]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/netfilter/nf_conntrack_core.c
Merge tag 'xfs-for-linus-3.15-rc2' of git://oss.sgi.com/xfs/xfs
[mirror_ubuntu-bionic-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #include <linux/types.h>
16 #include <linux/netfilter.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/skbuff.h>
20 #include <linux/proc_fs.h>
21 #include <linux/vmalloc.h>
22 #include <linux/stddef.h>
23 #include <linux/slab.h>
24 #include <linux/random.h>
25 #include <linux/jhash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l3proto.h>
39 #include <net/netfilter/nf_conntrack_l4proto.h>
40 #include <net/netfilter/nf_conntrack_expect.h>
41 #include <net/netfilter/nf_conntrack_helper.h>
42 #include <net/netfilter/nf_conntrack_seqadj.h>
43 #include <net/netfilter/nf_conntrack_core.h>
44 #include <net/netfilter/nf_conntrack_extend.h>
45 #include <net/netfilter/nf_conntrack_acct.h>
46 #include <net/netfilter/nf_conntrack_ecache.h>
47 #include <net/netfilter/nf_conntrack_zones.h>
48 #include <net/netfilter/nf_conntrack_timestamp.h>
49 #include <net/netfilter/nf_conntrack_timeout.h>
50 #include <net/netfilter/nf_conntrack_labels.h>
51 #include <net/netfilter/nf_conntrack_synproxy.h>
52 #include <net/netfilter/nf_nat.h>
53 #include <net/netfilter/nf_nat_core.h>
54 #include <net/netfilter/nf_nat_helper.h>
55
56 #define NF_CONNTRACK_VERSION "0.5.0"
57
58 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
59 enum nf_nat_manip_type manip,
60 const struct nlattr *attr) __read_mostly;
61 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
62
63 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
64 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
65
66 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
67 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
68
69 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
70 {
71 h1 %= CONNTRACK_LOCKS;
72 h2 %= CONNTRACK_LOCKS;
73 spin_unlock(&nf_conntrack_locks[h1]);
74 if (h1 != h2)
75 spin_unlock(&nf_conntrack_locks[h2]);
76 }
77
78 /* return true if we need to recompute hashes (in case hash table was resized) */
79 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
80 unsigned int h2, unsigned int sequence)
81 {
82 h1 %= CONNTRACK_LOCKS;
83 h2 %= CONNTRACK_LOCKS;
84 if (h1 <= h2) {
85 spin_lock(&nf_conntrack_locks[h1]);
86 if (h1 != h2)
87 spin_lock_nested(&nf_conntrack_locks[h2],
88 SINGLE_DEPTH_NESTING);
89 } else {
90 spin_lock(&nf_conntrack_locks[h2]);
91 spin_lock_nested(&nf_conntrack_locks[h1],
92 SINGLE_DEPTH_NESTING);
93 }
94 if (read_seqcount_retry(&net->ct.generation, sequence)) {
95 nf_conntrack_double_unlock(h1, h2);
96 return true;
97 }
98 return false;
99 }
100
101 static void nf_conntrack_all_lock(void)
102 {
103 int i;
104
105 for (i = 0; i < CONNTRACK_LOCKS; i++)
106 spin_lock_nested(&nf_conntrack_locks[i], i);
107 }
108
109 static void nf_conntrack_all_unlock(void)
110 {
111 int i;
112
113 for (i = 0; i < CONNTRACK_LOCKS; i++)
114 spin_unlock(&nf_conntrack_locks[i]);
115 }
116
117 unsigned int nf_conntrack_htable_size __read_mostly;
118 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
119
120 unsigned int nf_conntrack_max __read_mostly;
121 EXPORT_SYMBOL_GPL(nf_conntrack_max);
122
123 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
124 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
125
126 unsigned int nf_conntrack_hash_rnd __read_mostly;
127 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
128
129 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
130 {
131 unsigned int n;
132
133 /* The direction must be ignored, so we hash everything up to the
134 * destination ports (which is a multiple of 4) and treat the last
135 * three bytes manually.
136 */
137 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
138 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
139 (((__force __u16)tuple->dst.u.all << 16) |
140 tuple->dst.protonum));
141 }
142
143 static u32 __hash_bucket(u32 hash, unsigned int size)
144 {
145 return ((u64)hash * size) >> 32;
146 }
147
148 static u32 hash_bucket(u32 hash, const struct net *net)
149 {
150 return __hash_bucket(hash, net->ct.htable_size);
151 }
152
153 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
154 u16 zone, unsigned int size)
155 {
156 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
157 }
158
159 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
160 const struct nf_conntrack_tuple *tuple)
161 {
162 return __hash_conntrack(tuple, zone, net->ct.htable_size);
163 }
164
165 bool
166 nf_ct_get_tuple(const struct sk_buff *skb,
167 unsigned int nhoff,
168 unsigned int dataoff,
169 u_int16_t l3num,
170 u_int8_t protonum,
171 struct nf_conntrack_tuple *tuple,
172 const struct nf_conntrack_l3proto *l3proto,
173 const struct nf_conntrack_l4proto *l4proto)
174 {
175 memset(tuple, 0, sizeof(*tuple));
176
177 tuple->src.l3num = l3num;
178 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
179 return false;
180
181 tuple->dst.protonum = protonum;
182 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
183
184 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
185 }
186 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
187
188 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
189 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
190 {
191 struct nf_conntrack_l3proto *l3proto;
192 struct nf_conntrack_l4proto *l4proto;
193 unsigned int protoff;
194 u_int8_t protonum;
195 int ret;
196
197 rcu_read_lock();
198
199 l3proto = __nf_ct_l3proto_find(l3num);
200 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
201 if (ret != NF_ACCEPT) {
202 rcu_read_unlock();
203 return false;
204 }
205
206 l4proto = __nf_ct_l4proto_find(l3num, protonum);
207
208 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
209 l3proto, l4proto);
210
211 rcu_read_unlock();
212 return ret;
213 }
214 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
215
216 bool
217 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
218 const struct nf_conntrack_tuple *orig,
219 const struct nf_conntrack_l3proto *l3proto,
220 const struct nf_conntrack_l4proto *l4proto)
221 {
222 memset(inverse, 0, sizeof(*inverse));
223
224 inverse->src.l3num = orig->src.l3num;
225 if (l3proto->invert_tuple(inverse, orig) == 0)
226 return false;
227
228 inverse->dst.dir = !orig->dst.dir;
229
230 inverse->dst.protonum = orig->dst.protonum;
231 return l4proto->invert_tuple(inverse, orig);
232 }
233 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
234
235 static void
236 clean_from_lists(struct nf_conn *ct)
237 {
238 pr_debug("clean_from_lists(%p)\n", ct);
239 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
240 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
241
242 /* Destroy all pending expectations */
243 nf_ct_remove_expectations(ct);
244 }
245
246 /* must be called with local_bh_disable */
247 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
248 {
249 struct ct_pcpu *pcpu;
250
251 /* add this conntrack to the (per cpu) dying list */
252 ct->cpu = smp_processor_id();
253 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
254
255 spin_lock(&pcpu->lock);
256 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
257 &pcpu->dying);
258 spin_unlock(&pcpu->lock);
259 }
260
261 /* must be called with local_bh_disable */
262 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
263 {
264 struct ct_pcpu *pcpu;
265
266 /* add this conntrack to the (per cpu) unconfirmed list */
267 ct->cpu = smp_processor_id();
268 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
269
270 spin_lock(&pcpu->lock);
271 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
272 &pcpu->unconfirmed);
273 spin_unlock(&pcpu->lock);
274 }
275
276 /* must be called with local_bh_disable */
277 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
278 {
279 struct ct_pcpu *pcpu;
280
281 /* We overload first tuple to link into unconfirmed or dying list.*/
282 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
283
284 spin_lock(&pcpu->lock);
285 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
286 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
287 spin_unlock(&pcpu->lock);
288 }
289
290 static void
291 destroy_conntrack(struct nf_conntrack *nfct)
292 {
293 struct nf_conn *ct = (struct nf_conn *)nfct;
294 struct net *net = nf_ct_net(ct);
295 struct nf_conntrack_l4proto *l4proto;
296
297 pr_debug("destroy_conntrack(%p)\n", ct);
298 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
299 NF_CT_ASSERT(!timer_pending(&ct->timeout));
300
301 rcu_read_lock();
302 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
303 if (l4proto && l4proto->destroy)
304 l4proto->destroy(ct);
305
306 rcu_read_unlock();
307
308 local_bh_disable();
309 /* Expectations will have been removed in clean_from_lists,
310 * except TFTP can create an expectation on the first packet,
311 * before connection is in the list, so we need to clean here,
312 * too.
313 */
314 nf_ct_remove_expectations(ct);
315
316 nf_ct_del_from_dying_or_unconfirmed_list(ct);
317
318 NF_CT_STAT_INC(net, delete);
319 local_bh_enable();
320
321 if (ct->master)
322 nf_ct_put(ct->master);
323
324 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
325 nf_conntrack_free(ct);
326 }
327
328 static void nf_ct_delete_from_lists(struct nf_conn *ct)
329 {
330 struct net *net = nf_ct_net(ct);
331 unsigned int hash, reply_hash;
332 u16 zone = nf_ct_zone(ct);
333 unsigned int sequence;
334
335 nf_ct_helper_destroy(ct);
336
337 local_bh_disable();
338 do {
339 sequence = read_seqcount_begin(&net->ct.generation);
340 hash = hash_conntrack(net, zone,
341 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
342 reply_hash = hash_conntrack(net, zone,
343 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
344 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
345
346 clean_from_lists(ct);
347 nf_conntrack_double_unlock(hash, reply_hash);
348
349 nf_ct_add_to_dying_list(ct);
350
351 NF_CT_STAT_INC(net, delete_list);
352 local_bh_enable();
353 }
354
355 static void death_by_event(unsigned long ul_conntrack)
356 {
357 struct nf_conn *ct = (void *)ul_conntrack;
358 struct net *net = nf_ct_net(ct);
359 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
360
361 BUG_ON(ecache == NULL);
362
363 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
364 /* bad luck, let's retry again */
365 ecache->timeout.expires = jiffies +
366 (prandom_u32() % net->ct.sysctl_events_retry_timeout);
367 add_timer(&ecache->timeout);
368 return;
369 }
370 /* we've got the event delivered, now it's dying */
371 set_bit(IPS_DYING_BIT, &ct->status);
372 nf_ct_put(ct);
373 }
374
375 static void nf_ct_dying_timeout(struct nf_conn *ct)
376 {
377 struct net *net = nf_ct_net(ct);
378 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
379
380 BUG_ON(ecache == NULL);
381
382 /* set a new timer to retry event delivery */
383 setup_timer(&ecache->timeout, death_by_event, (unsigned long)ct);
384 ecache->timeout.expires = jiffies +
385 (prandom_u32() % net->ct.sysctl_events_retry_timeout);
386 add_timer(&ecache->timeout);
387 }
388
389 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
390 {
391 struct nf_conn_tstamp *tstamp;
392
393 tstamp = nf_conn_tstamp_find(ct);
394 if (tstamp && tstamp->stop == 0)
395 tstamp->stop = ktime_to_ns(ktime_get_real());
396
397 if (!nf_ct_is_dying(ct) &&
398 unlikely(nf_conntrack_event_report(IPCT_DESTROY, ct,
399 portid, report) < 0)) {
400 /* destroy event was not delivered */
401 nf_ct_delete_from_lists(ct);
402 nf_ct_dying_timeout(ct);
403 return false;
404 }
405 set_bit(IPS_DYING_BIT, &ct->status);
406 nf_ct_delete_from_lists(ct);
407 nf_ct_put(ct);
408 return true;
409 }
410 EXPORT_SYMBOL_GPL(nf_ct_delete);
411
412 static void death_by_timeout(unsigned long ul_conntrack)
413 {
414 nf_ct_delete((struct nf_conn *)ul_conntrack, 0, 0);
415 }
416
417 static inline bool
418 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
419 const struct nf_conntrack_tuple *tuple,
420 u16 zone)
421 {
422 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
423
424 /* A conntrack can be recreated with the equal tuple,
425 * so we need to check that the conntrack is confirmed
426 */
427 return nf_ct_tuple_equal(tuple, &h->tuple) &&
428 nf_ct_zone(ct) == zone &&
429 nf_ct_is_confirmed(ct);
430 }
431
432 /*
433 * Warning :
434 * - Caller must take a reference on returned object
435 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
436 */
437 static struct nf_conntrack_tuple_hash *
438 ____nf_conntrack_find(struct net *net, u16 zone,
439 const struct nf_conntrack_tuple *tuple, u32 hash)
440 {
441 struct nf_conntrack_tuple_hash *h;
442 struct hlist_nulls_node *n;
443 unsigned int bucket = hash_bucket(hash, net);
444
445 /* Disable BHs the entire time since we normally need to disable them
446 * at least once for the stats anyway.
447 */
448 local_bh_disable();
449 begin:
450 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
451 if (nf_ct_key_equal(h, tuple, zone)) {
452 NF_CT_STAT_INC(net, found);
453 local_bh_enable();
454 return h;
455 }
456 NF_CT_STAT_INC(net, searched);
457 }
458 /*
459 * if the nulls value we got at the end of this lookup is
460 * not the expected one, we must restart lookup.
461 * We probably met an item that was moved to another chain.
462 */
463 if (get_nulls_value(n) != bucket) {
464 NF_CT_STAT_INC(net, search_restart);
465 goto begin;
466 }
467 local_bh_enable();
468
469 return NULL;
470 }
471
472 /* Find a connection corresponding to a tuple. */
473 static struct nf_conntrack_tuple_hash *
474 __nf_conntrack_find_get(struct net *net, u16 zone,
475 const struct nf_conntrack_tuple *tuple, u32 hash)
476 {
477 struct nf_conntrack_tuple_hash *h;
478 struct nf_conn *ct;
479
480 rcu_read_lock();
481 begin:
482 h = ____nf_conntrack_find(net, zone, tuple, hash);
483 if (h) {
484 ct = nf_ct_tuplehash_to_ctrack(h);
485 if (unlikely(nf_ct_is_dying(ct) ||
486 !atomic_inc_not_zero(&ct->ct_general.use)))
487 h = NULL;
488 else {
489 if (unlikely(!nf_ct_key_equal(h, tuple, zone))) {
490 nf_ct_put(ct);
491 goto begin;
492 }
493 }
494 }
495 rcu_read_unlock();
496
497 return h;
498 }
499
500 struct nf_conntrack_tuple_hash *
501 nf_conntrack_find_get(struct net *net, u16 zone,
502 const struct nf_conntrack_tuple *tuple)
503 {
504 return __nf_conntrack_find_get(net, zone, tuple,
505 hash_conntrack_raw(tuple, zone));
506 }
507 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
508
509 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
510 unsigned int hash,
511 unsigned int reply_hash)
512 {
513 struct net *net = nf_ct_net(ct);
514
515 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
516 &net->ct.hash[hash]);
517 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
518 &net->ct.hash[reply_hash]);
519 }
520
521 int
522 nf_conntrack_hash_check_insert(struct nf_conn *ct)
523 {
524 struct net *net = nf_ct_net(ct);
525 unsigned int hash, reply_hash;
526 struct nf_conntrack_tuple_hash *h;
527 struct hlist_nulls_node *n;
528 u16 zone;
529 unsigned int sequence;
530
531 zone = nf_ct_zone(ct);
532
533 local_bh_disable();
534 do {
535 sequence = read_seqcount_begin(&net->ct.generation);
536 hash = hash_conntrack(net, zone,
537 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
538 reply_hash = hash_conntrack(net, zone,
539 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
540 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
541
542 /* See if there's one in the list already, including reverse */
543 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
544 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
545 &h->tuple) &&
546 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
547 goto out;
548 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
549 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
550 &h->tuple) &&
551 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
552 goto out;
553
554 add_timer(&ct->timeout);
555 smp_wmb();
556 /* The caller holds a reference to this object */
557 atomic_set(&ct->ct_general.use, 2);
558 __nf_conntrack_hash_insert(ct, hash, reply_hash);
559 nf_conntrack_double_unlock(hash, reply_hash);
560 NF_CT_STAT_INC(net, insert);
561 local_bh_enable();
562 return 0;
563
564 out:
565 nf_conntrack_double_unlock(hash, reply_hash);
566 NF_CT_STAT_INC(net, insert_failed);
567 local_bh_enable();
568 return -EEXIST;
569 }
570 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
571
572 /* deletion from this larval template list happens via nf_ct_put() */
573 void nf_conntrack_tmpl_insert(struct net *net, struct nf_conn *tmpl)
574 {
575 struct ct_pcpu *pcpu;
576
577 __set_bit(IPS_TEMPLATE_BIT, &tmpl->status);
578 __set_bit(IPS_CONFIRMED_BIT, &tmpl->status);
579 nf_conntrack_get(&tmpl->ct_general);
580
581 /* add this conntrack to the (per cpu) tmpl list */
582 local_bh_disable();
583 tmpl->cpu = smp_processor_id();
584 pcpu = per_cpu_ptr(nf_ct_net(tmpl)->ct.pcpu_lists, tmpl->cpu);
585
586 spin_lock(&pcpu->lock);
587 /* Overload tuple linked list to put us in template list. */
588 hlist_nulls_add_head_rcu(&tmpl->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
589 &pcpu->tmpl);
590 spin_unlock_bh(&pcpu->lock);
591 }
592 EXPORT_SYMBOL_GPL(nf_conntrack_tmpl_insert);
593
594 /* Confirm a connection given skb; places it in hash table */
595 int
596 __nf_conntrack_confirm(struct sk_buff *skb)
597 {
598 unsigned int hash, reply_hash;
599 struct nf_conntrack_tuple_hash *h;
600 struct nf_conn *ct;
601 struct nf_conn_help *help;
602 struct nf_conn_tstamp *tstamp;
603 struct hlist_nulls_node *n;
604 enum ip_conntrack_info ctinfo;
605 struct net *net;
606 u16 zone;
607 unsigned int sequence;
608
609 ct = nf_ct_get(skb, &ctinfo);
610 net = nf_ct_net(ct);
611
612 /* ipt_REJECT uses nf_conntrack_attach to attach related
613 ICMP/TCP RST packets in other direction. Actual packet
614 which created connection will be IP_CT_NEW or for an
615 expected connection, IP_CT_RELATED. */
616 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
617 return NF_ACCEPT;
618
619 zone = nf_ct_zone(ct);
620 local_bh_disable();
621
622 do {
623 sequence = read_seqcount_begin(&net->ct.generation);
624 /* reuse the hash saved before */
625 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
626 hash = hash_bucket(hash, net);
627 reply_hash = hash_conntrack(net, zone,
628 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
629
630 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
631
632 /* We're not in hash table, and we refuse to set up related
633 * connections for unconfirmed conns. But packet copies and
634 * REJECT will give spurious warnings here.
635 */
636 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
637
638 /* No external references means no one else could have
639 * confirmed us.
640 */
641 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
642 pr_debug("Confirming conntrack %p\n", ct);
643 /* We have to check the DYING flag inside the lock to prevent
644 a race against nf_ct_get_next_corpse() possibly called from
645 user context, else we insert an already 'dead' hash, blocking
646 further use of that particular connection -JM */
647
648 if (unlikely(nf_ct_is_dying(ct))) {
649 nf_conntrack_double_unlock(hash, reply_hash);
650 local_bh_enable();
651 return NF_ACCEPT;
652 }
653
654 /* See if there's one in the list already, including reverse:
655 NAT could have grabbed it without realizing, since we're
656 not in the hash. If there is, we lost race. */
657 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
658 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
659 &h->tuple) &&
660 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
661 goto out;
662 hlist_nulls_for_each_entry(h, n, &net->ct.hash[reply_hash], hnnode)
663 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
664 &h->tuple) &&
665 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
666 goto out;
667
668 nf_ct_del_from_dying_or_unconfirmed_list(ct);
669
670 /* Timer relative to confirmation time, not original
671 setting time, otherwise we'd get timer wrap in
672 weird delay cases. */
673 ct->timeout.expires += jiffies;
674 add_timer(&ct->timeout);
675 atomic_inc(&ct->ct_general.use);
676 ct->status |= IPS_CONFIRMED;
677
678 /* set conntrack timestamp, if enabled. */
679 tstamp = nf_conn_tstamp_find(ct);
680 if (tstamp) {
681 if (skb->tstamp.tv64 == 0)
682 __net_timestamp(skb);
683
684 tstamp->start = ktime_to_ns(skb->tstamp);
685 }
686 /* Since the lookup is lockless, hash insertion must be done after
687 * starting the timer and setting the CONFIRMED bit. The RCU barriers
688 * guarantee that no other CPU can find the conntrack before the above
689 * stores are visible.
690 */
691 __nf_conntrack_hash_insert(ct, hash, reply_hash);
692 nf_conntrack_double_unlock(hash, reply_hash);
693 NF_CT_STAT_INC(net, insert);
694 local_bh_enable();
695
696 help = nfct_help(ct);
697 if (help && help->helper)
698 nf_conntrack_event_cache(IPCT_HELPER, ct);
699
700 nf_conntrack_event_cache(master_ct(ct) ?
701 IPCT_RELATED : IPCT_NEW, ct);
702 return NF_ACCEPT;
703
704 out:
705 nf_conntrack_double_unlock(hash, reply_hash);
706 NF_CT_STAT_INC(net, insert_failed);
707 local_bh_enable();
708 return NF_DROP;
709 }
710 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
711
712 /* Returns true if a connection correspondings to the tuple (required
713 for NAT). */
714 int
715 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
716 const struct nf_conn *ignored_conntrack)
717 {
718 struct net *net = nf_ct_net(ignored_conntrack);
719 struct nf_conntrack_tuple_hash *h;
720 struct hlist_nulls_node *n;
721 struct nf_conn *ct;
722 u16 zone = nf_ct_zone(ignored_conntrack);
723 unsigned int hash = hash_conntrack(net, zone, tuple);
724
725 /* Disable BHs the entire time since we need to disable them at
726 * least once for the stats anyway.
727 */
728 rcu_read_lock_bh();
729 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
730 ct = nf_ct_tuplehash_to_ctrack(h);
731 if (ct != ignored_conntrack &&
732 nf_ct_tuple_equal(tuple, &h->tuple) &&
733 nf_ct_zone(ct) == zone) {
734 NF_CT_STAT_INC(net, found);
735 rcu_read_unlock_bh();
736 return 1;
737 }
738 NF_CT_STAT_INC(net, searched);
739 }
740 rcu_read_unlock_bh();
741
742 return 0;
743 }
744 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
745
746 #define NF_CT_EVICTION_RANGE 8
747
748 /* There's a small race here where we may free a just-assured
749 connection. Too bad: we're in trouble anyway. */
750 static noinline int early_drop(struct net *net, unsigned int _hash)
751 {
752 /* Use oldest entry, which is roughly LRU */
753 struct nf_conntrack_tuple_hash *h;
754 struct nf_conn *ct = NULL, *tmp;
755 struct hlist_nulls_node *n;
756 unsigned int i = 0, cnt = 0;
757 int dropped = 0;
758 unsigned int hash, sequence;
759 spinlock_t *lockp;
760
761 local_bh_disable();
762 restart:
763 sequence = read_seqcount_begin(&net->ct.generation);
764 hash = hash_bucket(_hash, net);
765 for (; i < net->ct.htable_size; i++) {
766 lockp = &nf_conntrack_locks[hash % CONNTRACK_LOCKS];
767 spin_lock(lockp);
768 if (read_seqcount_retry(&net->ct.generation, sequence)) {
769 spin_unlock(lockp);
770 goto restart;
771 }
772 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
773 hnnode) {
774 tmp = nf_ct_tuplehash_to_ctrack(h);
775 if (!test_bit(IPS_ASSURED_BIT, &tmp->status) &&
776 !nf_ct_is_dying(tmp) &&
777 atomic_inc_not_zero(&tmp->ct_general.use)) {
778 ct = tmp;
779 break;
780 }
781 cnt++;
782 }
783
784 hash = (hash + 1) % net->ct.htable_size;
785 spin_unlock(lockp);
786
787 if (ct || cnt >= NF_CT_EVICTION_RANGE)
788 break;
789
790 }
791 local_bh_enable();
792
793 if (!ct)
794 return dropped;
795
796 if (del_timer(&ct->timeout)) {
797 if (nf_ct_delete(ct, 0, 0)) {
798 dropped = 1;
799 NF_CT_STAT_INC_ATOMIC(net, early_drop);
800 }
801 }
802 nf_ct_put(ct);
803 return dropped;
804 }
805
806 void init_nf_conntrack_hash_rnd(void)
807 {
808 unsigned int rand;
809
810 /*
811 * Why not initialize nf_conntrack_rnd in a "init()" function ?
812 * Because there isn't enough entropy when system initializing,
813 * and we initialize it as late as possible.
814 */
815 do {
816 get_random_bytes(&rand, sizeof(rand));
817 } while (!rand);
818 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
819 }
820
821 static struct nf_conn *
822 __nf_conntrack_alloc(struct net *net, u16 zone,
823 const struct nf_conntrack_tuple *orig,
824 const struct nf_conntrack_tuple *repl,
825 gfp_t gfp, u32 hash)
826 {
827 struct nf_conn *ct;
828
829 if (unlikely(!nf_conntrack_hash_rnd)) {
830 init_nf_conntrack_hash_rnd();
831 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
832 hash = hash_conntrack_raw(orig, zone);
833 }
834
835 /* We don't want any race condition at early drop stage */
836 atomic_inc(&net->ct.count);
837
838 if (nf_conntrack_max &&
839 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
840 if (!early_drop(net, hash)) {
841 atomic_dec(&net->ct.count);
842 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
843 return ERR_PTR(-ENOMEM);
844 }
845 }
846
847 /*
848 * Do not use kmem_cache_zalloc(), as this cache uses
849 * SLAB_DESTROY_BY_RCU.
850 */
851 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
852 if (ct == NULL) {
853 atomic_dec(&net->ct.count);
854 return ERR_PTR(-ENOMEM);
855 }
856 /*
857 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
858 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
859 */
860 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
861 offsetof(struct nf_conn, proto) -
862 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
863 spin_lock_init(&ct->lock);
864 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
865 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
866 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
867 /* save hash for reusing when confirming */
868 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
869 /* Don't set timer yet: wait for confirmation */
870 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
871 write_pnet(&ct->ct_net, net);
872 #ifdef CONFIG_NF_CONNTRACK_ZONES
873 if (zone) {
874 struct nf_conntrack_zone *nf_ct_zone;
875
876 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
877 if (!nf_ct_zone)
878 goto out_free;
879 nf_ct_zone->id = zone;
880 }
881 #endif
882 /* Because we use RCU lookups, we set ct_general.use to zero before
883 * this is inserted in any list.
884 */
885 atomic_set(&ct->ct_general.use, 0);
886 return ct;
887
888 #ifdef CONFIG_NF_CONNTRACK_ZONES
889 out_free:
890 atomic_dec(&net->ct.count);
891 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
892 return ERR_PTR(-ENOMEM);
893 #endif
894 }
895
896 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
897 const struct nf_conntrack_tuple *orig,
898 const struct nf_conntrack_tuple *repl,
899 gfp_t gfp)
900 {
901 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
902 }
903 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
904
905 void nf_conntrack_free(struct nf_conn *ct)
906 {
907 struct net *net = nf_ct_net(ct);
908
909 /* A freed object has refcnt == 0, that's
910 * the golden rule for SLAB_DESTROY_BY_RCU
911 */
912 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
913
914 nf_ct_ext_destroy(ct);
915 nf_ct_ext_free(ct);
916 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
917 smp_mb__before_atomic_dec();
918 atomic_dec(&net->ct.count);
919 }
920 EXPORT_SYMBOL_GPL(nf_conntrack_free);
921
922
923 /* Allocate a new conntrack: we return -ENOMEM if classification
924 failed due to stress. Otherwise it really is unclassifiable. */
925 static struct nf_conntrack_tuple_hash *
926 init_conntrack(struct net *net, struct nf_conn *tmpl,
927 const struct nf_conntrack_tuple *tuple,
928 struct nf_conntrack_l3proto *l3proto,
929 struct nf_conntrack_l4proto *l4proto,
930 struct sk_buff *skb,
931 unsigned int dataoff, u32 hash)
932 {
933 struct nf_conn *ct;
934 struct nf_conn_help *help;
935 struct nf_conntrack_tuple repl_tuple;
936 struct nf_conntrack_ecache *ecache;
937 struct nf_conntrack_expect *exp = NULL;
938 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
939 struct nf_conn_timeout *timeout_ext;
940 unsigned int *timeouts;
941
942 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
943 pr_debug("Can't invert tuple.\n");
944 return NULL;
945 }
946
947 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
948 hash);
949 if (IS_ERR(ct))
950 return (struct nf_conntrack_tuple_hash *)ct;
951
952 if (tmpl && nfct_synproxy(tmpl)) {
953 nfct_seqadj_ext_add(ct);
954 nfct_synproxy_ext_add(ct);
955 }
956
957 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
958 if (timeout_ext)
959 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
960 else
961 timeouts = l4proto->get_timeouts(net);
962
963 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
964 nf_conntrack_free(ct);
965 pr_debug("init conntrack: can't track with proto module\n");
966 return NULL;
967 }
968
969 if (timeout_ext)
970 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
971
972 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
973 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
974 nf_ct_labels_ext_add(ct);
975
976 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
977 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
978 ecache ? ecache->expmask : 0,
979 GFP_ATOMIC);
980
981 local_bh_disable();
982 if (net->ct.expect_count) {
983 spin_lock(&nf_conntrack_expect_lock);
984 exp = nf_ct_find_expectation(net, zone, tuple);
985 if (exp) {
986 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
987 ct, exp);
988 /* Welcome, Mr. Bond. We've been expecting you... */
989 __set_bit(IPS_EXPECTED_BIT, &ct->status);
990 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
991 ct->master = exp->master;
992 if (exp->helper) {
993 help = nf_ct_helper_ext_add(ct, exp->helper,
994 GFP_ATOMIC);
995 if (help)
996 rcu_assign_pointer(help->helper, exp->helper);
997 }
998
999 #ifdef CONFIG_NF_CONNTRACK_MARK
1000 ct->mark = exp->master->mark;
1001 #endif
1002 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1003 ct->secmark = exp->master->secmark;
1004 #endif
1005 NF_CT_STAT_INC(net, expect_new);
1006 }
1007 spin_unlock(&nf_conntrack_expect_lock);
1008 }
1009 if (!exp) {
1010 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1011 NF_CT_STAT_INC(net, new);
1012 }
1013
1014 /* Now it is inserted into the unconfirmed list, bump refcount */
1015 nf_conntrack_get(&ct->ct_general);
1016 nf_ct_add_to_unconfirmed_list(ct);
1017
1018 local_bh_enable();
1019
1020 if (exp) {
1021 if (exp->expectfn)
1022 exp->expectfn(ct, exp);
1023 nf_ct_expect_put(exp);
1024 }
1025
1026 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1027 }
1028
1029 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1030 static inline struct nf_conn *
1031 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1032 struct sk_buff *skb,
1033 unsigned int dataoff,
1034 u_int16_t l3num,
1035 u_int8_t protonum,
1036 struct nf_conntrack_l3proto *l3proto,
1037 struct nf_conntrack_l4proto *l4proto,
1038 int *set_reply,
1039 enum ip_conntrack_info *ctinfo)
1040 {
1041 struct nf_conntrack_tuple tuple;
1042 struct nf_conntrack_tuple_hash *h;
1043 struct nf_conn *ct;
1044 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
1045 u32 hash;
1046
1047 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1048 dataoff, l3num, protonum, &tuple, l3proto,
1049 l4proto)) {
1050 pr_debug("resolve_normal_ct: Can't get tuple\n");
1051 return NULL;
1052 }
1053
1054 /* look for tuple match */
1055 hash = hash_conntrack_raw(&tuple, zone);
1056 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1057 if (!h) {
1058 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1059 skb, dataoff, hash);
1060 if (!h)
1061 return NULL;
1062 if (IS_ERR(h))
1063 return (void *)h;
1064 }
1065 ct = nf_ct_tuplehash_to_ctrack(h);
1066
1067 /* It exists; we have (non-exclusive) reference. */
1068 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1069 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1070 /* Please set reply bit if this packet OK */
1071 *set_reply = 1;
1072 } else {
1073 /* Once we've had two way comms, always ESTABLISHED. */
1074 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1075 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
1076 *ctinfo = IP_CT_ESTABLISHED;
1077 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1078 pr_debug("nf_conntrack_in: related packet for %p\n",
1079 ct);
1080 *ctinfo = IP_CT_RELATED;
1081 } else {
1082 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
1083 *ctinfo = IP_CT_NEW;
1084 }
1085 *set_reply = 0;
1086 }
1087 skb->nfct = &ct->ct_general;
1088 skb->nfctinfo = *ctinfo;
1089 return ct;
1090 }
1091
1092 unsigned int
1093 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1094 struct sk_buff *skb)
1095 {
1096 struct nf_conn *ct, *tmpl = NULL;
1097 enum ip_conntrack_info ctinfo;
1098 struct nf_conntrack_l3proto *l3proto;
1099 struct nf_conntrack_l4proto *l4proto;
1100 unsigned int *timeouts;
1101 unsigned int dataoff;
1102 u_int8_t protonum;
1103 int set_reply = 0;
1104 int ret;
1105
1106 if (skb->nfct) {
1107 /* Previously seen (loopback or untracked)? Ignore. */
1108 tmpl = (struct nf_conn *)skb->nfct;
1109 if (!nf_ct_is_template(tmpl)) {
1110 NF_CT_STAT_INC_ATOMIC(net, ignore);
1111 return NF_ACCEPT;
1112 }
1113 skb->nfct = NULL;
1114 }
1115
1116 /* rcu_read_lock()ed by nf_hook_slow */
1117 l3proto = __nf_ct_l3proto_find(pf);
1118 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1119 &dataoff, &protonum);
1120 if (ret <= 0) {
1121 pr_debug("not prepared to track yet or error occurred\n");
1122 NF_CT_STAT_INC_ATOMIC(net, error);
1123 NF_CT_STAT_INC_ATOMIC(net, invalid);
1124 ret = -ret;
1125 goto out;
1126 }
1127
1128 l4proto = __nf_ct_l4proto_find(pf, protonum);
1129
1130 /* It may be an special packet, error, unclean...
1131 * inverse of the return code tells to the netfilter
1132 * core what to do with the packet. */
1133 if (l4proto->error != NULL) {
1134 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1135 pf, hooknum);
1136 if (ret <= 0) {
1137 NF_CT_STAT_INC_ATOMIC(net, error);
1138 NF_CT_STAT_INC_ATOMIC(net, invalid);
1139 ret = -ret;
1140 goto out;
1141 }
1142 /* ICMP[v6] protocol trackers may assign one conntrack. */
1143 if (skb->nfct)
1144 goto out;
1145 }
1146
1147 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1148 l3proto, l4proto, &set_reply, &ctinfo);
1149 if (!ct) {
1150 /* Not valid part of a connection */
1151 NF_CT_STAT_INC_ATOMIC(net, invalid);
1152 ret = NF_ACCEPT;
1153 goto out;
1154 }
1155
1156 if (IS_ERR(ct)) {
1157 /* Too stressed to deal. */
1158 NF_CT_STAT_INC_ATOMIC(net, drop);
1159 ret = NF_DROP;
1160 goto out;
1161 }
1162
1163 NF_CT_ASSERT(skb->nfct);
1164
1165 /* Decide what timeout policy we want to apply to this flow. */
1166 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1167
1168 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1169 if (ret <= 0) {
1170 /* Invalid: inverse of the return code tells
1171 * the netfilter core what to do */
1172 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1173 nf_conntrack_put(skb->nfct);
1174 skb->nfct = NULL;
1175 NF_CT_STAT_INC_ATOMIC(net, invalid);
1176 if (ret == -NF_DROP)
1177 NF_CT_STAT_INC_ATOMIC(net, drop);
1178 ret = -ret;
1179 goto out;
1180 }
1181
1182 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1183 nf_conntrack_event_cache(IPCT_REPLY, ct);
1184 out:
1185 if (tmpl) {
1186 /* Special case: we have to repeat this hook, assign the
1187 * template again to this packet. We assume that this packet
1188 * has no conntrack assigned. This is used by nf_ct_tcp. */
1189 if (ret == NF_REPEAT)
1190 skb->nfct = (struct nf_conntrack *)tmpl;
1191 else
1192 nf_ct_put(tmpl);
1193 }
1194
1195 return ret;
1196 }
1197 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1198
1199 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1200 const struct nf_conntrack_tuple *orig)
1201 {
1202 bool ret;
1203
1204 rcu_read_lock();
1205 ret = nf_ct_invert_tuple(inverse, orig,
1206 __nf_ct_l3proto_find(orig->src.l3num),
1207 __nf_ct_l4proto_find(orig->src.l3num,
1208 orig->dst.protonum));
1209 rcu_read_unlock();
1210 return ret;
1211 }
1212 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1213
1214 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1215 implicitly racy: see __nf_conntrack_confirm */
1216 void nf_conntrack_alter_reply(struct nf_conn *ct,
1217 const struct nf_conntrack_tuple *newreply)
1218 {
1219 struct nf_conn_help *help = nfct_help(ct);
1220
1221 /* Should be unconfirmed, so not in hash table yet */
1222 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1223
1224 pr_debug("Altering reply tuple of %p to ", ct);
1225 nf_ct_dump_tuple(newreply);
1226
1227 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1228 if (ct->master || (help && !hlist_empty(&help->expectations)))
1229 return;
1230
1231 rcu_read_lock();
1232 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1233 rcu_read_unlock();
1234 }
1235 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1236
1237 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1238 void __nf_ct_refresh_acct(struct nf_conn *ct,
1239 enum ip_conntrack_info ctinfo,
1240 const struct sk_buff *skb,
1241 unsigned long extra_jiffies,
1242 int do_acct)
1243 {
1244 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1245 NF_CT_ASSERT(skb);
1246
1247 /* Only update if this is not a fixed timeout */
1248 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1249 goto acct;
1250
1251 /* If not in hash table, timer will not be active yet */
1252 if (!nf_ct_is_confirmed(ct)) {
1253 ct->timeout.expires = extra_jiffies;
1254 } else {
1255 unsigned long newtime = jiffies + extra_jiffies;
1256
1257 /* Only update the timeout if the new timeout is at least
1258 HZ jiffies from the old timeout. Need del_timer for race
1259 avoidance (may already be dying). */
1260 if (newtime - ct->timeout.expires >= HZ)
1261 mod_timer_pending(&ct->timeout, newtime);
1262 }
1263
1264 acct:
1265 if (do_acct) {
1266 struct nf_conn_acct *acct;
1267
1268 acct = nf_conn_acct_find(ct);
1269 if (acct) {
1270 struct nf_conn_counter *counter = acct->counter;
1271
1272 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1273 atomic64_add(skb->len, &counter[CTINFO2DIR(ctinfo)].bytes);
1274 }
1275 }
1276 }
1277 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1278
1279 bool __nf_ct_kill_acct(struct nf_conn *ct,
1280 enum ip_conntrack_info ctinfo,
1281 const struct sk_buff *skb,
1282 int do_acct)
1283 {
1284 if (do_acct) {
1285 struct nf_conn_acct *acct;
1286
1287 acct = nf_conn_acct_find(ct);
1288 if (acct) {
1289 struct nf_conn_counter *counter = acct->counter;
1290
1291 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
1292 atomic64_add(skb->len - skb_network_offset(skb),
1293 &counter[CTINFO2DIR(ctinfo)].bytes);
1294 }
1295 }
1296
1297 if (del_timer(&ct->timeout)) {
1298 ct->timeout.function((unsigned long)ct);
1299 return true;
1300 }
1301 return false;
1302 }
1303 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1304
1305 #ifdef CONFIG_NF_CONNTRACK_ZONES
1306 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1307 .len = sizeof(struct nf_conntrack_zone),
1308 .align = __alignof__(struct nf_conntrack_zone),
1309 .id = NF_CT_EXT_ZONE,
1310 };
1311 #endif
1312
1313 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1314
1315 #include <linux/netfilter/nfnetlink.h>
1316 #include <linux/netfilter/nfnetlink_conntrack.h>
1317 #include <linux/mutex.h>
1318
1319 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1320 * in ip_conntrack_core, since we don't want the protocols to autoload
1321 * or depend on ctnetlink */
1322 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1323 const struct nf_conntrack_tuple *tuple)
1324 {
1325 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1326 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1327 goto nla_put_failure;
1328 return 0;
1329
1330 nla_put_failure:
1331 return -1;
1332 }
1333 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1334
1335 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1336 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1337 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1338 };
1339 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1340
1341 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1342 struct nf_conntrack_tuple *t)
1343 {
1344 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1345 return -EINVAL;
1346
1347 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1348 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1349
1350 return 0;
1351 }
1352 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1353
1354 int nf_ct_port_nlattr_tuple_size(void)
1355 {
1356 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1357 }
1358 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1359 #endif
1360
1361 /* Used by ipt_REJECT and ip6t_REJECT. */
1362 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1363 {
1364 struct nf_conn *ct;
1365 enum ip_conntrack_info ctinfo;
1366
1367 /* This ICMP is in reverse direction to the packet which caused it */
1368 ct = nf_ct_get(skb, &ctinfo);
1369 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1370 ctinfo = IP_CT_RELATED_REPLY;
1371 else
1372 ctinfo = IP_CT_RELATED;
1373
1374 /* Attach to new skbuff, and increment count */
1375 nskb->nfct = &ct->ct_general;
1376 nskb->nfctinfo = ctinfo;
1377 nf_conntrack_get(nskb->nfct);
1378 }
1379
1380 /* Bring out ya dead! */
1381 static struct nf_conn *
1382 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1383 void *data, unsigned int *bucket)
1384 {
1385 struct nf_conntrack_tuple_hash *h;
1386 struct nf_conn *ct;
1387 struct hlist_nulls_node *n;
1388 int cpu;
1389 spinlock_t *lockp;
1390
1391 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1392 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1393 local_bh_disable();
1394 spin_lock(lockp);
1395 if (*bucket < net->ct.htable_size) {
1396 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1397 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1398 continue;
1399 ct = nf_ct_tuplehash_to_ctrack(h);
1400 if (iter(ct, data))
1401 goto found;
1402 }
1403 }
1404 spin_unlock(lockp);
1405 local_bh_enable();
1406 }
1407
1408 for_each_possible_cpu(cpu) {
1409 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1410
1411 spin_lock_bh(&pcpu->lock);
1412 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1413 ct = nf_ct_tuplehash_to_ctrack(h);
1414 if (iter(ct, data))
1415 set_bit(IPS_DYING_BIT, &ct->status);
1416 }
1417 spin_unlock_bh(&pcpu->lock);
1418 }
1419 return NULL;
1420 found:
1421 atomic_inc(&ct->ct_general.use);
1422 spin_unlock(lockp);
1423 local_bh_enable();
1424 return ct;
1425 }
1426
1427 void nf_ct_iterate_cleanup(struct net *net,
1428 int (*iter)(struct nf_conn *i, void *data),
1429 void *data, u32 portid, int report)
1430 {
1431 struct nf_conn *ct;
1432 unsigned int bucket = 0;
1433
1434 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1435 /* Time to push up daises... */
1436 if (del_timer(&ct->timeout))
1437 nf_ct_delete(ct, portid, report);
1438
1439 /* ... else the timer will get him soon. */
1440
1441 nf_ct_put(ct);
1442 }
1443 }
1444 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1445
1446 static int kill_all(struct nf_conn *i, void *data)
1447 {
1448 return 1;
1449 }
1450
1451 void nf_ct_free_hashtable(void *hash, unsigned int size)
1452 {
1453 if (is_vmalloc_addr(hash))
1454 vfree(hash);
1455 else
1456 free_pages((unsigned long)hash,
1457 get_order(sizeof(struct hlist_head) * size));
1458 }
1459 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1460
1461 void nf_conntrack_flush_report(struct net *net, u32 portid, int report)
1462 {
1463 nf_ct_iterate_cleanup(net, kill_all, NULL, portid, report);
1464 }
1465 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1466
1467 static void nf_ct_release_dying_list(struct net *net)
1468 {
1469 struct nf_conntrack_tuple_hash *h;
1470 struct nf_conn *ct;
1471 struct hlist_nulls_node *n;
1472 int cpu;
1473
1474 for_each_possible_cpu(cpu) {
1475 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1476
1477 spin_lock_bh(&pcpu->lock);
1478 hlist_nulls_for_each_entry(h, n, &pcpu->dying, hnnode) {
1479 ct = nf_ct_tuplehash_to_ctrack(h);
1480 /* never fails to remove them, no listeners at this point */
1481 nf_ct_kill(ct);
1482 }
1483 spin_unlock_bh(&pcpu->lock);
1484 }
1485 }
1486
1487 static int untrack_refs(void)
1488 {
1489 int cnt = 0, cpu;
1490
1491 for_each_possible_cpu(cpu) {
1492 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1493
1494 cnt += atomic_read(&ct->ct_general.use) - 1;
1495 }
1496 return cnt;
1497 }
1498
1499 void nf_conntrack_cleanup_start(void)
1500 {
1501 RCU_INIT_POINTER(ip_ct_attach, NULL);
1502 }
1503
1504 void nf_conntrack_cleanup_end(void)
1505 {
1506 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1507 while (untrack_refs() > 0)
1508 schedule();
1509
1510 #ifdef CONFIG_NF_CONNTRACK_ZONES
1511 nf_ct_extend_unregister(&nf_ct_zone_extend);
1512 #endif
1513 nf_conntrack_proto_fini();
1514 nf_conntrack_seqadj_fini();
1515 nf_conntrack_labels_fini();
1516 nf_conntrack_helper_fini();
1517 nf_conntrack_timeout_fini();
1518 nf_conntrack_ecache_fini();
1519 nf_conntrack_tstamp_fini();
1520 nf_conntrack_acct_fini();
1521 nf_conntrack_expect_fini();
1522 }
1523
1524 /*
1525 * Mishearing the voices in his head, our hero wonders how he's
1526 * supposed to kill the mall.
1527 */
1528 void nf_conntrack_cleanup_net(struct net *net)
1529 {
1530 LIST_HEAD(single);
1531
1532 list_add(&net->exit_list, &single);
1533 nf_conntrack_cleanup_net_list(&single);
1534 }
1535
1536 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1537 {
1538 int busy;
1539 struct net *net;
1540
1541 /*
1542 * This makes sure all current packets have passed through
1543 * netfilter framework. Roll on, two-stage module
1544 * delete...
1545 */
1546 synchronize_net();
1547 i_see_dead_people:
1548 busy = 0;
1549 list_for_each_entry(net, net_exit_list, exit_list) {
1550 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1551 nf_ct_release_dying_list(net);
1552 if (atomic_read(&net->ct.count) != 0)
1553 busy = 1;
1554 }
1555 if (busy) {
1556 schedule();
1557 goto i_see_dead_people;
1558 }
1559
1560 list_for_each_entry(net, net_exit_list, exit_list) {
1561 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1562 nf_conntrack_proto_pernet_fini(net);
1563 nf_conntrack_helper_pernet_fini(net);
1564 nf_conntrack_ecache_pernet_fini(net);
1565 nf_conntrack_tstamp_pernet_fini(net);
1566 nf_conntrack_acct_pernet_fini(net);
1567 nf_conntrack_expect_pernet_fini(net);
1568 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1569 kfree(net->ct.slabname);
1570 free_percpu(net->ct.stat);
1571 free_percpu(net->ct.pcpu_lists);
1572 }
1573 }
1574
1575 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1576 {
1577 struct hlist_nulls_head *hash;
1578 unsigned int nr_slots, i;
1579 size_t sz;
1580
1581 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1582 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1583 sz = nr_slots * sizeof(struct hlist_nulls_head);
1584 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1585 get_order(sz));
1586 if (!hash) {
1587 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1588 hash = vzalloc(sz);
1589 }
1590
1591 if (hash && nulls)
1592 for (i = 0; i < nr_slots; i++)
1593 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1594
1595 return hash;
1596 }
1597 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1598
1599 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1600 {
1601 int i, bucket, rc;
1602 unsigned int hashsize, old_size;
1603 struct hlist_nulls_head *hash, *old_hash;
1604 struct nf_conntrack_tuple_hash *h;
1605 struct nf_conn *ct;
1606
1607 if (current->nsproxy->net_ns != &init_net)
1608 return -EOPNOTSUPP;
1609
1610 /* On boot, we can set this without any fancy locking. */
1611 if (!nf_conntrack_htable_size)
1612 return param_set_uint(val, kp);
1613
1614 rc = kstrtouint(val, 0, &hashsize);
1615 if (rc)
1616 return rc;
1617 if (!hashsize)
1618 return -EINVAL;
1619
1620 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1621 if (!hash)
1622 return -ENOMEM;
1623
1624 local_bh_disable();
1625 nf_conntrack_all_lock();
1626 write_seqcount_begin(&init_net.ct.generation);
1627
1628 /* Lookups in the old hash might happen in parallel, which means we
1629 * might get false negatives during connection lookup. New connections
1630 * created because of a false negative won't make it into the hash
1631 * though since that required taking the locks.
1632 */
1633
1634 for (i = 0; i < init_net.ct.htable_size; i++) {
1635 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1636 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1637 struct nf_conntrack_tuple_hash, hnnode);
1638 ct = nf_ct_tuplehash_to_ctrack(h);
1639 hlist_nulls_del_rcu(&h->hnnode);
1640 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1641 hashsize);
1642 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1643 }
1644 }
1645 old_size = init_net.ct.htable_size;
1646 old_hash = init_net.ct.hash;
1647
1648 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1649 init_net.ct.hash = hash;
1650
1651 write_seqcount_end(&init_net.ct.generation);
1652 nf_conntrack_all_unlock();
1653 local_bh_enable();
1654
1655 nf_ct_free_hashtable(old_hash, old_size);
1656 return 0;
1657 }
1658 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1659
1660 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1661 &nf_conntrack_htable_size, 0600);
1662
1663 void nf_ct_untracked_status_or(unsigned long bits)
1664 {
1665 int cpu;
1666
1667 for_each_possible_cpu(cpu)
1668 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1669 }
1670 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1671
1672 int nf_conntrack_init_start(void)
1673 {
1674 int max_factor = 8;
1675 int i, ret, cpu;
1676
1677 for (i = 0; i < CONNTRACK_LOCKS; i++)
1678 spin_lock_init(&nf_conntrack_locks[i]);
1679
1680 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1681 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1682 if (!nf_conntrack_htable_size) {
1683 nf_conntrack_htable_size
1684 = (((totalram_pages << PAGE_SHIFT) / 16384)
1685 / sizeof(struct hlist_head));
1686 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1687 nf_conntrack_htable_size = 16384;
1688 if (nf_conntrack_htable_size < 32)
1689 nf_conntrack_htable_size = 32;
1690
1691 /* Use a max. factor of four by default to get the same max as
1692 * with the old struct list_heads. When a table size is given
1693 * we use the old value of 8 to avoid reducing the max.
1694 * entries. */
1695 max_factor = 4;
1696 }
1697 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1698
1699 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1700 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1701 nf_conntrack_max);
1702
1703 ret = nf_conntrack_expect_init();
1704 if (ret < 0)
1705 goto err_expect;
1706
1707 ret = nf_conntrack_acct_init();
1708 if (ret < 0)
1709 goto err_acct;
1710
1711 ret = nf_conntrack_tstamp_init();
1712 if (ret < 0)
1713 goto err_tstamp;
1714
1715 ret = nf_conntrack_ecache_init();
1716 if (ret < 0)
1717 goto err_ecache;
1718
1719 ret = nf_conntrack_timeout_init();
1720 if (ret < 0)
1721 goto err_timeout;
1722
1723 ret = nf_conntrack_helper_init();
1724 if (ret < 0)
1725 goto err_helper;
1726
1727 ret = nf_conntrack_labels_init();
1728 if (ret < 0)
1729 goto err_labels;
1730
1731 ret = nf_conntrack_seqadj_init();
1732 if (ret < 0)
1733 goto err_seqadj;
1734
1735 #ifdef CONFIG_NF_CONNTRACK_ZONES
1736 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1737 if (ret < 0)
1738 goto err_extend;
1739 #endif
1740 ret = nf_conntrack_proto_init();
1741 if (ret < 0)
1742 goto err_proto;
1743
1744 /* Set up fake conntrack: to never be deleted, not in any hashes */
1745 for_each_possible_cpu(cpu) {
1746 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1747 write_pnet(&ct->ct_net, &init_net);
1748 atomic_set(&ct->ct_general.use, 1);
1749 }
1750 /* - and look it like as a confirmed connection */
1751 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1752 return 0;
1753
1754 err_proto:
1755 #ifdef CONFIG_NF_CONNTRACK_ZONES
1756 nf_ct_extend_unregister(&nf_ct_zone_extend);
1757 err_extend:
1758 #endif
1759 nf_conntrack_seqadj_fini();
1760 err_seqadj:
1761 nf_conntrack_labels_fini();
1762 err_labels:
1763 nf_conntrack_helper_fini();
1764 err_helper:
1765 nf_conntrack_timeout_fini();
1766 err_timeout:
1767 nf_conntrack_ecache_fini();
1768 err_ecache:
1769 nf_conntrack_tstamp_fini();
1770 err_tstamp:
1771 nf_conntrack_acct_fini();
1772 err_acct:
1773 nf_conntrack_expect_fini();
1774 err_expect:
1775 return ret;
1776 }
1777
1778 void nf_conntrack_init_end(void)
1779 {
1780 /* For use by REJECT target */
1781 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1782 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1783 }
1784
1785 /*
1786 * We need to use special "null" values, not used in hash table
1787 */
1788 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1789 #define DYING_NULLS_VAL ((1<<30)+1)
1790 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1791
1792 int nf_conntrack_init_net(struct net *net)
1793 {
1794 int ret = -ENOMEM;
1795 int cpu;
1796
1797 atomic_set(&net->ct.count, 0);
1798 seqcount_init(&net->ct.generation);
1799
1800 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1801 if (!net->ct.pcpu_lists)
1802 goto err_stat;
1803
1804 for_each_possible_cpu(cpu) {
1805 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1806
1807 spin_lock_init(&pcpu->lock);
1808 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1809 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1810 INIT_HLIST_NULLS_HEAD(&pcpu->tmpl, TEMPLATE_NULLS_VAL);
1811 }
1812
1813 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1814 if (!net->ct.stat)
1815 goto err_pcpu_lists;
1816
1817 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1818 if (!net->ct.slabname)
1819 goto err_slabname;
1820
1821 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1822 sizeof(struct nf_conn), 0,
1823 SLAB_DESTROY_BY_RCU, NULL);
1824 if (!net->ct.nf_conntrack_cachep) {
1825 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1826 goto err_cache;
1827 }
1828
1829 net->ct.htable_size = nf_conntrack_htable_size;
1830 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1831 if (!net->ct.hash) {
1832 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1833 goto err_hash;
1834 }
1835 ret = nf_conntrack_expect_pernet_init(net);
1836 if (ret < 0)
1837 goto err_expect;
1838 ret = nf_conntrack_acct_pernet_init(net);
1839 if (ret < 0)
1840 goto err_acct;
1841 ret = nf_conntrack_tstamp_pernet_init(net);
1842 if (ret < 0)
1843 goto err_tstamp;
1844 ret = nf_conntrack_ecache_pernet_init(net);
1845 if (ret < 0)
1846 goto err_ecache;
1847 ret = nf_conntrack_helper_pernet_init(net);
1848 if (ret < 0)
1849 goto err_helper;
1850 ret = nf_conntrack_proto_pernet_init(net);
1851 if (ret < 0)
1852 goto err_proto;
1853 return 0;
1854
1855 err_proto:
1856 nf_conntrack_helper_pernet_fini(net);
1857 err_helper:
1858 nf_conntrack_ecache_pernet_fini(net);
1859 err_ecache:
1860 nf_conntrack_tstamp_pernet_fini(net);
1861 err_tstamp:
1862 nf_conntrack_acct_pernet_fini(net);
1863 err_acct:
1864 nf_conntrack_expect_pernet_fini(net);
1865 err_expect:
1866 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1867 err_hash:
1868 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1869 err_cache:
1870 kfree(net->ct.slabname);
1871 err_slabname:
1872 free_percpu(net->ct.stat);
1873 err_pcpu_lists:
1874 free_percpu(net->ct.pcpu_lists);
1875 err_stat:
1876 return ret;
1877 }