]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/ipvs/ip_vs_ctl.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[mirror_ubuntu-artful-kernel.git] / net / netfilter / ipvs / ip_vs_ctl.c
1 /*
2 * IPVS An implementation of the IP virtual server support for the
3 * LINUX operating system. IPVS is now implemented as a module
4 * over the NetFilter framework. IPVS can be used to build a
5 * high-performance and highly available server based on a
6 * cluster of servers.
7 *
8 * Authors: Wensong Zhang <wensong@linuxvirtualserver.org>
9 * Peter Kese <peter.kese@ijs.si>
10 * Julian Anastasov <ja@ssi.bg>
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * Changes:
18 *
19 */
20
21 #define KMSG_COMPONENT "IPVS"
22 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/types.h>
27 #include <linux/capability.h>
28 #include <linux/fs.h>
29 #include <linux/sysctl.h>
30 #include <linux/proc_fs.h>
31 #include <linux/workqueue.h>
32 #include <linux/swap.h>
33 #include <linux/seq_file.h>
34 #include <linux/slab.h>
35
36 #include <linux/netfilter.h>
37 #include <linux/netfilter_ipv4.h>
38 #include <linux/mutex.h>
39
40 #include <net/net_namespace.h>
41 #include <net/ip.h>
42 #ifdef CONFIG_IP_VS_IPV6
43 #include <net/ipv6.h>
44 #include <net/ip6_route.h>
45 #endif
46 #include <net/route.h>
47 #include <net/sock.h>
48 #include <net/genetlink.h>
49
50 #include <asm/uaccess.h>
51
52 #include <net/ip_vs.h>
53
54 /* semaphore for IPVS sockopts. And, [gs]etsockopt may sleep. */
55 static DEFINE_MUTEX(__ip_vs_mutex);
56
57 /* lock for service table */
58 static DEFINE_RWLOCK(__ip_vs_svc_lock);
59
60 /* lock for table with the real services */
61 static DEFINE_RWLOCK(__ip_vs_rs_lock);
62
63 /* lock for state and timeout tables */
64 static DEFINE_RWLOCK(__ip_vs_securetcp_lock);
65
66 /* lock for drop entry handling */
67 static DEFINE_SPINLOCK(__ip_vs_dropentry_lock);
68
69 /* lock for drop packet handling */
70 static DEFINE_SPINLOCK(__ip_vs_droppacket_lock);
71
72 /* 1/rate drop and drop-entry variables */
73 int ip_vs_drop_rate = 0;
74 int ip_vs_drop_counter = 0;
75 static atomic_t ip_vs_dropentry = ATOMIC_INIT(0);
76
77 /* number of virtual services */
78 static int ip_vs_num_services = 0;
79
80 /* sysctl variables */
81 static int sysctl_ip_vs_drop_entry = 0;
82 static int sysctl_ip_vs_drop_packet = 0;
83 static int sysctl_ip_vs_secure_tcp = 0;
84 static int sysctl_ip_vs_amemthresh = 1024;
85 static int sysctl_ip_vs_am_droprate = 10;
86 int sysctl_ip_vs_cache_bypass = 0;
87 int sysctl_ip_vs_expire_nodest_conn = 0;
88 int sysctl_ip_vs_expire_quiescent_template = 0;
89 int sysctl_ip_vs_sync_threshold[2] = { 3, 50 };
90 int sysctl_ip_vs_nat_icmp_send = 0;
91
92
93 #ifdef CONFIG_IP_VS_DEBUG
94 static int sysctl_ip_vs_debug_level = 0;
95
96 int ip_vs_get_debug_level(void)
97 {
98 return sysctl_ip_vs_debug_level;
99 }
100 #endif
101
102 #ifdef CONFIG_IP_VS_IPV6
103 /* Taken from rt6_fill_node() in net/ipv6/route.c, is there a better way? */
104 static int __ip_vs_addr_is_local_v6(const struct in6_addr *addr)
105 {
106 struct rt6_info *rt;
107 struct flowi fl = {
108 .oif = 0,
109 .nl_u = {
110 .ip6_u = {
111 .daddr = *addr,
112 .saddr = { .s6_addr32 = {0, 0, 0, 0} }, } },
113 };
114
115 rt = (struct rt6_info *)ip6_route_output(&init_net, NULL, &fl);
116 if (rt && rt->rt6i_dev && (rt->rt6i_dev->flags & IFF_LOOPBACK))
117 return 1;
118
119 return 0;
120 }
121 #endif
122 /*
123 * update_defense_level is called from keventd and from sysctl,
124 * so it needs to protect itself from softirqs
125 */
126 static void update_defense_level(void)
127 {
128 struct sysinfo i;
129 static int old_secure_tcp = 0;
130 int availmem;
131 int nomem;
132 int to_change = -1;
133
134 /* we only count free and buffered memory (in pages) */
135 si_meminfo(&i);
136 availmem = i.freeram + i.bufferram;
137 /* however in linux 2.5 the i.bufferram is total page cache size,
138 we need adjust it */
139 /* si_swapinfo(&i); */
140 /* availmem = availmem - (i.totalswap - i.freeswap); */
141
142 nomem = (availmem < sysctl_ip_vs_amemthresh);
143
144 local_bh_disable();
145
146 /* drop_entry */
147 spin_lock(&__ip_vs_dropentry_lock);
148 switch (sysctl_ip_vs_drop_entry) {
149 case 0:
150 atomic_set(&ip_vs_dropentry, 0);
151 break;
152 case 1:
153 if (nomem) {
154 atomic_set(&ip_vs_dropentry, 1);
155 sysctl_ip_vs_drop_entry = 2;
156 } else {
157 atomic_set(&ip_vs_dropentry, 0);
158 }
159 break;
160 case 2:
161 if (nomem) {
162 atomic_set(&ip_vs_dropentry, 1);
163 } else {
164 atomic_set(&ip_vs_dropentry, 0);
165 sysctl_ip_vs_drop_entry = 1;
166 };
167 break;
168 case 3:
169 atomic_set(&ip_vs_dropentry, 1);
170 break;
171 }
172 spin_unlock(&__ip_vs_dropentry_lock);
173
174 /* drop_packet */
175 spin_lock(&__ip_vs_droppacket_lock);
176 switch (sysctl_ip_vs_drop_packet) {
177 case 0:
178 ip_vs_drop_rate = 0;
179 break;
180 case 1:
181 if (nomem) {
182 ip_vs_drop_rate = ip_vs_drop_counter
183 = sysctl_ip_vs_amemthresh /
184 (sysctl_ip_vs_amemthresh-availmem);
185 sysctl_ip_vs_drop_packet = 2;
186 } else {
187 ip_vs_drop_rate = 0;
188 }
189 break;
190 case 2:
191 if (nomem) {
192 ip_vs_drop_rate = ip_vs_drop_counter
193 = sysctl_ip_vs_amemthresh /
194 (sysctl_ip_vs_amemthresh-availmem);
195 } else {
196 ip_vs_drop_rate = 0;
197 sysctl_ip_vs_drop_packet = 1;
198 }
199 break;
200 case 3:
201 ip_vs_drop_rate = sysctl_ip_vs_am_droprate;
202 break;
203 }
204 spin_unlock(&__ip_vs_droppacket_lock);
205
206 /* secure_tcp */
207 write_lock(&__ip_vs_securetcp_lock);
208 switch (sysctl_ip_vs_secure_tcp) {
209 case 0:
210 if (old_secure_tcp >= 2)
211 to_change = 0;
212 break;
213 case 1:
214 if (nomem) {
215 if (old_secure_tcp < 2)
216 to_change = 1;
217 sysctl_ip_vs_secure_tcp = 2;
218 } else {
219 if (old_secure_tcp >= 2)
220 to_change = 0;
221 }
222 break;
223 case 2:
224 if (nomem) {
225 if (old_secure_tcp < 2)
226 to_change = 1;
227 } else {
228 if (old_secure_tcp >= 2)
229 to_change = 0;
230 sysctl_ip_vs_secure_tcp = 1;
231 }
232 break;
233 case 3:
234 if (old_secure_tcp < 2)
235 to_change = 1;
236 break;
237 }
238 old_secure_tcp = sysctl_ip_vs_secure_tcp;
239 if (to_change >= 0)
240 ip_vs_protocol_timeout_change(sysctl_ip_vs_secure_tcp>1);
241 write_unlock(&__ip_vs_securetcp_lock);
242
243 local_bh_enable();
244 }
245
246
247 /*
248 * Timer for checking the defense
249 */
250 #define DEFENSE_TIMER_PERIOD 1*HZ
251 static void defense_work_handler(struct work_struct *work);
252 static DECLARE_DELAYED_WORK(defense_work, defense_work_handler);
253
254 static void defense_work_handler(struct work_struct *work)
255 {
256 update_defense_level();
257 if (atomic_read(&ip_vs_dropentry))
258 ip_vs_random_dropentry();
259
260 schedule_delayed_work(&defense_work, DEFENSE_TIMER_PERIOD);
261 }
262
263 int
264 ip_vs_use_count_inc(void)
265 {
266 return try_module_get(THIS_MODULE);
267 }
268
269 void
270 ip_vs_use_count_dec(void)
271 {
272 module_put(THIS_MODULE);
273 }
274
275
276 /*
277 * Hash table: for virtual service lookups
278 */
279 #define IP_VS_SVC_TAB_BITS 8
280 #define IP_VS_SVC_TAB_SIZE (1 << IP_VS_SVC_TAB_BITS)
281 #define IP_VS_SVC_TAB_MASK (IP_VS_SVC_TAB_SIZE - 1)
282
283 /* the service table hashed by <protocol, addr, port> */
284 static struct list_head ip_vs_svc_table[IP_VS_SVC_TAB_SIZE];
285 /* the service table hashed by fwmark */
286 static struct list_head ip_vs_svc_fwm_table[IP_VS_SVC_TAB_SIZE];
287
288 /*
289 * Hash table: for real service lookups
290 */
291 #define IP_VS_RTAB_BITS 4
292 #define IP_VS_RTAB_SIZE (1 << IP_VS_RTAB_BITS)
293 #define IP_VS_RTAB_MASK (IP_VS_RTAB_SIZE - 1)
294
295 static struct list_head ip_vs_rtable[IP_VS_RTAB_SIZE];
296
297 /*
298 * Trash for destinations
299 */
300 static LIST_HEAD(ip_vs_dest_trash);
301
302 /*
303 * FTP & NULL virtual service counters
304 */
305 static atomic_t ip_vs_ftpsvc_counter = ATOMIC_INIT(0);
306 static atomic_t ip_vs_nullsvc_counter = ATOMIC_INIT(0);
307
308
309 /*
310 * Returns hash value for virtual service
311 */
312 static __inline__ unsigned
313 ip_vs_svc_hashkey(int af, unsigned proto, const union nf_inet_addr *addr,
314 __be16 port)
315 {
316 register unsigned porth = ntohs(port);
317 __be32 addr_fold = addr->ip;
318
319 #ifdef CONFIG_IP_VS_IPV6
320 if (af == AF_INET6)
321 addr_fold = addr->ip6[0]^addr->ip6[1]^
322 addr->ip6[2]^addr->ip6[3];
323 #endif
324
325 return (proto^ntohl(addr_fold)^(porth>>IP_VS_SVC_TAB_BITS)^porth)
326 & IP_VS_SVC_TAB_MASK;
327 }
328
329 /*
330 * Returns hash value of fwmark for virtual service lookup
331 */
332 static __inline__ unsigned ip_vs_svc_fwm_hashkey(__u32 fwmark)
333 {
334 return fwmark & IP_VS_SVC_TAB_MASK;
335 }
336
337 /*
338 * Hashes a service in the ip_vs_svc_table by <proto,addr,port>
339 * or in the ip_vs_svc_fwm_table by fwmark.
340 * Should be called with locked tables.
341 */
342 static int ip_vs_svc_hash(struct ip_vs_service *svc)
343 {
344 unsigned hash;
345
346 if (svc->flags & IP_VS_SVC_F_HASHED) {
347 pr_err("%s(): request for already hashed, called from %pF\n",
348 __func__, __builtin_return_address(0));
349 return 0;
350 }
351
352 if (svc->fwmark == 0) {
353 /*
354 * Hash it by <protocol,addr,port> in ip_vs_svc_table
355 */
356 hash = ip_vs_svc_hashkey(svc->af, svc->protocol, &svc->addr,
357 svc->port);
358 list_add(&svc->s_list, &ip_vs_svc_table[hash]);
359 } else {
360 /*
361 * Hash it by fwmark in ip_vs_svc_fwm_table
362 */
363 hash = ip_vs_svc_fwm_hashkey(svc->fwmark);
364 list_add(&svc->f_list, &ip_vs_svc_fwm_table[hash]);
365 }
366
367 svc->flags |= IP_VS_SVC_F_HASHED;
368 /* increase its refcnt because it is referenced by the svc table */
369 atomic_inc(&svc->refcnt);
370 return 1;
371 }
372
373
374 /*
375 * Unhashes a service from ip_vs_svc_table/ip_vs_svc_fwm_table.
376 * Should be called with locked tables.
377 */
378 static int ip_vs_svc_unhash(struct ip_vs_service *svc)
379 {
380 if (!(svc->flags & IP_VS_SVC_F_HASHED)) {
381 pr_err("%s(): request for unhash flagged, called from %pF\n",
382 __func__, __builtin_return_address(0));
383 return 0;
384 }
385
386 if (svc->fwmark == 0) {
387 /* Remove it from the ip_vs_svc_table table */
388 list_del(&svc->s_list);
389 } else {
390 /* Remove it from the ip_vs_svc_fwm_table table */
391 list_del(&svc->f_list);
392 }
393
394 svc->flags &= ~IP_VS_SVC_F_HASHED;
395 atomic_dec(&svc->refcnt);
396 return 1;
397 }
398
399
400 /*
401 * Get service by {proto,addr,port} in the service table.
402 */
403 static inline struct ip_vs_service *
404 __ip_vs_service_get(int af, __u16 protocol, const union nf_inet_addr *vaddr,
405 __be16 vport)
406 {
407 unsigned hash;
408 struct ip_vs_service *svc;
409
410 /* Check for "full" addressed entries */
411 hash = ip_vs_svc_hashkey(af, protocol, vaddr, vport);
412
413 list_for_each_entry(svc, &ip_vs_svc_table[hash], s_list){
414 if ((svc->af == af)
415 && ip_vs_addr_equal(af, &svc->addr, vaddr)
416 && (svc->port == vport)
417 && (svc->protocol == protocol)) {
418 /* HIT */
419 atomic_inc(&svc->usecnt);
420 return svc;
421 }
422 }
423
424 return NULL;
425 }
426
427
428 /*
429 * Get service by {fwmark} in the service table.
430 */
431 static inline struct ip_vs_service *
432 __ip_vs_svc_fwm_get(int af, __u32 fwmark)
433 {
434 unsigned hash;
435 struct ip_vs_service *svc;
436
437 /* Check for fwmark addressed entries */
438 hash = ip_vs_svc_fwm_hashkey(fwmark);
439
440 list_for_each_entry(svc, &ip_vs_svc_fwm_table[hash], f_list) {
441 if (svc->fwmark == fwmark && svc->af == af) {
442 /* HIT */
443 atomic_inc(&svc->usecnt);
444 return svc;
445 }
446 }
447
448 return NULL;
449 }
450
451 struct ip_vs_service *
452 ip_vs_service_get(int af, __u32 fwmark, __u16 protocol,
453 const union nf_inet_addr *vaddr, __be16 vport)
454 {
455 struct ip_vs_service *svc;
456
457 read_lock(&__ip_vs_svc_lock);
458
459 /*
460 * Check the table hashed by fwmark first
461 */
462 if (fwmark && (svc = __ip_vs_svc_fwm_get(af, fwmark)))
463 goto out;
464
465 /*
466 * Check the table hashed by <protocol,addr,port>
467 * for "full" addressed entries
468 */
469 svc = __ip_vs_service_get(af, protocol, vaddr, vport);
470
471 if (svc == NULL
472 && protocol == IPPROTO_TCP
473 && atomic_read(&ip_vs_ftpsvc_counter)
474 && (vport == FTPDATA || ntohs(vport) >= PROT_SOCK)) {
475 /*
476 * Check if ftp service entry exists, the packet
477 * might belong to FTP data connections.
478 */
479 svc = __ip_vs_service_get(af, protocol, vaddr, FTPPORT);
480 }
481
482 if (svc == NULL
483 && atomic_read(&ip_vs_nullsvc_counter)) {
484 /*
485 * Check if the catch-all port (port zero) exists
486 */
487 svc = __ip_vs_service_get(af, protocol, vaddr, 0);
488 }
489
490 out:
491 read_unlock(&__ip_vs_svc_lock);
492
493 IP_VS_DBG_BUF(9, "lookup service: fwm %u %s %s:%u %s\n",
494 fwmark, ip_vs_proto_name(protocol),
495 IP_VS_DBG_ADDR(af, vaddr), ntohs(vport),
496 svc ? "hit" : "not hit");
497
498 return svc;
499 }
500
501
502 static inline void
503 __ip_vs_bind_svc(struct ip_vs_dest *dest, struct ip_vs_service *svc)
504 {
505 atomic_inc(&svc->refcnt);
506 dest->svc = svc;
507 }
508
509 static inline void
510 __ip_vs_unbind_svc(struct ip_vs_dest *dest)
511 {
512 struct ip_vs_service *svc = dest->svc;
513
514 dest->svc = NULL;
515 if (atomic_dec_and_test(&svc->refcnt))
516 kfree(svc);
517 }
518
519
520 /*
521 * Returns hash value for real service
522 */
523 static inline unsigned ip_vs_rs_hashkey(int af,
524 const union nf_inet_addr *addr,
525 __be16 port)
526 {
527 register unsigned porth = ntohs(port);
528 __be32 addr_fold = addr->ip;
529
530 #ifdef CONFIG_IP_VS_IPV6
531 if (af == AF_INET6)
532 addr_fold = addr->ip6[0]^addr->ip6[1]^
533 addr->ip6[2]^addr->ip6[3];
534 #endif
535
536 return (ntohl(addr_fold)^(porth>>IP_VS_RTAB_BITS)^porth)
537 & IP_VS_RTAB_MASK;
538 }
539
540 /*
541 * Hashes ip_vs_dest in ip_vs_rtable by <proto,addr,port>.
542 * should be called with locked tables.
543 */
544 static int ip_vs_rs_hash(struct ip_vs_dest *dest)
545 {
546 unsigned hash;
547
548 if (!list_empty(&dest->d_list)) {
549 return 0;
550 }
551
552 /*
553 * Hash by proto,addr,port,
554 * which are the parameters of the real service.
555 */
556 hash = ip_vs_rs_hashkey(dest->af, &dest->addr, dest->port);
557
558 list_add(&dest->d_list, &ip_vs_rtable[hash]);
559
560 return 1;
561 }
562
563 /*
564 * UNhashes ip_vs_dest from ip_vs_rtable.
565 * should be called with locked tables.
566 */
567 static int ip_vs_rs_unhash(struct ip_vs_dest *dest)
568 {
569 /*
570 * Remove it from the ip_vs_rtable table.
571 */
572 if (!list_empty(&dest->d_list)) {
573 list_del(&dest->d_list);
574 INIT_LIST_HEAD(&dest->d_list);
575 }
576
577 return 1;
578 }
579
580 /*
581 * Lookup real service by <proto,addr,port> in the real service table.
582 */
583 struct ip_vs_dest *
584 ip_vs_lookup_real_service(int af, __u16 protocol,
585 const union nf_inet_addr *daddr,
586 __be16 dport)
587 {
588 unsigned hash;
589 struct ip_vs_dest *dest;
590
591 /*
592 * Check for "full" addressed entries
593 * Return the first found entry
594 */
595 hash = ip_vs_rs_hashkey(af, daddr, dport);
596
597 read_lock(&__ip_vs_rs_lock);
598 list_for_each_entry(dest, &ip_vs_rtable[hash], d_list) {
599 if ((dest->af == af)
600 && ip_vs_addr_equal(af, &dest->addr, daddr)
601 && (dest->port == dport)
602 && ((dest->protocol == protocol) ||
603 dest->vfwmark)) {
604 /* HIT */
605 read_unlock(&__ip_vs_rs_lock);
606 return dest;
607 }
608 }
609 read_unlock(&__ip_vs_rs_lock);
610
611 return NULL;
612 }
613
614 /*
615 * Lookup destination by {addr,port} in the given service
616 */
617 static struct ip_vs_dest *
618 ip_vs_lookup_dest(struct ip_vs_service *svc, const union nf_inet_addr *daddr,
619 __be16 dport)
620 {
621 struct ip_vs_dest *dest;
622
623 /*
624 * Find the destination for the given service
625 */
626 list_for_each_entry(dest, &svc->destinations, n_list) {
627 if ((dest->af == svc->af)
628 && ip_vs_addr_equal(svc->af, &dest->addr, daddr)
629 && (dest->port == dport)) {
630 /* HIT */
631 return dest;
632 }
633 }
634
635 return NULL;
636 }
637
638 /*
639 * Find destination by {daddr,dport,vaddr,protocol}
640 * Cretaed to be used in ip_vs_process_message() in
641 * the backup synchronization daemon. It finds the
642 * destination to be bound to the received connection
643 * on the backup.
644 *
645 * ip_vs_lookup_real_service() looked promissing, but
646 * seems not working as expected.
647 */
648 struct ip_vs_dest *ip_vs_find_dest(int af, const union nf_inet_addr *daddr,
649 __be16 dport,
650 const union nf_inet_addr *vaddr,
651 __be16 vport, __u16 protocol)
652 {
653 struct ip_vs_dest *dest;
654 struct ip_vs_service *svc;
655
656 svc = ip_vs_service_get(af, 0, protocol, vaddr, vport);
657 if (!svc)
658 return NULL;
659 dest = ip_vs_lookup_dest(svc, daddr, dport);
660 if (dest)
661 atomic_inc(&dest->refcnt);
662 ip_vs_service_put(svc);
663 return dest;
664 }
665
666 /*
667 * Lookup dest by {svc,addr,port} in the destination trash.
668 * The destination trash is used to hold the destinations that are removed
669 * from the service table but are still referenced by some conn entries.
670 * The reason to add the destination trash is when the dest is temporary
671 * down (either by administrator or by monitor program), the dest can be
672 * picked back from the trash, the remaining connections to the dest can
673 * continue, and the counting information of the dest is also useful for
674 * scheduling.
675 */
676 static struct ip_vs_dest *
677 ip_vs_trash_get_dest(struct ip_vs_service *svc, const union nf_inet_addr *daddr,
678 __be16 dport)
679 {
680 struct ip_vs_dest *dest, *nxt;
681
682 /*
683 * Find the destination in trash
684 */
685 list_for_each_entry_safe(dest, nxt, &ip_vs_dest_trash, n_list) {
686 IP_VS_DBG_BUF(3, "Destination %u/%s:%u still in trash, "
687 "dest->refcnt=%d\n",
688 dest->vfwmark,
689 IP_VS_DBG_ADDR(svc->af, &dest->addr),
690 ntohs(dest->port),
691 atomic_read(&dest->refcnt));
692 if (dest->af == svc->af &&
693 ip_vs_addr_equal(svc->af, &dest->addr, daddr) &&
694 dest->port == dport &&
695 dest->vfwmark == svc->fwmark &&
696 dest->protocol == svc->protocol &&
697 (svc->fwmark ||
698 (ip_vs_addr_equal(svc->af, &dest->vaddr, &svc->addr) &&
699 dest->vport == svc->port))) {
700 /* HIT */
701 return dest;
702 }
703
704 /*
705 * Try to purge the destination from trash if not referenced
706 */
707 if (atomic_read(&dest->refcnt) == 1) {
708 IP_VS_DBG_BUF(3, "Removing destination %u/%s:%u "
709 "from trash\n",
710 dest->vfwmark,
711 IP_VS_DBG_ADDR(svc->af, &dest->addr),
712 ntohs(dest->port));
713 list_del(&dest->n_list);
714 ip_vs_dst_reset(dest);
715 __ip_vs_unbind_svc(dest);
716 kfree(dest);
717 }
718 }
719
720 return NULL;
721 }
722
723
724 /*
725 * Clean up all the destinations in the trash
726 * Called by the ip_vs_control_cleanup()
727 *
728 * When the ip_vs_control_clearup is activated by ipvs module exit,
729 * the service tables must have been flushed and all the connections
730 * are expired, and the refcnt of each destination in the trash must
731 * be 1, so we simply release them here.
732 */
733 static void ip_vs_trash_cleanup(void)
734 {
735 struct ip_vs_dest *dest, *nxt;
736
737 list_for_each_entry_safe(dest, nxt, &ip_vs_dest_trash, n_list) {
738 list_del(&dest->n_list);
739 ip_vs_dst_reset(dest);
740 __ip_vs_unbind_svc(dest);
741 kfree(dest);
742 }
743 }
744
745
746 static void
747 ip_vs_zero_stats(struct ip_vs_stats *stats)
748 {
749 spin_lock_bh(&stats->lock);
750
751 memset(&stats->ustats, 0, sizeof(stats->ustats));
752 ip_vs_zero_estimator(stats);
753
754 spin_unlock_bh(&stats->lock);
755 }
756
757 /*
758 * Update a destination in the given service
759 */
760 static void
761 __ip_vs_update_dest(struct ip_vs_service *svc,
762 struct ip_vs_dest *dest, struct ip_vs_dest_user_kern *udest)
763 {
764 int conn_flags;
765
766 /* set the weight and the flags */
767 atomic_set(&dest->weight, udest->weight);
768 conn_flags = udest->conn_flags | IP_VS_CONN_F_INACTIVE;
769
770 /* check if local node and update the flags */
771 #ifdef CONFIG_IP_VS_IPV6
772 if (svc->af == AF_INET6) {
773 if (__ip_vs_addr_is_local_v6(&udest->addr.in6)) {
774 conn_flags = (conn_flags & ~IP_VS_CONN_F_FWD_MASK)
775 | IP_VS_CONN_F_LOCALNODE;
776 }
777 } else
778 #endif
779 if (inet_addr_type(&init_net, udest->addr.ip) == RTN_LOCAL) {
780 conn_flags = (conn_flags & ~IP_VS_CONN_F_FWD_MASK)
781 | IP_VS_CONN_F_LOCALNODE;
782 }
783
784 /* set the IP_VS_CONN_F_NOOUTPUT flag if not masquerading/NAT */
785 if ((conn_flags & IP_VS_CONN_F_FWD_MASK) != 0) {
786 conn_flags |= IP_VS_CONN_F_NOOUTPUT;
787 } else {
788 /*
789 * Put the real service in ip_vs_rtable if not present.
790 * For now only for NAT!
791 */
792 write_lock_bh(&__ip_vs_rs_lock);
793 ip_vs_rs_hash(dest);
794 write_unlock_bh(&__ip_vs_rs_lock);
795 }
796 atomic_set(&dest->conn_flags, conn_flags);
797
798 /* bind the service */
799 if (!dest->svc) {
800 __ip_vs_bind_svc(dest, svc);
801 } else {
802 if (dest->svc != svc) {
803 __ip_vs_unbind_svc(dest);
804 ip_vs_zero_stats(&dest->stats);
805 __ip_vs_bind_svc(dest, svc);
806 }
807 }
808
809 /* set the dest status flags */
810 dest->flags |= IP_VS_DEST_F_AVAILABLE;
811
812 if (udest->u_threshold == 0 || udest->u_threshold > dest->u_threshold)
813 dest->flags &= ~IP_VS_DEST_F_OVERLOAD;
814 dest->u_threshold = udest->u_threshold;
815 dest->l_threshold = udest->l_threshold;
816 }
817
818
819 /*
820 * Create a destination for the given service
821 */
822 static int
823 ip_vs_new_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest,
824 struct ip_vs_dest **dest_p)
825 {
826 struct ip_vs_dest *dest;
827 unsigned atype;
828
829 EnterFunction(2);
830
831 #ifdef CONFIG_IP_VS_IPV6
832 if (svc->af == AF_INET6) {
833 atype = ipv6_addr_type(&udest->addr.in6);
834 if ((!(atype & IPV6_ADDR_UNICAST) ||
835 atype & IPV6_ADDR_LINKLOCAL) &&
836 !__ip_vs_addr_is_local_v6(&udest->addr.in6))
837 return -EINVAL;
838 } else
839 #endif
840 {
841 atype = inet_addr_type(&init_net, udest->addr.ip);
842 if (atype != RTN_LOCAL && atype != RTN_UNICAST)
843 return -EINVAL;
844 }
845
846 dest = kzalloc(sizeof(struct ip_vs_dest), GFP_ATOMIC);
847 if (dest == NULL) {
848 pr_err("%s(): no memory.\n", __func__);
849 return -ENOMEM;
850 }
851
852 dest->af = svc->af;
853 dest->protocol = svc->protocol;
854 dest->vaddr = svc->addr;
855 dest->vport = svc->port;
856 dest->vfwmark = svc->fwmark;
857 ip_vs_addr_copy(svc->af, &dest->addr, &udest->addr);
858 dest->port = udest->port;
859
860 atomic_set(&dest->activeconns, 0);
861 atomic_set(&dest->inactconns, 0);
862 atomic_set(&dest->persistconns, 0);
863 atomic_set(&dest->refcnt, 0);
864
865 INIT_LIST_HEAD(&dest->d_list);
866 spin_lock_init(&dest->dst_lock);
867 spin_lock_init(&dest->stats.lock);
868 __ip_vs_update_dest(svc, dest, udest);
869 ip_vs_new_estimator(&dest->stats);
870
871 *dest_p = dest;
872
873 LeaveFunction(2);
874 return 0;
875 }
876
877
878 /*
879 * Add a destination into an existing service
880 */
881 static int
882 ip_vs_add_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest)
883 {
884 struct ip_vs_dest *dest;
885 union nf_inet_addr daddr;
886 __be16 dport = udest->port;
887 int ret;
888
889 EnterFunction(2);
890
891 if (udest->weight < 0) {
892 pr_err("%s(): server weight less than zero\n", __func__);
893 return -ERANGE;
894 }
895
896 if (udest->l_threshold > udest->u_threshold) {
897 pr_err("%s(): lower threshold is higher than upper threshold\n",
898 __func__);
899 return -ERANGE;
900 }
901
902 ip_vs_addr_copy(svc->af, &daddr, &udest->addr);
903
904 /*
905 * Check if the dest already exists in the list
906 */
907 dest = ip_vs_lookup_dest(svc, &daddr, dport);
908
909 if (dest != NULL) {
910 IP_VS_DBG(1, "%s(): dest already exists\n", __func__);
911 return -EEXIST;
912 }
913
914 /*
915 * Check if the dest already exists in the trash and
916 * is from the same service
917 */
918 dest = ip_vs_trash_get_dest(svc, &daddr, dport);
919
920 if (dest != NULL) {
921 IP_VS_DBG_BUF(3, "Get destination %s:%u from trash, "
922 "dest->refcnt=%d, service %u/%s:%u\n",
923 IP_VS_DBG_ADDR(svc->af, &daddr), ntohs(dport),
924 atomic_read(&dest->refcnt),
925 dest->vfwmark,
926 IP_VS_DBG_ADDR(svc->af, &dest->vaddr),
927 ntohs(dest->vport));
928
929 __ip_vs_update_dest(svc, dest, udest);
930
931 /*
932 * Get the destination from the trash
933 */
934 list_del(&dest->n_list);
935
936 ip_vs_new_estimator(&dest->stats);
937
938 write_lock_bh(&__ip_vs_svc_lock);
939
940 /*
941 * Wait until all other svc users go away.
942 */
943 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
944
945 list_add(&dest->n_list, &svc->destinations);
946 svc->num_dests++;
947
948 /* call the update_service function of its scheduler */
949 if (svc->scheduler->update_service)
950 svc->scheduler->update_service(svc);
951
952 write_unlock_bh(&__ip_vs_svc_lock);
953 return 0;
954 }
955
956 /*
957 * Allocate and initialize the dest structure
958 */
959 ret = ip_vs_new_dest(svc, udest, &dest);
960 if (ret) {
961 return ret;
962 }
963
964 /*
965 * Add the dest entry into the list
966 */
967 atomic_inc(&dest->refcnt);
968
969 write_lock_bh(&__ip_vs_svc_lock);
970
971 /*
972 * Wait until all other svc users go away.
973 */
974 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
975
976 list_add(&dest->n_list, &svc->destinations);
977 svc->num_dests++;
978
979 /* call the update_service function of its scheduler */
980 if (svc->scheduler->update_service)
981 svc->scheduler->update_service(svc);
982
983 write_unlock_bh(&__ip_vs_svc_lock);
984
985 LeaveFunction(2);
986
987 return 0;
988 }
989
990
991 /*
992 * Edit a destination in the given service
993 */
994 static int
995 ip_vs_edit_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest)
996 {
997 struct ip_vs_dest *dest;
998 union nf_inet_addr daddr;
999 __be16 dport = udest->port;
1000
1001 EnterFunction(2);
1002
1003 if (udest->weight < 0) {
1004 pr_err("%s(): server weight less than zero\n", __func__);
1005 return -ERANGE;
1006 }
1007
1008 if (udest->l_threshold > udest->u_threshold) {
1009 pr_err("%s(): lower threshold is higher than upper threshold\n",
1010 __func__);
1011 return -ERANGE;
1012 }
1013
1014 ip_vs_addr_copy(svc->af, &daddr, &udest->addr);
1015
1016 /*
1017 * Lookup the destination list
1018 */
1019 dest = ip_vs_lookup_dest(svc, &daddr, dport);
1020
1021 if (dest == NULL) {
1022 IP_VS_DBG(1, "%s(): dest doesn't exist\n", __func__);
1023 return -ENOENT;
1024 }
1025
1026 __ip_vs_update_dest(svc, dest, udest);
1027
1028 write_lock_bh(&__ip_vs_svc_lock);
1029
1030 /* Wait until all other svc users go away */
1031 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1032
1033 /* call the update_service, because server weight may be changed */
1034 if (svc->scheduler->update_service)
1035 svc->scheduler->update_service(svc);
1036
1037 write_unlock_bh(&__ip_vs_svc_lock);
1038
1039 LeaveFunction(2);
1040
1041 return 0;
1042 }
1043
1044
1045 /*
1046 * Delete a destination (must be already unlinked from the service)
1047 */
1048 static void __ip_vs_del_dest(struct ip_vs_dest *dest)
1049 {
1050 ip_vs_kill_estimator(&dest->stats);
1051
1052 /*
1053 * Remove it from the d-linked list with the real services.
1054 */
1055 write_lock_bh(&__ip_vs_rs_lock);
1056 ip_vs_rs_unhash(dest);
1057 write_unlock_bh(&__ip_vs_rs_lock);
1058
1059 /*
1060 * Decrease the refcnt of the dest, and free the dest
1061 * if nobody refers to it (refcnt=0). Otherwise, throw
1062 * the destination into the trash.
1063 */
1064 if (atomic_dec_and_test(&dest->refcnt)) {
1065 ip_vs_dst_reset(dest);
1066 /* simply decrease svc->refcnt here, let the caller check
1067 and release the service if nobody refers to it.
1068 Only user context can release destination and service,
1069 and only one user context can update virtual service at a
1070 time, so the operation here is OK */
1071 atomic_dec(&dest->svc->refcnt);
1072 kfree(dest);
1073 } else {
1074 IP_VS_DBG_BUF(3, "Moving dest %s:%u into trash, "
1075 "dest->refcnt=%d\n",
1076 IP_VS_DBG_ADDR(dest->af, &dest->addr),
1077 ntohs(dest->port),
1078 atomic_read(&dest->refcnt));
1079 list_add(&dest->n_list, &ip_vs_dest_trash);
1080 atomic_inc(&dest->refcnt);
1081 }
1082 }
1083
1084
1085 /*
1086 * Unlink a destination from the given service
1087 */
1088 static void __ip_vs_unlink_dest(struct ip_vs_service *svc,
1089 struct ip_vs_dest *dest,
1090 int svcupd)
1091 {
1092 dest->flags &= ~IP_VS_DEST_F_AVAILABLE;
1093
1094 /*
1095 * Remove it from the d-linked destination list.
1096 */
1097 list_del(&dest->n_list);
1098 svc->num_dests--;
1099
1100 /*
1101 * Call the update_service function of its scheduler
1102 */
1103 if (svcupd && svc->scheduler->update_service)
1104 svc->scheduler->update_service(svc);
1105 }
1106
1107
1108 /*
1109 * Delete a destination server in the given service
1110 */
1111 static int
1112 ip_vs_del_dest(struct ip_vs_service *svc, struct ip_vs_dest_user_kern *udest)
1113 {
1114 struct ip_vs_dest *dest;
1115 __be16 dport = udest->port;
1116
1117 EnterFunction(2);
1118
1119 dest = ip_vs_lookup_dest(svc, &udest->addr, dport);
1120
1121 if (dest == NULL) {
1122 IP_VS_DBG(1, "%s(): destination not found!\n", __func__);
1123 return -ENOENT;
1124 }
1125
1126 write_lock_bh(&__ip_vs_svc_lock);
1127
1128 /*
1129 * Wait until all other svc users go away.
1130 */
1131 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1132
1133 /*
1134 * Unlink dest from the service
1135 */
1136 __ip_vs_unlink_dest(svc, dest, 1);
1137
1138 write_unlock_bh(&__ip_vs_svc_lock);
1139
1140 /*
1141 * Delete the destination
1142 */
1143 __ip_vs_del_dest(dest);
1144
1145 LeaveFunction(2);
1146
1147 return 0;
1148 }
1149
1150
1151 /*
1152 * Add a service into the service hash table
1153 */
1154 static int
1155 ip_vs_add_service(struct ip_vs_service_user_kern *u,
1156 struct ip_vs_service **svc_p)
1157 {
1158 int ret = 0;
1159 struct ip_vs_scheduler *sched = NULL;
1160 struct ip_vs_service *svc = NULL;
1161
1162 /* increase the module use count */
1163 ip_vs_use_count_inc();
1164
1165 /* Lookup the scheduler by 'u->sched_name' */
1166 sched = ip_vs_scheduler_get(u->sched_name);
1167 if (sched == NULL) {
1168 pr_info("Scheduler module ip_vs_%s not found\n", u->sched_name);
1169 ret = -ENOENT;
1170 goto out_mod_dec;
1171 }
1172
1173 #ifdef CONFIG_IP_VS_IPV6
1174 if (u->af == AF_INET6 && (u->netmask < 1 || u->netmask > 128)) {
1175 ret = -EINVAL;
1176 goto out_err;
1177 }
1178 #endif
1179
1180 svc = kzalloc(sizeof(struct ip_vs_service), GFP_ATOMIC);
1181 if (svc == NULL) {
1182 IP_VS_DBG(1, "%s(): no memory\n", __func__);
1183 ret = -ENOMEM;
1184 goto out_err;
1185 }
1186
1187 /* I'm the first user of the service */
1188 atomic_set(&svc->usecnt, 1);
1189 atomic_set(&svc->refcnt, 0);
1190
1191 svc->af = u->af;
1192 svc->protocol = u->protocol;
1193 ip_vs_addr_copy(svc->af, &svc->addr, &u->addr);
1194 svc->port = u->port;
1195 svc->fwmark = u->fwmark;
1196 svc->flags = u->flags;
1197 svc->timeout = u->timeout * HZ;
1198 svc->netmask = u->netmask;
1199
1200 INIT_LIST_HEAD(&svc->destinations);
1201 rwlock_init(&svc->sched_lock);
1202 spin_lock_init(&svc->stats.lock);
1203
1204 /* Bind the scheduler */
1205 ret = ip_vs_bind_scheduler(svc, sched);
1206 if (ret)
1207 goto out_err;
1208 sched = NULL;
1209
1210 /* Update the virtual service counters */
1211 if (svc->port == FTPPORT)
1212 atomic_inc(&ip_vs_ftpsvc_counter);
1213 else if (svc->port == 0)
1214 atomic_inc(&ip_vs_nullsvc_counter);
1215
1216 ip_vs_new_estimator(&svc->stats);
1217
1218 /* Count only IPv4 services for old get/setsockopt interface */
1219 if (svc->af == AF_INET)
1220 ip_vs_num_services++;
1221
1222 /* Hash the service into the service table */
1223 write_lock_bh(&__ip_vs_svc_lock);
1224 ip_vs_svc_hash(svc);
1225 write_unlock_bh(&__ip_vs_svc_lock);
1226
1227 *svc_p = svc;
1228 return 0;
1229
1230 out_err:
1231 if (svc != NULL) {
1232 if (svc->scheduler)
1233 ip_vs_unbind_scheduler(svc);
1234 if (svc->inc) {
1235 local_bh_disable();
1236 ip_vs_app_inc_put(svc->inc);
1237 local_bh_enable();
1238 }
1239 kfree(svc);
1240 }
1241 ip_vs_scheduler_put(sched);
1242
1243 out_mod_dec:
1244 /* decrease the module use count */
1245 ip_vs_use_count_dec();
1246
1247 return ret;
1248 }
1249
1250
1251 /*
1252 * Edit a service and bind it with a new scheduler
1253 */
1254 static int
1255 ip_vs_edit_service(struct ip_vs_service *svc, struct ip_vs_service_user_kern *u)
1256 {
1257 struct ip_vs_scheduler *sched, *old_sched;
1258 int ret = 0;
1259
1260 /*
1261 * Lookup the scheduler, by 'u->sched_name'
1262 */
1263 sched = ip_vs_scheduler_get(u->sched_name);
1264 if (sched == NULL) {
1265 pr_info("Scheduler module ip_vs_%s not found\n", u->sched_name);
1266 return -ENOENT;
1267 }
1268 old_sched = sched;
1269
1270 #ifdef CONFIG_IP_VS_IPV6
1271 if (u->af == AF_INET6 && (u->netmask < 1 || u->netmask > 128)) {
1272 ret = -EINVAL;
1273 goto out;
1274 }
1275 #endif
1276
1277 write_lock_bh(&__ip_vs_svc_lock);
1278
1279 /*
1280 * Wait until all other svc users go away.
1281 */
1282 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1283
1284 /*
1285 * Set the flags and timeout value
1286 */
1287 svc->flags = u->flags | IP_VS_SVC_F_HASHED;
1288 svc->timeout = u->timeout * HZ;
1289 svc->netmask = u->netmask;
1290
1291 old_sched = svc->scheduler;
1292 if (sched != old_sched) {
1293 /*
1294 * Unbind the old scheduler
1295 */
1296 if ((ret = ip_vs_unbind_scheduler(svc))) {
1297 old_sched = sched;
1298 goto out_unlock;
1299 }
1300
1301 /*
1302 * Bind the new scheduler
1303 */
1304 if ((ret = ip_vs_bind_scheduler(svc, sched))) {
1305 /*
1306 * If ip_vs_bind_scheduler fails, restore the old
1307 * scheduler.
1308 * The main reason of failure is out of memory.
1309 *
1310 * The question is if the old scheduler can be
1311 * restored all the time. TODO: if it cannot be
1312 * restored some time, we must delete the service,
1313 * otherwise the system may crash.
1314 */
1315 ip_vs_bind_scheduler(svc, old_sched);
1316 old_sched = sched;
1317 goto out_unlock;
1318 }
1319 }
1320
1321 out_unlock:
1322 write_unlock_bh(&__ip_vs_svc_lock);
1323 #ifdef CONFIG_IP_VS_IPV6
1324 out:
1325 #endif
1326
1327 if (old_sched)
1328 ip_vs_scheduler_put(old_sched);
1329
1330 return ret;
1331 }
1332
1333
1334 /*
1335 * Delete a service from the service list
1336 * - The service must be unlinked, unlocked and not referenced!
1337 * - We are called under _bh lock
1338 */
1339 static void __ip_vs_del_service(struct ip_vs_service *svc)
1340 {
1341 struct ip_vs_dest *dest, *nxt;
1342 struct ip_vs_scheduler *old_sched;
1343
1344 /* Count only IPv4 services for old get/setsockopt interface */
1345 if (svc->af == AF_INET)
1346 ip_vs_num_services--;
1347
1348 ip_vs_kill_estimator(&svc->stats);
1349
1350 /* Unbind scheduler */
1351 old_sched = svc->scheduler;
1352 ip_vs_unbind_scheduler(svc);
1353 if (old_sched)
1354 ip_vs_scheduler_put(old_sched);
1355
1356 /* Unbind app inc */
1357 if (svc->inc) {
1358 ip_vs_app_inc_put(svc->inc);
1359 svc->inc = NULL;
1360 }
1361
1362 /*
1363 * Unlink the whole destination list
1364 */
1365 list_for_each_entry_safe(dest, nxt, &svc->destinations, n_list) {
1366 __ip_vs_unlink_dest(svc, dest, 0);
1367 __ip_vs_del_dest(dest);
1368 }
1369
1370 /*
1371 * Update the virtual service counters
1372 */
1373 if (svc->port == FTPPORT)
1374 atomic_dec(&ip_vs_ftpsvc_counter);
1375 else if (svc->port == 0)
1376 atomic_dec(&ip_vs_nullsvc_counter);
1377
1378 /*
1379 * Free the service if nobody refers to it
1380 */
1381 if (atomic_read(&svc->refcnt) == 0)
1382 kfree(svc);
1383
1384 /* decrease the module use count */
1385 ip_vs_use_count_dec();
1386 }
1387
1388 /*
1389 * Delete a service from the service list
1390 */
1391 static int ip_vs_del_service(struct ip_vs_service *svc)
1392 {
1393 if (svc == NULL)
1394 return -EEXIST;
1395
1396 /*
1397 * Unhash it from the service table
1398 */
1399 write_lock_bh(&__ip_vs_svc_lock);
1400
1401 ip_vs_svc_unhash(svc);
1402
1403 /*
1404 * Wait until all the svc users go away.
1405 */
1406 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 1);
1407
1408 __ip_vs_del_service(svc);
1409
1410 write_unlock_bh(&__ip_vs_svc_lock);
1411
1412 return 0;
1413 }
1414
1415
1416 /*
1417 * Flush all the virtual services
1418 */
1419 static int ip_vs_flush(void)
1420 {
1421 int idx;
1422 struct ip_vs_service *svc, *nxt;
1423
1424 /*
1425 * Flush the service table hashed by <protocol,addr,port>
1426 */
1427 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1428 list_for_each_entry_safe(svc, nxt, &ip_vs_svc_table[idx], s_list) {
1429 write_lock_bh(&__ip_vs_svc_lock);
1430 ip_vs_svc_unhash(svc);
1431 /*
1432 * Wait until all the svc users go away.
1433 */
1434 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 0);
1435 __ip_vs_del_service(svc);
1436 write_unlock_bh(&__ip_vs_svc_lock);
1437 }
1438 }
1439
1440 /*
1441 * Flush the service table hashed by fwmark
1442 */
1443 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1444 list_for_each_entry_safe(svc, nxt,
1445 &ip_vs_svc_fwm_table[idx], f_list) {
1446 write_lock_bh(&__ip_vs_svc_lock);
1447 ip_vs_svc_unhash(svc);
1448 /*
1449 * Wait until all the svc users go away.
1450 */
1451 IP_VS_WAIT_WHILE(atomic_read(&svc->usecnt) > 0);
1452 __ip_vs_del_service(svc);
1453 write_unlock_bh(&__ip_vs_svc_lock);
1454 }
1455 }
1456
1457 return 0;
1458 }
1459
1460
1461 /*
1462 * Zero counters in a service or all services
1463 */
1464 static int ip_vs_zero_service(struct ip_vs_service *svc)
1465 {
1466 struct ip_vs_dest *dest;
1467
1468 write_lock_bh(&__ip_vs_svc_lock);
1469 list_for_each_entry(dest, &svc->destinations, n_list) {
1470 ip_vs_zero_stats(&dest->stats);
1471 }
1472 ip_vs_zero_stats(&svc->stats);
1473 write_unlock_bh(&__ip_vs_svc_lock);
1474 return 0;
1475 }
1476
1477 static int ip_vs_zero_all(void)
1478 {
1479 int idx;
1480 struct ip_vs_service *svc;
1481
1482 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1483 list_for_each_entry(svc, &ip_vs_svc_table[idx], s_list) {
1484 ip_vs_zero_service(svc);
1485 }
1486 }
1487
1488 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1489 list_for_each_entry(svc, &ip_vs_svc_fwm_table[idx], f_list) {
1490 ip_vs_zero_service(svc);
1491 }
1492 }
1493
1494 ip_vs_zero_stats(&ip_vs_stats);
1495 return 0;
1496 }
1497
1498
1499 static int
1500 proc_do_defense_mode(ctl_table *table, int write,
1501 void __user *buffer, size_t *lenp, loff_t *ppos)
1502 {
1503 int *valp = table->data;
1504 int val = *valp;
1505 int rc;
1506
1507 rc = proc_dointvec(table, write, buffer, lenp, ppos);
1508 if (write && (*valp != val)) {
1509 if ((*valp < 0) || (*valp > 3)) {
1510 /* Restore the correct value */
1511 *valp = val;
1512 } else {
1513 update_defense_level();
1514 }
1515 }
1516 return rc;
1517 }
1518
1519
1520 static int
1521 proc_do_sync_threshold(ctl_table *table, int write,
1522 void __user *buffer, size_t *lenp, loff_t *ppos)
1523 {
1524 int *valp = table->data;
1525 int val[2];
1526 int rc;
1527
1528 /* backup the value first */
1529 memcpy(val, valp, sizeof(val));
1530
1531 rc = proc_dointvec(table, write, buffer, lenp, ppos);
1532 if (write && (valp[0] < 0 || valp[1] < 0 || valp[0] >= valp[1])) {
1533 /* Restore the correct value */
1534 memcpy(valp, val, sizeof(val));
1535 }
1536 return rc;
1537 }
1538
1539
1540 /*
1541 * IPVS sysctl table (under the /proc/sys/net/ipv4/vs/)
1542 */
1543
1544 static struct ctl_table vs_vars[] = {
1545 {
1546 .procname = "amemthresh",
1547 .data = &sysctl_ip_vs_amemthresh,
1548 .maxlen = sizeof(int),
1549 .mode = 0644,
1550 .proc_handler = proc_dointvec,
1551 },
1552 #ifdef CONFIG_IP_VS_DEBUG
1553 {
1554 .procname = "debug_level",
1555 .data = &sysctl_ip_vs_debug_level,
1556 .maxlen = sizeof(int),
1557 .mode = 0644,
1558 .proc_handler = proc_dointvec,
1559 },
1560 #endif
1561 {
1562 .procname = "am_droprate",
1563 .data = &sysctl_ip_vs_am_droprate,
1564 .maxlen = sizeof(int),
1565 .mode = 0644,
1566 .proc_handler = proc_dointvec,
1567 },
1568 {
1569 .procname = "drop_entry",
1570 .data = &sysctl_ip_vs_drop_entry,
1571 .maxlen = sizeof(int),
1572 .mode = 0644,
1573 .proc_handler = proc_do_defense_mode,
1574 },
1575 {
1576 .procname = "drop_packet",
1577 .data = &sysctl_ip_vs_drop_packet,
1578 .maxlen = sizeof(int),
1579 .mode = 0644,
1580 .proc_handler = proc_do_defense_mode,
1581 },
1582 {
1583 .procname = "secure_tcp",
1584 .data = &sysctl_ip_vs_secure_tcp,
1585 .maxlen = sizeof(int),
1586 .mode = 0644,
1587 .proc_handler = proc_do_defense_mode,
1588 },
1589 #if 0
1590 {
1591 .procname = "timeout_established",
1592 .data = &vs_timeout_table_dos.timeout[IP_VS_S_ESTABLISHED],
1593 .maxlen = sizeof(int),
1594 .mode = 0644,
1595 .proc_handler = proc_dointvec_jiffies,
1596 },
1597 {
1598 .procname = "timeout_synsent",
1599 .data = &vs_timeout_table_dos.timeout[IP_VS_S_SYN_SENT],
1600 .maxlen = sizeof(int),
1601 .mode = 0644,
1602 .proc_handler = proc_dointvec_jiffies,
1603 },
1604 {
1605 .procname = "timeout_synrecv",
1606 .data = &vs_timeout_table_dos.timeout[IP_VS_S_SYN_RECV],
1607 .maxlen = sizeof(int),
1608 .mode = 0644,
1609 .proc_handler = proc_dointvec_jiffies,
1610 },
1611 {
1612 .procname = "timeout_finwait",
1613 .data = &vs_timeout_table_dos.timeout[IP_VS_S_FIN_WAIT],
1614 .maxlen = sizeof(int),
1615 .mode = 0644,
1616 .proc_handler = proc_dointvec_jiffies,
1617 },
1618 {
1619 .procname = "timeout_timewait",
1620 .data = &vs_timeout_table_dos.timeout[IP_VS_S_TIME_WAIT],
1621 .maxlen = sizeof(int),
1622 .mode = 0644,
1623 .proc_handler = proc_dointvec_jiffies,
1624 },
1625 {
1626 .procname = "timeout_close",
1627 .data = &vs_timeout_table_dos.timeout[IP_VS_S_CLOSE],
1628 .maxlen = sizeof(int),
1629 .mode = 0644,
1630 .proc_handler = proc_dointvec_jiffies,
1631 },
1632 {
1633 .procname = "timeout_closewait",
1634 .data = &vs_timeout_table_dos.timeout[IP_VS_S_CLOSE_WAIT],
1635 .maxlen = sizeof(int),
1636 .mode = 0644,
1637 .proc_handler = proc_dointvec_jiffies,
1638 },
1639 {
1640 .procname = "timeout_lastack",
1641 .data = &vs_timeout_table_dos.timeout[IP_VS_S_LAST_ACK],
1642 .maxlen = sizeof(int),
1643 .mode = 0644,
1644 .proc_handler = proc_dointvec_jiffies,
1645 },
1646 {
1647 .procname = "timeout_listen",
1648 .data = &vs_timeout_table_dos.timeout[IP_VS_S_LISTEN],
1649 .maxlen = sizeof(int),
1650 .mode = 0644,
1651 .proc_handler = proc_dointvec_jiffies,
1652 },
1653 {
1654 .procname = "timeout_synack",
1655 .data = &vs_timeout_table_dos.timeout[IP_VS_S_SYNACK],
1656 .maxlen = sizeof(int),
1657 .mode = 0644,
1658 .proc_handler = proc_dointvec_jiffies,
1659 },
1660 {
1661 .procname = "timeout_udp",
1662 .data = &vs_timeout_table_dos.timeout[IP_VS_S_UDP],
1663 .maxlen = sizeof(int),
1664 .mode = 0644,
1665 .proc_handler = proc_dointvec_jiffies,
1666 },
1667 {
1668 .procname = "timeout_icmp",
1669 .data = &vs_timeout_table_dos.timeout[IP_VS_S_ICMP],
1670 .maxlen = sizeof(int),
1671 .mode = 0644,
1672 .proc_handler = proc_dointvec_jiffies,
1673 },
1674 #endif
1675 {
1676 .procname = "cache_bypass",
1677 .data = &sysctl_ip_vs_cache_bypass,
1678 .maxlen = sizeof(int),
1679 .mode = 0644,
1680 .proc_handler = proc_dointvec,
1681 },
1682 {
1683 .procname = "expire_nodest_conn",
1684 .data = &sysctl_ip_vs_expire_nodest_conn,
1685 .maxlen = sizeof(int),
1686 .mode = 0644,
1687 .proc_handler = proc_dointvec,
1688 },
1689 {
1690 .procname = "expire_quiescent_template",
1691 .data = &sysctl_ip_vs_expire_quiescent_template,
1692 .maxlen = sizeof(int),
1693 .mode = 0644,
1694 .proc_handler = proc_dointvec,
1695 },
1696 {
1697 .procname = "sync_threshold",
1698 .data = &sysctl_ip_vs_sync_threshold,
1699 .maxlen = sizeof(sysctl_ip_vs_sync_threshold),
1700 .mode = 0644,
1701 .proc_handler = proc_do_sync_threshold,
1702 },
1703 {
1704 .procname = "nat_icmp_send",
1705 .data = &sysctl_ip_vs_nat_icmp_send,
1706 .maxlen = sizeof(int),
1707 .mode = 0644,
1708 .proc_handler = proc_dointvec,
1709 },
1710 { }
1711 };
1712
1713 const struct ctl_path net_vs_ctl_path[] = {
1714 { .procname = "net", },
1715 { .procname = "ipv4", },
1716 { .procname = "vs", },
1717 { }
1718 };
1719 EXPORT_SYMBOL_GPL(net_vs_ctl_path);
1720
1721 static struct ctl_table_header * sysctl_header;
1722
1723 #ifdef CONFIG_PROC_FS
1724
1725 struct ip_vs_iter {
1726 struct list_head *table;
1727 int bucket;
1728 };
1729
1730 /*
1731 * Write the contents of the VS rule table to a PROCfs file.
1732 * (It is kept just for backward compatibility)
1733 */
1734 static inline const char *ip_vs_fwd_name(unsigned flags)
1735 {
1736 switch (flags & IP_VS_CONN_F_FWD_MASK) {
1737 case IP_VS_CONN_F_LOCALNODE:
1738 return "Local";
1739 case IP_VS_CONN_F_TUNNEL:
1740 return "Tunnel";
1741 case IP_VS_CONN_F_DROUTE:
1742 return "Route";
1743 default:
1744 return "Masq";
1745 }
1746 }
1747
1748
1749 /* Get the Nth entry in the two lists */
1750 static struct ip_vs_service *ip_vs_info_array(struct seq_file *seq, loff_t pos)
1751 {
1752 struct ip_vs_iter *iter = seq->private;
1753 int idx;
1754 struct ip_vs_service *svc;
1755
1756 /* look in hash by protocol */
1757 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1758 list_for_each_entry(svc, &ip_vs_svc_table[idx], s_list) {
1759 if (pos-- == 0){
1760 iter->table = ip_vs_svc_table;
1761 iter->bucket = idx;
1762 return svc;
1763 }
1764 }
1765 }
1766
1767 /* keep looking in fwmark */
1768 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
1769 list_for_each_entry(svc, &ip_vs_svc_fwm_table[idx], f_list) {
1770 if (pos-- == 0) {
1771 iter->table = ip_vs_svc_fwm_table;
1772 iter->bucket = idx;
1773 return svc;
1774 }
1775 }
1776 }
1777
1778 return NULL;
1779 }
1780
1781 static void *ip_vs_info_seq_start(struct seq_file *seq, loff_t *pos)
1782 __acquires(__ip_vs_svc_lock)
1783 {
1784
1785 read_lock_bh(&__ip_vs_svc_lock);
1786 return *pos ? ip_vs_info_array(seq, *pos - 1) : SEQ_START_TOKEN;
1787 }
1788
1789
1790 static void *ip_vs_info_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1791 {
1792 struct list_head *e;
1793 struct ip_vs_iter *iter;
1794 struct ip_vs_service *svc;
1795
1796 ++*pos;
1797 if (v == SEQ_START_TOKEN)
1798 return ip_vs_info_array(seq,0);
1799
1800 svc = v;
1801 iter = seq->private;
1802
1803 if (iter->table == ip_vs_svc_table) {
1804 /* next service in table hashed by protocol */
1805 if ((e = svc->s_list.next) != &ip_vs_svc_table[iter->bucket])
1806 return list_entry(e, struct ip_vs_service, s_list);
1807
1808
1809 while (++iter->bucket < IP_VS_SVC_TAB_SIZE) {
1810 list_for_each_entry(svc,&ip_vs_svc_table[iter->bucket],
1811 s_list) {
1812 return svc;
1813 }
1814 }
1815
1816 iter->table = ip_vs_svc_fwm_table;
1817 iter->bucket = -1;
1818 goto scan_fwmark;
1819 }
1820
1821 /* next service in hashed by fwmark */
1822 if ((e = svc->f_list.next) != &ip_vs_svc_fwm_table[iter->bucket])
1823 return list_entry(e, struct ip_vs_service, f_list);
1824
1825 scan_fwmark:
1826 while (++iter->bucket < IP_VS_SVC_TAB_SIZE) {
1827 list_for_each_entry(svc, &ip_vs_svc_fwm_table[iter->bucket],
1828 f_list)
1829 return svc;
1830 }
1831
1832 return NULL;
1833 }
1834
1835 static void ip_vs_info_seq_stop(struct seq_file *seq, void *v)
1836 __releases(__ip_vs_svc_lock)
1837 {
1838 read_unlock_bh(&__ip_vs_svc_lock);
1839 }
1840
1841
1842 static int ip_vs_info_seq_show(struct seq_file *seq, void *v)
1843 {
1844 if (v == SEQ_START_TOKEN) {
1845 seq_printf(seq,
1846 "IP Virtual Server version %d.%d.%d (size=%d)\n",
1847 NVERSION(IP_VS_VERSION_CODE), ip_vs_conn_tab_size);
1848 seq_puts(seq,
1849 "Prot LocalAddress:Port Scheduler Flags\n");
1850 seq_puts(seq,
1851 " -> RemoteAddress:Port Forward Weight ActiveConn InActConn\n");
1852 } else {
1853 const struct ip_vs_service *svc = v;
1854 const struct ip_vs_iter *iter = seq->private;
1855 const struct ip_vs_dest *dest;
1856
1857 if (iter->table == ip_vs_svc_table) {
1858 #ifdef CONFIG_IP_VS_IPV6
1859 if (svc->af == AF_INET6)
1860 seq_printf(seq, "%s [%pI6]:%04X %s ",
1861 ip_vs_proto_name(svc->protocol),
1862 &svc->addr.in6,
1863 ntohs(svc->port),
1864 svc->scheduler->name);
1865 else
1866 #endif
1867 seq_printf(seq, "%s %08X:%04X %s ",
1868 ip_vs_proto_name(svc->protocol),
1869 ntohl(svc->addr.ip),
1870 ntohs(svc->port),
1871 svc->scheduler->name);
1872 } else {
1873 seq_printf(seq, "FWM %08X %s ",
1874 svc->fwmark, svc->scheduler->name);
1875 }
1876
1877 if (svc->flags & IP_VS_SVC_F_PERSISTENT)
1878 seq_printf(seq, "persistent %d %08X\n",
1879 svc->timeout,
1880 ntohl(svc->netmask));
1881 else
1882 seq_putc(seq, '\n');
1883
1884 list_for_each_entry(dest, &svc->destinations, n_list) {
1885 #ifdef CONFIG_IP_VS_IPV6
1886 if (dest->af == AF_INET6)
1887 seq_printf(seq,
1888 " -> [%pI6]:%04X"
1889 " %-7s %-6d %-10d %-10d\n",
1890 &dest->addr.in6,
1891 ntohs(dest->port),
1892 ip_vs_fwd_name(atomic_read(&dest->conn_flags)),
1893 atomic_read(&dest->weight),
1894 atomic_read(&dest->activeconns),
1895 atomic_read(&dest->inactconns));
1896 else
1897 #endif
1898 seq_printf(seq,
1899 " -> %08X:%04X "
1900 "%-7s %-6d %-10d %-10d\n",
1901 ntohl(dest->addr.ip),
1902 ntohs(dest->port),
1903 ip_vs_fwd_name(atomic_read(&dest->conn_flags)),
1904 atomic_read(&dest->weight),
1905 atomic_read(&dest->activeconns),
1906 atomic_read(&dest->inactconns));
1907
1908 }
1909 }
1910 return 0;
1911 }
1912
1913 static const struct seq_operations ip_vs_info_seq_ops = {
1914 .start = ip_vs_info_seq_start,
1915 .next = ip_vs_info_seq_next,
1916 .stop = ip_vs_info_seq_stop,
1917 .show = ip_vs_info_seq_show,
1918 };
1919
1920 static int ip_vs_info_open(struct inode *inode, struct file *file)
1921 {
1922 return seq_open_private(file, &ip_vs_info_seq_ops,
1923 sizeof(struct ip_vs_iter));
1924 }
1925
1926 static const struct file_operations ip_vs_info_fops = {
1927 .owner = THIS_MODULE,
1928 .open = ip_vs_info_open,
1929 .read = seq_read,
1930 .llseek = seq_lseek,
1931 .release = seq_release_private,
1932 };
1933
1934 #endif
1935
1936 struct ip_vs_stats ip_vs_stats = {
1937 .lock = __SPIN_LOCK_UNLOCKED(ip_vs_stats.lock),
1938 };
1939
1940 #ifdef CONFIG_PROC_FS
1941 static int ip_vs_stats_show(struct seq_file *seq, void *v)
1942 {
1943
1944 /* 01234567 01234567 01234567 0123456701234567 0123456701234567 */
1945 seq_puts(seq,
1946 " Total Incoming Outgoing Incoming Outgoing\n");
1947 seq_printf(seq,
1948 " Conns Packets Packets Bytes Bytes\n");
1949
1950 spin_lock_bh(&ip_vs_stats.lock);
1951 seq_printf(seq, "%8X %8X %8X %16LX %16LX\n\n", ip_vs_stats.ustats.conns,
1952 ip_vs_stats.ustats.inpkts, ip_vs_stats.ustats.outpkts,
1953 (unsigned long long) ip_vs_stats.ustats.inbytes,
1954 (unsigned long long) ip_vs_stats.ustats.outbytes);
1955
1956 /* 01234567 01234567 01234567 0123456701234567 0123456701234567 */
1957 seq_puts(seq,
1958 " Conns/s Pkts/s Pkts/s Bytes/s Bytes/s\n");
1959 seq_printf(seq,"%8X %8X %8X %16X %16X\n",
1960 ip_vs_stats.ustats.cps,
1961 ip_vs_stats.ustats.inpps,
1962 ip_vs_stats.ustats.outpps,
1963 ip_vs_stats.ustats.inbps,
1964 ip_vs_stats.ustats.outbps);
1965 spin_unlock_bh(&ip_vs_stats.lock);
1966
1967 return 0;
1968 }
1969
1970 static int ip_vs_stats_seq_open(struct inode *inode, struct file *file)
1971 {
1972 return single_open(file, ip_vs_stats_show, NULL);
1973 }
1974
1975 static const struct file_operations ip_vs_stats_fops = {
1976 .owner = THIS_MODULE,
1977 .open = ip_vs_stats_seq_open,
1978 .read = seq_read,
1979 .llseek = seq_lseek,
1980 .release = single_release,
1981 };
1982
1983 #endif
1984
1985 /*
1986 * Set timeout values for tcp tcpfin udp in the timeout_table.
1987 */
1988 static int ip_vs_set_timeout(struct ip_vs_timeout_user *u)
1989 {
1990 IP_VS_DBG(2, "Setting timeout tcp:%d tcpfin:%d udp:%d\n",
1991 u->tcp_timeout,
1992 u->tcp_fin_timeout,
1993 u->udp_timeout);
1994
1995 #ifdef CONFIG_IP_VS_PROTO_TCP
1996 if (u->tcp_timeout) {
1997 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_ESTABLISHED]
1998 = u->tcp_timeout * HZ;
1999 }
2000
2001 if (u->tcp_fin_timeout) {
2002 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_FIN_WAIT]
2003 = u->tcp_fin_timeout * HZ;
2004 }
2005 #endif
2006
2007 #ifdef CONFIG_IP_VS_PROTO_UDP
2008 if (u->udp_timeout) {
2009 ip_vs_protocol_udp.timeout_table[IP_VS_UDP_S_NORMAL]
2010 = u->udp_timeout * HZ;
2011 }
2012 #endif
2013 return 0;
2014 }
2015
2016
2017 #define SET_CMDID(cmd) (cmd - IP_VS_BASE_CTL)
2018 #define SERVICE_ARG_LEN (sizeof(struct ip_vs_service_user))
2019 #define SVCDEST_ARG_LEN (sizeof(struct ip_vs_service_user) + \
2020 sizeof(struct ip_vs_dest_user))
2021 #define TIMEOUT_ARG_LEN (sizeof(struct ip_vs_timeout_user))
2022 #define DAEMON_ARG_LEN (sizeof(struct ip_vs_daemon_user))
2023 #define MAX_ARG_LEN SVCDEST_ARG_LEN
2024
2025 static const unsigned char set_arglen[SET_CMDID(IP_VS_SO_SET_MAX)+1] = {
2026 [SET_CMDID(IP_VS_SO_SET_ADD)] = SERVICE_ARG_LEN,
2027 [SET_CMDID(IP_VS_SO_SET_EDIT)] = SERVICE_ARG_LEN,
2028 [SET_CMDID(IP_VS_SO_SET_DEL)] = SERVICE_ARG_LEN,
2029 [SET_CMDID(IP_VS_SO_SET_FLUSH)] = 0,
2030 [SET_CMDID(IP_VS_SO_SET_ADDDEST)] = SVCDEST_ARG_LEN,
2031 [SET_CMDID(IP_VS_SO_SET_DELDEST)] = SVCDEST_ARG_LEN,
2032 [SET_CMDID(IP_VS_SO_SET_EDITDEST)] = SVCDEST_ARG_LEN,
2033 [SET_CMDID(IP_VS_SO_SET_TIMEOUT)] = TIMEOUT_ARG_LEN,
2034 [SET_CMDID(IP_VS_SO_SET_STARTDAEMON)] = DAEMON_ARG_LEN,
2035 [SET_CMDID(IP_VS_SO_SET_STOPDAEMON)] = DAEMON_ARG_LEN,
2036 [SET_CMDID(IP_VS_SO_SET_ZERO)] = SERVICE_ARG_LEN,
2037 };
2038
2039 static void ip_vs_copy_usvc_compat(struct ip_vs_service_user_kern *usvc,
2040 struct ip_vs_service_user *usvc_compat)
2041 {
2042 usvc->af = AF_INET;
2043 usvc->protocol = usvc_compat->protocol;
2044 usvc->addr.ip = usvc_compat->addr;
2045 usvc->port = usvc_compat->port;
2046 usvc->fwmark = usvc_compat->fwmark;
2047
2048 /* Deep copy of sched_name is not needed here */
2049 usvc->sched_name = usvc_compat->sched_name;
2050
2051 usvc->flags = usvc_compat->flags;
2052 usvc->timeout = usvc_compat->timeout;
2053 usvc->netmask = usvc_compat->netmask;
2054 }
2055
2056 static void ip_vs_copy_udest_compat(struct ip_vs_dest_user_kern *udest,
2057 struct ip_vs_dest_user *udest_compat)
2058 {
2059 udest->addr.ip = udest_compat->addr;
2060 udest->port = udest_compat->port;
2061 udest->conn_flags = udest_compat->conn_flags;
2062 udest->weight = udest_compat->weight;
2063 udest->u_threshold = udest_compat->u_threshold;
2064 udest->l_threshold = udest_compat->l_threshold;
2065 }
2066
2067 static int
2068 do_ip_vs_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len)
2069 {
2070 int ret;
2071 unsigned char arg[MAX_ARG_LEN];
2072 struct ip_vs_service_user *usvc_compat;
2073 struct ip_vs_service_user_kern usvc;
2074 struct ip_vs_service *svc;
2075 struct ip_vs_dest_user *udest_compat;
2076 struct ip_vs_dest_user_kern udest;
2077
2078 if (!capable(CAP_NET_ADMIN))
2079 return -EPERM;
2080
2081 if (cmd < IP_VS_BASE_CTL || cmd > IP_VS_SO_SET_MAX)
2082 return -EINVAL;
2083 if (len < 0 || len > MAX_ARG_LEN)
2084 return -EINVAL;
2085 if (len != set_arglen[SET_CMDID(cmd)]) {
2086 pr_err("set_ctl: len %u != %u\n",
2087 len, set_arglen[SET_CMDID(cmd)]);
2088 return -EINVAL;
2089 }
2090
2091 if (copy_from_user(arg, user, len) != 0)
2092 return -EFAULT;
2093
2094 /* increase the module use count */
2095 ip_vs_use_count_inc();
2096
2097 if (mutex_lock_interruptible(&__ip_vs_mutex)) {
2098 ret = -ERESTARTSYS;
2099 goto out_dec;
2100 }
2101
2102 if (cmd == IP_VS_SO_SET_FLUSH) {
2103 /* Flush the virtual service */
2104 ret = ip_vs_flush();
2105 goto out_unlock;
2106 } else if (cmd == IP_VS_SO_SET_TIMEOUT) {
2107 /* Set timeout values for (tcp tcpfin udp) */
2108 ret = ip_vs_set_timeout((struct ip_vs_timeout_user *)arg);
2109 goto out_unlock;
2110 } else if (cmd == IP_VS_SO_SET_STARTDAEMON) {
2111 struct ip_vs_daemon_user *dm = (struct ip_vs_daemon_user *)arg;
2112 ret = start_sync_thread(dm->state, dm->mcast_ifn, dm->syncid);
2113 goto out_unlock;
2114 } else if (cmd == IP_VS_SO_SET_STOPDAEMON) {
2115 struct ip_vs_daemon_user *dm = (struct ip_vs_daemon_user *)arg;
2116 ret = stop_sync_thread(dm->state);
2117 goto out_unlock;
2118 }
2119
2120 usvc_compat = (struct ip_vs_service_user *)arg;
2121 udest_compat = (struct ip_vs_dest_user *)(usvc_compat + 1);
2122
2123 /* We only use the new structs internally, so copy userspace compat
2124 * structs to extended internal versions */
2125 ip_vs_copy_usvc_compat(&usvc, usvc_compat);
2126 ip_vs_copy_udest_compat(&udest, udest_compat);
2127
2128 if (cmd == IP_VS_SO_SET_ZERO) {
2129 /* if no service address is set, zero counters in all */
2130 if (!usvc.fwmark && !usvc.addr.ip && !usvc.port) {
2131 ret = ip_vs_zero_all();
2132 goto out_unlock;
2133 }
2134 }
2135
2136 /* Check for valid protocol: TCP or UDP or SCTP, even for fwmark!=0 */
2137 if (usvc.protocol != IPPROTO_TCP && usvc.protocol != IPPROTO_UDP &&
2138 usvc.protocol != IPPROTO_SCTP) {
2139 pr_err("set_ctl: invalid protocol: %d %pI4:%d %s\n",
2140 usvc.protocol, &usvc.addr.ip,
2141 ntohs(usvc.port), usvc.sched_name);
2142 ret = -EFAULT;
2143 goto out_unlock;
2144 }
2145
2146 /* Lookup the exact service by <protocol, addr, port> or fwmark */
2147 if (usvc.fwmark == 0)
2148 svc = __ip_vs_service_get(usvc.af, usvc.protocol,
2149 &usvc.addr, usvc.port);
2150 else
2151 svc = __ip_vs_svc_fwm_get(usvc.af, usvc.fwmark);
2152
2153 if (cmd != IP_VS_SO_SET_ADD
2154 && (svc == NULL || svc->protocol != usvc.protocol)) {
2155 ret = -ESRCH;
2156 goto out_unlock;
2157 }
2158
2159 switch (cmd) {
2160 case IP_VS_SO_SET_ADD:
2161 if (svc != NULL)
2162 ret = -EEXIST;
2163 else
2164 ret = ip_vs_add_service(&usvc, &svc);
2165 break;
2166 case IP_VS_SO_SET_EDIT:
2167 ret = ip_vs_edit_service(svc, &usvc);
2168 break;
2169 case IP_VS_SO_SET_DEL:
2170 ret = ip_vs_del_service(svc);
2171 if (!ret)
2172 goto out_unlock;
2173 break;
2174 case IP_VS_SO_SET_ZERO:
2175 ret = ip_vs_zero_service(svc);
2176 break;
2177 case IP_VS_SO_SET_ADDDEST:
2178 ret = ip_vs_add_dest(svc, &udest);
2179 break;
2180 case IP_VS_SO_SET_EDITDEST:
2181 ret = ip_vs_edit_dest(svc, &udest);
2182 break;
2183 case IP_VS_SO_SET_DELDEST:
2184 ret = ip_vs_del_dest(svc, &udest);
2185 break;
2186 default:
2187 ret = -EINVAL;
2188 }
2189
2190 if (svc)
2191 ip_vs_service_put(svc);
2192
2193 out_unlock:
2194 mutex_unlock(&__ip_vs_mutex);
2195 out_dec:
2196 /* decrease the module use count */
2197 ip_vs_use_count_dec();
2198
2199 return ret;
2200 }
2201
2202
2203 static void
2204 ip_vs_copy_stats(struct ip_vs_stats_user *dst, struct ip_vs_stats *src)
2205 {
2206 spin_lock_bh(&src->lock);
2207 memcpy(dst, &src->ustats, sizeof(*dst));
2208 spin_unlock_bh(&src->lock);
2209 }
2210
2211 static void
2212 ip_vs_copy_service(struct ip_vs_service_entry *dst, struct ip_vs_service *src)
2213 {
2214 dst->protocol = src->protocol;
2215 dst->addr = src->addr.ip;
2216 dst->port = src->port;
2217 dst->fwmark = src->fwmark;
2218 strlcpy(dst->sched_name, src->scheduler->name, sizeof(dst->sched_name));
2219 dst->flags = src->flags;
2220 dst->timeout = src->timeout / HZ;
2221 dst->netmask = src->netmask;
2222 dst->num_dests = src->num_dests;
2223 ip_vs_copy_stats(&dst->stats, &src->stats);
2224 }
2225
2226 static inline int
2227 __ip_vs_get_service_entries(const struct ip_vs_get_services *get,
2228 struct ip_vs_get_services __user *uptr)
2229 {
2230 int idx, count=0;
2231 struct ip_vs_service *svc;
2232 struct ip_vs_service_entry entry;
2233 int ret = 0;
2234
2235 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
2236 list_for_each_entry(svc, &ip_vs_svc_table[idx], s_list) {
2237 /* Only expose IPv4 entries to old interface */
2238 if (svc->af != AF_INET)
2239 continue;
2240
2241 if (count >= get->num_services)
2242 goto out;
2243 memset(&entry, 0, sizeof(entry));
2244 ip_vs_copy_service(&entry, svc);
2245 if (copy_to_user(&uptr->entrytable[count],
2246 &entry, sizeof(entry))) {
2247 ret = -EFAULT;
2248 goto out;
2249 }
2250 count++;
2251 }
2252 }
2253
2254 for (idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
2255 list_for_each_entry(svc, &ip_vs_svc_fwm_table[idx], f_list) {
2256 /* Only expose IPv4 entries to old interface */
2257 if (svc->af != AF_INET)
2258 continue;
2259
2260 if (count >= get->num_services)
2261 goto out;
2262 memset(&entry, 0, sizeof(entry));
2263 ip_vs_copy_service(&entry, svc);
2264 if (copy_to_user(&uptr->entrytable[count],
2265 &entry, sizeof(entry))) {
2266 ret = -EFAULT;
2267 goto out;
2268 }
2269 count++;
2270 }
2271 }
2272 out:
2273 return ret;
2274 }
2275
2276 static inline int
2277 __ip_vs_get_dest_entries(const struct ip_vs_get_dests *get,
2278 struct ip_vs_get_dests __user *uptr)
2279 {
2280 struct ip_vs_service *svc;
2281 union nf_inet_addr addr = { .ip = get->addr };
2282 int ret = 0;
2283
2284 if (get->fwmark)
2285 svc = __ip_vs_svc_fwm_get(AF_INET, get->fwmark);
2286 else
2287 svc = __ip_vs_service_get(AF_INET, get->protocol, &addr,
2288 get->port);
2289
2290 if (svc) {
2291 int count = 0;
2292 struct ip_vs_dest *dest;
2293 struct ip_vs_dest_entry entry;
2294
2295 list_for_each_entry(dest, &svc->destinations, n_list) {
2296 if (count >= get->num_dests)
2297 break;
2298
2299 entry.addr = dest->addr.ip;
2300 entry.port = dest->port;
2301 entry.conn_flags = atomic_read(&dest->conn_flags);
2302 entry.weight = atomic_read(&dest->weight);
2303 entry.u_threshold = dest->u_threshold;
2304 entry.l_threshold = dest->l_threshold;
2305 entry.activeconns = atomic_read(&dest->activeconns);
2306 entry.inactconns = atomic_read(&dest->inactconns);
2307 entry.persistconns = atomic_read(&dest->persistconns);
2308 ip_vs_copy_stats(&entry.stats, &dest->stats);
2309 if (copy_to_user(&uptr->entrytable[count],
2310 &entry, sizeof(entry))) {
2311 ret = -EFAULT;
2312 break;
2313 }
2314 count++;
2315 }
2316 ip_vs_service_put(svc);
2317 } else
2318 ret = -ESRCH;
2319 return ret;
2320 }
2321
2322 static inline void
2323 __ip_vs_get_timeouts(struct ip_vs_timeout_user *u)
2324 {
2325 #ifdef CONFIG_IP_VS_PROTO_TCP
2326 u->tcp_timeout =
2327 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_ESTABLISHED] / HZ;
2328 u->tcp_fin_timeout =
2329 ip_vs_protocol_tcp.timeout_table[IP_VS_TCP_S_FIN_WAIT] / HZ;
2330 #endif
2331 #ifdef CONFIG_IP_VS_PROTO_UDP
2332 u->udp_timeout =
2333 ip_vs_protocol_udp.timeout_table[IP_VS_UDP_S_NORMAL] / HZ;
2334 #endif
2335 }
2336
2337
2338 #define GET_CMDID(cmd) (cmd - IP_VS_BASE_CTL)
2339 #define GET_INFO_ARG_LEN (sizeof(struct ip_vs_getinfo))
2340 #define GET_SERVICES_ARG_LEN (sizeof(struct ip_vs_get_services))
2341 #define GET_SERVICE_ARG_LEN (sizeof(struct ip_vs_service_entry))
2342 #define GET_DESTS_ARG_LEN (sizeof(struct ip_vs_get_dests))
2343 #define GET_TIMEOUT_ARG_LEN (sizeof(struct ip_vs_timeout_user))
2344 #define GET_DAEMON_ARG_LEN (sizeof(struct ip_vs_daemon_user) * 2)
2345
2346 static const unsigned char get_arglen[GET_CMDID(IP_VS_SO_GET_MAX)+1] = {
2347 [GET_CMDID(IP_VS_SO_GET_VERSION)] = 64,
2348 [GET_CMDID(IP_VS_SO_GET_INFO)] = GET_INFO_ARG_LEN,
2349 [GET_CMDID(IP_VS_SO_GET_SERVICES)] = GET_SERVICES_ARG_LEN,
2350 [GET_CMDID(IP_VS_SO_GET_SERVICE)] = GET_SERVICE_ARG_LEN,
2351 [GET_CMDID(IP_VS_SO_GET_DESTS)] = GET_DESTS_ARG_LEN,
2352 [GET_CMDID(IP_VS_SO_GET_TIMEOUT)] = GET_TIMEOUT_ARG_LEN,
2353 [GET_CMDID(IP_VS_SO_GET_DAEMON)] = GET_DAEMON_ARG_LEN,
2354 };
2355
2356 static int
2357 do_ip_vs_get_ctl(struct sock *sk, int cmd, void __user *user, int *len)
2358 {
2359 unsigned char arg[128];
2360 int ret = 0;
2361 unsigned int copylen;
2362
2363 if (!capable(CAP_NET_ADMIN))
2364 return -EPERM;
2365
2366 if (cmd < IP_VS_BASE_CTL || cmd > IP_VS_SO_GET_MAX)
2367 return -EINVAL;
2368
2369 if (*len < get_arglen[GET_CMDID(cmd)]) {
2370 pr_err("get_ctl: len %u < %u\n",
2371 *len, get_arglen[GET_CMDID(cmd)]);
2372 return -EINVAL;
2373 }
2374
2375 copylen = get_arglen[GET_CMDID(cmd)];
2376 if (copylen > 128)
2377 return -EINVAL;
2378
2379 if (copy_from_user(arg, user, copylen) != 0)
2380 return -EFAULT;
2381
2382 if (mutex_lock_interruptible(&__ip_vs_mutex))
2383 return -ERESTARTSYS;
2384
2385 switch (cmd) {
2386 case IP_VS_SO_GET_VERSION:
2387 {
2388 char buf[64];
2389
2390 sprintf(buf, "IP Virtual Server version %d.%d.%d (size=%d)",
2391 NVERSION(IP_VS_VERSION_CODE), ip_vs_conn_tab_size);
2392 if (copy_to_user(user, buf, strlen(buf)+1) != 0) {
2393 ret = -EFAULT;
2394 goto out;
2395 }
2396 *len = strlen(buf)+1;
2397 }
2398 break;
2399
2400 case IP_VS_SO_GET_INFO:
2401 {
2402 struct ip_vs_getinfo info;
2403 info.version = IP_VS_VERSION_CODE;
2404 info.size = ip_vs_conn_tab_size;
2405 info.num_services = ip_vs_num_services;
2406 if (copy_to_user(user, &info, sizeof(info)) != 0)
2407 ret = -EFAULT;
2408 }
2409 break;
2410
2411 case IP_VS_SO_GET_SERVICES:
2412 {
2413 struct ip_vs_get_services *get;
2414 int size;
2415
2416 get = (struct ip_vs_get_services *)arg;
2417 size = sizeof(*get) +
2418 sizeof(struct ip_vs_service_entry) * get->num_services;
2419 if (*len != size) {
2420 pr_err("length: %u != %u\n", *len, size);
2421 ret = -EINVAL;
2422 goto out;
2423 }
2424 ret = __ip_vs_get_service_entries(get, user);
2425 }
2426 break;
2427
2428 case IP_VS_SO_GET_SERVICE:
2429 {
2430 struct ip_vs_service_entry *entry;
2431 struct ip_vs_service *svc;
2432 union nf_inet_addr addr;
2433
2434 entry = (struct ip_vs_service_entry *)arg;
2435 addr.ip = entry->addr;
2436 if (entry->fwmark)
2437 svc = __ip_vs_svc_fwm_get(AF_INET, entry->fwmark);
2438 else
2439 svc = __ip_vs_service_get(AF_INET, entry->protocol,
2440 &addr, entry->port);
2441 if (svc) {
2442 ip_vs_copy_service(entry, svc);
2443 if (copy_to_user(user, entry, sizeof(*entry)) != 0)
2444 ret = -EFAULT;
2445 ip_vs_service_put(svc);
2446 } else
2447 ret = -ESRCH;
2448 }
2449 break;
2450
2451 case IP_VS_SO_GET_DESTS:
2452 {
2453 struct ip_vs_get_dests *get;
2454 int size;
2455
2456 get = (struct ip_vs_get_dests *)arg;
2457 size = sizeof(*get) +
2458 sizeof(struct ip_vs_dest_entry) * get->num_dests;
2459 if (*len != size) {
2460 pr_err("length: %u != %u\n", *len, size);
2461 ret = -EINVAL;
2462 goto out;
2463 }
2464 ret = __ip_vs_get_dest_entries(get, user);
2465 }
2466 break;
2467
2468 case IP_VS_SO_GET_TIMEOUT:
2469 {
2470 struct ip_vs_timeout_user t;
2471
2472 __ip_vs_get_timeouts(&t);
2473 if (copy_to_user(user, &t, sizeof(t)) != 0)
2474 ret = -EFAULT;
2475 }
2476 break;
2477
2478 case IP_VS_SO_GET_DAEMON:
2479 {
2480 struct ip_vs_daemon_user d[2];
2481
2482 memset(&d, 0, sizeof(d));
2483 if (ip_vs_sync_state & IP_VS_STATE_MASTER) {
2484 d[0].state = IP_VS_STATE_MASTER;
2485 strlcpy(d[0].mcast_ifn, ip_vs_master_mcast_ifn, sizeof(d[0].mcast_ifn));
2486 d[0].syncid = ip_vs_master_syncid;
2487 }
2488 if (ip_vs_sync_state & IP_VS_STATE_BACKUP) {
2489 d[1].state = IP_VS_STATE_BACKUP;
2490 strlcpy(d[1].mcast_ifn, ip_vs_backup_mcast_ifn, sizeof(d[1].mcast_ifn));
2491 d[1].syncid = ip_vs_backup_syncid;
2492 }
2493 if (copy_to_user(user, &d, sizeof(d)) != 0)
2494 ret = -EFAULT;
2495 }
2496 break;
2497
2498 default:
2499 ret = -EINVAL;
2500 }
2501
2502 out:
2503 mutex_unlock(&__ip_vs_mutex);
2504 return ret;
2505 }
2506
2507
2508 static struct nf_sockopt_ops ip_vs_sockopts = {
2509 .pf = PF_INET,
2510 .set_optmin = IP_VS_BASE_CTL,
2511 .set_optmax = IP_VS_SO_SET_MAX+1,
2512 .set = do_ip_vs_set_ctl,
2513 .get_optmin = IP_VS_BASE_CTL,
2514 .get_optmax = IP_VS_SO_GET_MAX+1,
2515 .get = do_ip_vs_get_ctl,
2516 .owner = THIS_MODULE,
2517 };
2518
2519 /*
2520 * Generic Netlink interface
2521 */
2522
2523 /* IPVS genetlink family */
2524 static struct genl_family ip_vs_genl_family = {
2525 .id = GENL_ID_GENERATE,
2526 .hdrsize = 0,
2527 .name = IPVS_GENL_NAME,
2528 .version = IPVS_GENL_VERSION,
2529 .maxattr = IPVS_CMD_MAX,
2530 };
2531
2532 /* Policy used for first-level command attributes */
2533 static const struct nla_policy ip_vs_cmd_policy[IPVS_CMD_ATTR_MAX + 1] = {
2534 [IPVS_CMD_ATTR_SERVICE] = { .type = NLA_NESTED },
2535 [IPVS_CMD_ATTR_DEST] = { .type = NLA_NESTED },
2536 [IPVS_CMD_ATTR_DAEMON] = { .type = NLA_NESTED },
2537 [IPVS_CMD_ATTR_TIMEOUT_TCP] = { .type = NLA_U32 },
2538 [IPVS_CMD_ATTR_TIMEOUT_TCP_FIN] = { .type = NLA_U32 },
2539 [IPVS_CMD_ATTR_TIMEOUT_UDP] = { .type = NLA_U32 },
2540 };
2541
2542 /* Policy used for attributes in nested attribute IPVS_CMD_ATTR_DAEMON */
2543 static const struct nla_policy ip_vs_daemon_policy[IPVS_DAEMON_ATTR_MAX + 1] = {
2544 [IPVS_DAEMON_ATTR_STATE] = { .type = NLA_U32 },
2545 [IPVS_DAEMON_ATTR_MCAST_IFN] = { .type = NLA_NUL_STRING,
2546 .len = IP_VS_IFNAME_MAXLEN },
2547 [IPVS_DAEMON_ATTR_SYNC_ID] = { .type = NLA_U32 },
2548 };
2549
2550 /* Policy used for attributes in nested attribute IPVS_CMD_ATTR_SERVICE */
2551 static const struct nla_policy ip_vs_svc_policy[IPVS_SVC_ATTR_MAX + 1] = {
2552 [IPVS_SVC_ATTR_AF] = { .type = NLA_U16 },
2553 [IPVS_SVC_ATTR_PROTOCOL] = { .type = NLA_U16 },
2554 [IPVS_SVC_ATTR_ADDR] = { .type = NLA_BINARY,
2555 .len = sizeof(union nf_inet_addr) },
2556 [IPVS_SVC_ATTR_PORT] = { .type = NLA_U16 },
2557 [IPVS_SVC_ATTR_FWMARK] = { .type = NLA_U32 },
2558 [IPVS_SVC_ATTR_SCHED_NAME] = { .type = NLA_NUL_STRING,
2559 .len = IP_VS_SCHEDNAME_MAXLEN },
2560 [IPVS_SVC_ATTR_FLAGS] = { .type = NLA_BINARY,
2561 .len = sizeof(struct ip_vs_flags) },
2562 [IPVS_SVC_ATTR_TIMEOUT] = { .type = NLA_U32 },
2563 [IPVS_SVC_ATTR_NETMASK] = { .type = NLA_U32 },
2564 [IPVS_SVC_ATTR_STATS] = { .type = NLA_NESTED },
2565 };
2566
2567 /* Policy used for attributes in nested attribute IPVS_CMD_ATTR_DEST */
2568 static const struct nla_policy ip_vs_dest_policy[IPVS_DEST_ATTR_MAX + 1] = {
2569 [IPVS_DEST_ATTR_ADDR] = { .type = NLA_BINARY,
2570 .len = sizeof(union nf_inet_addr) },
2571 [IPVS_DEST_ATTR_PORT] = { .type = NLA_U16 },
2572 [IPVS_DEST_ATTR_FWD_METHOD] = { .type = NLA_U32 },
2573 [IPVS_DEST_ATTR_WEIGHT] = { .type = NLA_U32 },
2574 [IPVS_DEST_ATTR_U_THRESH] = { .type = NLA_U32 },
2575 [IPVS_DEST_ATTR_L_THRESH] = { .type = NLA_U32 },
2576 [IPVS_DEST_ATTR_ACTIVE_CONNS] = { .type = NLA_U32 },
2577 [IPVS_DEST_ATTR_INACT_CONNS] = { .type = NLA_U32 },
2578 [IPVS_DEST_ATTR_PERSIST_CONNS] = { .type = NLA_U32 },
2579 [IPVS_DEST_ATTR_STATS] = { .type = NLA_NESTED },
2580 };
2581
2582 static int ip_vs_genl_fill_stats(struct sk_buff *skb, int container_type,
2583 struct ip_vs_stats *stats)
2584 {
2585 struct nlattr *nl_stats = nla_nest_start(skb, container_type);
2586 if (!nl_stats)
2587 return -EMSGSIZE;
2588
2589 spin_lock_bh(&stats->lock);
2590
2591 NLA_PUT_U32(skb, IPVS_STATS_ATTR_CONNS, stats->ustats.conns);
2592 NLA_PUT_U32(skb, IPVS_STATS_ATTR_INPKTS, stats->ustats.inpkts);
2593 NLA_PUT_U32(skb, IPVS_STATS_ATTR_OUTPKTS, stats->ustats.outpkts);
2594 NLA_PUT_U64(skb, IPVS_STATS_ATTR_INBYTES, stats->ustats.inbytes);
2595 NLA_PUT_U64(skb, IPVS_STATS_ATTR_OUTBYTES, stats->ustats.outbytes);
2596 NLA_PUT_U32(skb, IPVS_STATS_ATTR_CPS, stats->ustats.cps);
2597 NLA_PUT_U32(skb, IPVS_STATS_ATTR_INPPS, stats->ustats.inpps);
2598 NLA_PUT_U32(skb, IPVS_STATS_ATTR_OUTPPS, stats->ustats.outpps);
2599 NLA_PUT_U32(skb, IPVS_STATS_ATTR_INBPS, stats->ustats.inbps);
2600 NLA_PUT_U32(skb, IPVS_STATS_ATTR_OUTBPS, stats->ustats.outbps);
2601
2602 spin_unlock_bh(&stats->lock);
2603
2604 nla_nest_end(skb, nl_stats);
2605
2606 return 0;
2607
2608 nla_put_failure:
2609 spin_unlock_bh(&stats->lock);
2610 nla_nest_cancel(skb, nl_stats);
2611 return -EMSGSIZE;
2612 }
2613
2614 static int ip_vs_genl_fill_service(struct sk_buff *skb,
2615 struct ip_vs_service *svc)
2616 {
2617 struct nlattr *nl_service;
2618 struct ip_vs_flags flags = { .flags = svc->flags,
2619 .mask = ~0 };
2620
2621 nl_service = nla_nest_start(skb, IPVS_CMD_ATTR_SERVICE);
2622 if (!nl_service)
2623 return -EMSGSIZE;
2624
2625 NLA_PUT_U16(skb, IPVS_SVC_ATTR_AF, svc->af);
2626
2627 if (svc->fwmark) {
2628 NLA_PUT_U32(skb, IPVS_SVC_ATTR_FWMARK, svc->fwmark);
2629 } else {
2630 NLA_PUT_U16(skb, IPVS_SVC_ATTR_PROTOCOL, svc->protocol);
2631 NLA_PUT(skb, IPVS_SVC_ATTR_ADDR, sizeof(svc->addr), &svc->addr);
2632 NLA_PUT_U16(skb, IPVS_SVC_ATTR_PORT, svc->port);
2633 }
2634
2635 NLA_PUT_STRING(skb, IPVS_SVC_ATTR_SCHED_NAME, svc->scheduler->name);
2636 NLA_PUT(skb, IPVS_SVC_ATTR_FLAGS, sizeof(flags), &flags);
2637 NLA_PUT_U32(skb, IPVS_SVC_ATTR_TIMEOUT, svc->timeout / HZ);
2638 NLA_PUT_U32(skb, IPVS_SVC_ATTR_NETMASK, svc->netmask);
2639
2640 if (ip_vs_genl_fill_stats(skb, IPVS_SVC_ATTR_STATS, &svc->stats))
2641 goto nla_put_failure;
2642
2643 nla_nest_end(skb, nl_service);
2644
2645 return 0;
2646
2647 nla_put_failure:
2648 nla_nest_cancel(skb, nl_service);
2649 return -EMSGSIZE;
2650 }
2651
2652 static int ip_vs_genl_dump_service(struct sk_buff *skb,
2653 struct ip_vs_service *svc,
2654 struct netlink_callback *cb)
2655 {
2656 void *hdr;
2657
2658 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
2659 &ip_vs_genl_family, NLM_F_MULTI,
2660 IPVS_CMD_NEW_SERVICE);
2661 if (!hdr)
2662 return -EMSGSIZE;
2663
2664 if (ip_vs_genl_fill_service(skb, svc) < 0)
2665 goto nla_put_failure;
2666
2667 return genlmsg_end(skb, hdr);
2668
2669 nla_put_failure:
2670 genlmsg_cancel(skb, hdr);
2671 return -EMSGSIZE;
2672 }
2673
2674 static int ip_vs_genl_dump_services(struct sk_buff *skb,
2675 struct netlink_callback *cb)
2676 {
2677 int idx = 0, i;
2678 int start = cb->args[0];
2679 struct ip_vs_service *svc;
2680
2681 mutex_lock(&__ip_vs_mutex);
2682 for (i = 0; i < IP_VS_SVC_TAB_SIZE; i++) {
2683 list_for_each_entry(svc, &ip_vs_svc_table[i], s_list) {
2684 if (++idx <= start)
2685 continue;
2686 if (ip_vs_genl_dump_service(skb, svc, cb) < 0) {
2687 idx--;
2688 goto nla_put_failure;
2689 }
2690 }
2691 }
2692
2693 for (i = 0; i < IP_VS_SVC_TAB_SIZE; i++) {
2694 list_for_each_entry(svc, &ip_vs_svc_fwm_table[i], f_list) {
2695 if (++idx <= start)
2696 continue;
2697 if (ip_vs_genl_dump_service(skb, svc, cb) < 0) {
2698 idx--;
2699 goto nla_put_failure;
2700 }
2701 }
2702 }
2703
2704 nla_put_failure:
2705 mutex_unlock(&__ip_vs_mutex);
2706 cb->args[0] = idx;
2707
2708 return skb->len;
2709 }
2710
2711 static int ip_vs_genl_parse_service(struct ip_vs_service_user_kern *usvc,
2712 struct nlattr *nla, int full_entry)
2713 {
2714 struct nlattr *attrs[IPVS_SVC_ATTR_MAX + 1];
2715 struct nlattr *nla_af, *nla_port, *nla_fwmark, *nla_protocol, *nla_addr;
2716
2717 /* Parse mandatory identifying service fields first */
2718 if (nla == NULL ||
2719 nla_parse_nested(attrs, IPVS_SVC_ATTR_MAX, nla, ip_vs_svc_policy))
2720 return -EINVAL;
2721
2722 nla_af = attrs[IPVS_SVC_ATTR_AF];
2723 nla_protocol = attrs[IPVS_SVC_ATTR_PROTOCOL];
2724 nla_addr = attrs[IPVS_SVC_ATTR_ADDR];
2725 nla_port = attrs[IPVS_SVC_ATTR_PORT];
2726 nla_fwmark = attrs[IPVS_SVC_ATTR_FWMARK];
2727
2728 if (!(nla_af && (nla_fwmark || (nla_port && nla_protocol && nla_addr))))
2729 return -EINVAL;
2730
2731 memset(usvc, 0, sizeof(*usvc));
2732
2733 usvc->af = nla_get_u16(nla_af);
2734 #ifdef CONFIG_IP_VS_IPV6
2735 if (usvc->af != AF_INET && usvc->af != AF_INET6)
2736 #else
2737 if (usvc->af != AF_INET)
2738 #endif
2739 return -EAFNOSUPPORT;
2740
2741 if (nla_fwmark) {
2742 usvc->protocol = IPPROTO_TCP;
2743 usvc->fwmark = nla_get_u32(nla_fwmark);
2744 } else {
2745 usvc->protocol = nla_get_u16(nla_protocol);
2746 nla_memcpy(&usvc->addr, nla_addr, sizeof(usvc->addr));
2747 usvc->port = nla_get_u16(nla_port);
2748 usvc->fwmark = 0;
2749 }
2750
2751 /* If a full entry was requested, check for the additional fields */
2752 if (full_entry) {
2753 struct nlattr *nla_sched, *nla_flags, *nla_timeout,
2754 *nla_netmask;
2755 struct ip_vs_flags flags;
2756 struct ip_vs_service *svc;
2757
2758 nla_sched = attrs[IPVS_SVC_ATTR_SCHED_NAME];
2759 nla_flags = attrs[IPVS_SVC_ATTR_FLAGS];
2760 nla_timeout = attrs[IPVS_SVC_ATTR_TIMEOUT];
2761 nla_netmask = attrs[IPVS_SVC_ATTR_NETMASK];
2762
2763 if (!(nla_sched && nla_flags && nla_timeout && nla_netmask))
2764 return -EINVAL;
2765
2766 nla_memcpy(&flags, nla_flags, sizeof(flags));
2767
2768 /* prefill flags from service if it already exists */
2769 if (usvc->fwmark)
2770 svc = __ip_vs_svc_fwm_get(usvc->af, usvc->fwmark);
2771 else
2772 svc = __ip_vs_service_get(usvc->af, usvc->protocol,
2773 &usvc->addr, usvc->port);
2774 if (svc) {
2775 usvc->flags = svc->flags;
2776 ip_vs_service_put(svc);
2777 } else
2778 usvc->flags = 0;
2779
2780 /* set new flags from userland */
2781 usvc->flags = (usvc->flags & ~flags.mask) |
2782 (flags.flags & flags.mask);
2783 usvc->sched_name = nla_data(nla_sched);
2784 usvc->timeout = nla_get_u32(nla_timeout);
2785 usvc->netmask = nla_get_u32(nla_netmask);
2786 }
2787
2788 return 0;
2789 }
2790
2791 static struct ip_vs_service *ip_vs_genl_find_service(struct nlattr *nla)
2792 {
2793 struct ip_vs_service_user_kern usvc;
2794 int ret;
2795
2796 ret = ip_vs_genl_parse_service(&usvc, nla, 0);
2797 if (ret)
2798 return ERR_PTR(ret);
2799
2800 if (usvc.fwmark)
2801 return __ip_vs_svc_fwm_get(usvc.af, usvc.fwmark);
2802 else
2803 return __ip_vs_service_get(usvc.af, usvc.protocol,
2804 &usvc.addr, usvc.port);
2805 }
2806
2807 static int ip_vs_genl_fill_dest(struct sk_buff *skb, struct ip_vs_dest *dest)
2808 {
2809 struct nlattr *nl_dest;
2810
2811 nl_dest = nla_nest_start(skb, IPVS_CMD_ATTR_DEST);
2812 if (!nl_dest)
2813 return -EMSGSIZE;
2814
2815 NLA_PUT(skb, IPVS_DEST_ATTR_ADDR, sizeof(dest->addr), &dest->addr);
2816 NLA_PUT_U16(skb, IPVS_DEST_ATTR_PORT, dest->port);
2817
2818 NLA_PUT_U32(skb, IPVS_DEST_ATTR_FWD_METHOD,
2819 atomic_read(&dest->conn_flags) & IP_VS_CONN_F_FWD_MASK);
2820 NLA_PUT_U32(skb, IPVS_DEST_ATTR_WEIGHT, atomic_read(&dest->weight));
2821 NLA_PUT_U32(skb, IPVS_DEST_ATTR_U_THRESH, dest->u_threshold);
2822 NLA_PUT_U32(skb, IPVS_DEST_ATTR_L_THRESH, dest->l_threshold);
2823 NLA_PUT_U32(skb, IPVS_DEST_ATTR_ACTIVE_CONNS,
2824 atomic_read(&dest->activeconns));
2825 NLA_PUT_U32(skb, IPVS_DEST_ATTR_INACT_CONNS,
2826 atomic_read(&dest->inactconns));
2827 NLA_PUT_U32(skb, IPVS_DEST_ATTR_PERSIST_CONNS,
2828 atomic_read(&dest->persistconns));
2829
2830 if (ip_vs_genl_fill_stats(skb, IPVS_DEST_ATTR_STATS, &dest->stats))
2831 goto nla_put_failure;
2832
2833 nla_nest_end(skb, nl_dest);
2834
2835 return 0;
2836
2837 nla_put_failure:
2838 nla_nest_cancel(skb, nl_dest);
2839 return -EMSGSIZE;
2840 }
2841
2842 static int ip_vs_genl_dump_dest(struct sk_buff *skb, struct ip_vs_dest *dest,
2843 struct netlink_callback *cb)
2844 {
2845 void *hdr;
2846
2847 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
2848 &ip_vs_genl_family, NLM_F_MULTI,
2849 IPVS_CMD_NEW_DEST);
2850 if (!hdr)
2851 return -EMSGSIZE;
2852
2853 if (ip_vs_genl_fill_dest(skb, dest) < 0)
2854 goto nla_put_failure;
2855
2856 return genlmsg_end(skb, hdr);
2857
2858 nla_put_failure:
2859 genlmsg_cancel(skb, hdr);
2860 return -EMSGSIZE;
2861 }
2862
2863 static int ip_vs_genl_dump_dests(struct sk_buff *skb,
2864 struct netlink_callback *cb)
2865 {
2866 int idx = 0;
2867 int start = cb->args[0];
2868 struct ip_vs_service *svc;
2869 struct ip_vs_dest *dest;
2870 struct nlattr *attrs[IPVS_CMD_ATTR_MAX + 1];
2871
2872 mutex_lock(&__ip_vs_mutex);
2873
2874 /* Try to find the service for which to dump destinations */
2875 if (nlmsg_parse(cb->nlh, GENL_HDRLEN, attrs,
2876 IPVS_CMD_ATTR_MAX, ip_vs_cmd_policy))
2877 goto out_err;
2878
2879 svc = ip_vs_genl_find_service(attrs[IPVS_CMD_ATTR_SERVICE]);
2880 if (IS_ERR(svc) || svc == NULL)
2881 goto out_err;
2882
2883 /* Dump the destinations */
2884 list_for_each_entry(dest, &svc->destinations, n_list) {
2885 if (++idx <= start)
2886 continue;
2887 if (ip_vs_genl_dump_dest(skb, dest, cb) < 0) {
2888 idx--;
2889 goto nla_put_failure;
2890 }
2891 }
2892
2893 nla_put_failure:
2894 cb->args[0] = idx;
2895 ip_vs_service_put(svc);
2896
2897 out_err:
2898 mutex_unlock(&__ip_vs_mutex);
2899
2900 return skb->len;
2901 }
2902
2903 static int ip_vs_genl_parse_dest(struct ip_vs_dest_user_kern *udest,
2904 struct nlattr *nla, int full_entry)
2905 {
2906 struct nlattr *attrs[IPVS_DEST_ATTR_MAX + 1];
2907 struct nlattr *nla_addr, *nla_port;
2908
2909 /* Parse mandatory identifying destination fields first */
2910 if (nla == NULL ||
2911 nla_parse_nested(attrs, IPVS_DEST_ATTR_MAX, nla, ip_vs_dest_policy))
2912 return -EINVAL;
2913
2914 nla_addr = attrs[IPVS_DEST_ATTR_ADDR];
2915 nla_port = attrs[IPVS_DEST_ATTR_PORT];
2916
2917 if (!(nla_addr && nla_port))
2918 return -EINVAL;
2919
2920 memset(udest, 0, sizeof(*udest));
2921
2922 nla_memcpy(&udest->addr, nla_addr, sizeof(udest->addr));
2923 udest->port = nla_get_u16(nla_port);
2924
2925 /* If a full entry was requested, check for the additional fields */
2926 if (full_entry) {
2927 struct nlattr *nla_fwd, *nla_weight, *nla_u_thresh,
2928 *nla_l_thresh;
2929
2930 nla_fwd = attrs[IPVS_DEST_ATTR_FWD_METHOD];
2931 nla_weight = attrs[IPVS_DEST_ATTR_WEIGHT];
2932 nla_u_thresh = attrs[IPVS_DEST_ATTR_U_THRESH];
2933 nla_l_thresh = attrs[IPVS_DEST_ATTR_L_THRESH];
2934
2935 if (!(nla_fwd && nla_weight && nla_u_thresh && nla_l_thresh))
2936 return -EINVAL;
2937
2938 udest->conn_flags = nla_get_u32(nla_fwd)
2939 & IP_VS_CONN_F_FWD_MASK;
2940 udest->weight = nla_get_u32(nla_weight);
2941 udest->u_threshold = nla_get_u32(nla_u_thresh);
2942 udest->l_threshold = nla_get_u32(nla_l_thresh);
2943 }
2944
2945 return 0;
2946 }
2947
2948 static int ip_vs_genl_fill_daemon(struct sk_buff *skb, __be32 state,
2949 const char *mcast_ifn, __be32 syncid)
2950 {
2951 struct nlattr *nl_daemon;
2952
2953 nl_daemon = nla_nest_start(skb, IPVS_CMD_ATTR_DAEMON);
2954 if (!nl_daemon)
2955 return -EMSGSIZE;
2956
2957 NLA_PUT_U32(skb, IPVS_DAEMON_ATTR_STATE, state);
2958 NLA_PUT_STRING(skb, IPVS_DAEMON_ATTR_MCAST_IFN, mcast_ifn);
2959 NLA_PUT_U32(skb, IPVS_DAEMON_ATTR_SYNC_ID, syncid);
2960
2961 nla_nest_end(skb, nl_daemon);
2962
2963 return 0;
2964
2965 nla_put_failure:
2966 nla_nest_cancel(skb, nl_daemon);
2967 return -EMSGSIZE;
2968 }
2969
2970 static int ip_vs_genl_dump_daemon(struct sk_buff *skb, __be32 state,
2971 const char *mcast_ifn, __be32 syncid,
2972 struct netlink_callback *cb)
2973 {
2974 void *hdr;
2975 hdr = genlmsg_put(skb, NETLINK_CB(cb->skb).pid, cb->nlh->nlmsg_seq,
2976 &ip_vs_genl_family, NLM_F_MULTI,
2977 IPVS_CMD_NEW_DAEMON);
2978 if (!hdr)
2979 return -EMSGSIZE;
2980
2981 if (ip_vs_genl_fill_daemon(skb, state, mcast_ifn, syncid))
2982 goto nla_put_failure;
2983
2984 return genlmsg_end(skb, hdr);
2985
2986 nla_put_failure:
2987 genlmsg_cancel(skb, hdr);
2988 return -EMSGSIZE;
2989 }
2990
2991 static int ip_vs_genl_dump_daemons(struct sk_buff *skb,
2992 struct netlink_callback *cb)
2993 {
2994 mutex_lock(&__ip_vs_mutex);
2995 if ((ip_vs_sync_state & IP_VS_STATE_MASTER) && !cb->args[0]) {
2996 if (ip_vs_genl_dump_daemon(skb, IP_VS_STATE_MASTER,
2997 ip_vs_master_mcast_ifn,
2998 ip_vs_master_syncid, cb) < 0)
2999 goto nla_put_failure;
3000
3001 cb->args[0] = 1;
3002 }
3003
3004 if ((ip_vs_sync_state & IP_VS_STATE_BACKUP) && !cb->args[1]) {
3005 if (ip_vs_genl_dump_daemon(skb, IP_VS_STATE_BACKUP,
3006 ip_vs_backup_mcast_ifn,
3007 ip_vs_backup_syncid, cb) < 0)
3008 goto nla_put_failure;
3009
3010 cb->args[1] = 1;
3011 }
3012
3013 nla_put_failure:
3014 mutex_unlock(&__ip_vs_mutex);
3015
3016 return skb->len;
3017 }
3018
3019 static int ip_vs_genl_new_daemon(struct nlattr **attrs)
3020 {
3021 if (!(attrs[IPVS_DAEMON_ATTR_STATE] &&
3022 attrs[IPVS_DAEMON_ATTR_MCAST_IFN] &&
3023 attrs[IPVS_DAEMON_ATTR_SYNC_ID]))
3024 return -EINVAL;
3025
3026 return start_sync_thread(nla_get_u32(attrs[IPVS_DAEMON_ATTR_STATE]),
3027 nla_data(attrs[IPVS_DAEMON_ATTR_MCAST_IFN]),
3028 nla_get_u32(attrs[IPVS_DAEMON_ATTR_SYNC_ID]));
3029 }
3030
3031 static int ip_vs_genl_del_daemon(struct nlattr **attrs)
3032 {
3033 if (!attrs[IPVS_DAEMON_ATTR_STATE])
3034 return -EINVAL;
3035
3036 return stop_sync_thread(nla_get_u32(attrs[IPVS_DAEMON_ATTR_STATE]));
3037 }
3038
3039 static int ip_vs_genl_set_config(struct nlattr **attrs)
3040 {
3041 struct ip_vs_timeout_user t;
3042
3043 __ip_vs_get_timeouts(&t);
3044
3045 if (attrs[IPVS_CMD_ATTR_TIMEOUT_TCP])
3046 t.tcp_timeout = nla_get_u32(attrs[IPVS_CMD_ATTR_TIMEOUT_TCP]);
3047
3048 if (attrs[IPVS_CMD_ATTR_TIMEOUT_TCP_FIN])
3049 t.tcp_fin_timeout =
3050 nla_get_u32(attrs[IPVS_CMD_ATTR_TIMEOUT_TCP_FIN]);
3051
3052 if (attrs[IPVS_CMD_ATTR_TIMEOUT_UDP])
3053 t.udp_timeout = nla_get_u32(attrs[IPVS_CMD_ATTR_TIMEOUT_UDP]);
3054
3055 return ip_vs_set_timeout(&t);
3056 }
3057
3058 static int ip_vs_genl_set_cmd(struct sk_buff *skb, struct genl_info *info)
3059 {
3060 struct ip_vs_service *svc = NULL;
3061 struct ip_vs_service_user_kern usvc;
3062 struct ip_vs_dest_user_kern udest;
3063 int ret = 0, cmd;
3064 int need_full_svc = 0, need_full_dest = 0;
3065
3066 cmd = info->genlhdr->cmd;
3067
3068 mutex_lock(&__ip_vs_mutex);
3069
3070 if (cmd == IPVS_CMD_FLUSH) {
3071 ret = ip_vs_flush();
3072 goto out;
3073 } else if (cmd == IPVS_CMD_SET_CONFIG) {
3074 ret = ip_vs_genl_set_config(info->attrs);
3075 goto out;
3076 } else if (cmd == IPVS_CMD_NEW_DAEMON ||
3077 cmd == IPVS_CMD_DEL_DAEMON) {
3078
3079 struct nlattr *daemon_attrs[IPVS_DAEMON_ATTR_MAX + 1];
3080
3081 if (!info->attrs[IPVS_CMD_ATTR_DAEMON] ||
3082 nla_parse_nested(daemon_attrs, IPVS_DAEMON_ATTR_MAX,
3083 info->attrs[IPVS_CMD_ATTR_DAEMON],
3084 ip_vs_daemon_policy)) {
3085 ret = -EINVAL;
3086 goto out;
3087 }
3088
3089 if (cmd == IPVS_CMD_NEW_DAEMON)
3090 ret = ip_vs_genl_new_daemon(daemon_attrs);
3091 else
3092 ret = ip_vs_genl_del_daemon(daemon_attrs);
3093 goto out;
3094 } else if (cmd == IPVS_CMD_ZERO &&
3095 !info->attrs[IPVS_CMD_ATTR_SERVICE]) {
3096 ret = ip_vs_zero_all();
3097 goto out;
3098 }
3099
3100 /* All following commands require a service argument, so check if we
3101 * received a valid one. We need a full service specification when
3102 * adding / editing a service. Only identifying members otherwise. */
3103 if (cmd == IPVS_CMD_NEW_SERVICE || cmd == IPVS_CMD_SET_SERVICE)
3104 need_full_svc = 1;
3105
3106 ret = ip_vs_genl_parse_service(&usvc,
3107 info->attrs[IPVS_CMD_ATTR_SERVICE],
3108 need_full_svc);
3109 if (ret)
3110 goto out;
3111
3112 /* Lookup the exact service by <protocol, addr, port> or fwmark */
3113 if (usvc.fwmark == 0)
3114 svc = __ip_vs_service_get(usvc.af, usvc.protocol,
3115 &usvc.addr, usvc.port);
3116 else
3117 svc = __ip_vs_svc_fwm_get(usvc.af, usvc.fwmark);
3118
3119 /* Unless we're adding a new service, the service must already exist */
3120 if ((cmd != IPVS_CMD_NEW_SERVICE) && (svc == NULL)) {
3121 ret = -ESRCH;
3122 goto out;
3123 }
3124
3125 /* Destination commands require a valid destination argument. For
3126 * adding / editing a destination, we need a full destination
3127 * specification. */
3128 if (cmd == IPVS_CMD_NEW_DEST || cmd == IPVS_CMD_SET_DEST ||
3129 cmd == IPVS_CMD_DEL_DEST) {
3130 if (cmd != IPVS_CMD_DEL_DEST)
3131 need_full_dest = 1;
3132
3133 ret = ip_vs_genl_parse_dest(&udest,
3134 info->attrs[IPVS_CMD_ATTR_DEST],
3135 need_full_dest);
3136 if (ret)
3137 goto out;
3138 }
3139
3140 switch (cmd) {
3141 case IPVS_CMD_NEW_SERVICE:
3142 if (svc == NULL)
3143 ret = ip_vs_add_service(&usvc, &svc);
3144 else
3145 ret = -EEXIST;
3146 break;
3147 case IPVS_CMD_SET_SERVICE:
3148 ret = ip_vs_edit_service(svc, &usvc);
3149 break;
3150 case IPVS_CMD_DEL_SERVICE:
3151 ret = ip_vs_del_service(svc);
3152 break;
3153 case IPVS_CMD_NEW_DEST:
3154 ret = ip_vs_add_dest(svc, &udest);
3155 break;
3156 case IPVS_CMD_SET_DEST:
3157 ret = ip_vs_edit_dest(svc, &udest);
3158 break;
3159 case IPVS_CMD_DEL_DEST:
3160 ret = ip_vs_del_dest(svc, &udest);
3161 break;
3162 case IPVS_CMD_ZERO:
3163 ret = ip_vs_zero_service(svc);
3164 break;
3165 default:
3166 ret = -EINVAL;
3167 }
3168
3169 out:
3170 if (svc)
3171 ip_vs_service_put(svc);
3172 mutex_unlock(&__ip_vs_mutex);
3173
3174 return ret;
3175 }
3176
3177 static int ip_vs_genl_get_cmd(struct sk_buff *skb, struct genl_info *info)
3178 {
3179 struct sk_buff *msg;
3180 void *reply;
3181 int ret, cmd, reply_cmd;
3182
3183 cmd = info->genlhdr->cmd;
3184
3185 if (cmd == IPVS_CMD_GET_SERVICE)
3186 reply_cmd = IPVS_CMD_NEW_SERVICE;
3187 else if (cmd == IPVS_CMD_GET_INFO)
3188 reply_cmd = IPVS_CMD_SET_INFO;
3189 else if (cmd == IPVS_CMD_GET_CONFIG)
3190 reply_cmd = IPVS_CMD_SET_CONFIG;
3191 else {
3192 pr_err("unknown Generic Netlink command\n");
3193 return -EINVAL;
3194 }
3195
3196 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, GFP_KERNEL);
3197 if (!msg)
3198 return -ENOMEM;
3199
3200 mutex_lock(&__ip_vs_mutex);
3201
3202 reply = genlmsg_put_reply(msg, info, &ip_vs_genl_family, 0, reply_cmd);
3203 if (reply == NULL)
3204 goto nla_put_failure;
3205
3206 switch (cmd) {
3207 case IPVS_CMD_GET_SERVICE:
3208 {
3209 struct ip_vs_service *svc;
3210
3211 svc = ip_vs_genl_find_service(info->attrs[IPVS_CMD_ATTR_SERVICE]);
3212 if (IS_ERR(svc)) {
3213 ret = PTR_ERR(svc);
3214 goto out_err;
3215 } else if (svc) {
3216 ret = ip_vs_genl_fill_service(msg, svc);
3217 ip_vs_service_put(svc);
3218 if (ret)
3219 goto nla_put_failure;
3220 } else {
3221 ret = -ESRCH;
3222 goto out_err;
3223 }
3224
3225 break;
3226 }
3227
3228 case IPVS_CMD_GET_CONFIG:
3229 {
3230 struct ip_vs_timeout_user t;
3231
3232 __ip_vs_get_timeouts(&t);
3233 #ifdef CONFIG_IP_VS_PROTO_TCP
3234 NLA_PUT_U32(msg, IPVS_CMD_ATTR_TIMEOUT_TCP, t.tcp_timeout);
3235 NLA_PUT_U32(msg, IPVS_CMD_ATTR_TIMEOUT_TCP_FIN,
3236 t.tcp_fin_timeout);
3237 #endif
3238 #ifdef CONFIG_IP_VS_PROTO_UDP
3239 NLA_PUT_U32(msg, IPVS_CMD_ATTR_TIMEOUT_UDP, t.udp_timeout);
3240 #endif
3241
3242 break;
3243 }
3244
3245 case IPVS_CMD_GET_INFO:
3246 NLA_PUT_U32(msg, IPVS_INFO_ATTR_VERSION, IP_VS_VERSION_CODE);
3247 NLA_PUT_U32(msg, IPVS_INFO_ATTR_CONN_TAB_SIZE,
3248 ip_vs_conn_tab_size);
3249 break;
3250 }
3251
3252 genlmsg_end(msg, reply);
3253 ret = genlmsg_reply(msg, info);
3254 goto out;
3255
3256 nla_put_failure:
3257 pr_err("not enough space in Netlink message\n");
3258 ret = -EMSGSIZE;
3259
3260 out_err:
3261 nlmsg_free(msg);
3262 out:
3263 mutex_unlock(&__ip_vs_mutex);
3264
3265 return ret;
3266 }
3267
3268
3269 static struct genl_ops ip_vs_genl_ops[] __read_mostly = {
3270 {
3271 .cmd = IPVS_CMD_NEW_SERVICE,
3272 .flags = GENL_ADMIN_PERM,
3273 .policy = ip_vs_cmd_policy,
3274 .doit = ip_vs_genl_set_cmd,
3275 },
3276 {
3277 .cmd = IPVS_CMD_SET_SERVICE,
3278 .flags = GENL_ADMIN_PERM,
3279 .policy = ip_vs_cmd_policy,
3280 .doit = ip_vs_genl_set_cmd,
3281 },
3282 {
3283 .cmd = IPVS_CMD_DEL_SERVICE,
3284 .flags = GENL_ADMIN_PERM,
3285 .policy = ip_vs_cmd_policy,
3286 .doit = ip_vs_genl_set_cmd,
3287 },
3288 {
3289 .cmd = IPVS_CMD_GET_SERVICE,
3290 .flags = GENL_ADMIN_PERM,
3291 .doit = ip_vs_genl_get_cmd,
3292 .dumpit = ip_vs_genl_dump_services,
3293 .policy = ip_vs_cmd_policy,
3294 },
3295 {
3296 .cmd = IPVS_CMD_NEW_DEST,
3297 .flags = GENL_ADMIN_PERM,
3298 .policy = ip_vs_cmd_policy,
3299 .doit = ip_vs_genl_set_cmd,
3300 },
3301 {
3302 .cmd = IPVS_CMD_SET_DEST,
3303 .flags = GENL_ADMIN_PERM,
3304 .policy = ip_vs_cmd_policy,
3305 .doit = ip_vs_genl_set_cmd,
3306 },
3307 {
3308 .cmd = IPVS_CMD_DEL_DEST,
3309 .flags = GENL_ADMIN_PERM,
3310 .policy = ip_vs_cmd_policy,
3311 .doit = ip_vs_genl_set_cmd,
3312 },
3313 {
3314 .cmd = IPVS_CMD_GET_DEST,
3315 .flags = GENL_ADMIN_PERM,
3316 .policy = ip_vs_cmd_policy,
3317 .dumpit = ip_vs_genl_dump_dests,
3318 },
3319 {
3320 .cmd = IPVS_CMD_NEW_DAEMON,
3321 .flags = GENL_ADMIN_PERM,
3322 .policy = ip_vs_cmd_policy,
3323 .doit = ip_vs_genl_set_cmd,
3324 },
3325 {
3326 .cmd = IPVS_CMD_DEL_DAEMON,
3327 .flags = GENL_ADMIN_PERM,
3328 .policy = ip_vs_cmd_policy,
3329 .doit = ip_vs_genl_set_cmd,
3330 },
3331 {
3332 .cmd = IPVS_CMD_GET_DAEMON,
3333 .flags = GENL_ADMIN_PERM,
3334 .dumpit = ip_vs_genl_dump_daemons,
3335 },
3336 {
3337 .cmd = IPVS_CMD_SET_CONFIG,
3338 .flags = GENL_ADMIN_PERM,
3339 .policy = ip_vs_cmd_policy,
3340 .doit = ip_vs_genl_set_cmd,
3341 },
3342 {
3343 .cmd = IPVS_CMD_GET_CONFIG,
3344 .flags = GENL_ADMIN_PERM,
3345 .doit = ip_vs_genl_get_cmd,
3346 },
3347 {
3348 .cmd = IPVS_CMD_GET_INFO,
3349 .flags = GENL_ADMIN_PERM,
3350 .doit = ip_vs_genl_get_cmd,
3351 },
3352 {
3353 .cmd = IPVS_CMD_ZERO,
3354 .flags = GENL_ADMIN_PERM,
3355 .policy = ip_vs_cmd_policy,
3356 .doit = ip_vs_genl_set_cmd,
3357 },
3358 {
3359 .cmd = IPVS_CMD_FLUSH,
3360 .flags = GENL_ADMIN_PERM,
3361 .doit = ip_vs_genl_set_cmd,
3362 },
3363 };
3364
3365 static int __init ip_vs_genl_register(void)
3366 {
3367 return genl_register_family_with_ops(&ip_vs_genl_family,
3368 ip_vs_genl_ops, ARRAY_SIZE(ip_vs_genl_ops));
3369 }
3370
3371 static void ip_vs_genl_unregister(void)
3372 {
3373 genl_unregister_family(&ip_vs_genl_family);
3374 }
3375
3376 /* End of Generic Netlink interface definitions */
3377
3378
3379 int __init ip_vs_control_init(void)
3380 {
3381 int ret;
3382 int idx;
3383
3384 EnterFunction(2);
3385
3386 ret = nf_register_sockopt(&ip_vs_sockopts);
3387 if (ret) {
3388 pr_err("cannot register sockopt.\n");
3389 return ret;
3390 }
3391
3392 ret = ip_vs_genl_register();
3393 if (ret) {
3394 pr_err("cannot register Generic Netlink interface.\n");
3395 nf_unregister_sockopt(&ip_vs_sockopts);
3396 return ret;
3397 }
3398
3399 proc_net_fops_create(&init_net, "ip_vs", 0, &ip_vs_info_fops);
3400 proc_net_fops_create(&init_net, "ip_vs_stats",0, &ip_vs_stats_fops);
3401
3402 sysctl_header = register_sysctl_paths(net_vs_ctl_path, vs_vars);
3403
3404 /* Initialize ip_vs_svc_table, ip_vs_svc_fwm_table, ip_vs_rtable */
3405 for(idx = 0; idx < IP_VS_SVC_TAB_SIZE; idx++) {
3406 INIT_LIST_HEAD(&ip_vs_svc_table[idx]);
3407 INIT_LIST_HEAD(&ip_vs_svc_fwm_table[idx]);
3408 }
3409 for(idx = 0; idx < IP_VS_RTAB_SIZE; idx++) {
3410 INIT_LIST_HEAD(&ip_vs_rtable[idx]);
3411 }
3412
3413 ip_vs_new_estimator(&ip_vs_stats);
3414
3415 /* Hook the defense timer */
3416 schedule_delayed_work(&defense_work, DEFENSE_TIMER_PERIOD);
3417
3418 LeaveFunction(2);
3419 return 0;
3420 }
3421
3422
3423 void ip_vs_control_cleanup(void)
3424 {
3425 EnterFunction(2);
3426 ip_vs_trash_cleanup();
3427 cancel_rearming_delayed_work(&defense_work);
3428 cancel_work_sync(&defense_work.work);
3429 ip_vs_kill_estimator(&ip_vs_stats);
3430 unregister_sysctl_table(sysctl_header);
3431 proc_net_remove(&init_net, "ip_vs_stats");
3432 proc_net_remove(&init_net, "ip_vs");
3433 ip_vs_genl_unregister();
3434 nf_unregister_sockopt(&ip_vs_sockopts);
3435 LeaveFunction(2);
3436 }