]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/mac80211/util.c
mac80211: remove probe response temporary buffer allocation
[mirror_ubuntu-bionic-kernel.git] / net / mac80211 / util.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * utilities for mac80211
12 */
13
14 #include <net/mac80211.h>
15 #include <linux/netdevice.h>
16 #include <linux/export.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/skbuff.h>
20 #include <linux/etherdevice.h>
21 #include <linux/if_arp.h>
22 #include <linux/bitmap.h>
23 #include <linux/crc32.h>
24 #include <net/net_namespace.h>
25 #include <net/cfg80211.h>
26 #include <net/rtnetlink.h>
27
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "rate.h"
31 #include "mesh.h"
32 #include "wme.h"
33 #include "led.h"
34 #include "wep.h"
35
36 /* privid for wiphys to determine whether they belong to us or not */
37 void *mac80211_wiphy_privid = &mac80211_wiphy_privid;
38
39 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy)
40 {
41 struct ieee80211_local *local;
42 BUG_ON(!wiphy);
43
44 local = wiphy_priv(wiphy);
45 return &local->hw;
46 }
47 EXPORT_SYMBOL(wiphy_to_ieee80211_hw);
48
49 u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
50 enum nl80211_iftype type)
51 {
52 __le16 fc = hdr->frame_control;
53
54 /* drop ACK/CTS frames and incorrect hdr len (ctrl) */
55 if (len < 16)
56 return NULL;
57
58 if (ieee80211_is_data(fc)) {
59 if (len < 24) /* drop incorrect hdr len (data) */
60 return NULL;
61
62 if (ieee80211_has_a4(fc))
63 return NULL;
64 if (ieee80211_has_tods(fc))
65 return hdr->addr1;
66 if (ieee80211_has_fromds(fc))
67 return hdr->addr2;
68
69 return hdr->addr3;
70 }
71
72 if (ieee80211_is_mgmt(fc)) {
73 if (len < 24) /* drop incorrect hdr len (mgmt) */
74 return NULL;
75 return hdr->addr3;
76 }
77
78 if (ieee80211_is_ctl(fc)) {
79 if(ieee80211_is_pspoll(fc))
80 return hdr->addr1;
81
82 if (ieee80211_is_back_req(fc)) {
83 switch (type) {
84 case NL80211_IFTYPE_STATION:
85 return hdr->addr2;
86 case NL80211_IFTYPE_AP:
87 case NL80211_IFTYPE_AP_VLAN:
88 return hdr->addr1;
89 default:
90 break; /* fall through to the return */
91 }
92 }
93 }
94
95 return NULL;
96 }
97
98 void ieee80211_tx_set_protected(struct ieee80211_tx_data *tx)
99 {
100 struct sk_buff *skb;
101 struct ieee80211_hdr *hdr;
102
103 skb_queue_walk(&tx->skbs, skb) {
104 hdr = (struct ieee80211_hdr *) skb->data;
105 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
106 }
107 }
108
109 int ieee80211_frame_duration(enum ieee80211_band band, size_t len,
110 int rate, int erp, int short_preamble)
111 {
112 int dur;
113
114 /* calculate duration (in microseconds, rounded up to next higher
115 * integer if it includes a fractional microsecond) to send frame of
116 * len bytes (does not include FCS) at the given rate. Duration will
117 * also include SIFS.
118 *
119 * rate is in 100 kbps, so divident is multiplied by 10 in the
120 * DIV_ROUND_UP() operations.
121 */
122
123 if (band == IEEE80211_BAND_5GHZ || erp) {
124 /*
125 * OFDM:
126 *
127 * N_DBPS = DATARATE x 4
128 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
129 * (16 = SIGNAL time, 6 = tail bits)
130 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
131 *
132 * T_SYM = 4 usec
133 * 802.11a - 17.5.2: aSIFSTime = 16 usec
134 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
135 * signal ext = 6 usec
136 */
137 dur = 16; /* SIFS + signal ext */
138 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
139 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
140 dur += 4 * DIV_ROUND_UP((16 + 8 * (len + 4) + 6) * 10,
141 4 * rate); /* T_SYM x N_SYM */
142 } else {
143 /*
144 * 802.11b or 802.11g with 802.11b compatibility:
145 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
146 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
147 *
148 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
149 * aSIFSTime = 10 usec
150 * aPreambleLength = 144 usec or 72 usec with short preamble
151 * aPLCPHeaderLength = 48 usec or 24 usec with short preamble
152 */
153 dur = 10; /* aSIFSTime = 10 usec */
154 dur += short_preamble ? (72 + 24) : (144 + 48);
155
156 dur += DIV_ROUND_UP(8 * (len + 4) * 10, rate);
157 }
158
159 return dur;
160 }
161
162 /* Exported duration function for driver use */
163 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
164 struct ieee80211_vif *vif,
165 enum ieee80211_band band,
166 size_t frame_len,
167 struct ieee80211_rate *rate)
168 {
169 struct ieee80211_sub_if_data *sdata;
170 u16 dur;
171 int erp;
172 bool short_preamble = false;
173
174 erp = 0;
175 if (vif) {
176 sdata = vif_to_sdata(vif);
177 short_preamble = sdata->vif.bss_conf.use_short_preamble;
178 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
179 erp = rate->flags & IEEE80211_RATE_ERP_G;
180 }
181
182 dur = ieee80211_frame_duration(band, frame_len, rate->bitrate, erp,
183 short_preamble);
184
185 return cpu_to_le16(dur);
186 }
187 EXPORT_SYMBOL(ieee80211_generic_frame_duration);
188
189 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
190 struct ieee80211_vif *vif, size_t frame_len,
191 const struct ieee80211_tx_info *frame_txctl)
192 {
193 struct ieee80211_local *local = hw_to_local(hw);
194 struct ieee80211_rate *rate;
195 struct ieee80211_sub_if_data *sdata;
196 bool short_preamble;
197 int erp;
198 u16 dur;
199 struct ieee80211_supported_band *sband;
200
201 sband = local->hw.wiphy->bands[frame_txctl->band];
202
203 short_preamble = false;
204
205 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
206
207 erp = 0;
208 if (vif) {
209 sdata = vif_to_sdata(vif);
210 short_preamble = sdata->vif.bss_conf.use_short_preamble;
211 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
212 erp = rate->flags & IEEE80211_RATE_ERP_G;
213 }
214
215 /* CTS duration */
216 dur = ieee80211_frame_duration(sband->band, 10, rate->bitrate,
217 erp, short_preamble);
218 /* Data frame duration */
219 dur += ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
220 erp, short_preamble);
221 /* ACK duration */
222 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
223 erp, short_preamble);
224
225 return cpu_to_le16(dur);
226 }
227 EXPORT_SYMBOL(ieee80211_rts_duration);
228
229 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
230 struct ieee80211_vif *vif,
231 size_t frame_len,
232 const struct ieee80211_tx_info *frame_txctl)
233 {
234 struct ieee80211_local *local = hw_to_local(hw);
235 struct ieee80211_rate *rate;
236 struct ieee80211_sub_if_data *sdata;
237 bool short_preamble;
238 int erp;
239 u16 dur;
240 struct ieee80211_supported_band *sband;
241
242 sband = local->hw.wiphy->bands[frame_txctl->band];
243
244 short_preamble = false;
245
246 rate = &sband->bitrates[frame_txctl->control.rts_cts_rate_idx];
247 erp = 0;
248 if (vif) {
249 sdata = vif_to_sdata(vif);
250 short_preamble = sdata->vif.bss_conf.use_short_preamble;
251 if (sdata->flags & IEEE80211_SDATA_OPERATING_GMODE)
252 erp = rate->flags & IEEE80211_RATE_ERP_G;
253 }
254
255 /* Data frame duration */
256 dur = ieee80211_frame_duration(sband->band, frame_len, rate->bitrate,
257 erp, short_preamble);
258 if (!(frame_txctl->flags & IEEE80211_TX_CTL_NO_ACK)) {
259 /* ACK duration */
260 dur += ieee80211_frame_duration(sband->band, 10, rate->bitrate,
261 erp, short_preamble);
262 }
263
264 return cpu_to_le16(dur);
265 }
266 EXPORT_SYMBOL(ieee80211_ctstoself_duration);
267
268 void ieee80211_propagate_queue_wake(struct ieee80211_local *local, int queue)
269 {
270 struct ieee80211_sub_if_data *sdata;
271 int n_acs = IEEE80211_NUM_ACS;
272
273 if (local->hw.queues < IEEE80211_NUM_ACS)
274 n_acs = 1;
275
276 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
277 int ac;
278
279 if (!sdata->dev)
280 continue;
281
282 if (test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state))
283 continue;
284
285 if (sdata->vif.cab_queue != IEEE80211_INVAL_HW_QUEUE &&
286 local->queue_stop_reasons[sdata->vif.cab_queue] != 0)
287 continue;
288
289 for (ac = 0; ac < n_acs; ac++) {
290 int ac_queue = sdata->vif.hw_queue[ac];
291
292 if (ac_queue == queue ||
293 (sdata->vif.cab_queue == queue &&
294 local->queue_stop_reasons[ac_queue] == 0 &&
295 skb_queue_empty(&local->pending[ac_queue])))
296 netif_wake_subqueue(sdata->dev, ac);
297 }
298 }
299 }
300
301 static void __ieee80211_wake_queue(struct ieee80211_hw *hw, int queue,
302 enum queue_stop_reason reason)
303 {
304 struct ieee80211_local *local = hw_to_local(hw);
305
306 trace_wake_queue(local, queue, reason);
307
308 if (WARN_ON(queue >= hw->queues))
309 return;
310
311 if (!test_bit(reason, &local->queue_stop_reasons[queue]))
312 return;
313
314 __clear_bit(reason, &local->queue_stop_reasons[queue]);
315
316 if (local->queue_stop_reasons[queue] != 0)
317 /* someone still has this queue stopped */
318 return;
319
320 if (skb_queue_empty(&local->pending[queue])) {
321 rcu_read_lock();
322 ieee80211_propagate_queue_wake(local, queue);
323 rcu_read_unlock();
324 } else
325 tasklet_schedule(&local->tx_pending_tasklet);
326 }
327
328 void ieee80211_wake_queue_by_reason(struct ieee80211_hw *hw, int queue,
329 enum queue_stop_reason reason)
330 {
331 struct ieee80211_local *local = hw_to_local(hw);
332 unsigned long flags;
333
334 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
335 __ieee80211_wake_queue(hw, queue, reason);
336 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
337 }
338
339 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue)
340 {
341 ieee80211_wake_queue_by_reason(hw, queue,
342 IEEE80211_QUEUE_STOP_REASON_DRIVER);
343 }
344 EXPORT_SYMBOL(ieee80211_wake_queue);
345
346 static void __ieee80211_stop_queue(struct ieee80211_hw *hw, int queue,
347 enum queue_stop_reason reason)
348 {
349 struct ieee80211_local *local = hw_to_local(hw);
350 struct ieee80211_sub_if_data *sdata;
351 int n_acs = IEEE80211_NUM_ACS;
352
353 trace_stop_queue(local, queue, reason);
354
355 if (WARN_ON(queue >= hw->queues))
356 return;
357
358 if (test_bit(reason, &local->queue_stop_reasons[queue]))
359 return;
360
361 __set_bit(reason, &local->queue_stop_reasons[queue]);
362
363 if (local->hw.queues < IEEE80211_NUM_ACS)
364 n_acs = 1;
365
366 rcu_read_lock();
367 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
368 int ac;
369
370 if (!sdata->dev)
371 continue;
372
373 for (ac = 0; ac < n_acs; ac++) {
374 if (sdata->vif.hw_queue[ac] == queue ||
375 sdata->vif.cab_queue == queue)
376 netif_stop_subqueue(sdata->dev, ac);
377 }
378 }
379 rcu_read_unlock();
380 }
381
382 void ieee80211_stop_queue_by_reason(struct ieee80211_hw *hw, int queue,
383 enum queue_stop_reason reason)
384 {
385 struct ieee80211_local *local = hw_to_local(hw);
386 unsigned long flags;
387
388 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
389 __ieee80211_stop_queue(hw, queue, reason);
390 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
391 }
392
393 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue)
394 {
395 ieee80211_stop_queue_by_reason(hw, queue,
396 IEEE80211_QUEUE_STOP_REASON_DRIVER);
397 }
398 EXPORT_SYMBOL(ieee80211_stop_queue);
399
400 void ieee80211_add_pending_skb(struct ieee80211_local *local,
401 struct sk_buff *skb)
402 {
403 struct ieee80211_hw *hw = &local->hw;
404 unsigned long flags;
405 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
406 int queue = info->hw_queue;
407
408 if (WARN_ON(!info->control.vif)) {
409 ieee80211_free_txskb(&local->hw, skb);
410 return;
411 }
412
413 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
414 __ieee80211_stop_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
415 __skb_queue_tail(&local->pending[queue], skb);
416 __ieee80211_wake_queue(hw, queue, IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
417 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
418 }
419
420 void ieee80211_add_pending_skbs_fn(struct ieee80211_local *local,
421 struct sk_buff_head *skbs,
422 void (*fn)(void *data), void *data)
423 {
424 struct ieee80211_hw *hw = &local->hw;
425 struct sk_buff *skb;
426 unsigned long flags;
427 int queue, i;
428
429 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
430 while ((skb = skb_dequeue(skbs))) {
431 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
432
433 if (WARN_ON(!info->control.vif)) {
434 ieee80211_free_txskb(&local->hw, skb);
435 continue;
436 }
437
438 queue = info->hw_queue;
439
440 __ieee80211_stop_queue(hw, queue,
441 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
442
443 __skb_queue_tail(&local->pending[queue], skb);
444 }
445
446 if (fn)
447 fn(data);
448
449 for (i = 0; i < hw->queues; i++)
450 __ieee80211_wake_queue(hw, i,
451 IEEE80211_QUEUE_STOP_REASON_SKB_ADD);
452 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
453 }
454
455 void ieee80211_stop_queues_by_reason(struct ieee80211_hw *hw,
456 enum queue_stop_reason reason)
457 {
458 struct ieee80211_local *local = hw_to_local(hw);
459 unsigned long flags;
460 int i;
461
462 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
463
464 for (i = 0; i < hw->queues; i++)
465 __ieee80211_stop_queue(hw, i, reason);
466
467 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
468 }
469
470 void ieee80211_stop_queues(struct ieee80211_hw *hw)
471 {
472 ieee80211_stop_queues_by_reason(hw,
473 IEEE80211_QUEUE_STOP_REASON_DRIVER);
474 }
475 EXPORT_SYMBOL(ieee80211_stop_queues);
476
477 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue)
478 {
479 struct ieee80211_local *local = hw_to_local(hw);
480 unsigned long flags;
481 int ret;
482
483 if (WARN_ON(queue >= hw->queues))
484 return true;
485
486 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
487 ret = !!local->queue_stop_reasons[queue];
488 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
489 return ret;
490 }
491 EXPORT_SYMBOL(ieee80211_queue_stopped);
492
493 void ieee80211_wake_queues_by_reason(struct ieee80211_hw *hw,
494 enum queue_stop_reason reason)
495 {
496 struct ieee80211_local *local = hw_to_local(hw);
497 unsigned long flags;
498 int i;
499
500 spin_lock_irqsave(&local->queue_stop_reason_lock, flags);
501
502 for (i = 0; i < hw->queues; i++)
503 __ieee80211_wake_queue(hw, i, reason);
504
505 spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags);
506 }
507
508 void ieee80211_wake_queues(struct ieee80211_hw *hw)
509 {
510 ieee80211_wake_queues_by_reason(hw, IEEE80211_QUEUE_STOP_REASON_DRIVER);
511 }
512 EXPORT_SYMBOL(ieee80211_wake_queues);
513
514 void ieee80211_iterate_active_interfaces(
515 struct ieee80211_hw *hw, u32 iter_flags,
516 void (*iterator)(void *data, u8 *mac,
517 struct ieee80211_vif *vif),
518 void *data)
519 {
520 struct ieee80211_local *local = hw_to_local(hw);
521 struct ieee80211_sub_if_data *sdata;
522
523 mutex_lock(&local->iflist_mtx);
524
525 list_for_each_entry(sdata, &local->interfaces, list) {
526 switch (sdata->vif.type) {
527 case NL80211_IFTYPE_MONITOR:
528 case NL80211_IFTYPE_AP_VLAN:
529 continue;
530 default:
531 break;
532 }
533 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
534 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
535 continue;
536 if (ieee80211_sdata_running(sdata))
537 iterator(data, sdata->vif.addr,
538 &sdata->vif);
539 }
540
541 sdata = rcu_dereference_protected(local->monitor_sdata,
542 lockdep_is_held(&local->iflist_mtx));
543 if (sdata &&
544 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
545 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
546 iterator(data, sdata->vif.addr, &sdata->vif);
547
548 mutex_unlock(&local->iflist_mtx);
549 }
550 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces);
551
552 void ieee80211_iterate_active_interfaces_atomic(
553 struct ieee80211_hw *hw, u32 iter_flags,
554 void (*iterator)(void *data, u8 *mac,
555 struct ieee80211_vif *vif),
556 void *data)
557 {
558 struct ieee80211_local *local = hw_to_local(hw);
559 struct ieee80211_sub_if_data *sdata;
560
561 rcu_read_lock();
562
563 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
564 switch (sdata->vif.type) {
565 case NL80211_IFTYPE_MONITOR:
566 case NL80211_IFTYPE_AP_VLAN:
567 continue;
568 default:
569 break;
570 }
571 if (!(iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL) &&
572 !(sdata->flags & IEEE80211_SDATA_IN_DRIVER))
573 continue;
574 if (ieee80211_sdata_running(sdata))
575 iterator(data, sdata->vif.addr,
576 &sdata->vif);
577 }
578
579 sdata = rcu_dereference(local->monitor_sdata);
580 if (sdata &&
581 (iter_flags & IEEE80211_IFACE_ITER_RESUME_ALL ||
582 sdata->flags & IEEE80211_SDATA_IN_DRIVER))
583 iterator(data, sdata->vif.addr, &sdata->vif);
584
585 rcu_read_unlock();
586 }
587 EXPORT_SYMBOL_GPL(ieee80211_iterate_active_interfaces_atomic);
588
589 /*
590 * Nothing should have been stuffed into the workqueue during
591 * the suspend->resume cycle. If this WARN is seen then there
592 * is a bug with either the driver suspend or something in
593 * mac80211 stuffing into the workqueue which we haven't yet
594 * cleared during mac80211's suspend cycle.
595 */
596 static bool ieee80211_can_queue_work(struct ieee80211_local *local)
597 {
598 if (WARN(local->suspended && !local->resuming,
599 "queueing ieee80211 work while going to suspend\n"))
600 return false;
601
602 return true;
603 }
604
605 void ieee80211_queue_work(struct ieee80211_hw *hw, struct work_struct *work)
606 {
607 struct ieee80211_local *local = hw_to_local(hw);
608
609 if (!ieee80211_can_queue_work(local))
610 return;
611
612 queue_work(local->workqueue, work);
613 }
614 EXPORT_SYMBOL(ieee80211_queue_work);
615
616 void ieee80211_queue_delayed_work(struct ieee80211_hw *hw,
617 struct delayed_work *dwork,
618 unsigned long delay)
619 {
620 struct ieee80211_local *local = hw_to_local(hw);
621
622 if (!ieee80211_can_queue_work(local))
623 return;
624
625 queue_delayed_work(local->workqueue, dwork, delay);
626 }
627 EXPORT_SYMBOL(ieee80211_queue_delayed_work);
628
629 u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
630 struct ieee802_11_elems *elems,
631 u64 filter, u32 crc)
632 {
633 size_t left = len;
634 u8 *pos = start;
635 bool calc_crc = filter != 0;
636 DECLARE_BITMAP(seen_elems, 256);
637
638 bitmap_zero(seen_elems, 256);
639 memset(elems, 0, sizeof(*elems));
640 elems->ie_start = start;
641 elems->total_len = len;
642
643 while (left >= 2) {
644 u8 id, elen;
645 bool elem_parse_failed;
646
647 id = *pos++;
648 elen = *pos++;
649 left -= 2;
650
651 if (elen > left) {
652 elems->parse_error = true;
653 break;
654 }
655
656 switch (id) {
657 case WLAN_EID_SSID:
658 case WLAN_EID_SUPP_RATES:
659 case WLAN_EID_FH_PARAMS:
660 case WLAN_EID_DS_PARAMS:
661 case WLAN_EID_CF_PARAMS:
662 case WLAN_EID_TIM:
663 case WLAN_EID_IBSS_PARAMS:
664 case WLAN_EID_CHALLENGE:
665 case WLAN_EID_RSN:
666 case WLAN_EID_ERP_INFO:
667 case WLAN_EID_EXT_SUPP_RATES:
668 case WLAN_EID_HT_CAPABILITY:
669 case WLAN_EID_HT_OPERATION:
670 case WLAN_EID_VHT_CAPABILITY:
671 case WLAN_EID_VHT_OPERATION:
672 case WLAN_EID_MESH_ID:
673 case WLAN_EID_MESH_CONFIG:
674 case WLAN_EID_PEER_MGMT:
675 case WLAN_EID_PREQ:
676 case WLAN_EID_PREP:
677 case WLAN_EID_PERR:
678 case WLAN_EID_RANN:
679 case WLAN_EID_CHANNEL_SWITCH:
680 case WLAN_EID_EXT_CHANSWITCH_ANN:
681 case WLAN_EID_COUNTRY:
682 case WLAN_EID_PWR_CONSTRAINT:
683 case WLAN_EID_TIMEOUT_INTERVAL:
684 if (test_bit(id, seen_elems)) {
685 elems->parse_error = true;
686 left -= elen;
687 pos += elen;
688 continue;
689 }
690 break;
691 }
692
693 if (calc_crc && id < 64 && (filter & (1ULL << id)))
694 crc = crc32_be(crc, pos - 2, elen + 2);
695
696 elem_parse_failed = false;
697
698 switch (id) {
699 case WLAN_EID_SSID:
700 elems->ssid = pos;
701 elems->ssid_len = elen;
702 break;
703 case WLAN_EID_SUPP_RATES:
704 elems->supp_rates = pos;
705 elems->supp_rates_len = elen;
706 break;
707 case WLAN_EID_FH_PARAMS:
708 elems->fh_params = pos;
709 elems->fh_params_len = elen;
710 break;
711 case WLAN_EID_DS_PARAMS:
712 elems->ds_params = pos;
713 elems->ds_params_len = elen;
714 break;
715 case WLAN_EID_CF_PARAMS:
716 elems->cf_params = pos;
717 elems->cf_params_len = elen;
718 break;
719 case WLAN_EID_TIM:
720 if (elen >= sizeof(struct ieee80211_tim_ie)) {
721 elems->tim = (void *)pos;
722 elems->tim_len = elen;
723 } else
724 elem_parse_failed = true;
725 break;
726 case WLAN_EID_IBSS_PARAMS:
727 elems->ibss_params = pos;
728 elems->ibss_params_len = elen;
729 break;
730 case WLAN_EID_CHALLENGE:
731 elems->challenge = pos;
732 elems->challenge_len = elen;
733 break;
734 case WLAN_EID_VENDOR_SPECIFIC:
735 if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
736 pos[2] == 0xf2) {
737 /* Microsoft OUI (00:50:F2) */
738
739 if (calc_crc)
740 crc = crc32_be(crc, pos - 2, elen + 2);
741
742 if (pos[3] == 1) {
743 /* OUI Type 1 - WPA IE */
744 elems->wpa = pos;
745 elems->wpa_len = elen;
746 } else if (elen >= 5 && pos[3] == 2) {
747 /* OUI Type 2 - WMM IE */
748 if (pos[4] == 0) {
749 elems->wmm_info = pos;
750 elems->wmm_info_len = elen;
751 } else if (pos[4] == 1) {
752 elems->wmm_param = pos;
753 elems->wmm_param_len = elen;
754 }
755 }
756 }
757 break;
758 case WLAN_EID_RSN:
759 elems->rsn = pos;
760 elems->rsn_len = elen;
761 break;
762 case WLAN_EID_ERP_INFO:
763 elems->erp_info = pos;
764 elems->erp_info_len = elen;
765 break;
766 case WLAN_EID_EXT_SUPP_RATES:
767 elems->ext_supp_rates = pos;
768 elems->ext_supp_rates_len = elen;
769 break;
770 case WLAN_EID_HT_CAPABILITY:
771 if (elen >= sizeof(struct ieee80211_ht_cap))
772 elems->ht_cap_elem = (void *)pos;
773 else
774 elem_parse_failed = true;
775 break;
776 case WLAN_EID_HT_OPERATION:
777 if (elen >= sizeof(struct ieee80211_ht_operation))
778 elems->ht_operation = (void *)pos;
779 else
780 elem_parse_failed = true;
781 break;
782 case WLAN_EID_VHT_CAPABILITY:
783 if (elen >= sizeof(struct ieee80211_vht_cap))
784 elems->vht_cap_elem = (void *)pos;
785 else
786 elem_parse_failed = true;
787 break;
788 case WLAN_EID_VHT_OPERATION:
789 if (elen >= sizeof(struct ieee80211_vht_operation))
790 elems->vht_operation = (void *)pos;
791 else
792 elem_parse_failed = true;
793 break;
794 case WLAN_EID_MESH_ID:
795 elems->mesh_id = pos;
796 elems->mesh_id_len = elen;
797 break;
798 case WLAN_EID_MESH_CONFIG:
799 if (elen >= sizeof(struct ieee80211_meshconf_ie))
800 elems->mesh_config = (void *)pos;
801 else
802 elem_parse_failed = true;
803 break;
804 case WLAN_EID_PEER_MGMT:
805 elems->peering = pos;
806 elems->peering_len = elen;
807 break;
808 case WLAN_EID_PREQ:
809 elems->preq = pos;
810 elems->preq_len = elen;
811 break;
812 case WLAN_EID_PREP:
813 elems->prep = pos;
814 elems->prep_len = elen;
815 break;
816 case WLAN_EID_PERR:
817 elems->perr = pos;
818 elems->perr_len = elen;
819 break;
820 case WLAN_EID_RANN:
821 if (elen >= sizeof(struct ieee80211_rann_ie))
822 elems->rann = (void *)pos;
823 else
824 elem_parse_failed = true;
825 break;
826 case WLAN_EID_CHANNEL_SWITCH:
827 if (elen != sizeof(struct ieee80211_channel_sw_ie)) {
828 elem_parse_failed = true;
829 break;
830 }
831 elems->ch_switch_ie = (void *)pos;
832 break;
833 case WLAN_EID_QUIET:
834 if (!elems->quiet_elem) {
835 elems->quiet_elem = pos;
836 elems->quiet_elem_len = elen;
837 }
838 elems->num_of_quiet_elem++;
839 break;
840 case WLAN_EID_COUNTRY:
841 elems->country_elem = pos;
842 elems->country_elem_len = elen;
843 break;
844 case WLAN_EID_PWR_CONSTRAINT:
845 if (elen != 1) {
846 elem_parse_failed = true;
847 break;
848 }
849 elems->pwr_constr_elem = pos;
850 break;
851 case WLAN_EID_TIMEOUT_INTERVAL:
852 elems->timeout_int = pos;
853 elems->timeout_int_len = elen;
854 break;
855 default:
856 break;
857 }
858
859 if (elem_parse_failed)
860 elems->parse_error = true;
861 else
862 __set_bit(id, seen_elems);
863
864 left -= elen;
865 pos += elen;
866 }
867
868 if (left != 0)
869 elems->parse_error = true;
870
871 return crc;
872 }
873
874 void ieee802_11_parse_elems(u8 *start, size_t len,
875 struct ieee802_11_elems *elems)
876 {
877 ieee802_11_parse_elems_crc(start, len, elems, 0, 0);
878 }
879
880 void ieee80211_set_wmm_default(struct ieee80211_sub_if_data *sdata,
881 bool bss_notify)
882 {
883 struct ieee80211_local *local = sdata->local;
884 struct ieee80211_tx_queue_params qparam;
885 struct ieee80211_chanctx_conf *chanctx_conf;
886 int ac;
887 bool use_11b, enable_qos;
888 int aCWmin, aCWmax;
889
890 if (!local->ops->conf_tx)
891 return;
892
893 if (local->hw.queues < IEEE80211_NUM_ACS)
894 return;
895
896 memset(&qparam, 0, sizeof(qparam));
897
898 rcu_read_lock();
899 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
900 use_11b = (chanctx_conf &&
901 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ) &&
902 !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE);
903 rcu_read_unlock();
904
905 /*
906 * By default disable QoS in STA mode for old access points, which do
907 * not support 802.11e. New APs will provide proper queue parameters,
908 * that we will configure later.
909 */
910 enable_qos = (sdata->vif.type != NL80211_IFTYPE_STATION);
911
912 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
913 /* Set defaults according to 802.11-2007 Table 7-37 */
914 aCWmax = 1023;
915 if (use_11b)
916 aCWmin = 31;
917 else
918 aCWmin = 15;
919
920 if (enable_qos) {
921 switch (ac) {
922 case IEEE80211_AC_BK:
923 qparam.cw_max = aCWmax;
924 qparam.cw_min = aCWmin;
925 qparam.txop = 0;
926 qparam.aifs = 7;
927 break;
928 /* never happens but let's not leave undefined */
929 default:
930 case IEEE80211_AC_BE:
931 qparam.cw_max = aCWmax;
932 qparam.cw_min = aCWmin;
933 qparam.txop = 0;
934 qparam.aifs = 3;
935 break;
936 case IEEE80211_AC_VI:
937 qparam.cw_max = aCWmin;
938 qparam.cw_min = (aCWmin + 1) / 2 - 1;
939 if (use_11b)
940 qparam.txop = 6016/32;
941 else
942 qparam.txop = 3008/32;
943 qparam.aifs = 2;
944 break;
945 case IEEE80211_AC_VO:
946 qparam.cw_max = (aCWmin + 1) / 2 - 1;
947 qparam.cw_min = (aCWmin + 1) / 4 - 1;
948 if (use_11b)
949 qparam.txop = 3264/32;
950 else
951 qparam.txop = 1504/32;
952 qparam.aifs = 2;
953 break;
954 }
955 } else {
956 /* Confiure old 802.11b/g medium access rules. */
957 qparam.cw_max = aCWmax;
958 qparam.cw_min = aCWmin;
959 qparam.txop = 0;
960 qparam.aifs = 2;
961 }
962
963 qparam.uapsd = false;
964
965 sdata->tx_conf[ac] = qparam;
966 drv_conf_tx(local, sdata, ac, &qparam);
967 }
968
969 if (sdata->vif.type != NL80211_IFTYPE_MONITOR &&
970 sdata->vif.type != NL80211_IFTYPE_P2P_DEVICE) {
971 sdata->vif.bss_conf.qos = enable_qos;
972 if (bss_notify)
973 ieee80211_bss_info_change_notify(sdata,
974 BSS_CHANGED_QOS);
975 }
976 }
977
978 void ieee80211_sta_def_wmm_params(struct ieee80211_sub_if_data *sdata,
979 const size_t supp_rates_len,
980 const u8 *supp_rates)
981 {
982 struct ieee80211_chanctx_conf *chanctx_conf;
983 int i, have_higher_than_11mbit = 0;
984
985 /* cf. IEEE 802.11 9.2.12 */
986 for (i = 0; i < supp_rates_len; i++)
987 if ((supp_rates[i] & 0x7f) * 5 > 110)
988 have_higher_than_11mbit = 1;
989
990 rcu_read_lock();
991 chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf);
992
993 if (chanctx_conf &&
994 chanctx_conf->def.chan->band == IEEE80211_BAND_2GHZ &&
995 have_higher_than_11mbit)
996 sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
997 else
998 sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
999 rcu_read_unlock();
1000
1001 ieee80211_set_wmm_default(sdata, true);
1002 }
1003
1004 u32 ieee80211_mandatory_rates(struct ieee80211_local *local,
1005 enum ieee80211_band band)
1006 {
1007 struct ieee80211_supported_band *sband;
1008 struct ieee80211_rate *bitrates;
1009 u32 mandatory_rates;
1010 enum ieee80211_rate_flags mandatory_flag;
1011 int i;
1012
1013 sband = local->hw.wiphy->bands[band];
1014 if (WARN_ON(!sband))
1015 return 1;
1016
1017 if (band == IEEE80211_BAND_2GHZ)
1018 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
1019 else
1020 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
1021
1022 bitrates = sband->bitrates;
1023 mandatory_rates = 0;
1024 for (i = 0; i < sband->n_bitrates; i++)
1025 if (bitrates[i].flags & mandatory_flag)
1026 mandatory_rates |= BIT(i);
1027 return mandatory_rates;
1028 }
1029
1030 void ieee80211_send_auth(struct ieee80211_sub_if_data *sdata,
1031 u16 transaction, u16 auth_alg, u16 status,
1032 u8 *extra, size_t extra_len, const u8 *da,
1033 const u8 *bssid, const u8 *key, u8 key_len, u8 key_idx)
1034 {
1035 struct ieee80211_local *local = sdata->local;
1036 struct sk_buff *skb;
1037 struct ieee80211_mgmt *mgmt;
1038 int err;
1039
1040 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1041 sizeof(*mgmt) + 6 + extra_len);
1042 if (!skb)
1043 return;
1044
1045 skb_reserve(skb, local->hw.extra_tx_headroom);
1046
1047 mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
1048 memset(mgmt, 0, 24 + 6);
1049 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
1050 IEEE80211_STYPE_AUTH);
1051 memcpy(mgmt->da, da, ETH_ALEN);
1052 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1053 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1054 mgmt->u.auth.auth_alg = cpu_to_le16(auth_alg);
1055 mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
1056 mgmt->u.auth.status_code = cpu_to_le16(status);
1057 if (extra)
1058 memcpy(skb_put(skb, extra_len), extra, extra_len);
1059
1060 if (auth_alg == WLAN_AUTH_SHARED_KEY && transaction == 3) {
1061 mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
1062 err = ieee80211_wep_encrypt(local, skb, key, key_len, key_idx);
1063 WARN_ON(err);
1064 }
1065
1066 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1067 ieee80211_tx_skb(sdata, skb);
1068 }
1069
1070 void ieee80211_send_deauth_disassoc(struct ieee80211_sub_if_data *sdata,
1071 const u8 *bssid, u16 stype, u16 reason,
1072 bool send_frame, u8 *frame_buf)
1073 {
1074 struct ieee80211_local *local = sdata->local;
1075 struct sk_buff *skb;
1076 struct ieee80211_mgmt *mgmt = (void *)frame_buf;
1077
1078 /* build frame */
1079 mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype);
1080 mgmt->duration = 0; /* initialize only */
1081 mgmt->seq_ctrl = 0; /* initialize only */
1082 memcpy(mgmt->da, bssid, ETH_ALEN);
1083 memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN);
1084 memcpy(mgmt->bssid, bssid, ETH_ALEN);
1085 /* u.deauth.reason_code == u.disassoc.reason_code */
1086 mgmt->u.deauth.reason_code = cpu_to_le16(reason);
1087
1088 if (send_frame) {
1089 skb = dev_alloc_skb(local->hw.extra_tx_headroom +
1090 IEEE80211_DEAUTH_FRAME_LEN);
1091 if (!skb)
1092 return;
1093
1094 skb_reserve(skb, local->hw.extra_tx_headroom);
1095
1096 /* copy in frame */
1097 memcpy(skb_put(skb, IEEE80211_DEAUTH_FRAME_LEN),
1098 mgmt, IEEE80211_DEAUTH_FRAME_LEN);
1099
1100 if (sdata->vif.type != NL80211_IFTYPE_STATION ||
1101 !(sdata->u.mgd.flags & IEEE80211_STA_MFP_ENABLED))
1102 IEEE80211_SKB_CB(skb)->flags |=
1103 IEEE80211_TX_INTFL_DONT_ENCRYPT;
1104
1105 ieee80211_tx_skb(sdata, skb);
1106 }
1107 }
1108
1109 int ieee80211_build_preq_ies(struct ieee80211_local *local, u8 *buffer,
1110 size_t buffer_len, const u8 *ie, size_t ie_len,
1111 enum ieee80211_band band, u32 rate_mask,
1112 u8 channel)
1113 {
1114 struct ieee80211_supported_band *sband;
1115 u8 *pos = buffer, *end = buffer + buffer_len;
1116 size_t offset = 0, noffset;
1117 int supp_rates_len, i;
1118 u8 rates[32];
1119 int num_rates;
1120 int ext_rates_len;
1121
1122 sband = local->hw.wiphy->bands[band];
1123 if (WARN_ON_ONCE(!sband))
1124 return 0;
1125
1126 num_rates = 0;
1127 for (i = 0; i < sband->n_bitrates; i++) {
1128 if ((BIT(i) & rate_mask) == 0)
1129 continue; /* skip rate */
1130 rates[num_rates++] = (u8) (sband->bitrates[i].bitrate / 5);
1131 }
1132
1133 supp_rates_len = min_t(int, num_rates, 8);
1134
1135 if (end - pos < 2 + supp_rates_len)
1136 goto out_err;
1137 *pos++ = WLAN_EID_SUPP_RATES;
1138 *pos++ = supp_rates_len;
1139 memcpy(pos, rates, supp_rates_len);
1140 pos += supp_rates_len;
1141
1142 /* insert "request information" if in custom IEs */
1143 if (ie && ie_len) {
1144 static const u8 before_extrates[] = {
1145 WLAN_EID_SSID,
1146 WLAN_EID_SUPP_RATES,
1147 WLAN_EID_REQUEST,
1148 };
1149 noffset = ieee80211_ie_split(ie, ie_len,
1150 before_extrates,
1151 ARRAY_SIZE(before_extrates),
1152 offset);
1153 if (end - pos < noffset - offset)
1154 goto out_err;
1155 memcpy(pos, ie + offset, noffset - offset);
1156 pos += noffset - offset;
1157 offset = noffset;
1158 }
1159
1160 ext_rates_len = num_rates - supp_rates_len;
1161 if (ext_rates_len > 0) {
1162 if (end - pos < 2 + ext_rates_len)
1163 goto out_err;
1164 *pos++ = WLAN_EID_EXT_SUPP_RATES;
1165 *pos++ = ext_rates_len;
1166 memcpy(pos, rates + supp_rates_len, ext_rates_len);
1167 pos += ext_rates_len;
1168 }
1169
1170 if (channel && sband->band == IEEE80211_BAND_2GHZ) {
1171 if (end - pos < 3)
1172 goto out_err;
1173 *pos++ = WLAN_EID_DS_PARAMS;
1174 *pos++ = 1;
1175 *pos++ = channel;
1176 }
1177
1178 /* insert custom IEs that go before HT */
1179 if (ie && ie_len) {
1180 static const u8 before_ht[] = {
1181 WLAN_EID_SSID,
1182 WLAN_EID_SUPP_RATES,
1183 WLAN_EID_REQUEST,
1184 WLAN_EID_EXT_SUPP_RATES,
1185 WLAN_EID_DS_PARAMS,
1186 WLAN_EID_SUPPORTED_REGULATORY_CLASSES,
1187 };
1188 noffset = ieee80211_ie_split(ie, ie_len,
1189 before_ht, ARRAY_SIZE(before_ht),
1190 offset);
1191 if (end - pos < noffset - offset)
1192 goto out_err;
1193 memcpy(pos, ie + offset, noffset - offset);
1194 pos += noffset - offset;
1195 offset = noffset;
1196 }
1197
1198 if (sband->ht_cap.ht_supported) {
1199 if (end - pos < 2 + sizeof(struct ieee80211_ht_cap))
1200 goto out_err;
1201 pos = ieee80211_ie_build_ht_cap(pos, &sband->ht_cap,
1202 sband->ht_cap.cap);
1203 }
1204
1205 /*
1206 * If adding more here, adjust code in main.c
1207 * that calculates local->scan_ies_len.
1208 */
1209
1210 /* add any remaining custom IEs */
1211 if (ie && ie_len) {
1212 noffset = ie_len;
1213 if (end - pos < noffset - offset)
1214 goto out_err;
1215 memcpy(pos, ie + offset, noffset - offset);
1216 pos += noffset - offset;
1217 }
1218
1219 if (sband->vht_cap.vht_supported) {
1220 if (end - pos < 2 + sizeof(struct ieee80211_vht_cap))
1221 goto out_err;
1222 pos = ieee80211_ie_build_vht_cap(pos, &sband->vht_cap,
1223 sband->vht_cap.cap);
1224 }
1225
1226 return pos - buffer;
1227 out_err:
1228 WARN_ONCE(1, "not enough space for preq IEs\n");
1229 return pos - buffer;
1230 }
1231
1232 struct sk_buff *ieee80211_build_probe_req(struct ieee80211_sub_if_data *sdata,
1233 u8 *dst, u32 ratemask,
1234 struct ieee80211_channel *chan,
1235 const u8 *ssid, size_t ssid_len,
1236 const u8 *ie, size_t ie_len,
1237 bool directed)
1238 {
1239 struct ieee80211_local *local = sdata->local;
1240 struct sk_buff *skb;
1241 struct ieee80211_mgmt *mgmt;
1242 u8 chan_no;
1243 int ies_len;
1244
1245 /*
1246 * Do not send DS Channel parameter for directed probe requests
1247 * in order to maximize the chance that we get a response. Some
1248 * badly-behaved APs don't respond when this parameter is included.
1249 */
1250 if (directed)
1251 chan_no = 0;
1252 else
1253 chan_no = ieee80211_frequency_to_channel(chan->center_freq);
1254
1255 skb = ieee80211_probereq_get(&local->hw, &sdata->vif,
1256 ssid, ssid_len, 100 + ie_len);
1257 if (!skb)
1258 return NULL;
1259
1260 ies_len = ieee80211_build_preq_ies(local, skb_tail_pointer(skb),
1261 skb_tailroom(skb),
1262 ie, ie_len, chan->band,
1263 ratemask, chan_no);
1264 skb_put(skb, ies_len);
1265
1266 if (dst) {
1267 mgmt = (struct ieee80211_mgmt *) skb->data;
1268 memcpy(mgmt->da, dst, ETH_ALEN);
1269 memcpy(mgmt->bssid, dst, ETH_ALEN);
1270 }
1271
1272 IEEE80211_SKB_CB(skb)->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT;
1273
1274 return skb;
1275 }
1276
1277 void ieee80211_send_probe_req(struct ieee80211_sub_if_data *sdata, u8 *dst,
1278 const u8 *ssid, size_t ssid_len,
1279 const u8 *ie, size_t ie_len,
1280 u32 ratemask, bool directed, bool no_cck,
1281 struct ieee80211_channel *channel, bool scan)
1282 {
1283 struct sk_buff *skb;
1284
1285 skb = ieee80211_build_probe_req(sdata, dst, ratemask, channel,
1286 ssid, ssid_len,
1287 ie, ie_len, directed);
1288 if (skb) {
1289 if (no_cck)
1290 IEEE80211_SKB_CB(skb)->flags |=
1291 IEEE80211_TX_CTL_NO_CCK_RATE;
1292 if (scan)
1293 ieee80211_tx_skb_tid_band(sdata, skb, 7, channel->band);
1294 else
1295 ieee80211_tx_skb(sdata, skb);
1296 }
1297 }
1298
1299 u32 ieee80211_sta_get_rates(struct ieee80211_local *local,
1300 struct ieee802_11_elems *elems,
1301 enum ieee80211_band band, u32 *basic_rates)
1302 {
1303 struct ieee80211_supported_band *sband;
1304 struct ieee80211_rate *bitrates;
1305 size_t num_rates;
1306 u32 supp_rates;
1307 int i, j;
1308 sband = local->hw.wiphy->bands[band];
1309
1310 if (WARN_ON(!sband))
1311 return 1;
1312
1313 bitrates = sband->bitrates;
1314 num_rates = sband->n_bitrates;
1315 supp_rates = 0;
1316 for (i = 0; i < elems->supp_rates_len +
1317 elems->ext_supp_rates_len; i++) {
1318 u8 rate = 0;
1319 int own_rate;
1320 bool is_basic;
1321 if (i < elems->supp_rates_len)
1322 rate = elems->supp_rates[i];
1323 else if (elems->ext_supp_rates)
1324 rate = elems->ext_supp_rates
1325 [i - elems->supp_rates_len];
1326 own_rate = 5 * (rate & 0x7f);
1327 is_basic = !!(rate & 0x80);
1328
1329 if (is_basic && (rate & 0x7f) == BSS_MEMBERSHIP_SELECTOR_HT_PHY)
1330 continue;
1331
1332 for (j = 0; j < num_rates; j++) {
1333 if (bitrates[j].bitrate == own_rate) {
1334 supp_rates |= BIT(j);
1335 if (basic_rates && is_basic)
1336 *basic_rates |= BIT(j);
1337 }
1338 }
1339 }
1340 return supp_rates;
1341 }
1342
1343 void ieee80211_stop_device(struct ieee80211_local *local)
1344 {
1345 ieee80211_led_radio(local, false);
1346 ieee80211_mod_tpt_led_trig(local, 0, IEEE80211_TPT_LEDTRIG_FL_RADIO);
1347
1348 cancel_work_sync(&local->reconfig_filter);
1349
1350 flush_workqueue(local->workqueue);
1351 drv_stop(local);
1352 }
1353
1354 int ieee80211_reconfig(struct ieee80211_local *local)
1355 {
1356 struct ieee80211_hw *hw = &local->hw;
1357 struct ieee80211_sub_if_data *sdata;
1358 struct ieee80211_chanctx *ctx;
1359 struct sta_info *sta;
1360 int res, i;
1361
1362 #ifdef CONFIG_PM
1363 if (local->suspended)
1364 local->resuming = true;
1365
1366 if (local->wowlan) {
1367 local->wowlan = false;
1368 res = drv_resume(local);
1369 if (res < 0) {
1370 local->resuming = false;
1371 return res;
1372 }
1373 if (res == 0)
1374 goto wake_up;
1375 WARN_ON(res > 1);
1376 /*
1377 * res is 1, which means the driver requested
1378 * to go through a regular reset on wakeup.
1379 */
1380 }
1381 #endif
1382 /* everything else happens only if HW was up & running */
1383 if (!local->open_count)
1384 goto wake_up;
1385
1386 /*
1387 * Upon resume hardware can sometimes be goofy due to
1388 * various platform / driver / bus issues, so restarting
1389 * the device may at times not work immediately. Propagate
1390 * the error.
1391 */
1392 res = drv_start(local);
1393 if (res) {
1394 WARN(local->suspended, "Hardware became unavailable "
1395 "upon resume. This could be a software issue "
1396 "prior to suspend or a hardware issue.\n");
1397 return res;
1398 }
1399
1400 /* setup fragmentation threshold */
1401 drv_set_frag_threshold(local, hw->wiphy->frag_threshold);
1402
1403 /* setup RTS threshold */
1404 drv_set_rts_threshold(local, hw->wiphy->rts_threshold);
1405
1406 /* reset coverage class */
1407 drv_set_coverage_class(local, hw->wiphy->coverage_class);
1408
1409 ieee80211_led_radio(local, true);
1410 ieee80211_mod_tpt_led_trig(local,
1411 IEEE80211_TPT_LEDTRIG_FL_RADIO, 0);
1412
1413 /* add interfaces */
1414 sdata = rtnl_dereference(local->monitor_sdata);
1415 if (sdata) {
1416 res = drv_add_interface(local, sdata);
1417 if (WARN_ON(res)) {
1418 rcu_assign_pointer(local->monitor_sdata, NULL);
1419 synchronize_net();
1420 kfree(sdata);
1421 }
1422 }
1423
1424 list_for_each_entry(sdata, &local->interfaces, list) {
1425 if (sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
1426 sdata->vif.type != NL80211_IFTYPE_MONITOR &&
1427 ieee80211_sdata_running(sdata))
1428 res = drv_add_interface(local, sdata);
1429 }
1430
1431 /* add channel contexts */
1432 if (local->use_chanctx) {
1433 mutex_lock(&local->chanctx_mtx);
1434 list_for_each_entry(ctx, &local->chanctx_list, list)
1435 WARN_ON(drv_add_chanctx(local, ctx));
1436 mutex_unlock(&local->chanctx_mtx);
1437 }
1438
1439 list_for_each_entry(sdata, &local->interfaces, list) {
1440 struct ieee80211_chanctx_conf *ctx_conf;
1441
1442 if (!ieee80211_sdata_running(sdata))
1443 continue;
1444
1445 mutex_lock(&local->chanctx_mtx);
1446 ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1447 lockdep_is_held(&local->chanctx_mtx));
1448 if (ctx_conf) {
1449 ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1450 conf);
1451 drv_assign_vif_chanctx(local, sdata, ctx);
1452 }
1453 mutex_unlock(&local->chanctx_mtx);
1454 }
1455
1456 sdata = rtnl_dereference(local->monitor_sdata);
1457 if (sdata && local->use_chanctx && ieee80211_sdata_running(sdata)) {
1458 struct ieee80211_chanctx_conf *ctx_conf;
1459
1460 mutex_lock(&local->chanctx_mtx);
1461 ctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1462 lockdep_is_held(&local->chanctx_mtx));
1463 if (ctx_conf) {
1464 ctx = container_of(ctx_conf, struct ieee80211_chanctx,
1465 conf);
1466 drv_assign_vif_chanctx(local, sdata, ctx);
1467 }
1468 mutex_unlock(&local->chanctx_mtx);
1469 }
1470
1471 /* add STAs back */
1472 mutex_lock(&local->sta_mtx);
1473 list_for_each_entry(sta, &local->sta_list, list) {
1474 enum ieee80211_sta_state state;
1475
1476 if (!sta->uploaded)
1477 continue;
1478
1479 /* AP-mode stations will be added later */
1480 if (sta->sdata->vif.type == NL80211_IFTYPE_AP)
1481 continue;
1482
1483 for (state = IEEE80211_STA_NOTEXIST;
1484 state < sta->sta_state; state++)
1485 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1486 state + 1));
1487 }
1488 mutex_unlock(&local->sta_mtx);
1489
1490 /* reconfigure tx conf */
1491 if (hw->queues >= IEEE80211_NUM_ACS) {
1492 list_for_each_entry(sdata, &local->interfaces, list) {
1493 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN ||
1494 sdata->vif.type == NL80211_IFTYPE_MONITOR ||
1495 !ieee80211_sdata_running(sdata))
1496 continue;
1497
1498 for (i = 0; i < IEEE80211_NUM_ACS; i++)
1499 drv_conf_tx(local, sdata, i,
1500 &sdata->tx_conf[i]);
1501 }
1502 }
1503
1504 /* reconfigure hardware */
1505 ieee80211_hw_config(local, ~0);
1506
1507 ieee80211_configure_filter(local);
1508
1509 /* Finally also reconfigure all the BSS information */
1510 list_for_each_entry(sdata, &local->interfaces, list) {
1511 u32 changed;
1512
1513 if (!ieee80211_sdata_running(sdata))
1514 continue;
1515
1516 /* common change flags for all interface types */
1517 changed = BSS_CHANGED_ERP_CTS_PROT |
1518 BSS_CHANGED_ERP_PREAMBLE |
1519 BSS_CHANGED_ERP_SLOT |
1520 BSS_CHANGED_HT |
1521 BSS_CHANGED_BASIC_RATES |
1522 BSS_CHANGED_BEACON_INT |
1523 BSS_CHANGED_BSSID |
1524 BSS_CHANGED_CQM |
1525 BSS_CHANGED_QOS |
1526 BSS_CHANGED_IDLE |
1527 BSS_CHANGED_TXPOWER;
1528
1529 switch (sdata->vif.type) {
1530 case NL80211_IFTYPE_STATION:
1531 changed |= BSS_CHANGED_ASSOC |
1532 BSS_CHANGED_ARP_FILTER |
1533 BSS_CHANGED_PS;
1534 mutex_lock(&sdata->u.mgd.mtx);
1535 ieee80211_bss_info_change_notify(sdata, changed);
1536 mutex_unlock(&sdata->u.mgd.mtx);
1537 break;
1538 case NL80211_IFTYPE_ADHOC:
1539 changed |= BSS_CHANGED_IBSS;
1540 /* fall through */
1541 case NL80211_IFTYPE_AP:
1542 changed |= BSS_CHANGED_SSID | BSS_CHANGED_P2P_PS;
1543
1544 if (sdata->vif.type == NL80211_IFTYPE_AP) {
1545 changed |= BSS_CHANGED_AP_PROBE_RESP;
1546
1547 if (rcu_access_pointer(sdata->u.ap.beacon))
1548 drv_start_ap(local, sdata);
1549 }
1550
1551 /* fall through */
1552 case NL80211_IFTYPE_MESH_POINT:
1553 changed |= BSS_CHANGED_BEACON |
1554 BSS_CHANGED_BEACON_ENABLED;
1555 ieee80211_bss_info_change_notify(sdata, changed);
1556 break;
1557 case NL80211_IFTYPE_WDS:
1558 break;
1559 case NL80211_IFTYPE_AP_VLAN:
1560 case NL80211_IFTYPE_MONITOR:
1561 /* ignore virtual */
1562 break;
1563 case NL80211_IFTYPE_P2P_DEVICE:
1564 changed = BSS_CHANGED_IDLE;
1565 break;
1566 case NL80211_IFTYPE_UNSPECIFIED:
1567 case NUM_NL80211_IFTYPES:
1568 case NL80211_IFTYPE_P2P_CLIENT:
1569 case NL80211_IFTYPE_P2P_GO:
1570 WARN_ON(1);
1571 break;
1572 }
1573 }
1574
1575 ieee80211_recalc_ps(local, -1);
1576
1577 /*
1578 * The sta might be in psm against the ap (e.g. because
1579 * this was the state before a hw restart), so we
1580 * explicitly send a null packet in order to make sure
1581 * it'll sync against the ap (and get out of psm).
1582 */
1583 if (!(local->hw.conf.flags & IEEE80211_CONF_PS)) {
1584 list_for_each_entry(sdata, &local->interfaces, list) {
1585 if (sdata->vif.type != NL80211_IFTYPE_STATION)
1586 continue;
1587
1588 ieee80211_send_nullfunc(local, sdata, 0);
1589 }
1590 }
1591
1592 /* APs are now beaconing, add back stations */
1593 mutex_lock(&local->sta_mtx);
1594 list_for_each_entry(sta, &local->sta_list, list) {
1595 enum ieee80211_sta_state state;
1596
1597 if (!sta->uploaded)
1598 continue;
1599
1600 if (sta->sdata->vif.type != NL80211_IFTYPE_AP)
1601 continue;
1602
1603 for (state = IEEE80211_STA_NOTEXIST;
1604 state < sta->sta_state; state++)
1605 WARN_ON(drv_sta_state(local, sta->sdata, sta, state,
1606 state + 1));
1607 }
1608 mutex_unlock(&local->sta_mtx);
1609
1610 /* add back keys */
1611 list_for_each_entry(sdata, &local->interfaces, list)
1612 if (ieee80211_sdata_running(sdata))
1613 ieee80211_enable_keys(sdata);
1614
1615 wake_up:
1616 local->in_reconfig = false;
1617 barrier();
1618
1619 /*
1620 * Clear the WLAN_STA_BLOCK_BA flag so new aggregation
1621 * sessions can be established after a resume.
1622 *
1623 * Also tear down aggregation sessions since reconfiguring
1624 * them in a hardware restart scenario is not easily done
1625 * right now, and the hardware will have lost information
1626 * about the sessions, but we and the AP still think they
1627 * are active. This is really a workaround though.
1628 */
1629 if (hw->flags & IEEE80211_HW_AMPDU_AGGREGATION) {
1630 mutex_lock(&local->sta_mtx);
1631
1632 list_for_each_entry(sta, &local->sta_list, list) {
1633 ieee80211_sta_tear_down_BA_sessions(sta, true);
1634 clear_sta_flag(sta, WLAN_STA_BLOCK_BA);
1635 }
1636
1637 mutex_unlock(&local->sta_mtx);
1638 }
1639
1640 ieee80211_wake_queues_by_reason(hw,
1641 IEEE80211_QUEUE_STOP_REASON_SUSPEND);
1642
1643 /*
1644 * If this is for hw restart things are still running.
1645 * We may want to change that later, however.
1646 */
1647 if (!local->suspended) {
1648 drv_restart_complete(local);
1649 return 0;
1650 }
1651
1652 #ifdef CONFIG_PM
1653 /* first set suspended false, then resuming */
1654 local->suspended = false;
1655 mb();
1656 local->resuming = false;
1657
1658 list_for_each_entry(sdata, &local->interfaces, list) {
1659 switch(sdata->vif.type) {
1660 case NL80211_IFTYPE_STATION:
1661 ieee80211_sta_restart(sdata);
1662 break;
1663 case NL80211_IFTYPE_ADHOC:
1664 ieee80211_ibss_restart(sdata);
1665 break;
1666 case NL80211_IFTYPE_MESH_POINT:
1667 ieee80211_mesh_restart(sdata);
1668 break;
1669 default:
1670 break;
1671 }
1672 }
1673
1674 mod_timer(&local->sta_cleanup, jiffies + 1);
1675
1676 mutex_lock(&local->sta_mtx);
1677 list_for_each_entry(sta, &local->sta_list, list)
1678 mesh_plink_restart(sta);
1679 mutex_unlock(&local->sta_mtx);
1680 #else
1681 WARN_ON(1);
1682 #endif
1683 return 0;
1684 }
1685
1686 void ieee80211_resume_disconnect(struct ieee80211_vif *vif)
1687 {
1688 struct ieee80211_sub_if_data *sdata;
1689 struct ieee80211_local *local;
1690 struct ieee80211_key *key;
1691
1692 if (WARN_ON(!vif))
1693 return;
1694
1695 sdata = vif_to_sdata(vif);
1696 local = sdata->local;
1697
1698 if (WARN_ON(!local->resuming))
1699 return;
1700
1701 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
1702 return;
1703
1704 sdata->flags |= IEEE80211_SDATA_DISCONNECT_RESUME;
1705
1706 mutex_lock(&local->key_mtx);
1707 list_for_each_entry(key, &sdata->key_list, list)
1708 key->flags |= KEY_FLAG_TAINTED;
1709 mutex_unlock(&local->key_mtx);
1710 }
1711 EXPORT_SYMBOL_GPL(ieee80211_resume_disconnect);
1712
1713 void ieee80211_recalc_smps(struct ieee80211_sub_if_data *sdata)
1714 {
1715 struct ieee80211_local *local = sdata->local;
1716 struct ieee80211_chanctx_conf *chanctx_conf;
1717 struct ieee80211_chanctx *chanctx;
1718
1719 mutex_lock(&local->chanctx_mtx);
1720
1721 chanctx_conf = rcu_dereference_protected(sdata->vif.chanctx_conf,
1722 lockdep_is_held(&local->chanctx_mtx));
1723
1724 if (WARN_ON_ONCE(!chanctx_conf))
1725 goto unlock;
1726
1727 chanctx = container_of(chanctx_conf, struct ieee80211_chanctx, conf);
1728 ieee80211_recalc_smps_chanctx(local, chanctx);
1729 unlock:
1730 mutex_unlock(&local->chanctx_mtx);
1731 }
1732
1733 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1734 {
1735 int i;
1736
1737 for (i = 0; i < n_ids; i++)
1738 if (ids[i] == id)
1739 return true;
1740 return false;
1741 }
1742
1743 /**
1744 * ieee80211_ie_split - split an IE buffer according to ordering
1745 *
1746 * @ies: the IE buffer
1747 * @ielen: the length of the IE buffer
1748 * @ids: an array with element IDs that are allowed before
1749 * the split
1750 * @n_ids: the size of the element ID array
1751 * @offset: offset where to start splitting in the buffer
1752 *
1753 * This function splits an IE buffer by updating the @offset
1754 * variable to point to the location where the buffer should be
1755 * split.
1756 *
1757 * It assumes that the given IE buffer is well-formed, this
1758 * has to be guaranteed by the caller!
1759 *
1760 * It also assumes that the IEs in the buffer are ordered
1761 * correctly, if not the result of using this function will not
1762 * be ordered correctly either, i.e. it does no reordering.
1763 *
1764 * The function returns the offset where the next part of the
1765 * buffer starts, which may be @ielen if the entire (remainder)
1766 * of the buffer should be used.
1767 */
1768 size_t ieee80211_ie_split(const u8 *ies, size_t ielen,
1769 const u8 *ids, int n_ids, size_t offset)
1770 {
1771 size_t pos = offset;
1772
1773 while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos]))
1774 pos += 2 + ies[pos + 1];
1775
1776 return pos;
1777 }
1778
1779 size_t ieee80211_ie_split_vendor(const u8 *ies, size_t ielen, size_t offset)
1780 {
1781 size_t pos = offset;
1782
1783 while (pos < ielen && ies[pos] != WLAN_EID_VENDOR_SPECIFIC)
1784 pos += 2 + ies[pos + 1];
1785
1786 return pos;
1787 }
1788
1789 static void _ieee80211_enable_rssi_reports(struct ieee80211_sub_if_data *sdata,
1790 int rssi_min_thold,
1791 int rssi_max_thold)
1792 {
1793 trace_api_enable_rssi_reports(sdata, rssi_min_thold, rssi_max_thold);
1794
1795 if (WARN_ON(sdata->vif.type != NL80211_IFTYPE_STATION))
1796 return;
1797
1798 /*
1799 * Scale up threshold values before storing it, as the RSSI averaging
1800 * algorithm uses a scaled up value as well. Change this scaling
1801 * factor if the RSSI averaging algorithm changes.
1802 */
1803 sdata->u.mgd.rssi_min_thold = rssi_min_thold*16;
1804 sdata->u.mgd.rssi_max_thold = rssi_max_thold*16;
1805 }
1806
1807 void ieee80211_enable_rssi_reports(struct ieee80211_vif *vif,
1808 int rssi_min_thold,
1809 int rssi_max_thold)
1810 {
1811 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1812
1813 WARN_ON(rssi_min_thold == rssi_max_thold ||
1814 rssi_min_thold > rssi_max_thold);
1815
1816 _ieee80211_enable_rssi_reports(sdata, rssi_min_thold,
1817 rssi_max_thold);
1818 }
1819 EXPORT_SYMBOL(ieee80211_enable_rssi_reports);
1820
1821 void ieee80211_disable_rssi_reports(struct ieee80211_vif *vif)
1822 {
1823 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
1824
1825 _ieee80211_enable_rssi_reports(sdata, 0, 0);
1826 }
1827 EXPORT_SYMBOL(ieee80211_disable_rssi_reports);
1828
1829 u8 *ieee80211_ie_build_ht_cap(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1830 u16 cap)
1831 {
1832 __le16 tmp;
1833
1834 *pos++ = WLAN_EID_HT_CAPABILITY;
1835 *pos++ = sizeof(struct ieee80211_ht_cap);
1836 memset(pos, 0, sizeof(struct ieee80211_ht_cap));
1837
1838 /* capability flags */
1839 tmp = cpu_to_le16(cap);
1840 memcpy(pos, &tmp, sizeof(u16));
1841 pos += sizeof(u16);
1842
1843 /* AMPDU parameters */
1844 *pos++ = ht_cap->ampdu_factor |
1845 (ht_cap->ampdu_density <<
1846 IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT);
1847
1848 /* MCS set */
1849 memcpy(pos, &ht_cap->mcs, sizeof(ht_cap->mcs));
1850 pos += sizeof(ht_cap->mcs);
1851
1852 /* extended capabilities */
1853 pos += sizeof(__le16);
1854
1855 /* BF capabilities */
1856 pos += sizeof(__le32);
1857
1858 /* antenna selection */
1859 pos += sizeof(u8);
1860
1861 return pos;
1862 }
1863
1864 u8 *ieee80211_ie_build_vht_cap(u8 *pos, struct ieee80211_sta_vht_cap *vht_cap,
1865 u32 cap)
1866 {
1867 __le32 tmp;
1868
1869 *pos++ = WLAN_EID_VHT_CAPABILITY;
1870 *pos++ = sizeof(struct ieee80211_vht_cap);
1871 memset(pos, 0, sizeof(struct ieee80211_vht_cap));
1872
1873 /* capability flags */
1874 tmp = cpu_to_le32(cap);
1875 memcpy(pos, &tmp, sizeof(u32));
1876 pos += sizeof(u32);
1877
1878 /* VHT MCS set */
1879 memcpy(pos, &vht_cap->vht_mcs, sizeof(vht_cap->vht_mcs));
1880 pos += sizeof(vht_cap->vht_mcs);
1881
1882 return pos;
1883 }
1884
1885 u8 *ieee80211_ie_build_ht_oper(u8 *pos, struct ieee80211_sta_ht_cap *ht_cap,
1886 const struct cfg80211_chan_def *chandef,
1887 u16 prot_mode)
1888 {
1889 struct ieee80211_ht_operation *ht_oper;
1890 /* Build HT Information */
1891 *pos++ = WLAN_EID_HT_OPERATION;
1892 *pos++ = sizeof(struct ieee80211_ht_operation);
1893 ht_oper = (struct ieee80211_ht_operation *)pos;
1894 ht_oper->primary_chan = ieee80211_frequency_to_channel(
1895 chandef->chan->center_freq);
1896 switch (chandef->width) {
1897 case NL80211_CHAN_WIDTH_160:
1898 case NL80211_CHAN_WIDTH_80P80:
1899 case NL80211_CHAN_WIDTH_80:
1900 case NL80211_CHAN_WIDTH_40:
1901 if (chandef->center_freq1 > chandef->chan->center_freq)
1902 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
1903 else
1904 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_BELOW;
1905 break;
1906 default:
1907 ht_oper->ht_param = IEEE80211_HT_PARAM_CHA_SEC_NONE;
1908 break;
1909 }
1910 if (ht_cap->cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40 &&
1911 chandef->width != NL80211_CHAN_WIDTH_20_NOHT &&
1912 chandef->width != NL80211_CHAN_WIDTH_20)
1913 ht_oper->ht_param |= IEEE80211_HT_PARAM_CHAN_WIDTH_ANY;
1914
1915 ht_oper->operation_mode = cpu_to_le16(prot_mode);
1916 ht_oper->stbc_param = 0x0000;
1917
1918 /* It seems that Basic MCS set and Supported MCS set
1919 are identical for the first 10 bytes */
1920 memset(&ht_oper->basic_set, 0, 16);
1921 memcpy(&ht_oper->basic_set, &ht_cap->mcs, 10);
1922
1923 return pos + sizeof(struct ieee80211_ht_operation);
1924 }
1925
1926 void ieee80211_ht_oper_to_chandef(struct ieee80211_channel *control_chan,
1927 struct ieee80211_ht_operation *ht_oper,
1928 struct cfg80211_chan_def *chandef)
1929 {
1930 enum nl80211_channel_type channel_type;
1931
1932 if (!ht_oper) {
1933 cfg80211_chandef_create(chandef, control_chan,
1934 NL80211_CHAN_NO_HT);
1935 return;
1936 }
1937
1938 switch (ht_oper->ht_param & IEEE80211_HT_PARAM_CHA_SEC_OFFSET) {
1939 case IEEE80211_HT_PARAM_CHA_SEC_NONE:
1940 channel_type = NL80211_CHAN_HT20;
1941 break;
1942 case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
1943 channel_type = NL80211_CHAN_HT40PLUS;
1944 break;
1945 case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
1946 channel_type = NL80211_CHAN_HT40MINUS;
1947 break;
1948 default:
1949 channel_type = NL80211_CHAN_NO_HT;
1950 }
1951
1952 cfg80211_chandef_create(chandef, control_chan, channel_type);
1953 }
1954
1955 int ieee80211_add_srates_ie(struct ieee80211_sub_if_data *sdata,
1956 struct sk_buff *skb, bool need_basic,
1957 enum ieee80211_band band)
1958 {
1959 struct ieee80211_local *local = sdata->local;
1960 struct ieee80211_supported_band *sband;
1961 int rate;
1962 u8 i, rates, *pos;
1963 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1964
1965 sband = local->hw.wiphy->bands[band];
1966 rates = sband->n_bitrates;
1967 if (rates > 8)
1968 rates = 8;
1969
1970 if (skb_tailroom(skb) < rates + 2)
1971 return -ENOMEM;
1972
1973 pos = skb_put(skb, rates + 2);
1974 *pos++ = WLAN_EID_SUPP_RATES;
1975 *pos++ = rates;
1976 for (i = 0; i < rates; i++) {
1977 u8 basic = 0;
1978 if (need_basic && basic_rates & BIT(i))
1979 basic = 0x80;
1980 rate = sband->bitrates[i].bitrate;
1981 *pos++ = basic | (u8) (rate / 5);
1982 }
1983
1984 return 0;
1985 }
1986
1987 int ieee80211_add_ext_srates_ie(struct ieee80211_sub_if_data *sdata,
1988 struct sk_buff *skb, bool need_basic,
1989 enum ieee80211_band band)
1990 {
1991 struct ieee80211_local *local = sdata->local;
1992 struct ieee80211_supported_band *sband;
1993 int rate;
1994 u8 i, exrates, *pos;
1995 u32 basic_rates = sdata->vif.bss_conf.basic_rates;
1996
1997 sband = local->hw.wiphy->bands[band];
1998 exrates = sband->n_bitrates;
1999 if (exrates > 8)
2000 exrates -= 8;
2001 else
2002 exrates = 0;
2003
2004 if (skb_tailroom(skb) < exrates + 2)
2005 return -ENOMEM;
2006
2007 if (exrates) {
2008 pos = skb_put(skb, exrates + 2);
2009 *pos++ = WLAN_EID_EXT_SUPP_RATES;
2010 *pos++ = exrates;
2011 for (i = 8; i < sband->n_bitrates; i++) {
2012 u8 basic = 0;
2013 if (need_basic && basic_rates & BIT(i))
2014 basic = 0x80;
2015 rate = sband->bitrates[i].bitrate;
2016 *pos++ = basic | (u8) (rate / 5);
2017 }
2018 }
2019 return 0;
2020 }
2021
2022 int ieee80211_ave_rssi(struct ieee80211_vif *vif)
2023 {
2024 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
2025 struct ieee80211_if_managed *ifmgd = &sdata->u.mgd;
2026
2027 if (WARN_ON_ONCE(sdata->vif.type != NL80211_IFTYPE_STATION)) {
2028 /* non-managed type inferfaces */
2029 return 0;
2030 }
2031 return ifmgd->ave_beacon_signal;
2032 }
2033 EXPORT_SYMBOL_GPL(ieee80211_ave_rssi);
2034
2035 u8 ieee80211_mcs_to_chains(const struct ieee80211_mcs_info *mcs)
2036 {
2037 if (!mcs)
2038 return 1;
2039
2040 /* TODO: consider rx_highest */
2041
2042 if (mcs->rx_mask[3])
2043 return 4;
2044 if (mcs->rx_mask[2])
2045 return 3;
2046 if (mcs->rx_mask[1])
2047 return 2;
2048 return 1;
2049 }
2050
2051 /**
2052 * ieee80211_calculate_rx_timestamp - calculate timestamp in frame
2053 * @local: mac80211 hw info struct
2054 * @status: RX status
2055 * @mpdu_len: total MPDU length (including FCS)
2056 * @mpdu_offset: offset into MPDU to calculate timestamp at
2057 *
2058 * This function calculates the RX timestamp at the given MPDU offset, taking
2059 * into account what the RX timestamp was. An offset of 0 will just normalize
2060 * the timestamp to TSF at beginning of MPDU reception.
2061 */
2062 u64 ieee80211_calculate_rx_timestamp(struct ieee80211_local *local,
2063 struct ieee80211_rx_status *status,
2064 unsigned int mpdu_len,
2065 unsigned int mpdu_offset)
2066 {
2067 u64 ts = status->mactime;
2068 struct rate_info ri;
2069 u16 rate;
2070
2071 if (WARN_ON(!ieee80211_have_rx_timestamp(status)))
2072 return 0;
2073
2074 memset(&ri, 0, sizeof(ri));
2075
2076 /* Fill cfg80211 rate info */
2077 if (status->flag & RX_FLAG_HT) {
2078 ri.mcs = status->rate_idx;
2079 ri.flags |= RATE_INFO_FLAGS_MCS;
2080 if (status->flag & RX_FLAG_40MHZ)
2081 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2082 if (status->flag & RX_FLAG_SHORT_GI)
2083 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2084 } else if (status->flag & RX_FLAG_VHT) {
2085 ri.flags |= RATE_INFO_FLAGS_VHT_MCS;
2086 ri.mcs = status->rate_idx;
2087 ri.nss = status->vht_nss;
2088 if (status->flag & RX_FLAG_40MHZ)
2089 ri.flags |= RATE_INFO_FLAGS_40_MHZ_WIDTH;
2090 if (status->flag & RX_FLAG_80MHZ)
2091 ri.flags |= RATE_INFO_FLAGS_80_MHZ_WIDTH;
2092 if (status->flag & RX_FLAG_80P80MHZ)
2093 ri.flags |= RATE_INFO_FLAGS_80P80_MHZ_WIDTH;
2094 if (status->flag & RX_FLAG_160MHZ)
2095 ri.flags |= RATE_INFO_FLAGS_160_MHZ_WIDTH;
2096 if (status->flag & RX_FLAG_SHORT_GI)
2097 ri.flags |= RATE_INFO_FLAGS_SHORT_GI;
2098 } else {
2099 struct ieee80211_supported_band *sband;
2100
2101 sband = local->hw.wiphy->bands[status->band];
2102 ri.legacy = sband->bitrates[status->rate_idx].bitrate;
2103 }
2104
2105 rate = cfg80211_calculate_bitrate(&ri);
2106
2107 /* rewind from end of MPDU */
2108 if (status->flag & RX_FLAG_MACTIME_END)
2109 ts -= mpdu_len * 8 * 10 / rate;
2110
2111 ts += mpdu_offset * 8 * 10 / rate;
2112
2113 return ts;
2114 }