]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/netfilter/nf_conntrack_core.c
4712a90a1820ce00146ca0080aa6ce46c826331c
[mirror_ubuntu-jammy-kernel.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l4proto.h>
38 #include <net/netfilter/nf_conntrack_expect.h>
39 #include <net/netfilter/nf_conntrack_helper.h>
40 #include <net/netfilter/nf_conntrack_seqadj.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 bool exiting;
70 bool early_drop;
71 };
72
73 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
74 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
75 static __read_mostly bool nf_conntrack_locks_all;
76
77 /* serialize hash resizes and nf_ct_iterate_cleanup */
78 static DEFINE_MUTEX(nf_conntrack_mutex);
79
80 #define GC_SCAN_INTERVAL (120u * HZ)
81 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
82
83 #define MIN_CHAINLEN 8u
84 #define MAX_CHAINLEN (32u - MIN_CHAINLEN)
85
86 static struct conntrack_gc_work conntrack_gc_work;
87
88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90 /* 1) Acquire the lock */
91 spin_lock(lock);
92
93 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95 */
96 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97 return;
98
99 /* fast path failed, unlock */
100 spin_unlock(lock);
101
102 /* Slow path 1) get global lock */
103 spin_lock(&nf_conntrack_locks_all_lock);
104
105 /* Slow path 2) get the lock we want */
106 spin_lock(lock);
107
108 /* Slow path 3) release the global lock */
109 spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112
113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115 h1 %= CONNTRACK_LOCKS;
116 h2 %= CONNTRACK_LOCKS;
117 spin_unlock(&nf_conntrack_locks[h1]);
118 if (h1 != h2)
119 spin_unlock(&nf_conntrack_locks[h2]);
120 }
121
122 /* return true if we need to recompute hashes (in case hash table was resized) */
123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124 unsigned int h2, unsigned int sequence)
125 {
126 h1 %= CONNTRACK_LOCKS;
127 h2 %= CONNTRACK_LOCKS;
128 if (h1 <= h2) {
129 nf_conntrack_lock(&nf_conntrack_locks[h1]);
130 if (h1 != h2)
131 spin_lock_nested(&nf_conntrack_locks[h2],
132 SINGLE_DEPTH_NESTING);
133 } else {
134 nf_conntrack_lock(&nf_conntrack_locks[h2]);
135 spin_lock_nested(&nf_conntrack_locks[h1],
136 SINGLE_DEPTH_NESTING);
137 }
138 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139 nf_conntrack_double_unlock(h1, h2);
140 return true;
141 }
142 return false;
143 }
144
145 static void nf_conntrack_all_lock(void)
146 __acquires(&nf_conntrack_locks_all_lock)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151
152 /* For nf_contrack_locks_all, only the latest time when another
153 * CPU will see an update is controlled, by the "release" of the
154 * spin_lock below.
155 * The earliest time is not controlled, an thus KCSAN could detect
156 * a race when nf_conntract_lock() reads the variable.
157 * WRITE_ONCE() is used to ensure the compiler will not
158 * optimize the write.
159 */
160 WRITE_ONCE(nf_conntrack_locks_all, true);
161
162 for (i = 0; i < CONNTRACK_LOCKS; i++) {
163 spin_lock(&nf_conntrack_locks[i]);
164
165 /* This spin_unlock provides the "release" to ensure that
166 * nf_conntrack_locks_all==true is visible to everyone that
167 * acquired spin_lock(&nf_conntrack_locks[]).
168 */
169 spin_unlock(&nf_conntrack_locks[i]);
170 }
171 }
172
173 static void nf_conntrack_all_unlock(void)
174 __releases(&nf_conntrack_locks_all_lock)
175 {
176 /* All prior stores must be complete before we clear
177 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
178 * might observe the false value but not the entire
179 * critical section.
180 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
181 */
182 smp_store_release(&nf_conntrack_locks_all, false);
183 spin_unlock(&nf_conntrack_locks_all_lock);
184 }
185
186 unsigned int nf_conntrack_htable_size __read_mostly;
187 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
188
189 unsigned int nf_conntrack_max __read_mostly;
190 EXPORT_SYMBOL_GPL(nf_conntrack_max);
191 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
192 static siphash_key_t nf_conntrack_hash_rnd __read_mostly;
193
194 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
195 unsigned int zoneid,
196 const struct net *net)
197 {
198 struct {
199 struct nf_conntrack_man src;
200 union nf_inet_addr dst_addr;
201 unsigned int zone;
202 u32 net_mix;
203 u16 dport;
204 u16 proto;
205 } __aligned(SIPHASH_ALIGNMENT) combined;
206
207 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
208
209 memset(&combined, 0, sizeof(combined));
210
211 /* The direction must be ignored, so handle usable members manually. */
212 combined.src = tuple->src;
213 combined.dst_addr = tuple->dst.u3;
214 combined.zone = zoneid;
215 combined.net_mix = net_hash_mix(net);
216 combined.dport = (__force __u16)tuple->dst.u.all;
217 combined.proto = tuple->dst.protonum;
218
219 return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
220 }
221
222 static u32 scale_hash(u32 hash)
223 {
224 return reciprocal_scale(hash, nf_conntrack_htable_size);
225 }
226
227 static u32 __hash_conntrack(const struct net *net,
228 const struct nf_conntrack_tuple *tuple,
229 unsigned int zoneid,
230 unsigned int size)
231 {
232 return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
233 }
234
235 static u32 hash_conntrack(const struct net *net,
236 const struct nf_conntrack_tuple *tuple,
237 unsigned int zoneid)
238 {
239 return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
240 }
241
242 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
243 unsigned int dataoff,
244 struct nf_conntrack_tuple *tuple)
245 { struct {
246 __be16 sport;
247 __be16 dport;
248 } _inet_hdr, *inet_hdr;
249
250 /* Actually only need first 4 bytes to get ports. */
251 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
252 if (!inet_hdr)
253 return false;
254
255 tuple->src.u.udp.port = inet_hdr->sport;
256 tuple->dst.u.udp.port = inet_hdr->dport;
257 return true;
258 }
259
260 static bool
261 nf_ct_get_tuple(const struct sk_buff *skb,
262 unsigned int nhoff,
263 unsigned int dataoff,
264 u_int16_t l3num,
265 u_int8_t protonum,
266 struct net *net,
267 struct nf_conntrack_tuple *tuple)
268 {
269 unsigned int size;
270 const __be32 *ap;
271 __be32 _addrs[8];
272
273 memset(tuple, 0, sizeof(*tuple));
274
275 tuple->src.l3num = l3num;
276 switch (l3num) {
277 case NFPROTO_IPV4:
278 nhoff += offsetof(struct iphdr, saddr);
279 size = 2 * sizeof(__be32);
280 break;
281 case NFPROTO_IPV6:
282 nhoff += offsetof(struct ipv6hdr, saddr);
283 size = sizeof(_addrs);
284 break;
285 default:
286 return true;
287 }
288
289 ap = skb_header_pointer(skb, nhoff, size, _addrs);
290 if (!ap)
291 return false;
292
293 switch (l3num) {
294 case NFPROTO_IPV4:
295 tuple->src.u3.ip = ap[0];
296 tuple->dst.u3.ip = ap[1];
297 break;
298 case NFPROTO_IPV6:
299 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
300 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
301 break;
302 }
303
304 tuple->dst.protonum = protonum;
305 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
306
307 switch (protonum) {
308 #if IS_ENABLED(CONFIG_IPV6)
309 case IPPROTO_ICMPV6:
310 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
311 #endif
312 case IPPROTO_ICMP:
313 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
314 #ifdef CONFIG_NF_CT_PROTO_GRE
315 case IPPROTO_GRE:
316 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
317 #endif
318 case IPPROTO_TCP:
319 case IPPROTO_UDP: /* fallthrough */
320 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
321 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
322 case IPPROTO_UDPLITE:
323 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
324 #endif
325 #ifdef CONFIG_NF_CT_PROTO_SCTP
326 case IPPROTO_SCTP:
327 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
328 #endif
329 #ifdef CONFIG_NF_CT_PROTO_DCCP
330 case IPPROTO_DCCP:
331 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
332 #endif
333 default:
334 break;
335 }
336
337 return true;
338 }
339
340 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
341 u_int8_t *protonum)
342 {
343 int dataoff = -1;
344 const struct iphdr *iph;
345 struct iphdr _iph;
346
347 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
348 if (!iph)
349 return -1;
350
351 /* Conntrack defragments packets, we might still see fragments
352 * inside ICMP packets though.
353 */
354 if (iph->frag_off & htons(IP_OFFSET))
355 return -1;
356
357 dataoff = nhoff + (iph->ihl << 2);
358 *protonum = iph->protocol;
359
360 /* Check bogus IP headers */
361 if (dataoff > skb->len) {
362 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
363 nhoff, iph->ihl << 2, skb->len);
364 return -1;
365 }
366 return dataoff;
367 }
368
369 #if IS_ENABLED(CONFIG_IPV6)
370 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
371 u8 *protonum)
372 {
373 int protoff = -1;
374 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
375 __be16 frag_off;
376 u8 nexthdr;
377
378 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
379 &nexthdr, sizeof(nexthdr)) != 0) {
380 pr_debug("can't get nexthdr\n");
381 return -1;
382 }
383 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
384 /*
385 * (protoff == skb->len) means the packet has not data, just
386 * IPv6 and possibly extensions headers, but it is tracked anyway
387 */
388 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
389 pr_debug("can't find proto in pkt\n");
390 return -1;
391 }
392
393 *protonum = nexthdr;
394 return protoff;
395 }
396 #endif
397
398 static int get_l4proto(const struct sk_buff *skb,
399 unsigned int nhoff, u8 pf, u8 *l4num)
400 {
401 switch (pf) {
402 case NFPROTO_IPV4:
403 return ipv4_get_l4proto(skb, nhoff, l4num);
404 #if IS_ENABLED(CONFIG_IPV6)
405 case NFPROTO_IPV6:
406 return ipv6_get_l4proto(skb, nhoff, l4num);
407 #endif
408 default:
409 *l4num = 0;
410 break;
411 }
412 return -1;
413 }
414
415 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
416 u_int16_t l3num,
417 struct net *net, struct nf_conntrack_tuple *tuple)
418 {
419 u8 protonum;
420 int protoff;
421
422 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
423 if (protoff <= 0)
424 return false;
425
426 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
427 }
428 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
429
430 bool
431 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
432 const struct nf_conntrack_tuple *orig)
433 {
434 memset(inverse, 0, sizeof(*inverse));
435
436 inverse->src.l3num = orig->src.l3num;
437
438 switch (orig->src.l3num) {
439 case NFPROTO_IPV4:
440 inverse->src.u3.ip = orig->dst.u3.ip;
441 inverse->dst.u3.ip = orig->src.u3.ip;
442 break;
443 case NFPROTO_IPV6:
444 inverse->src.u3.in6 = orig->dst.u3.in6;
445 inverse->dst.u3.in6 = orig->src.u3.in6;
446 break;
447 default:
448 break;
449 }
450
451 inverse->dst.dir = !orig->dst.dir;
452
453 inverse->dst.protonum = orig->dst.protonum;
454
455 switch (orig->dst.protonum) {
456 case IPPROTO_ICMP:
457 return nf_conntrack_invert_icmp_tuple(inverse, orig);
458 #if IS_ENABLED(CONFIG_IPV6)
459 case IPPROTO_ICMPV6:
460 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
461 #endif
462 }
463
464 inverse->src.u.all = orig->dst.u.all;
465 inverse->dst.u.all = orig->src.u.all;
466 return true;
467 }
468 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
469
470 /* Generate a almost-unique pseudo-id for a given conntrack.
471 *
472 * intentionally doesn't re-use any of the seeds used for hash
473 * table location, we assume id gets exposed to userspace.
474 *
475 * Following nf_conn items do not change throughout lifetime
476 * of the nf_conn:
477 *
478 * 1. nf_conn address
479 * 2. nf_conn->master address (normally NULL)
480 * 3. the associated net namespace
481 * 4. the original direction tuple
482 */
483 u32 nf_ct_get_id(const struct nf_conn *ct)
484 {
485 static __read_mostly siphash_key_t ct_id_seed;
486 unsigned long a, b, c, d;
487
488 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
489
490 a = (unsigned long)ct;
491 b = (unsigned long)ct->master;
492 c = (unsigned long)nf_ct_net(ct);
493 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
494 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
495 &ct_id_seed);
496 #ifdef CONFIG_64BIT
497 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
498 #else
499 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
500 #endif
501 }
502 EXPORT_SYMBOL_GPL(nf_ct_get_id);
503
504 static void
505 clean_from_lists(struct nf_conn *ct)
506 {
507 pr_debug("clean_from_lists(%p)\n", ct);
508 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
509 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
510
511 /* Destroy all pending expectations */
512 nf_ct_remove_expectations(ct);
513 }
514
515 /* must be called with local_bh_disable */
516 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
517 {
518 struct ct_pcpu *pcpu;
519
520 /* add this conntrack to the (per cpu) dying list */
521 ct->cpu = smp_processor_id();
522 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
523
524 spin_lock(&pcpu->lock);
525 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
526 &pcpu->dying);
527 spin_unlock(&pcpu->lock);
528 }
529
530 /* must be called with local_bh_disable */
531 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
532 {
533 struct ct_pcpu *pcpu;
534
535 /* add this conntrack to the (per cpu) unconfirmed list */
536 ct->cpu = smp_processor_id();
537 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
538
539 spin_lock(&pcpu->lock);
540 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
541 &pcpu->unconfirmed);
542 spin_unlock(&pcpu->lock);
543 }
544
545 /* must be called with local_bh_disable */
546 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
547 {
548 struct ct_pcpu *pcpu;
549
550 /* We overload first tuple to link into unconfirmed or dying list.*/
551 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
552
553 spin_lock(&pcpu->lock);
554 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
555 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
556 spin_unlock(&pcpu->lock);
557 }
558
559 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
560
561 /* Released via destroy_conntrack() */
562 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
563 const struct nf_conntrack_zone *zone,
564 gfp_t flags)
565 {
566 struct nf_conn *tmpl, *p;
567
568 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
569 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
570 if (!tmpl)
571 return NULL;
572
573 p = tmpl;
574 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
575 if (tmpl != p) {
576 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
577 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
578 }
579 } else {
580 tmpl = kzalloc(sizeof(*tmpl), flags);
581 if (!tmpl)
582 return NULL;
583 }
584
585 tmpl->status = IPS_TEMPLATE;
586 write_pnet(&tmpl->ct_net, net);
587 nf_ct_zone_add(tmpl, zone);
588 atomic_set(&tmpl->ct_general.use, 0);
589
590 return tmpl;
591 }
592 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
593
594 void nf_ct_tmpl_free(struct nf_conn *tmpl)
595 {
596 nf_ct_ext_destroy(tmpl);
597
598 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
599 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
600 else
601 kfree(tmpl);
602 }
603 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
604
605 static void destroy_gre_conntrack(struct nf_conn *ct)
606 {
607 #ifdef CONFIG_NF_CT_PROTO_GRE
608 struct nf_conn *master = ct->master;
609
610 if (master)
611 nf_ct_gre_keymap_destroy(master);
612 #endif
613 }
614
615 static void
616 destroy_conntrack(struct nf_conntrack *nfct)
617 {
618 struct nf_conn *ct = (struct nf_conn *)nfct;
619
620 pr_debug("destroy_conntrack(%p)\n", ct);
621 WARN_ON(atomic_read(&nfct->use) != 0);
622
623 if (unlikely(nf_ct_is_template(ct))) {
624 nf_ct_tmpl_free(ct);
625 return;
626 }
627
628 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
629 destroy_gre_conntrack(ct);
630
631 local_bh_disable();
632 /* Expectations will have been removed in clean_from_lists,
633 * except TFTP can create an expectation on the first packet,
634 * before connection is in the list, so we need to clean here,
635 * too.
636 */
637 nf_ct_remove_expectations(ct);
638
639 nf_ct_del_from_dying_or_unconfirmed_list(ct);
640
641 local_bh_enable();
642
643 if (ct->master)
644 nf_ct_put(ct->master);
645
646 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
647 nf_conntrack_free(ct);
648 }
649
650 static void nf_ct_delete_from_lists(struct nf_conn *ct)
651 {
652 struct net *net = nf_ct_net(ct);
653 unsigned int hash, reply_hash;
654 unsigned int sequence;
655
656 nf_ct_helper_destroy(ct);
657
658 local_bh_disable();
659 do {
660 sequence = read_seqcount_begin(&nf_conntrack_generation);
661 hash = hash_conntrack(net,
662 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
663 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
664 reply_hash = hash_conntrack(net,
665 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
666 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
667 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
668
669 clean_from_lists(ct);
670 nf_conntrack_double_unlock(hash, reply_hash);
671
672 nf_ct_add_to_dying_list(ct);
673
674 local_bh_enable();
675 }
676
677 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
678 {
679 struct nf_conn_tstamp *tstamp;
680 struct net *net;
681
682 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
683 return false;
684
685 tstamp = nf_conn_tstamp_find(ct);
686 if (tstamp) {
687 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
688
689 tstamp->stop = ktime_get_real_ns();
690 if (timeout < 0)
691 tstamp->stop -= jiffies_to_nsecs(-timeout);
692 }
693
694 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
695 portid, report) < 0) {
696 /* destroy event was not delivered. nf_ct_put will
697 * be done by event cache worker on redelivery.
698 */
699 nf_ct_delete_from_lists(ct);
700 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
701 return false;
702 }
703
704 net = nf_ct_net(ct);
705 if (nf_conntrack_ecache_dwork_pending(net))
706 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
707 nf_ct_delete_from_lists(ct);
708 nf_ct_put(ct);
709 return true;
710 }
711 EXPORT_SYMBOL_GPL(nf_ct_delete);
712
713 static inline bool
714 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
715 const struct nf_conntrack_tuple *tuple,
716 const struct nf_conntrack_zone *zone,
717 const struct net *net)
718 {
719 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
720
721 /* A conntrack can be recreated with the equal tuple,
722 * so we need to check that the conntrack is confirmed
723 */
724 return nf_ct_tuple_equal(tuple, &h->tuple) &&
725 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
726 nf_ct_is_confirmed(ct) &&
727 net_eq(net, nf_ct_net(ct));
728 }
729
730 static inline bool
731 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
732 {
733 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
734 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
735 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
736 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
737 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
738 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
739 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
740 }
741
742 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
743 static void nf_ct_gc_expired(struct nf_conn *ct)
744 {
745 if (!atomic_inc_not_zero(&ct->ct_general.use))
746 return;
747
748 if (nf_ct_should_gc(ct))
749 nf_ct_kill(ct);
750
751 nf_ct_put(ct);
752 }
753
754 /*
755 * Warning :
756 * - Caller must take a reference on returned object
757 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
758 */
759 static struct nf_conntrack_tuple_hash *
760 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
761 const struct nf_conntrack_tuple *tuple, u32 hash)
762 {
763 struct nf_conntrack_tuple_hash *h;
764 struct hlist_nulls_head *ct_hash;
765 struct hlist_nulls_node *n;
766 unsigned int bucket, hsize;
767
768 begin:
769 nf_conntrack_get_ht(&ct_hash, &hsize);
770 bucket = reciprocal_scale(hash, hsize);
771
772 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
773 struct nf_conn *ct;
774
775 ct = nf_ct_tuplehash_to_ctrack(h);
776 if (nf_ct_is_expired(ct)) {
777 nf_ct_gc_expired(ct);
778 continue;
779 }
780
781 if (nf_ct_key_equal(h, tuple, zone, net))
782 return h;
783 }
784 /*
785 * if the nulls value we got at the end of this lookup is
786 * not the expected one, we must restart lookup.
787 * We probably met an item that was moved to another chain.
788 */
789 if (get_nulls_value(n) != bucket) {
790 NF_CT_STAT_INC_ATOMIC(net, search_restart);
791 goto begin;
792 }
793
794 return NULL;
795 }
796
797 /* Find a connection corresponding to a tuple. */
798 static struct nf_conntrack_tuple_hash *
799 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
800 const struct nf_conntrack_tuple *tuple, u32 hash)
801 {
802 struct nf_conntrack_tuple_hash *h;
803 struct nf_conn *ct;
804
805 rcu_read_lock();
806
807 h = ____nf_conntrack_find(net, zone, tuple, hash);
808 if (h) {
809 /* We have a candidate that matches the tuple we're interested
810 * in, try to obtain a reference and re-check tuple
811 */
812 ct = nf_ct_tuplehash_to_ctrack(h);
813 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
814 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
815 goto found;
816
817 /* TYPESAFE_BY_RCU recycled the candidate */
818 nf_ct_put(ct);
819 }
820
821 h = NULL;
822 }
823 found:
824 rcu_read_unlock();
825
826 return h;
827 }
828
829 struct nf_conntrack_tuple_hash *
830 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
831 const struct nf_conntrack_tuple *tuple)
832 {
833 unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
834 struct nf_conntrack_tuple_hash *thash;
835
836 thash = __nf_conntrack_find_get(net, zone, tuple,
837 hash_conntrack_raw(tuple, zone_id, net));
838
839 if (thash)
840 return thash;
841
842 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
843 if (rid != zone_id)
844 return __nf_conntrack_find_get(net, zone, tuple,
845 hash_conntrack_raw(tuple, rid, net));
846 return thash;
847 }
848 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
849
850 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
851 unsigned int hash,
852 unsigned int reply_hash)
853 {
854 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
855 &nf_conntrack_hash[hash]);
856 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
857 &nf_conntrack_hash[reply_hash]);
858 }
859
860 int
861 nf_conntrack_hash_check_insert(struct nf_conn *ct)
862 {
863 const struct nf_conntrack_zone *zone;
864 struct net *net = nf_ct_net(ct);
865 unsigned int hash, reply_hash;
866 struct nf_conntrack_tuple_hash *h;
867 struct hlist_nulls_node *n;
868 unsigned int max_chainlen;
869 unsigned int chainlen = 0;
870 unsigned int sequence;
871 int err = -EEXIST;
872
873 zone = nf_ct_zone(ct);
874
875 local_bh_disable();
876 do {
877 sequence = read_seqcount_begin(&nf_conntrack_generation);
878 hash = hash_conntrack(net,
879 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
880 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
881 reply_hash = hash_conntrack(net,
882 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
883 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
884 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
885
886 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
887
888 /* See if there's one in the list already, including reverse */
889 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
890 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
891 zone, net))
892 goto out;
893
894 if (chainlen++ > max_chainlen)
895 goto chaintoolong;
896 }
897
898 chainlen = 0;
899
900 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
901 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
902 zone, net))
903 goto out;
904 if (chainlen++ > max_chainlen)
905 goto chaintoolong;
906 }
907
908 smp_wmb();
909 /* The caller holds a reference to this object */
910 atomic_set(&ct->ct_general.use, 2);
911 __nf_conntrack_hash_insert(ct, hash, reply_hash);
912 nf_conntrack_double_unlock(hash, reply_hash);
913 NF_CT_STAT_INC(net, insert);
914 local_bh_enable();
915 return 0;
916 chaintoolong:
917 NF_CT_STAT_INC(net, chaintoolong);
918 err = -ENOSPC;
919 out:
920 nf_conntrack_double_unlock(hash, reply_hash);
921 local_bh_enable();
922 return err;
923 }
924 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
925
926 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
927 unsigned int bytes)
928 {
929 struct nf_conn_acct *acct;
930
931 acct = nf_conn_acct_find(ct);
932 if (acct) {
933 struct nf_conn_counter *counter = acct->counter;
934
935 atomic64_add(packets, &counter[dir].packets);
936 atomic64_add(bytes, &counter[dir].bytes);
937 }
938 }
939 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
940
941 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
942 const struct nf_conn *loser_ct)
943 {
944 struct nf_conn_acct *acct;
945
946 acct = nf_conn_acct_find(loser_ct);
947 if (acct) {
948 struct nf_conn_counter *counter = acct->counter;
949 unsigned int bytes;
950
951 /* u32 should be fine since we must have seen one packet. */
952 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
953 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
954 }
955 }
956
957 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
958 {
959 struct nf_conn_tstamp *tstamp;
960
961 atomic_inc(&ct->ct_general.use);
962 ct->status |= IPS_CONFIRMED;
963
964 /* set conntrack timestamp, if enabled. */
965 tstamp = nf_conn_tstamp_find(ct);
966 if (tstamp)
967 tstamp->start = ktime_get_real_ns();
968 }
969
970 /* caller must hold locks to prevent concurrent changes */
971 static int __nf_ct_resolve_clash(struct sk_buff *skb,
972 struct nf_conntrack_tuple_hash *h)
973 {
974 /* This is the conntrack entry already in hashes that won race. */
975 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
976 enum ip_conntrack_info ctinfo;
977 struct nf_conn *loser_ct;
978
979 loser_ct = nf_ct_get(skb, &ctinfo);
980
981 if (nf_ct_is_dying(ct))
982 return NF_DROP;
983
984 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
985 nf_ct_match(ct, loser_ct)) {
986 struct net *net = nf_ct_net(ct);
987
988 nf_conntrack_get(&ct->ct_general);
989
990 nf_ct_acct_merge(ct, ctinfo, loser_ct);
991 nf_ct_add_to_dying_list(loser_ct);
992 nf_conntrack_put(&loser_ct->ct_general);
993 nf_ct_set(skb, ct, ctinfo);
994
995 NF_CT_STAT_INC(net, clash_resolve);
996 return NF_ACCEPT;
997 }
998
999 return NF_DROP;
1000 }
1001
1002 /**
1003 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1004 *
1005 * @skb: skb that causes the collision
1006 * @repl_idx: hash slot for reply direction
1007 *
1008 * Called when origin or reply direction had a clash.
1009 * The skb can be handled without packet drop provided the reply direction
1010 * is unique or there the existing entry has the identical tuple in both
1011 * directions.
1012 *
1013 * Caller must hold conntrack table locks to prevent concurrent updates.
1014 *
1015 * Returns NF_DROP if the clash could not be handled.
1016 */
1017 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1018 {
1019 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1020 const struct nf_conntrack_zone *zone;
1021 struct nf_conntrack_tuple_hash *h;
1022 struct hlist_nulls_node *n;
1023 struct net *net;
1024
1025 zone = nf_ct_zone(loser_ct);
1026 net = nf_ct_net(loser_ct);
1027
1028 /* Reply direction must never result in a clash, unless both origin
1029 * and reply tuples are identical.
1030 */
1031 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1032 if (nf_ct_key_equal(h,
1033 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1034 zone, net))
1035 return __nf_ct_resolve_clash(skb, h);
1036 }
1037
1038 /* We want the clashing entry to go away real soon: 1 second timeout. */
1039 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1040
1041 /* IPS_NAT_CLASH removes the entry automatically on the first
1042 * reply. Also prevents UDP tracker from moving the entry to
1043 * ASSURED state, i.e. the entry can always be evicted under
1044 * pressure.
1045 */
1046 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1047
1048 __nf_conntrack_insert_prepare(loser_ct);
1049
1050 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1051 * already in the table. This also hides the clashing entry from
1052 * ctnetlink iteration, i.e. conntrack -L won't show them.
1053 */
1054 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1055
1056 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1057 &nf_conntrack_hash[repl_idx]);
1058
1059 NF_CT_STAT_INC(net, clash_resolve);
1060 return NF_ACCEPT;
1061 }
1062
1063 /**
1064 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1065 *
1066 * @skb: skb that causes the clash
1067 * @h: tuplehash of the clashing entry already in table
1068 * @reply_hash: hash slot for reply direction
1069 *
1070 * A conntrack entry can be inserted to the connection tracking table
1071 * if there is no existing entry with an identical tuple.
1072 *
1073 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1074 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1075 * will find the already-existing entry.
1076 *
1077 * The major problem with such packet drop is the extra delay added by
1078 * the packet loss -- it will take some time for a retransmit to occur
1079 * (or the sender to time out when waiting for a reply).
1080 *
1081 * This function attempts to handle the situation without packet drop.
1082 *
1083 * If @skb has no NAT transformation or if the colliding entries are
1084 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1085 * and @skb is associated with the conntrack entry already in the table.
1086 *
1087 * Failing that, the new, unconfirmed conntrack is still added to the table
1088 * provided that the collision only occurs in the ORIGINAL direction.
1089 * The new entry will be added only in the non-clashing REPLY direction,
1090 * so packets in the ORIGINAL direction will continue to match the existing
1091 * entry. The new entry will also have a fixed timeout so it expires --
1092 * due to the collision, it will only see reply traffic.
1093 *
1094 * Returns NF_DROP if the clash could not be resolved.
1095 */
1096 static __cold noinline int
1097 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1098 u32 reply_hash)
1099 {
1100 /* This is the conntrack entry already in hashes that won race. */
1101 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1102 const struct nf_conntrack_l4proto *l4proto;
1103 enum ip_conntrack_info ctinfo;
1104 struct nf_conn *loser_ct;
1105 struct net *net;
1106 int ret;
1107
1108 loser_ct = nf_ct_get(skb, &ctinfo);
1109 net = nf_ct_net(loser_ct);
1110
1111 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1112 if (!l4proto->allow_clash)
1113 goto drop;
1114
1115 ret = __nf_ct_resolve_clash(skb, h);
1116 if (ret == NF_ACCEPT)
1117 return ret;
1118
1119 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1120 if (ret == NF_ACCEPT)
1121 return ret;
1122
1123 drop:
1124 nf_ct_add_to_dying_list(loser_ct);
1125 NF_CT_STAT_INC(net, drop);
1126 NF_CT_STAT_INC(net, insert_failed);
1127 return NF_DROP;
1128 }
1129
1130 /* Confirm a connection given skb; places it in hash table */
1131 int
1132 __nf_conntrack_confirm(struct sk_buff *skb)
1133 {
1134 unsigned int chainlen = 0, sequence, max_chainlen;
1135 const struct nf_conntrack_zone *zone;
1136 unsigned int hash, reply_hash;
1137 struct nf_conntrack_tuple_hash *h;
1138 struct nf_conn *ct;
1139 struct nf_conn_help *help;
1140 struct hlist_nulls_node *n;
1141 enum ip_conntrack_info ctinfo;
1142 struct net *net;
1143 int ret = NF_DROP;
1144
1145 ct = nf_ct_get(skb, &ctinfo);
1146 net = nf_ct_net(ct);
1147
1148 /* ipt_REJECT uses nf_conntrack_attach to attach related
1149 ICMP/TCP RST packets in other direction. Actual packet
1150 which created connection will be IP_CT_NEW or for an
1151 expected connection, IP_CT_RELATED. */
1152 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1153 return NF_ACCEPT;
1154
1155 zone = nf_ct_zone(ct);
1156 local_bh_disable();
1157
1158 do {
1159 sequence = read_seqcount_begin(&nf_conntrack_generation);
1160 /* reuse the hash saved before */
1161 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1162 hash = scale_hash(hash);
1163 reply_hash = hash_conntrack(net,
1164 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1165 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1166 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1167
1168 /* We're not in hash table, and we refuse to set up related
1169 * connections for unconfirmed conns. But packet copies and
1170 * REJECT will give spurious warnings here.
1171 */
1172
1173 /* Another skb with the same unconfirmed conntrack may
1174 * win the race. This may happen for bridge(br_flood)
1175 * or broadcast/multicast packets do skb_clone with
1176 * unconfirmed conntrack.
1177 */
1178 if (unlikely(nf_ct_is_confirmed(ct))) {
1179 WARN_ON_ONCE(1);
1180 nf_conntrack_double_unlock(hash, reply_hash);
1181 local_bh_enable();
1182 return NF_DROP;
1183 }
1184
1185 pr_debug("Confirming conntrack %p\n", ct);
1186 /* We have to check the DYING flag after unlink to prevent
1187 * a race against nf_ct_get_next_corpse() possibly called from
1188 * user context, else we insert an already 'dead' hash, blocking
1189 * further use of that particular connection -JM.
1190 */
1191 nf_ct_del_from_dying_or_unconfirmed_list(ct);
1192
1193 if (unlikely(nf_ct_is_dying(ct))) {
1194 nf_ct_add_to_dying_list(ct);
1195 NF_CT_STAT_INC(net, insert_failed);
1196 goto dying;
1197 }
1198
1199 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1200 /* See if there's one in the list already, including reverse:
1201 NAT could have grabbed it without realizing, since we're
1202 not in the hash. If there is, we lost race. */
1203 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1204 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1205 zone, net))
1206 goto out;
1207 if (chainlen++ > max_chainlen)
1208 goto chaintoolong;
1209 }
1210
1211 chainlen = 0;
1212 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1213 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1214 zone, net))
1215 goto out;
1216 if (chainlen++ > max_chainlen) {
1217 chaintoolong:
1218 nf_ct_add_to_dying_list(ct);
1219 NF_CT_STAT_INC(net, chaintoolong);
1220 NF_CT_STAT_INC(net, insert_failed);
1221 ret = NF_DROP;
1222 goto dying;
1223 }
1224 }
1225
1226 /* Timer relative to confirmation time, not original
1227 setting time, otherwise we'd get timer wrap in
1228 weird delay cases. */
1229 ct->timeout += nfct_time_stamp;
1230
1231 __nf_conntrack_insert_prepare(ct);
1232
1233 /* Since the lookup is lockless, hash insertion must be done after
1234 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1235 * guarantee that no other CPU can find the conntrack before the above
1236 * stores are visible.
1237 */
1238 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1239 nf_conntrack_double_unlock(hash, reply_hash);
1240 local_bh_enable();
1241
1242 help = nfct_help(ct);
1243 if (help && help->helper)
1244 nf_conntrack_event_cache(IPCT_HELPER, ct);
1245
1246 nf_conntrack_event_cache(master_ct(ct) ?
1247 IPCT_RELATED : IPCT_NEW, ct);
1248 return NF_ACCEPT;
1249
1250 out:
1251 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1252 dying:
1253 nf_conntrack_double_unlock(hash, reply_hash);
1254 local_bh_enable();
1255 return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1258
1259 /* Returns true if a connection correspondings to the tuple (required
1260 for NAT). */
1261 int
1262 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1263 const struct nf_conn *ignored_conntrack)
1264 {
1265 struct net *net = nf_ct_net(ignored_conntrack);
1266 const struct nf_conntrack_zone *zone;
1267 struct nf_conntrack_tuple_hash *h;
1268 struct hlist_nulls_head *ct_hash;
1269 unsigned int hash, hsize;
1270 struct hlist_nulls_node *n;
1271 struct nf_conn *ct;
1272
1273 zone = nf_ct_zone(ignored_conntrack);
1274
1275 rcu_read_lock();
1276 begin:
1277 nf_conntrack_get_ht(&ct_hash, &hsize);
1278 hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1279
1280 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1281 ct = nf_ct_tuplehash_to_ctrack(h);
1282
1283 if (ct == ignored_conntrack)
1284 continue;
1285
1286 if (nf_ct_is_expired(ct)) {
1287 nf_ct_gc_expired(ct);
1288 continue;
1289 }
1290
1291 if (nf_ct_key_equal(h, tuple, zone, net)) {
1292 /* Tuple is taken already, so caller will need to find
1293 * a new source port to use.
1294 *
1295 * Only exception:
1296 * If the *original tuples* are identical, then both
1297 * conntracks refer to the same flow.
1298 * This is a rare situation, it can occur e.g. when
1299 * more than one UDP packet is sent from same socket
1300 * in different threads.
1301 *
1302 * Let nf_ct_resolve_clash() deal with this later.
1303 */
1304 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1305 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1306 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1307 continue;
1308
1309 NF_CT_STAT_INC_ATOMIC(net, found);
1310 rcu_read_unlock();
1311 return 1;
1312 }
1313 }
1314
1315 if (get_nulls_value(n) != hash) {
1316 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1317 goto begin;
1318 }
1319
1320 rcu_read_unlock();
1321
1322 return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1325
1326 #define NF_CT_EVICTION_RANGE 8
1327
1328 /* There's a small race here where we may free a just-assured
1329 connection. Too bad: we're in trouble anyway. */
1330 static unsigned int early_drop_list(struct net *net,
1331 struct hlist_nulls_head *head)
1332 {
1333 struct nf_conntrack_tuple_hash *h;
1334 struct hlist_nulls_node *n;
1335 unsigned int drops = 0;
1336 struct nf_conn *tmp;
1337
1338 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1339 tmp = nf_ct_tuplehash_to_ctrack(h);
1340
1341 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1342 continue;
1343
1344 if (nf_ct_is_expired(tmp)) {
1345 nf_ct_gc_expired(tmp);
1346 continue;
1347 }
1348
1349 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1350 !net_eq(nf_ct_net(tmp), net) ||
1351 nf_ct_is_dying(tmp))
1352 continue;
1353
1354 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1355 continue;
1356
1357 /* kill only if still in same netns -- might have moved due to
1358 * SLAB_TYPESAFE_BY_RCU rules.
1359 *
1360 * We steal the timer reference. If that fails timer has
1361 * already fired or someone else deleted it. Just drop ref
1362 * and move to next entry.
1363 */
1364 if (net_eq(nf_ct_net(tmp), net) &&
1365 nf_ct_is_confirmed(tmp) &&
1366 nf_ct_delete(tmp, 0, 0))
1367 drops++;
1368
1369 nf_ct_put(tmp);
1370 }
1371
1372 return drops;
1373 }
1374
1375 static noinline int early_drop(struct net *net, unsigned int hash)
1376 {
1377 unsigned int i, bucket;
1378
1379 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1380 struct hlist_nulls_head *ct_hash;
1381 unsigned int hsize, drops;
1382
1383 rcu_read_lock();
1384 nf_conntrack_get_ht(&ct_hash, &hsize);
1385 if (!i)
1386 bucket = reciprocal_scale(hash, hsize);
1387 else
1388 bucket = (bucket + 1) % hsize;
1389
1390 drops = early_drop_list(net, &ct_hash[bucket]);
1391 rcu_read_unlock();
1392
1393 if (drops) {
1394 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1395 return true;
1396 }
1397 }
1398
1399 return false;
1400 }
1401
1402 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1403 {
1404 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1405 }
1406
1407 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1408 {
1409 const struct nf_conntrack_l4proto *l4proto;
1410
1411 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1412 return true;
1413
1414 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1415 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1416 return true;
1417
1418 return false;
1419 }
1420
1421 static void gc_worker(struct work_struct *work)
1422 {
1423 unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1424 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1425 unsigned long next_run = GC_SCAN_INTERVAL;
1426 struct conntrack_gc_work *gc_work;
1427 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1428
1429 i = gc_work->next_bucket;
1430 if (gc_work->early_drop)
1431 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1432
1433 do {
1434 struct nf_conntrack_tuple_hash *h;
1435 struct hlist_nulls_head *ct_hash;
1436 struct hlist_nulls_node *n;
1437 struct nf_conn *tmp;
1438
1439 rcu_read_lock();
1440
1441 nf_conntrack_get_ht(&ct_hash, &hashsz);
1442 if (i >= hashsz) {
1443 rcu_read_unlock();
1444 break;
1445 }
1446
1447 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1448 struct nf_conntrack_net *cnet;
1449 struct net *net;
1450
1451 tmp = nf_ct_tuplehash_to_ctrack(h);
1452
1453 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1454 nf_ct_offload_timeout(tmp);
1455 continue;
1456 }
1457
1458 if (nf_ct_is_expired(tmp)) {
1459 nf_ct_gc_expired(tmp);
1460 continue;
1461 }
1462
1463 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1464 continue;
1465
1466 net = nf_ct_net(tmp);
1467 cnet = nf_ct_pernet(net);
1468 if (atomic_read(&cnet->count) < nf_conntrack_max95)
1469 continue;
1470
1471 /* need to take reference to avoid possible races */
1472 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1473 continue;
1474
1475 if (gc_worker_skip_ct(tmp)) {
1476 nf_ct_put(tmp);
1477 continue;
1478 }
1479
1480 if (gc_worker_can_early_drop(tmp))
1481 nf_ct_kill(tmp);
1482
1483 nf_ct_put(tmp);
1484 }
1485
1486 /* could check get_nulls_value() here and restart if ct
1487 * was moved to another chain. But given gc is best-effort
1488 * we will just continue with next hash slot.
1489 */
1490 rcu_read_unlock();
1491 cond_resched();
1492 i++;
1493
1494 if (time_after(jiffies, end_time) && i < hashsz) {
1495 gc_work->next_bucket = i;
1496 next_run = 0;
1497 break;
1498 }
1499 } while (i < hashsz);
1500
1501 if (gc_work->exiting)
1502 return;
1503
1504 /*
1505 * Eviction will normally happen from the packet path, and not
1506 * from this gc worker.
1507 *
1508 * This worker is only here to reap expired entries when system went
1509 * idle after a busy period.
1510 */
1511 if (next_run) {
1512 gc_work->early_drop = false;
1513 gc_work->next_bucket = 0;
1514 }
1515 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1516 }
1517
1518 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1519 {
1520 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1521 gc_work->exiting = false;
1522 }
1523
1524 static struct nf_conn *
1525 __nf_conntrack_alloc(struct net *net,
1526 const struct nf_conntrack_zone *zone,
1527 const struct nf_conntrack_tuple *orig,
1528 const struct nf_conntrack_tuple *repl,
1529 gfp_t gfp, u32 hash)
1530 {
1531 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1532 unsigned int ct_count;
1533 struct nf_conn *ct;
1534
1535 /* We don't want any race condition at early drop stage */
1536 ct_count = atomic_inc_return(&cnet->count);
1537
1538 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1539 if (!early_drop(net, hash)) {
1540 if (!conntrack_gc_work.early_drop)
1541 conntrack_gc_work.early_drop = true;
1542 atomic_dec(&cnet->count);
1543 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1544 return ERR_PTR(-ENOMEM);
1545 }
1546 }
1547
1548 /*
1549 * Do not use kmem_cache_zalloc(), as this cache uses
1550 * SLAB_TYPESAFE_BY_RCU.
1551 */
1552 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1553 if (ct == NULL)
1554 goto out;
1555
1556 spin_lock_init(&ct->lock);
1557 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1558 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1559 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1560 /* save hash for reusing when confirming */
1561 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1562 ct->status = 0;
1563 WRITE_ONCE(ct->timeout, 0);
1564 write_pnet(&ct->ct_net, net);
1565 memset(&ct->__nfct_init_offset, 0,
1566 offsetof(struct nf_conn, proto) -
1567 offsetof(struct nf_conn, __nfct_init_offset));
1568
1569 nf_ct_zone_add(ct, zone);
1570
1571 /* Because we use RCU lookups, we set ct_general.use to zero before
1572 * this is inserted in any list.
1573 */
1574 atomic_set(&ct->ct_general.use, 0);
1575 return ct;
1576 out:
1577 atomic_dec(&cnet->count);
1578 return ERR_PTR(-ENOMEM);
1579 }
1580
1581 struct nf_conn *nf_conntrack_alloc(struct net *net,
1582 const struct nf_conntrack_zone *zone,
1583 const struct nf_conntrack_tuple *orig,
1584 const struct nf_conntrack_tuple *repl,
1585 gfp_t gfp)
1586 {
1587 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1588 }
1589 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1590
1591 void nf_conntrack_free(struct nf_conn *ct)
1592 {
1593 struct net *net = nf_ct_net(ct);
1594 struct nf_conntrack_net *cnet;
1595
1596 /* A freed object has refcnt == 0, that's
1597 * the golden rule for SLAB_TYPESAFE_BY_RCU
1598 */
1599 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1600
1601 nf_ct_ext_destroy(ct);
1602 kmem_cache_free(nf_conntrack_cachep, ct);
1603 cnet = nf_ct_pernet(net);
1604
1605 smp_mb__before_atomic();
1606 atomic_dec(&cnet->count);
1607 }
1608 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1609
1610
1611 /* Allocate a new conntrack: we return -ENOMEM if classification
1612 failed due to stress. Otherwise it really is unclassifiable. */
1613 static noinline struct nf_conntrack_tuple_hash *
1614 init_conntrack(struct net *net, struct nf_conn *tmpl,
1615 const struct nf_conntrack_tuple *tuple,
1616 struct sk_buff *skb,
1617 unsigned int dataoff, u32 hash)
1618 {
1619 struct nf_conn *ct;
1620 struct nf_conn_help *help;
1621 struct nf_conntrack_tuple repl_tuple;
1622 struct nf_conntrack_ecache *ecache;
1623 struct nf_conntrack_expect *exp = NULL;
1624 const struct nf_conntrack_zone *zone;
1625 struct nf_conn_timeout *timeout_ext;
1626 struct nf_conntrack_zone tmp;
1627 struct nf_conntrack_net *cnet;
1628
1629 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1630 pr_debug("Can't invert tuple.\n");
1631 return NULL;
1632 }
1633
1634 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1635 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1636 hash);
1637 if (IS_ERR(ct))
1638 return (struct nf_conntrack_tuple_hash *)ct;
1639
1640 if (!nf_ct_add_synproxy(ct, tmpl)) {
1641 nf_conntrack_free(ct);
1642 return ERR_PTR(-ENOMEM);
1643 }
1644
1645 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1646
1647 if (timeout_ext)
1648 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1649 GFP_ATOMIC);
1650
1651 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1652 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1653 nf_ct_labels_ext_add(ct);
1654
1655 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1656 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1657 ecache ? ecache->expmask : 0,
1658 GFP_ATOMIC);
1659
1660 local_bh_disable();
1661 cnet = nf_ct_pernet(net);
1662 if (cnet->expect_count) {
1663 spin_lock(&nf_conntrack_expect_lock);
1664 exp = nf_ct_find_expectation(net, zone, tuple);
1665 if (exp) {
1666 pr_debug("expectation arrives ct=%p exp=%p\n",
1667 ct, exp);
1668 /* Welcome, Mr. Bond. We've been expecting you... */
1669 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1670 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1671 ct->master = exp->master;
1672 if (exp->helper) {
1673 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1674 if (help)
1675 rcu_assign_pointer(help->helper, exp->helper);
1676 }
1677
1678 #ifdef CONFIG_NF_CONNTRACK_MARK
1679 ct->mark = exp->master->mark;
1680 #endif
1681 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1682 ct->secmark = exp->master->secmark;
1683 #endif
1684 NF_CT_STAT_INC(net, expect_new);
1685 }
1686 spin_unlock(&nf_conntrack_expect_lock);
1687 }
1688 if (!exp)
1689 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1690
1691 /* Now it is inserted into the unconfirmed list, bump refcount */
1692 nf_conntrack_get(&ct->ct_general);
1693 nf_ct_add_to_unconfirmed_list(ct);
1694
1695 local_bh_enable();
1696
1697 if (exp) {
1698 if (exp->expectfn)
1699 exp->expectfn(ct, exp);
1700 nf_ct_expect_put(exp);
1701 }
1702
1703 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1704 }
1705
1706 /* On success, returns 0, sets skb->_nfct | ctinfo */
1707 static int
1708 resolve_normal_ct(struct nf_conn *tmpl,
1709 struct sk_buff *skb,
1710 unsigned int dataoff,
1711 u_int8_t protonum,
1712 const struct nf_hook_state *state)
1713 {
1714 const struct nf_conntrack_zone *zone;
1715 struct nf_conntrack_tuple tuple;
1716 struct nf_conntrack_tuple_hash *h;
1717 enum ip_conntrack_info ctinfo;
1718 struct nf_conntrack_zone tmp;
1719 u32 hash, zone_id, rid;
1720 struct nf_conn *ct;
1721
1722 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1723 dataoff, state->pf, protonum, state->net,
1724 &tuple)) {
1725 pr_debug("Can't get tuple\n");
1726 return 0;
1727 }
1728
1729 /* look for tuple match */
1730 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1731
1732 zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1733 hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1734 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1735
1736 if (!h) {
1737 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1738 if (zone_id != rid) {
1739 u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1740
1741 h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1742 }
1743 }
1744
1745 if (!h) {
1746 h = init_conntrack(state->net, tmpl, &tuple,
1747 skb, dataoff, hash);
1748 if (!h)
1749 return 0;
1750 if (IS_ERR(h))
1751 return PTR_ERR(h);
1752 }
1753 ct = nf_ct_tuplehash_to_ctrack(h);
1754
1755 /* It exists; we have (non-exclusive) reference. */
1756 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1757 ctinfo = IP_CT_ESTABLISHED_REPLY;
1758 } else {
1759 /* Once we've had two way comms, always ESTABLISHED. */
1760 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1761 pr_debug("normal packet for %p\n", ct);
1762 ctinfo = IP_CT_ESTABLISHED;
1763 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1764 pr_debug("related packet for %p\n", ct);
1765 ctinfo = IP_CT_RELATED;
1766 } else {
1767 pr_debug("new packet for %p\n", ct);
1768 ctinfo = IP_CT_NEW;
1769 }
1770 }
1771 nf_ct_set(skb, ct, ctinfo);
1772 return 0;
1773 }
1774
1775 /*
1776 * icmp packets need special treatment to handle error messages that are
1777 * related to a connection.
1778 *
1779 * Callers need to check if skb has a conntrack assigned when this
1780 * helper returns; in such case skb belongs to an already known connection.
1781 */
1782 static unsigned int __cold
1783 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1784 struct sk_buff *skb,
1785 unsigned int dataoff,
1786 u8 protonum,
1787 const struct nf_hook_state *state)
1788 {
1789 int ret;
1790
1791 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1792 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1793 #if IS_ENABLED(CONFIG_IPV6)
1794 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1795 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1796 #endif
1797 else
1798 return NF_ACCEPT;
1799
1800 if (ret <= 0)
1801 NF_CT_STAT_INC_ATOMIC(state->net, error);
1802
1803 return ret;
1804 }
1805
1806 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1807 enum ip_conntrack_info ctinfo)
1808 {
1809 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1810
1811 if (!timeout)
1812 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1813
1814 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1815 return NF_ACCEPT;
1816 }
1817
1818 /* Returns verdict for packet, or -1 for invalid. */
1819 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1820 struct sk_buff *skb,
1821 unsigned int dataoff,
1822 enum ip_conntrack_info ctinfo,
1823 const struct nf_hook_state *state)
1824 {
1825 switch (nf_ct_protonum(ct)) {
1826 case IPPROTO_TCP:
1827 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1828 ctinfo, state);
1829 case IPPROTO_UDP:
1830 return nf_conntrack_udp_packet(ct, skb, dataoff,
1831 ctinfo, state);
1832 case IPPROTO_ICMP:
1833 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1834 #if IS_ENABLED(CONFIG_IPV6)
1835 case IPPROTO_ICMPV6:
1836 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1837 #endif
1838 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1839 case IPPROTO_UDPLITE:
1840 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1841 ctinfo, state);
1842 #endif
1843 #ifdef CONFIG_NF_CT_PROTO_SCTP
1844 case IPPROTO_SCTP:
1845 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1846 ctinfo, state);
1847 #endif
1848 #ifdef CONFIG_NF_CT_PROTO_DCCP
1849 case IPPROTO_DCCP:
1850 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1851 ctinfo, state);
1852 #endif
1853 #ifdef CONFIG_NF_CT_PROTO_GRE
1854 case IPPROTO_GRE:
1855 return nf_conntrack_gre_packet(ct, skb, dataoff,
1856 ctinfo, state);
1857 #endif
1858 }
1859
1860 return generic_packet(ct, skb, ctinfo);
1861 }
1862
1863 unsigned int
1864 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1865 {
1866 enum ip_conntrack_info ctinfo;
1867 struct nf_conn *ct, *tmpl;
1868 u_int8_t protonum;
1869 int dataoff, ret;
1870
1871 tmpl = nf_ct_get(skb, &ctinfo);
1872 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1873 /* Previously seen (loopback or untracked)? Ignore. */
1874 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1875 ctinfo == IP_CT_UNTRACKED)
1876 return NF_ACCEPT;
1877 skb->_nfct = 0;
1878 }
1879
1880 /* rcu_read_lock()ed by nf_hook_thresh */
1881 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1882 if (dataoff <= 0) {
1883 pr_debug("not prepared to track yet or error occurred\n");
1884 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1885 ret = NF_ACCEPT;
1886 goto out;
1887 }
1888
1889 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1890 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1891 protonum, state);
1892 if (ret <= 0) {
1893 ret = -ret;
1894 goto out;
1895 }
1896 /* ICMP[v6] protocol trackers may assign one conntrack. */
1897 if (skb->_nfct)
1898 goto out;
1899 }
1900 repeat:
1901 ret = resolve_normal_ct(tmpl, skb, dataoff,
1902 protonum, state);
1903 if (ret < 0) {
1904 /* Too stressed to deal. */
1905 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1906 ret = NF_DROP;
1907 goto out;
1908 }
1909
1910 ct = nf_ct_get(skb, &ctinfo);
1911 if (!ct) {
1912 /* Not valid part of a connection */
1913 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1914 ret = NF_ACCEPT;
1915 goto out;
1916 }
1917
1918 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1919 if (ret <= 0) {
1920 /* Invalid: inverse of the return code tells
1921 * the netfilter core what to do */
1922 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1923 nf_conntrack_put(&ct->ct_general);
1924 skb->_nfct = 0;
1925 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1926 if (ret == -NF_DROP)
1927 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1928 /* Special case: TCP tracker reports an attempt to reopen a
1929 * closed/aborted connection. We have to go back and create a
1930 * fresh conntrack.
1931 */
1932 if (ret == -NF_REPEAT)
1933 goto repeat;
1934 ret = -ret;
1935 goto out;
1936 }
1937
1938 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1939 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1940 nf_conntrack_event_cache(IPCT_REPLY, ct);
1941 out:
1942 if (tmpl)
1943 nf_ct_put(tmpl);
1944
1945 return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1948
1949 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1950 implicitly racy: see __nf_conntrack_confirm */
1951 void nf_conntrack_alter_reply(struct nf_conn *ct,
1952 const struct nf_conntrack_tuple *newreply)
1953 {
1954 struct nf_conn_help *help = nfct_help(ct);
1955
1956 /* Should be unconfirmed, so not in hash table yet */
1957 WARN_ON(nf_ct_is_confirmed(ct));
1958
1959 pr_debug("Altering reply tuple of %p to ", ct);
1960 nf_ct_dump_tuple(newreply);
1961
1962 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1963 if (ct->master || (help && !hlist_empty(&help->expectations)))
1964 return;
1965
1966 rcu_read_lock();
1967 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1968 rcu_read_unlock();
1969 }
1970 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1971
1972 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1973 void __nf_ct_refresh_acct(struct nf_conn *ct,
1974 enum ip_conntrack_info ctinfo,
1975 const struct sk_buff *skb,
1976 u32 extra_jiffies,
1977 bool do_acct)
1978 {
1979 /* Only update if this is not a fixed timeout */
1980 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1981 goto acct;
1982
1983 /* If not in hash table, timer will not be active yet */
1984 if (nf_ct_is_confirmed(ct))
1985 extra_jiffies += nfct_time_stamp;
1986
1987 if (READ_ONCE(ct->timeout) != extra_jiffies)
1988 WRITE_ONCE(ct->timeout, extra_jiffies);
1989 acct:
1990 if (do_acct)
1991 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1992 }
1993 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1994
1995 bool nf_ct_kill_acct(struct nf_conn *ct,
1996 enum ip_conntrack_info ctinfo,
1997 const struct sk_buff *skb)
1998 {
1999 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2000
2001 return nf_ct_delete(ct, 0, 0);
2002 }
2003 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2004
2005 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2006
2007 #include <linux/netfilter/nfnetlink.h>
2008 #include <linux/netfilter/nfnetlink_conntrack.h>
2009 #include <linux/mutex.h>
2010
2011 /* Generic function for tcp/udp/sctp/dccp and alike. */
2012 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2013 const struct nf_conntrack_tuple *tuple)
2014 {
2015 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2016 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2017 goto nla_put_failure;
2018 return 0;
2019
2020 nla_put_failure:
2021 return -1;
2022 }
2023 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2024
2025 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2026 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2027 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2028 };
2029 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2030
2031 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2032 struct nf_conntrack_tuple *t,
2033 u_int32_t flags)
2034 {
2035 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2036 if (!tb[CTA_PROTO_SRC_PORT])
2037 return -EINVAL;
2038
2039 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2040 }
2041
2042 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2043 if (!tb[CTA_PROTO_DST_PORT])
2044 return -EINVAL;
2045
2046 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2047 }
2048
2049 return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2052
2053 unsigned int nf_ct_port_nlattr_tuple_size(void)
2054 {
2055 static unsigned int size __read_mostly;
2056
2057 if (!size)
2058 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2059
2060 return size;
2061 }
2062 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2063 #endif
2064
2065 /* Used by ipt_REJECT and ip6t_REJECT. */
2066 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2067 {
2068 struct nf_conn *ct;
2069 enum ip_conntrack_info ctinfo;
2070
2071 /* This ICMP is in reverse direction to the packet which caused it */
2072 ct = nf_ct_get(skb, &ctinfo);
2073 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2074 ctinfo = IP_CT_RELATED_REPLY;
2075 else
2076 ctinfo = IP_CT_RELATED;
2077
2078 /* Attach to new skbuff, and increment count */
2079 nf_ct_set(nskb, ct, ctinfo);
2080 nf_conntrack_get(skb_nfct(nskb));
2081 }
2082
2083 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2084 struct nf_conn *ct,
2085 enum ip_conntrack_info ctinfo)
2086 {
2087 struct nf_conntrack_tuple_hash *h;
2088 struct nf_conntrack_tuple tuple;
2089 struct nf_nat_hook *nat_hook;
2090 unsigned int status;
2091 int dataoff;
2092 u16 l3num;
2093 u8 l4num;
2094
2095 l3num = nf_ct_l3num(ct);
2096
2097 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2098 if (dataoff <= 0)
2099 return -1;
2100
2101 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2102 l4num, net, &tuple))
2103 return -1;
2104
2105 if (ct->status & IPS_SRC_NAT) {
2106 memcpy(tuple.src.u3.all,
2107 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2108 sizeof(tuple.src.u3.all));
2109 tuple.src.u.all =
2110 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2111 }
2112
2113 if (ct->status & IPS_DST_NAT) {
2114 memcpy(tuple.dst.u3.all,
2115 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2116 sizeof(tuple.dst.u3.all));
2117 tuple.dst.u.all =
2118 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2119 }
2120
2121 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2122 if (!h)
2123 return 0;
2124
2125 /* Store status bits of the conntrack that is clashing to re-do NAT
2126 * mangling according to what it has been done already to this packet.
2127 */
2128 status = ct->status;
2129
2130 nf_ct_put(ct);
2131 ct = nf_ct_tuplehash_to_ctrack(h);
2132 nf_ct_set(skb, ct, ctinfo);
2133
2134 nat_hook = rcu_dereference(nf_nat_hook);
2135 if (!nat_hook)
2136 return 0;
2137
2138 if (status & IPS_SRC_NAT &&
2139 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2140 IP_CT_DIR_ORIGINAL) == NF_DROP)
2141 return -1;
2142
2143 if (status & IPS_DST_NAT &&
2144 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2145 IP_CT_DIR_ORIGINAL) == NF_DROP)
2146 return -1;
2147
2148 return 0;
2149 }
2150
2151 /* This packet is coming from userspace via nf_queue, complete the packet
2152 * processing after the helper invocation in nf_confirm().
2153 */
2154 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2155 enum ip_conntrack_info ctinfo)
2156 {
2157 const struct nf_conntrack_helper *helper;
2158 const struct nf_conn_help *help;
2159 int protoff;
2160
2161 help = nfct_help(ct);
2162 if (!help)
2163 return 0;
2164
2165 helper = rcu_dereference(help->helper);
2166 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2167 return 0;
2168
2169 switch (nf_ct_l3num(ct)) {
2170 case NFPROTO_IPV4:
2171 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2172 break;
2173 #if IS_ENABLED(CONFIG_IPV6)
2174 case NFPROTO_IPV6: {
2175 __be16 frag_off;
2176 u8 pnum;
2177
2178 pnum = ipv6_hdr(skb)->nexthdr;
2179 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2180 &frag_off);
2181 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2182 return 0;
2183 break;
2184 }
2185 #endif
2186 default:
2187 return 0;
2188 }
2189
2190 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2191 !nf_is_loopback_packet(skb)) {
2192 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2193 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2194 return -1;
2195 }
2196 }
2197
2198 /* We've seen it coming out the other side: confirm it */
2199 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2200 }
2201
2202 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2203 {
2204 enum ip_conntrack_info ctinfo;
2205 struct nf_conn *ct;
2206 int err;
2207
2208 ct = nf_ct_get(skb, &ctinfo);
2209 if (!ct)
2210 return 0;
2211
2212 if (!nf_ct_is_confirmed(ct)) {
2213 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2214 if (err < 0)
2215 return err;
2216
2217 ct = nf_ct_get(skb, &ctinfo);
2218 }
2219
2220 return nf_confirm_cthelper(skb, ct, ctinfo);
2221 }
2222
2223 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2224 const struct sk_buff *skb)
2225 {
2226 const struct nf_conntrack_tuple *src_tuple;
2227 const struct nf_conntrack_tuple_hash *hash;
2228 struct nf_conntrack_tuple srctuple;
2229 enum ip_conntrack_info ctinfo;
2230 struct nf_conn *ct;
2231
2232 ct = nf_ct_get(skb, &ctinfo);
2233 if (ct) {
2234 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2235 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2236 return true;
2237 }
2238
2239 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2240 NFPROTO_IPV4, dev_net(skb->dev),
2241 &srctuple))
2242 return false;
2243
2244 hash = nf_conntrack_find_get(dev_net(skb->dev),
2245 &nf_ct_zone_dflt,
2246 &srctuple);
2247 if (!hash)
2248 return false;
2249
2250 ct = nf_ct_tuplehash_to_ctrack(hash);
2251 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2252 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2253 nf_ct_put(ct);
2254
2255 return true;
2256 }
2257
2258 /* Bring out ya dead! */
2259 static struct nf_conn *
2260 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2261 void *data, unsigned int *bucket)
2262 {
2263 struct nf_conntrack_tuple_hash *h;
2264 struct nf_conn *ct;
2265 struct hlist_nulls_node *n;
2266 spinlock_t *lockp;
2267
2268 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2269 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2270
2271 if (hlist_nulls_empty(hslot))
2272 continue;
2273
2274 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2275 local_bh_disable();
2276 nf_conntrack_lock(lockp);
2277 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2278 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2279 continue;
2280 /* All nf_conn objects are added to hash table twice, one
2281 * for original direction tuple, once for the reply tuple.
2282 *
2283 * Exception: In the IPS_NAT_CLASH case, only the reply
2284 * tuple is added (the original tuple already existed for
2285 * a different object).
2286 *
2287 * We only need to call the iterator once for each
2288 * conntrack, so we just use the 'reply' direction
2289 * tuple while iterating.
2290 */
2291 ct = nf_ct_tuplehash_to_ctrack(h);
2292 if (iter(ct, data))
2293 goto found;
2294 }
2295 spin_unlock(lockp);
2296 local_bh_enable();
2297 cond_resched();
2298 }
2299
2300 return NULL;
2301 found:
2302 atomic_inc(&ct->ct_general.use);
2303 spin_unlock(lockp);
2304 local_bh_enable();
2305 return ct;
2306 }
2307
2308 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2309 void *data, u32 portid, int report)
2310 {
2311 unsigned int bucket = 0;
2312 struct nf_conn *ct;
2313
2314 might_sleep();
2315
2316 mutex_lock(&nf_conntrack_mutex);
2317 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2318 /* Time to push up daises... */
2319
2320 nf_ct_delete(ct, portid, report);
2321 nf_ct_put(ct);
2322 cond_resched();
2323 }
2324 mutex_unlock(&nf_conntrack_mutex);
2325 }
2326
2327 struct iter_data {
2328 int (*iter)(struct nf_conn *i, void *data);
2329 void *data;
2330 struct net *net;
2331 };
2332
2333 static int iter_net_only(struct nf_conn *i, void *data)
2334 {
2335 struct iter_data *d = data;
2336
2337 if (!net_eq(d->net, nf_ct_net(i)))
2338 return 0;
2339
2340 return d->iter(i, d->data);
2341 }
2342
2343 static void
2344 __nf_ct_unconfirmed_destroy(struct net *net)
2345 {
2346 int cpu;
2347
2348 for_each_possible_cpu(cpu) {
2349 struct nf_conntrack_tuple_hash *h;
2350 struct hlist_nulls_node *n;
2351 struct ct_pcpu *pcpu;
2352
2353 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2354
2355 spin_lock_bh(&pcpu->lock);
2356 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2357 struct nf_conn *ct;
2358
2359 ct = nf_ct_tuplehash_to_ctrack(h);
2360
2361 /* we cannot call iter() on unconfirmed list, the
2362 * owning cpu can reallocate ct->ext at any time.
2363 */
2364 set_bit(IPS_DYING_BIT, &ct->status);
2365 }
2366 spin_unlock_bh(&pcpu->lock);
2367 cond_resched();
2368 }
2369 }
2370
2371 void nf_ct_unconfirmed_destroy(struct net *net)
2372 {
2373 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2374
2375 might_sleep();
2376
2377 if (atomic_read(&cnet->count) > 0) {
2378 __nf_ct_unconfirmed_destroy(net);
2379 nf_queue_nf_hook_drop(net);
2380 synchronize_net();
2381 }
2382 }
2383 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2384
2385 void nf_ct_iterate_cleanup_net(struct net *net,
2386 int (*iter)(struct nf_conn *i, void *data),
2387 void *data, u32 portid, int report)
2388 {
2389 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2390 struct iter_data d;
2391
2392 might_sleep();
2393
2394 if (atomic_read(&cnet->count) == 0)
2395 return;
2396
2397 d.iter = iter;
2398 d.data = data;
2399 d.net = net;
2400
2401 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2402 }
2403 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2404
2405 /**
2406 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2407 * @iter: callback to invoke for each conntrack
2408 * @data: data to pass to @iter
2409 *
2410 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2411 * unconfirmed list as dying (so they will not be inserted into
2412 * main table).
2413 *
2414 * Can only be called in module exit path.
2415 */
2416 void
2417 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2418 {
2419 struct net *net;
2420
2421 down_read(&net_rwsem);
2422 for_each_net(net) {
2423 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2424
2425 if (atomic_read(&cnet->count) == 0)
2426 continue;
2427 __nf_ct_unconfirmed_destroy(net);
2428 nf_queue_nf_hook_drop(net);
2429 }
2430 up_read(&net_rwsem);
2431
2432 /* Need to wait for netns cleanup worker to finish, if its
2433 * running -- it might have deleted a net namespace from
2434 * the global list, so our __nf_ct_unconfirmed_destroy() might
2435 * not have affected all namespaces.
2436 */
2437 net_ns_barrier();
2438
2439 /* a conntrack could have been unlinked from unconfirmed list
2440 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2441 * This makes sure its inserted into conntrack table.
2442 */
2443 synchronize_net();
2444
2445 nf_ct_iterate_cleanup(iter, data, 0, 0);
2446 }
2447 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2448
2449 static int kill_all(struct nf_conn *i, void *data)
2450 {
2451 return net_eq(nf_ct_net(i), data);
2452 }
2453
2454 void nf_conntrack_cleanup_start(void)
2455 {
2456 conntrack_gc_work.exiting = true;
2457 RCU_INIT_POINTER(ip_ct_attach, NULL);
2458 }
2459
2460 void nf_conntrack_cleanup_end(void)
2461 {
2462 RCU_INIT_POINTER(nf_ct_hook, NULL);
2463 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2464 kvfree(nf_conntrack_hash);
2465
2466 nf_conntrack_proto_fini();
2467 nf_conntrack_seqadj_fini();
2468 nf_conntrack_labels_fini();
2469 nf_conntrack_helper_fini();
2470 nf_conntrack_timeout_fini();
2471 nf_conntrack_ecache_fini();
2472 nf_conntrack_tstamp_fini();
2473 nf_conntrack_acct_fini();
2474 nf_conntrack_expect_fini();
2475
2476 kmem_cache_destroy(nf_conntrack_cachep);
2477 }
2478
2479 /*
2480 * Mishearing the voices in his head, our hero wonders how he's
2481 * supposed to kill the mall.
2482 */
2483 void nf_conntrack_cleanup_net(struct net *net)
2484 {
2485 LIST_HEAD(single);
2486
2487 list_add(&net->exit_list, &single);
2488 nf_conntrack_cleanup_net_list(&single);
2489 }
2490
2491 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2492 {
2493 int busy;
2494 struct net *net;
2495
2496 /*
2497 * This makes sure all current packets have passed through
2498 * netfilter framework. Roll on, two-stage module
2499 * delete...
2500 */
2501 synchronize_net();
2502 i_see_dead_people:
2503 busy = 0;
2504 list_for_each_entry(net, net_exit_list, exit_list) {
2505 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2506
2507 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2508 if (atomic_read(&cnet->count) != 0)
2509 busy = 1;
2510 }
2511 if (busy) {
2512 schedule();
2513 goto i_see_dead_people;
2514 }
2515
2516 list_for_each_entry(net, net_exit_list, exit_list) {
2517 nf_conntrack_ecache_pernet_fini(net);
2518 nf_conntrack_expect_pernet_fini(net);
2519 free_percpu(net->ct.stat);
2520 free_percpu(net->ct.pcpu_lists);
2521 }
2522 }
2523
2524 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2525 {
2526 struct hlist_nulls_head *hash;
2527 unsigned int nr_slots, i;
2528
2529 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2530 return NULL;
2531
2532 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2533 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2534
2535 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2536
2537 if (hash && nulls)
2538 for (i = 0; i < nr_slots; i++)
2539 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2540
2541 return hash;
2542 }
2543 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2544
2545 int nf_conntrack_hash_resize(unsigned int hashsize)
2546 {
2547 int i, bucket;
2548 unsigned int old_size;
2549 struct hlist_nulls_head *hash, *old_hash;
2550 struct nf_conntrack_tuple_hash *h;
2551 struct nf_conn *ct;
2552
2553 if (!hashsize)
2554 return -EINVAL;
2555
2556 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2557 if (!hash)
2558 return -ENOMEM;
2559
2560 mutex_lock(&nf_conntrack_mutex);
2561 old_size = nf_conntrack_htable_size;
2562 if (old_size == hashsize) {
2563 mutex_unlock(&nf_conntrack_mutex);
2564 kvfree(hash);
2565 return 0;
2566 }
2567
2568 local_bh_disable();
2569 nf_conntrack_all_lock();
2570 write_seqcount_begin(&nf_conntrack_generation);
2571
2572 /* Lookups in the old hash might happen in parallel, which means we
2573 * might get false negatives during connection lookup. New connections
2574 * created because of a false negative won't make it into the hash
2575 * though since that required taking the locks.
2576 */
2577
2578 for (i = 0; i < nf_conntrack_htable_size; i++) {
2579 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2580 unsigned int zone_id;
2581
2582 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2583 struct nf_conntrack_tuple_hash, hnnode);
2584 ct = nf_ct_tuplehash_to_ctrack(h);
2585 hlist_nulls_del_rcu(&h->hnnode);
2586
2587 zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2588 bucket = __hash_conntrack(nf_ct_net(ct),
2589 &h->tuple, zone_id, hashsize);
2590 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2591 }
2592 }
2593 old_size = nf_conntrack_htable_size;
2594 old_hash = nf_conntrack_hash;
2595
2596 nf_conntrack_hash = hash;
2597 nf_conntrack_htable_size = hashsize;
2598
2599 write_seqcount_end(&nf_conntrack_generation);
2600 nf_conntrack_all_unlock();
2601 local_bh_enable();
2602
2603 mutex_unlock(&nf_conntrack_mutex);
2604
2605 synchronize_net();
2606 kvfree(old_hash);
2607 return 0;
2608 }
2609
2610 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2611 {
2612 unsigned int hashsize;
2613 int rc;
2614
2615 if (current->nsproxy->net_ns != &init_net)
2616 return -EOPNOTSUPP;
2617
2618 /* On boot, we can set this without any fancy locking. */
2619 if (!nf_conntrack_hash)
2620 return param_set_uint(val, kp);
2621
2622 rc = kstrtouint(val, 0, &hashsize);
2623 if (rc)
2624 return rc;
2625
2626 return nf_conntrack_hash_resize(hashsize);
2627 }
2628
2629 static __always_inline unsigned int total_extension_size(void)
2630 {
2631 /* remember to add new extensions below */
2632 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2633
2634 return sizeof(struct nf_ct_ext) +
2635 sizeof(struct nf_conn_help)
2636 #if IS_ENABLED(CONFIG_NF_NAT)
2637 + sizeof(struct nf_conn_nat)
2638 #endif
2639 + sizeof(struct nf_conn_seqadj)
2640 + sizeof(struct nf_conn_acct)
2641 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2642 + sizeof(struct nf_conntrack_ecache)
2643 #endif
2644 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2645 + sizeof(struct nf_conn_tstamp)
2646 #endif
2647 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2648 + sizeof(struct nf_conn_timeout)
2649 #endif
2650 #ifdef CONFIG_NF_CONNTRACK_LABELS
2651 + sizeof(struct nf_conn_labels)
2652 #endif
2653 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2654 + sizeof(struct nf_conn_synproxy)
2655 #endif
2656 ;
2657 };
2658
2659 int nf_conntrack_init_start(void)
2660 {
2661 unsigned long nr_pages = totalram_pages();
2662 int max_factor = 8;
2663 int ret = -ENOMEM;
2664 int i;
2665
2666 /* struct nf_ct_ext uses u8 to store offsets/size */
2667 BUILD_BUG_ON(total_extension_size() > 255u);
2668
2669 seqcount_spinlock_init(&nf_conntrack_generation,
2670 &nf_conntrack_locks_all_lock);
2671
2672 for (i = 0; i < CONNTRACK_LOCKS; i++)
2673 spin_lock_init(&nf_conntrack_locks[i]);
2674
2675 if (!nf_conntrack_htable_size) {
2676 nf_conntrack_htable_size
2677 = (((nr_pages << PAGE_SHIFT) / 16384)
2678 / sizeof(struct hlist_head));
2679 if (BITS_PER_LONG >= 64 &&
2680 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2681 nf_conntrack_htable_size = 262144;
2682 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2683 nf_conntrack_htable_size = 65536;
2684
2685 if (nf_conntrack_htable_size < 1024)
2686 nf_conntrack_htable_size = 1024;
2687 /* Use a max. factor of one by default to keep the average
2688 * hash chain length at 2 entries. Each entry has to be added
2689 * twice (once for original direction, once for reply).
2690 * When a table size is given we use the old value of 8 to
2691 * avoid implicit reduction of the max entries setting.
2692 */
2693 max_factor = 1;
2694 }
2695
2696 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2697 if (!nf_conntrack_hash)
2698 return -ENOMEM;
2699
2700 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2701
2702 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2703 sizeof(struct nf_conn),
2704 NFCT_INFOMASK + 1,
2705 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2706 if (!nf_conntrack_cachep)
2707 goto err_cachep;
2708
2709 ret = nf_conntrack_expect_init();
2710 if (ret < 0)
2711 goto err_expect;
2712
2713 ret = nf_conntrack_acct_init();
2714 if (ret < 0)
2715 goto err_acct;
2716
2717 ret = nf_conntrack_tstamp_init();
2718 if (ret < 0)
2719 goto err_tstamp;
2720
2721 ret = nf_conntrack_ecache_init();
2722 if (ret < 0)
2723 goto err_ecache;
2724
2725 ret = nf_conntrack_timeout_init();
2726 if (ret < 0)
2727 goto err_timeout;
2728
2729 ret = nf_conntrack_helper_init();
2730 if (ret < 0)
2731 goto err_helper;
2732
2733 ret = nf_conntrack_labels_init();
2734 if (ret < 0)
2735 goto err_labels;
2736
2737 ret = nf_conntrack_seqadj_init();
2738 if (ret < 0)
2739 goto err_seqadj;
2740
2741 ret = nf_conntrack_proto_init();
2742 if (ret < 0)
2743 goto err_proto;
2744
2745 conntrack_gc_work_init(&conntrack_gc_work);
2746 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2747
2748 return 0;
2749
2750 err_proto:
2751 nf_conntrack_seqadj_fini();
2752 err_seqadj:
2753 nf_conntrack_labels_fini();
2754 err_labels:
2755 nf_conntrack_helper_fini();
2756 err_helper:
2757 nf_conntrack_timeout_fini();
2758 err_timeout:
2759 nf_conntrack_ecache_fini();
2760 err_ecache:
2761 nf_conntrack_tstamp_fini();
2762 err_tstamp:
2763 nf_conntrack_acct_fini();
2764 err_acct:
2765 nf_conntrack_expect_fini();
2766 err_expect:
2767 kmem_cache_destroy(nf_conntrack_cachep);
2768 err_cachep:
2769 kvfree(nf_conntrack_hash);
2770 return ret;
2771 }
2772
2773 static struct nf_ct_hook nf_conntrack_hook = {
2774 .update = nf_conntrack_update,
2775 .destroy = destroy_conntrack,
2776 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2777 };
2778
2779 void nf_conntrack_init_end(void)
2780 {
2781 /* For use by REJECT target */
2782 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2783 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2784 }
2785
2786 /*
2787 * We need to use special "null" values, not used in hash table
2788 */
2789 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2790 #define DYING_NULLS_VAL ((1<<30)+1)
2791
2792 int nf_conntrack_init_net(struct net *net)
2793 {
2794 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2795 int ret = -ENOMEM;
2796 int cpu;
2797
2798 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2799 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2800 atomic_set(&cnet->count, 0);
2801
2802 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2803 if (!net->ct.pcpu_lists)
2804 goto err_stat;
2805
2806 for_each_possible_cpu(cpu) {
2807 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2808
2809 spin_lock_init(&pcpu->lock);
2810 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2811 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2812 }
2813
2814 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2815 if (!net->ct.stat)
2816 goto err_pcpu_lists;
2817
2818 ret = nf_conntrack_expect_pernet_init(net);
2819 if (ret < 0)
2820 goto err_expect;
2821
2822 nf_conntrack_acct_pernet_init(net);
2823 nf_conntrack_tstamp_pernet_init(net);
2824 nf_conntrack_ecache_pernet_init(net);
2825 nf_conntrack_helper_pernet_init(net);
2826 nf_conntrack_proto_pernet_init(net);
2827
2828 return 0;
2829
2830 err_expect:
2831 free_percpu(net->ct.stat);
2832 err_pcpu_lists:
2833 free_percpu(net->ct.pcpu_lists);
2834 err_stat:
2835 return ret;
2836 }