583 changed |= BSS_CHANGED_ASSOC |
1584 BSS_CHANGED_ARP_FILTER |
1585 BSS_CHANGED_PS;
1586
1587 /* Re-send beacon info report to the driver */
1588 if (sdata->u.mgd.have_beacon)
1589 changed |= BSS_CHANGED_BEACON_INFO;
1590
1591 sdata_lock(sdata);
1592 ieee80211_bss_info_change_notify(sdata, changed);
1593 sdata_unlock(sdata);
1594 break;
1595 case NL80211_IFTYPE_ADHOC:
1596 changed |= BSS_CHANGED_IBSS;
1597 /* fall through */
1598 case NL80211_IFTYPE_AP:
1599 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1600
1601 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1602 changed |= BSS_CHANGED_AP_PROBE_RESP;
1603
1604 if (rcu_access_pointer(sdata->u.ap.beacon))
1605 drv_start_ap(local, sdata);
1606 }
1607
1608 /* fall through */
1609 case NL80211_IFTYPE_MESH_POINT:
1610 if (sdata->vif.bss_conf.enable_beacon) {
1611 changed |= BSS_CHANGED_BEACON |
1612 BSS_CHANGED_BEACON_ENABLED;
1613 ieee80211_bss_info_change_notify(sdata, changed);
1614 }
1615 break;
1616 case NL80211_IFTYPE_WDS:
1617 break;
1618 case NL80211_IFTYPE_AP_VLAN:
1619 case NL80211_IFTYPE_MONITOR:
1620 /* ignore virtual */
1621 break;
1622 case NL80211_IFTYPE_P2P_DEVICE:
1623 changed = BSS_CHANGED_IDLE;
1624 break;
1625 case NL80211_IFTYPE_UNSPECIFIED:
1626 case NUM_NL80211_IFTYPES:
1627 case NL80211_IFTYPE_P2P_CLIENT:
1628 case NL80211_IFTYPE_P2P_GO:
1629 WARN_ON(1);
1630 break;
1631 }
1632 }
1633
1634 ieee80211_recalc_ps(local, -1);
1635
1636 /*
1637 * The sta might be in psm against the ap (e.g. because
1638 * this was the state before a hw restart), so we
1639 * explicitly send a null packet in order to make sure
1640 * it'll sync against the ap (and get out of psm).
1641 */
1642 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1643 list_for_each_entry(sdata, &local->interfaces, list) {
1644 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1645 continue;
1646 if (!sdata->u.mgd.associated)
1647 continue;
1648
1649 ieee80211_send_nullfunc(local, sdata, 0);
1650 }
1651 }
1652
1653 /* APs are now beaconing, add back stations */
1654 mutex_lock(&local->sta_mtx);
1655 list_for_each_entry(sta, &local->sta_list, list) {
1656 enum ieee80211_sta_state state;
1657
1658 if (!sta->uploaded)
1659 continue;
1660
1661 if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1662 continue;
1663
1664 for (state = IEEE80211_STA_NOTEXIST;
1665 state < sta->sta_state; state++)
1666 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1667 state + 1));
1668 }
1669 mutex_unlock(&local->sta_mtx);
1670
1671 /* add back keys */
1672 list_for_each_entry(sdata, &local->interfaces, list)
1673 if (ieee80211_sdata_running(sdata))
1674 ieee80211_enable_keys(sdata);
1675
1676 wake_up:
1677 local->in_reconfig = false;
1678 barrier();
1679
1680 if (local->monitors == local->open_count && local->monitors > 0)
1681 ieee80211_add_virtual_monitor(local);
1682
1683 /*
1684 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1685 * sessions can be established after a resume.
1686 *
1687 * Also tear down aggregation sessions since reconfiguring
1688 * them in a hardware restart scenario is not easily done
1689 * right now, and the hardware will have lost information
1690 * about the sessions, but we and the AP still think they
1691 * are active. This is really a workaround though.
1692 */
1693 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1694 mutex_lock(&local->sta_mtx);
1695
1696 list_for_each_entry(sta, &local->sta_list, list) {
1697 ieee80211_sta_tear_down_BA_sessions(
1698 sta, AGG_STOP_LOCAL_REQUEST);
1699 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1700 }
1701
1702 mutex_unlock(&local->sta_mtx);
1703 }
1704
1705 ieee80211_wake_queues_by_reason(hw, IEEE80211_MAX_QUEUE_MAP,
1706 IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1707
1708 /*
1709 * If this is for hw restart things are still running.
1710 * We may want to change that later, however.
1711 */
1712 if (!local->suspended || reconfig_due_to_wowlan)
1713 drv_restart_complete(local);
1714
1715 if (!local->suspended)
1716 return 0;
1717
1718 #ifdef CONFIG_PM
1719 /* first set suspended false, then resuming */
1720 local->suspended = false;
1721 mb();
1722 local->resuming = false;
1723
1724 list_for_each_entry(sdata, &local->interfaces, list) {
1725 if (!ieee80211_sdata_running(sdata))
1726 continue;
1727 if (sdata->vif.type == NL80211_IFTYPE_STATION)
1728 ieee80211_sta_restart(sdata);
1729 }
1730
1731 mod_timer(&local->sta_cleanup, jiffies + 1);
1732 #else
1733 WARN_ON(1);
1734 #endif
1735 return 0;
1736 }
1737
1738 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1739 {
1740 struct ieee80211_sub_if_data *sdata;
1741 struct ieee80211_local *local;
1742 struct ieee80211_key *key;
1743
1744 if (WARN_ON(!vif))
1745 return;
1746
1747 sdata = vif_to_sdata(vif);
1748 local = sdata->local;
1749
1750 if (WARN_ON(!local->resuming))
1751 return;
1752
1753 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1754 return;
1755
1756 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1757
1758 mutex_lock(&local->key_mtx);
1759 list_for_each_entry(key, &sdata->key_list, list)
1760 key->flags |= KEY_FLAG_TAINTED;
1761 mutex_unlock(&local->key_mtx);
1762 }
1763 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1764
1765 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1766 {
1767 struct ieee80211_local *local = sdata->local;
1768 struct ieee80211_chanctx_conf *chanctx_conf;
1769 struct ieee80211_chanctx *chanctx;
1770
1771 mutex_lock(&local->chanctx_mtx);
1772
1773 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1774 lockdep_is_held(&local->chanctx_mtx));
1775
1776 if (WARN_ON_ONCE(!chanctx_conf))
1777 goto unlock;
1778
1779 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1780 ieee80211_recalc_smps_chanctx(local, chanctx);
1781 unlock:
1782 mutex_unlock(&local->chanctx_mtx);
1783 }
1784
1785 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1786 {
1787 int i;
1788
1789 for (i = 0; i < n_ids; i++)
1790 if (ids[i] == id)
1791 return true;
1792 return false;
1793 }
1794
1795 /**
1796 * ieee80211_ie_split - split an IE buffer according to ordering
1797 *
1798 * @ies: the IE buffer
1799 * @ielen: the length of the IE buffer
1800 * @ids: an array with element IDs that are allowed before
1801 * the split
1802 * @n_ids: the size of the element ID array
1803 * @offset: offset where to start splitting in the buffer
1804 *
1805 * This function splits an IE buffer by updating the @offset
1806 * variable to point to the location where the buffer should be
1807 * split.
1808 *
1809 * It assumes that the given IE buffer is well-formed, this
1810 * has to be guaranteed by the caller!
1811 *
1812 * It also assumes that the IEs in the buffer are ordered
1813 * correctly, if not the result of using this function will not
1814 * be ordered correctly either, i.e. it does no reordering.
1815 *
1816 * The function returns the offset where the next part of the
1817 * buffer starts, which may be @ielen if the entire (remainder)
1818 * of the buffer should be used.
1819 */
1820 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1821 const u8 *ids, int n_ids, size_t offset)
1822 {
1823 size_t pos = offset;
1824
1825 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1826 pos += 2 + ies[pos + 1];
1827
1828 return pos;
1829 }
1830
1831 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1832 {
1833 size_t pos = offset;
1834
1835 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1836 pos += 2 + ies[pos + 1];
1837
1838 return pos;
1839 }
1840
1841 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1842 int rssi_min_thold,
1843 int rssi_max_thold)
1844 {
1845 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1846
1847 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1848 return;
1849
1850 /*
1851 * Scale up threshold values before storing it, as the RSSI averaging
1852 * algorithm uses a scaled up value as well. Change this scaling
1853 * factor if the RSSI averaging algorithm changes.
1854 */
1855 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1856 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1857 }
1858
1859 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1860 int rssi_min_thold,
1861 int rssi_max_thold)
1862 {
1863 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1864
1865 WARN_ON(rssi_min_thold == rssi_max_thold ||
1866 rssi_min_thold > rssi_max_thold);
1867
1868 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1869 rssi_max_thold);
1870 }
1871 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1872
1873 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1874 {
1875 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1876
1877 _ieee80211_enable_rssi_reports(sdata, 0, 0);
1878 }
1879 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1880
1881 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1882 u16 cap)
1883 {
1884 __le16 tmp;
1885
1886 *pos++ = WLAN_EID_HT_CAPABILITY;
1887 *pos++ = sizeof(struct ieee80211_ht_cap);
1888 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1889
1890 /* capability flags */
1891 tmp = cpu_to_le16(cap);
1892 memcpy(pos, &tmp, sizeof(u16));
1893 pos += sizeof(u16);
1894
1895 /* AMPDU parameters */
1896 *pos++ = ht_cap->ampdu_factor |
1897 (ht_cap->ampdu_density <<
1898 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1899
1900 /* MCS set */
1901 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1902 pos += sizeof(ht_cap->mcs);
1903
1904 /* extended capabilities */
1905 pos += sizeof(__le16);
1906
1907 /* BF capabilities */
1908 pos += sizeof(__le32);
1909
1910 /* antenna selection */
1911 pos += sizeof(u8);
1912
1913 return pos;
1914 }
1915
1916 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1917 u32 cap)
1918 {
1919 __le32 tmp;
1920
1921 *pos++ = WLAN_EID_VHT_CAPABILITY;
1922 *pos++ = sizeof(struct ieee80211_vht_cap);
1923 memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1924
1925 /* capability flags */
1926 tmp = cpu_to_le32(cap);
1927 memcpy(pos, &tmp, sizeof(u32));
1928 pos += sizeof(u32);
1929
1930 /* VHT MCS set */
1931 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1932 pos += sizeof(vht_cap->vht_mcs);
1933
1934 return pos;
1935 }
1936
1937 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1938 const struct cfg80211_chan_def *chandef,
1939 u16 prot_mode)
1940 {
1941 struct ieee80211_ht_operation *ht_oper;
1942 /* Build HT Information */
1943 *pos++ = WLAN_EID_HT_OPERATION;
1944 *pos++ = sizeof(struct ieee80211_ht_operation);
1945 ht_oper = (struct ieee80211_ht_operation *)pos;
1946 ht_oper->primary_chan = ieee80211_frequency_to_channel(
1947 chandef->chan->center_freq);
1948 switch (chandef->width) {
1949 case NL80211_CHAN_WIDTH_160:
1950 case NL80211_CHAN_WIDTH_80P80:
1951 case NL80211_CHAN_WIDTH_80:
1952 case NL80211_CHAN_WIDTH_40:
1953 if (chandef->center_freq1 > chandef->chan->center_freq)
1954 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1955 else
1956 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1957 break;
1958 default:
1959 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1960 break;
1961 }
1962 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1963 chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1964 chandef->width != NL80211_CHAN_WIDTH_20)
1965 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1966
1967 ht_oper->operation_mode = cpu_to_le16(prot_mode);
1968 ht_oper->stbc_param = 0x0000;
1969
1970 /* It seems that Basic MCS set and Supported MCS set
1971 are identical for the first 10 bytes */
1972 memset(&ht_oper->basic_set, 0, 16);
1973 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1974
1975 return pos + sizeof(struct ieee80211_ht_operation);
1976 }
1977
1978 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1979 const struct ieee80211_ht_operation *ht_oper,
1980 struct cfg80211_chan_def *chandef)
1981 {
1982 enum nl80211_channel_type channel_type;
1983
1984 if (!ht_oper) {
1985 cfg80211_chandef_create(chandef, control_chan,
1986 NL80211_CHAN_NO_HT);
1987 return;
1988 }
1989
1990 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1991 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1992 channel_type = NL80211_CHAN_HT20;
1993 break;
1994 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1995 channel_type = NL80211_CHAN_HT40PLUS;
1996 break;
1997 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1998 channel_type = NL80211_CHAN_HT40MINUS;
1999 break;
2000 default:
2001 channel_type = NL80211_CHAN_NO_HT;
2002 }
2003
2004 cfg80211_chandef_create(chandef, control_chan, channel_type);
2005 }
2006
2007 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
2008 struct sk_buff *skb, bool need_basic,
2009 enum ieee80211_band band)
2010 {
2011 struct ieee80211_local *local = sdata->local;
2012 struct ieee80211_supported_band *sband;
2013 int rate;
2014 u8 i, rates, *pos;
2015 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2016
2017 sband = local->hw.wiphy->bands[band];
2018 rates = sband->n_bitrates;
2019 if (rates > 8)
2020 rates = 8;
2021
2022 if (skb_tailroom(skb) < rates + 2)
2023 return -ENOMEM;
2024
2025 pos = skb_put(skb, rates + 2);
2026 *pos++ = WLAN_EID_SUPP_RATES;
2027 *pos++ = rates;
2028 for (i = 0; i < rates; i++) {
2029 u8 basic = 0;
2030 if (need_basic && basic_rates & BIT(i))
2031 basic = 0x80;
2032 rate = sband->bitrates[i].bitrate;
2033 *pos++ = basic | (u8) (rate / 5);
2034 }
2035
2036 return 0;
2037 }
2038
2039 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
2040 struct sk_buff *skb, bool need_basic,
2041 enum ieee80211_band band)
2042 {
2043 struct ieee80211_local *local = sdata->local;
2044 struct ieee80211_supported_band *sband;
2045 int rate;
2046 u8 i, exrates, *pos;
2047 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
2048
2049 sband = local->hw.wiphy->bands[band];
2050 exrates = sband->n_bitrates;
2051 if (exrates > 8)
2052 exrates -= 8;
2053 else
2054 exrates = 0;
2055
2056 if (skb_tailroom(skb) < exrates + 2)
2057 return -ENOMEM;
2058
2059 if (exrates) {
2060 pos = skb_put(skb, exrates + 2);
2061 *pos++ = WLAN_EID_EXT_SUPP_RATES;
2062 *pos++ = exrates;
2063 for (i = 8; i < sband->n_bitrates; i++) {
2064 u8 basic = 0;
2065 if (need_basic && basic_rates & BIT(i))
2066 basic = 0x80;
2067 rate = sband->bitrates[i].bitrate;
2068 *pos++ = basic | (u8) (rate / 5);
2069 }
2070 }
2071 return 0;
2072 }
2073
2074 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2075 {
2076 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2077 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2078
2079 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2080 /* non-managed type inferfaces */
2081 return 0;
2082 }
2083 return ifmgd->ave_beacon_signal / 16;
2084 }
2085 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2086
2087 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2088 {
2089 if (!mcs)
2090 return 1;
2091
2092 /* TODO: consider rx_highest */
2093
2094 if (mcs->rx_mask[3])
2095 return 4;
2096 if (mcs->rx_mask[2])
2097 return 3;
2098 if (mcs->rx_mask[1])
2099 return 2;
2100 return 1;
2101 }
2102
2103 /**
2104 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2105 * @local: mac80211 hw info struct
2106 * @status: RX status
2107 * @mpdu_len: total MPDU length (including FCS)
2108 * @mpdu_offset: offset into MPDU to calculate timestamp at
2109 *
2110 * This function calculates the RX timestamp at the given MPDU offset, taking
2111 * into account what the RX timestamp was. An offset of 0 will just normalize
2112 * the timestamp to TSF at beginning of MPDU reception.
2113 */
2114 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2115 struct ieee80211_rx_status *status,
2116 unsigned int mpdu_len,
2117 unsigned int mpdu_offset)
2118 {
2119 u64 ts = status->mactime;
2120 struct rate_info ri;
2121 u16 rate;
2122
2123 if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2124 return 0;
2125
2126 memset(&ri, 0, sizeof(ri));
2127
2128 /* Fill cfg80211 rate info */
2129 if (status->flag & RX_FLAG_HT) {
2130 ri.mcs = status->rate_idx;
2131 ri.flags |= RATE_INFO_FLAGS_MCS;
2132 if (status->flag & RX_FLAG_40MHZ)
2133 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2134 if (status->flag & RX_FLAG_SHORT_GI)
2135 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2136 } else if (status->flag & RX_FLAG_VHT) {
2137 ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2138 ri.mcs = status->rate_idx;
2139 ri.nss = status->vht_nss;
2140 if (status->flag & RX_FLAG_40MHZ)
2141 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2142 if (status->flag & RX_FLAG_80MHZ)
2143 ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2144 if (status->flag & RX_FLAG_80P80MHZ)
2145 ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2146 if (status->flag & RX_FLAG_160MHZ)
2147 ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2148 if (status->flag & RX_FLAG_SHORT_GI)
2149 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2150 } else {
2151 struct ieee80211_supported_band *sband;
2152
2153 sband = local->hw.wiphy->bands[status->band];
2154 ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2155 }
2156
2157 rate = cfg80211_calculate_bitrate(&ri);
2158
2159 /* rewind from end of MPDU */
2160 if (status->flag & RX_FLAG_MACTIME_END)
2161 ts -= mpdu_len * 8 * 10 / rate;
2162
2163 ts += mpdu_offset * 8 * 10 / rate;
2164
2165 return ts;
2166 }
2167
2168 void ieee80211_dfs_cac_cancel(struct ieee80211_local *local)
2169 {
2170 struct ieee80211_sub_if_data *sdata;
2171
2172 mutex_lock(&local->iflist_mtx);
2173 list_for_each_entry(sdata, &local->interfaces, list) {
2174 cancel_delayed_work_sync(&sdata->dfs_cac_timer_work);
2175
2176 if (sdata->wdev.cac_started) {
2177 ieee80211_vif_release_channel(sdata);
2178 cfg80211_cac_event(sdata->dev,
2179 NL80211_RADAR_CAC_ABORTED,
2180 GFP_KERNEL);
2181 }
2182 }
2183 mutex_unlock(&local->iflist_mtx);
2184 }
2185
2186 void ieee80211_dfs_radar_detected_work(struct work_struct *work)
2187 {
2188 struct ieee80211_local *local =
2189 container_of(work, struct ieee80211_local, radar_detected_work);
2190 struct cfg80211_chan_def chandef;
2191
2192 ieee80211_dfs_cac_cancel(local);
2193
2194 if (local->use_chanctx)
2195 /* currently not handled */
2196 WARN_ON(1);
2197 else {
2198 chandef = local->hw.conf.chandef;
2199 cfg80211_radar_event(local->hw.wiphy, &chandef, GFP_KERNEL);
2200 }
2201 }
2202
2203 void ieee80211_radar_detected(struct ieee80211_hw *hw)
2204 {
2205 struct ieee80211_local *local = hw_to_local(hw);
2206
2207 trace_api_radar_detected(local);
2208
2209 ieee80211_queue_work(hw, &local->radar_detected_work);
2210 }
2211 EXPORT_SYMBOL(ieee80211_radar_detected);