]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/nf_conntrack_core.c
7c66ce401ce9dc051130d72226ba839b4b7dfac0
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 enum nf_nat_manip_type manip,
63 const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 struct conntrack_gc_work {
76 struct delayed_work dwork;
77 u32 last_bucket;
78 bool exiting;
79 };
80
81 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
82 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
83 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
84 static __read_mostly bool nf_conntrack_locks_all;
85
86 #define GC_MAX_BUCKETS_DIV 64u
87 #define GC_MAX_BUCKETS 8192u
88 #define GC_INTERVAL (5 * HZ)
89 #define GC_MAX_EVICTS 256u
90
91 static struct conntrack_gc_work conntrack_gc_work;
92
93 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
94 {
95 spin_lock(lock);
96 while (unlikely(nf_conntrack_locks_all)) {
97 spin_unlock(lock);
98
99 /*
100 * Order the 'nf_conntrack_locks_all' load vs. the
101 * spin_unlock_wait() loads below, to ensure
102 * that 'nf_conntrack_locks_all_lock' is indeed held:
103 */
104 smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
105 spin_unlock_wait(&nf_conntrack_locks_all_lock);
106 spin_lock(lock);
107 }
108 }
109 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
110
111 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
112 {
113 h1 %= CONNTRACK_LOCKS;
114 h2 %= CONNTRACK_LOCKS;
115 spin_unlock(&nf_conntrack_locks[h1]);
116 if (h1 != h2)
117 spin_unlock(&nf_conntrack_locks[h2]);
118 }
119
120 /* return true if we need to recompute hashes (in case hash table was resized) */
121 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
122 unsigned int h2, unsigned int sequence)
123 {
124 h1 %= CONNTRACK_LOCKS;
125 h2 %= CONNTRACK_LOCKS;
126 if (h1 <= h2) {
127 nf_conntrack_lock(&nf_conntrack_locks[h1]);
128 if (h1 != h2)
129 spin_lock_nested(&nf_conntrack_locks[h2],
130 SINGLE_DEPTH_NESTING);
131 } else {
132 nf_conntrack_lock(&nf_conntrack_locks[h2]);
133 spin_lock_nested(&nf_conntrack_locks[h1],
134 SINGLE_DEPTH_NESTING);
135 }
136 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
137 nf_conntrack_double_unlock(h1, h2);
138 return true;
139 }
140 return false;
141 }
142
143 static void nf_conntrack_all_lock(void)
144 {
145 int i;
146
147 spin_lock(&nf_conntrack_locks_all_lock);
148 nf_conntrack_locks_all = true;
149
150 /*
151 * Order the above store of 'nf_conntrack_locks_all' against
152 * the spin_unlock_wait() loads below, such that if
153 * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
154 * we must observe nf_conntrack_locks[] held:
155 */
156 smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
157
158 for (i = 0; i < CONNTRACK_LOCKS; i++) {
159 spin_unlock_wait(&nf_conntrack_locks[i]);
160 }
161 }
162
163 static void nf_conntrack_all_unlock(void)
164 {
165 /*
166 * All prior stores must be complete before we clear
167 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
168 * might observe the false value but not the entire
169 * critical section:
170 */
171 smp_store_release(&nf_conntrack_locks_all, false);
172 spin_unlock(&nf_conntrack_locks_all_lock);
173 }
174
175 unsigned int nf_conntrack_htable_size __read_mostly;
176 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
177
178 unsigned int nf_conntrack_max __read_mostly;
179 seqcount_t nf_conntrack_generation __read_mostly;
180
181 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
182 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
183
184 static unsigned int nf_conntrack_hash_rnd __read_mostly;
185
186 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
187 const struct net *net)
188 {
189 unsigned int n;
190 u32 seed;
191
192 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
193
194 /* The direction must be ignored, so we hash everything up to the
195 * destination ports (which is a multiple of 4) and treat the last
196 * three bytes manually.
197 */
198 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
199 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
200 return jhash2((u32 *)tuple, n, seed ^
201 (((__force __u16)tuple->dst.u.all << 16) |
202 tuple->dst.protonum));
203 }
204
205 static u32 scale_hash(u32 hash)
206 {
207 return reciprocal_scale(hash, nf_conntrack_htable_size);
208 }
209
210 static u32 __hash_conntrack(const struct net *net,
211 const struct nf_conntrack_tuple *tuple,
212 unsigned int size)
213 {
214 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
215 }
216
217 static u32 hash_conntrack(const struct net *net,
218 const struct nf_conntrack_tuple *tuple)
219 {
220 return scale_hash(hash_conntrack_raw(tuple, net));
221 }
222
223 bool
224 nf_ct_get_tuple(const struct sk_buff *skb,
225 unsigned int nhoff,
226 unsigned int dataoff,
227 u_int16_t l3num,
228 u_int8_t protonum,
229 struct net *net,
230 struct nf_conntrack_tuple *tuple,
231 const struct nf_conntrack_l3proto *l3proto,
232 const struct nf_conntrack_l4proto *l4proto)
233 {
234 memset(tuple, 0, sizeof(*tuple));
235
236 tuple->src.l3num = l3num;
237 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
238 return false;
239
240 tuple->dst.protonum = protonum;
241 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
242
243 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
244 }
245 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
246
247 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
248 u_int16_t l3num,
249 struct net *net, struct nf_conntrack_tuple *tuple)
250 {
251 struct nf_conntrack_l3proto *l3proto;
252 struct nf_conntrack_l4proto *l4proto;
253 unsigned int protoff;
254 u_int8_t protonum;
255 int ret;
256
257 rcu_read_lock();
258
259 l3proto = __nf_ct_l3proto_find(l3num);
260 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
261 if (ret != NF_ACCEPT) {
262 rcu_read_unlock();
263 return false;
264 }
265
266 l4proto = __nf_ct_l4proto_find(l3num, protonum);
267
268 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
269 l3proto, l4proto);
270
271 rcu_read_unlock();
272 return ret;
273 }
274 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
275
276 bool
277 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
278 const struct nf_conntrack_tuple *orig,
279 const struct nf_conntrack_l3proto *l3proto,
280 const struct nf_conntrack_l4proto *l4proto)
281 {
282 memset(inverse, 0, sizeof(*inverse));
283
284 inverse->src.l3num = orig->src.l3num;
285 if (l3proto->invert_tuple(inverse, orig) == 0)
286 return false;
287
288 inverse->dst.dir = !orig->dst.dir;
289
290 inverse->dst.protonum = orig->dst.protonum;
291 return l4proto->invert_tuple(inverse, orig);
292 }
293 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
294
295 static void
296 clean_from_lists(struct nf_conn *ct)
297 {
298 pr_debug("clean_from_lists(%p)\n", ct);
299 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
300 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
301
302 /* Destroy all pending expectations */
303 nf_ct_remove_expectations(ct);
304 }
305
306 /* must be called with local_bh_disable */
307 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
308 {
309 struct ct_pcpu *pcpu;
310
311 /* add this conntrack to the (per cpu) dying list */
312 ct->cpu = smp_processor_id();
313 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
314
315 spin_lock(&pcpu->lock);
316 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
317 &pcpu->dying);
318 spin_unlock(&pcpu->lock);
319 }
320
321 /* must be called with local_bh_disable */
322 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
323 {
324 struct ct_pcpu *pcpu;
325
326 /* add this conntrack to the (per cpu) unconfirmed list */
327 ct->cpu = smp_processor_id();
328 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
329
330 spin_lock(&pcpu->lock);
331 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
332 &pcpu->unconfirmed);
333 spin_unlock(&pcpu->lock);
334 }
335
336 /* must be called with local_bh_disable */
337 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
338 {
339 struct ct_pcpu *pcpu;
340
341 /* We overload first tuple to link into unconfirmed or dying list.*/
342 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
343
344 spin_lock(&pcpu->lock);
345 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
346 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
347 spin_unlock(&pcpu->lock);
348 }
349
350 /* Released via destroy_conntrack() */
351 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
352 const struct nf_conntrack_zone *zone,
353 gfp_t flags)
354 {
355 struct nf_conn *tmpl;
356
357 tmpl = kzalloc(sizeof(*tmpl), flags);
358 if (tmpl == NULL)
359 return NULL;
360
361 tmpl->status = IPS_TEMPLATE;
362 write_pnet(&tmpl->ct_net, net);
363 nf_ct_zone_add(tmpl, zone);
364 atomic_set(&tmpl->ct_general.use, 0);
365
366 return tmpl;
367 }
368 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
369
370 void nf_ct_tmpl_free(struct nf_conn *tmpl)
371 {
372 nf_ct_ext_destroy(tmpl);
373 nf_ct_ext_free(tmpl);
374 kfree(tmpl);
375 }
376 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
377
378 static void
379 destroy_conntrack(struct nf_conntrack *nfct)
380 {
381 struct nf_conn *ct = (struct nf_conn *)nfct;
382 struct net *net = nf_ct_net(ct);
383 struct nf_conntrack_l4proto *l4proto;
384
385 pr_debug("destroy_conntrack(%p)\n", ct);
386 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
387
388 if (unlikely(nf_ct_is_template(ct))) {
389 nf_ct_tmpl_free(ct);
390 return;
391 }
392 rcu_read_lock();
393 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
394 if (l4proto->destroy)
395 l4proto->destroy(ct);
396
397 rcu_read_unlock();
398
399 local_bh_disable();
400 /* Expectations will have been removed in clean_from_lists,
401 * except TFTP can create an expectation on the first packet,
402 * before connection is in the list, so we need to clean here,
403 * too.
404 */
405 nf_ct_remove_expectations(ct);
406
407 nf_ct_del_from_dying_or_unconfirmed_list(ct);
408
409 NF_CT_STAT_INC(net, delete);
410 local_bh_enable();
411
412 if (ct->master)
413 nf_ct_put(ct->master);
414
415 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
416 nf_conntrack_free(ct);
417 }
418
419 static void nf_ct_delete_from_lists(struct nf_conn *ct)
420 {
421 struct net *net = nf_ct_net(ct);
422 unsigned int hash, reply_hash;
423 unsigned int sequence;
424
425 nf_ct_helper_destroy(ct);
426
427 local_bh_disable();
428 do {
429 sequence = read_seqcount_begin(&nf_conntrack_generation);
430 hash = hash_conntrack(net,
431 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
432 reply_hash = hash_conntrack(net,
433 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
434 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
435
436 clean_from_lists(ct);
437 nf_conntrack_double_unlock(hash, reply_hash);
438
439 nf_ct_add_to_dying_list(ct);
440
441 NF_CT_STAT_INC(net, delete_list);
442 local_bh_enable();
443 }
444
445 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
446 {
447 struct nf_conn_tstamp *tstamp;
448
449 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
450 return false;
451
452 tstamp = nf_conn_tstamp_find(ct);
453 if (tstamp && tstamp->stop == 0)
454 tstamp->stop = ktime_get_real_ns();
455
456 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
457 portid, report) < 0) {
458 /* destroy event was not delivered. nf_ct_put will
459 * be done by event cache worker on redelivery.
460 */
461 nf_ct_delete_from_lists(ct);
462 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
463 return false;
464 }
465
466 nf_conntrack_ecache_work(nf_ct_net(ct));
467 nf_ct_delete_from_lists(ct);
468 nf_ct_put(ct);
469 return true;
470 }
471 EXPORT_SYMBOL_GPL(nf_ct_delete);
472
473 static inline bool
474 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
475 const struct nf_conntrack_tuple *tuple,
476 const struct nf_conntrack_zone *zone,
477 const struct net *net)
478 {
479 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
480
481 /* A conntrack can be recreated with the equal tuple,
482 * so we need to check that the conntrack is confirmed
483 */
484 return nf_ct_tuple_equal(tuple, &h->tuple) &&
485 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
486 nf_ct_is_confirmed(ct) &&
487 net_eq(net, nf_ct_net(ct));
488 }
489
490 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
491 static void nf_ct_gc_expired(struct nf_conn *ct)
492 {
493 if (!atomic_inc_not_zero(&ct->ct_general.use))
494 return;
495
496 if (nf_ct_should_gc(ct))
497 nf_ct_kill(ct);
498
499 nf_ct_put(ct);
500 }
501
502 /*
503 * Warning :
504 * - Caller must take a reference on returned object
505 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
506 */
507 static struct nf_conntrack_tuple_hash *
508 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
509 const struct nf_conntrack_tuple *tuple, u32 hash)
510 {
511 struct nf_conntrack_tuple_hash *h;
512 struct hlist_nulls_head *ct_hash;
513 struct hlist_nulls_node *n;
514 unsigned int bucket, hsize;
515
516 begin:
517 nf_conntrack_get_ht(&ct_hash, &hsize);
518 bucket = reciprocal_scale(hash, hsize);
519
520 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
521 struct nf_conn *ct;
522
523 ct = nf_ct_tuplehash_to_ctrack(h);
524 if (nf_ct_is_expired(ct)) {
525 nf_ct_gc_expired(ct);
526 continue;
527 }
528
529 if (nf_ct_is_dying(ct))
530 continue;
531
532 if (nf_ct_key_equal(h, tuple, zone, net)) {
533 NF_CT_STAT_INC_ATOMIC(net, found);
534 return h;
535 }
536 NF_CT_STAT_INC_ATOMIC(net, searched);
537 }
538 /*
539 * if the nulls value we got at the end of this lookup is
540 * not the expected one, we must restart lookup.
541 * We probably met an item that was moved to another chain.
542 */
543 if (get_nulls_value(n) != bucket) {
544 NF_CT_STAT_INC_ATOMIC(net, search_restart);
545 goto begin;
546 }
547
548 return NULL;
549 }
550
551 /* Find a connection corresponding to a tuple. */
552 static struct nf_conntrack_tuple_hash *
553 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
554 const struct nf_conntrack_tuple *tuple, u32 hash)
555 {
556 struct nf_conntrack_tuple_hash *h;
557 struct nf_conn *ct;
558
559 rcu_read_lock();
560 begin:
561 h = ____nf_conntrack_find(net, zone, tuple, hash);
562 if (h) {
563 ct = nf_ct_tuplehash_to_ctrack(h);
564 if (unlikely(nf_ct_is_dying(ct) ||
565 !atomic_inc_not_zero(&ct->ct_general.use)))
566 h = NULL;
567 else {
568 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
569 nf_ct_put(ct);
570 goto begin;
571 }
572 }
573 }
574 rcu_read_unlock();
575
576 return h;
577 }
578
579 struct nf_conntrack_tuple_hash *
580 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
581 const struct nf_conntrack_tuple *tuple)
582 {
583 return __nf_conntrack_find_get(net, zone, tuple,
584 hash_conntrack_raw(tuple, net));
585 }
586 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
587
588 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
589 unsigned int hash,
590 unsigned int reply_hash)
591 {
592 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
593 &nf_conntrack_hash[hash]);
594 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
595 &nf_conntrack_hash[reply_hash]);
596 }
597
598 int
599 nf_conntrack_hash_check_insert(struct nf_conn *ct)
600 {
601 const struct nf_conntrack_zone *zone;
602 struct net *net = nf_ct_net(ct);
603 unsigned int hash, reply_hash;
604 struct nf_conntrack_tuple_hash *h;
605 struct hlist_nulls_node *n;
606 unsigned int sequence;
607
608 zone = nf_ct_zone(ct);
609
610 local_bh_disable();
611 do {
612 sequence = read_seqcount_begin(&nf_conntrack_generation);
613 hash = hash_conntrack(net,
614 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
615 reply_hash = hash_conntrack(net,
616 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
617 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
618
619 /* See if there's one in the list already, including reverse */
620 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
621 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
622 zone, net))
623 goto out;
624
625 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
626 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
627 zone, net))
628 goto out;
629
630 smp_wmb();
631 /* The caller holds a reference to this object */
632 atomic_set(&ct->ct_general.use, 2);
633 __nf_conntrack_hash_insert(ct, hash, reply_hash);
634 nf_conntrack_double_unlock(hash, reply_hash);
635 NF_CT_STAT_INC(net, insert);
636 local_bh_enable();
637 return 0;
638
639 out:
640 nf_conntrack_double_unlock(hash, reply_hash);
641 NF_CT_STAT_INC(net, insert_failed);
642 local_bh_enable();
643 return -EEXIST;
644 }
645 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
646
647 static inline void nf_ct_acct_update(struct nf_conn *ct,
648 enum ip_conntrack_info ctinfo,
649 unsigned int len)
650 {
651 struct nf_conn_acct *acct;
652
653 acct = nf_conn_acct_find(ct);
654 if (acct) {
655 struct nf_conn_counter *counter = acct->counter;
656
657 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
658 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
659 }
660 }
661
662 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
663 const struct nf_conn *loser_ct)
664 {
665 struct nf_conn_acct *acct;
666
667 acct = nf_conn_acct_find(loser_ct);
668 if (acct) {
669 struct nf_conn_counter *counter = acct->counter;
670 unsigned int bytes;
671
672 /* u32 should be fine since we must have seen one packet. */
673 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
674 nf_ct_acct_update(ct, ctinfo, bytes);
675 }
676 }
677
678 /* Resolve race on insertion if this protocol allows this. */
679 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
680 enum ip_conntrack_info ctinfo,
681 struct nf_conntrack_tuple_hash *h)
682 {
683 /* This is the conntrack entry already in hashes that won race. */
684 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
685 struct nf_conntrack_l4proto *l4proto;
686
687 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
688 if (l4proto->allow_clash &&
689 !nfct_nat(ct) &&
690 !nf_ct_is_dying(ct) &&
691 atomic_inc_not_zero(&ct->ct_general.use)) {
692 nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
693 nf_conntrack_put(skb->nfct);
694 /* Assign conntrack already in hashes to this skbuff. Don't
695 * modify skb->nfctinfo to ensure consistent stateful filtering.
696 */
697 skb->nfct = &ct->ct_general;
698 return NF_ACCEPT;
699 }
700 NF_CT_STAT_INC(net, drop);
701 return NF_DROP;
702 }
703
704 /* Confirm a connection given skb; places it in hash table */
705 int
706 __nf_conntrack_confirm(struct sk_buff *skb)
707 {
708 const struct nf_conntrack_zone *zone;
709 unsigned int hash, reply_hash;
710 struct nf_conntrack_tuple_hash *h;
711 struct nf_conn *ct;
712 struct nf_conn_help *help;
713 struct nf_conn_tstamp *tstamp;
714 struct hlist_nulls_node *n;
715 enum ip_conntrack_info ctinfo;
716 struct net *net;
717 unsigned int sequence;
718 int ret = NF_DROP;
719
720 ct = nf_ct_get(skb, &ctinfo);
721 net = nf_ct_net(ct);
722
723 /* ipt_REJECT uses nf_conntrack_attach to attach related
724 ICMP/TCP RST packets in other direction. Actual packet
725 which created connection will be IP_CT_NEW or for an
726 expected connection, IP_CT_RELATED. */
727 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
728 return NF_ACCEPT;
729
730 zone = nf_ct_zone(ct);
731 local_bh_disable();
732
733 do {
734 sequence = read_seqcount_begin(&nf_conntrack_generation);
735 /* reuse the hash saved before */
736 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
737 hash = scale_hash(hash);
738 reply_hash = hash_conntrack(net,
739 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
740
741 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
742
743 /* We're not in hash table, and we refuse to set up related
744 * connections for unconfirmed conns. But packet copies and
745 * REJECT will give spurious warnings here.
746 */
747 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
748
749 /* No external references means no one else could have
750 * confirmed us.
751 */
752 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
753 pr_debug("Confirming conntrack %p\n", ct);
754 /* We have to check the DYING flag after unlink to prevent
755 * a race against nf_ct_get_next_corpse() possibly called from
756 * user context, else we insert an already 'dead' hash, blocking
757 * further use of that particular connection -JM.
758 */
759 nf_ct_del_from_dying_or_unconfirmed_list(ct);
760
761 if (unlikely(nf_ct_is_dying(ct))) {
762 nf_ct_add_to_dying_list(ct);
763 goto dying;
764 }
765
766 /* See if there's one in the list already, including reverse:
767 NAT could have grabbed it without realizing, since we're
768 not in the hash. If there is, we lost race. */
769 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
770 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
771 zone, net))
772 goto out;
773
774 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
775 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
776 zone, net))
777 goto out;
778
779 /* Timer relative to confirmation time, not original
780 setting time, otherwise we'd get timer wrap in
781 weird delay cases. */
782 ct->timeout += nfct_time_stamp;
783 atomic_inc(&ct->ct_general.use);
784 ct->status |= IPS_CONFIRMED;
785
786 /* set conntrack timestamp, if enabled. */
787 tstamp = nf_conn_tstamp_find(ct);
788 if (tstamp) {
789 if (skb->tstamp.tv64 == 0)
790 __net_timestamp(skb);
791
792 tstamp->start = ktime_to_ns(skb->tstamp);
793 }
794 /* Since the lookup is lockless, hash insertion must be done after
795 * starting the timer and setting the CONFIRMED bit. The RCU barriers
796 * guarantee that no other CPU can find the conntrack before the above
797 * stores are visible.
798 */
799 __nf_conntrack_hash_insert(ct, hash, reply_hash);
800 nf_conntrack_double_unlock(hash, reply_hash);
801 NF_CT_STAT_INC(net, insert);
802 local_bh_enable();
803
804 help = nfct_help(ct);
805 if (help && help->helper)
806 nf_conntrack_event_cache(IPCT_HELPER, ct);
807
808 nf_conntrack_event_cache(master_ct(ct) ?
809 IPCT_RELATED : IPCT_NEW, ct);
810 return NF_ACCEPT;
811
812 out:
813 nf_ct_add_to_dying_list(ct);
814 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
815 dying:
816 nf_conntrack_double_unlock(hash, reply_hash);
817 NF_CT_STAT_INC(net, insert_failed);
818 local_bh_enable();
819 return ret;
820 }
821 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
822
823 /* Returns true if a connection correspondings to the tuple (required
824 for NAT). */
825 int
826 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
827 const struct nf_conn *ignored_conntrack)
828 {
829 struct net *net = nf_ct_net(ignored_conntrack);
830 const struct nf_conntrack_zone *zone;
831 struct nf_conntrack_tuple_hash *h;
832 struct hlist_nulls_head *ct_hash;
833 unsigned int hash, hsize;
834 struct hlist_nulls_node *n;
835 struct nf_conn *ct;
836
837 zone = nf_ct_zone(ignored_conntrack);
838
839 rcu_read_lock();
840 begin:
841 nf_conntrack_get_ht(&ct_hash, &hsize);
842 hash = __hash_conntrack(net, tuple, hsize);
843
844 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
845 ct = nf_ct_tuplehash_to_ctrack(h);
846
847 if (ct == ignored_conntrack)
848 continue;
849
850 if (nf_ct_is_expired(ct)) {
851 nf_ct_gc_expired(ct);
852 continue;
853 }
854
855 if (nf_ct_key_equal(h, tuple, zone, net)) {
856 NF_CT_STAT_INC_ATOMIC(net, found);
857 rcu_read_unlock();
858 return 1;
859 }
860 NF_CT_STAT_INC_ATOMIC(net, searched);
861 }
862
863 if (get_nulls_value(n) != hash) {
864 NF_CT_STAT_INC_ATOMIC(net, search_restart);
865 goto begin;
866 }
867
868 rcu_read_unlock();
869
870 return 0;
871 }
872 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
873
874 #define NF_CT_EVICTION_RANGE 8
875
876 /* There's a small race here where we may free a just-assured
877 connection. Too bad: we're in trouble anyway. */
878 static unsigned int early_drop_list(struct net *net,
879 struct hlist_nulls_head *head)
880 {
881 struct nf_conntrack_tuple_hash *h;
882 struct hlist_nulls_node *n;
883 unsigned int drops = 0;
884 struct nf_conn *tmp;
885
886 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
887 tmp = nf_ct_tuplehash_to_ctrack(h);
888
889 if (nf_ct_is_expired(tmp)) {
890 nf_ct_gc_expired(tmp);
891 continue;
892 }
893
894 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
895 !net_eq(nf_ct_net(tmp), net) ||
896 nf_ct_is_dying(tmp))
897 continue;
898
899 if (!atomic_inc_not_zero(&tmp->ct_general.use))
900 continue;
901
902 /* kill only if still in same netns -- might have moved due to
903 * SLAB_DESTROY_BY_RCU rules.
904 *
905 * We steal the timer reference. If that fails timer has
906 * already fired or someone else deleted it. Just drop ref
907 * and move to next entry.
908 */
909 if (net_eq(nf_ct_net(tmp), net) &&
910 nf_ct_is_confirmed(tmp) &&
911 nf_ct_delete(tmp, 0, 0))
912 drops++;
913
914 nf_ct_put(tmp);
915 }
916
917 return drops;
918 }
919
920 static noinline int early_drop(struct net *net, unsigned int _hash)
921 {
922 unsigned int i;
923
924 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
925 struct hlist_nulls_head *ct_hash;
926 unsigned int hash, hsize, drops;
927
928 rcu_read_lock();
929 nf_conntrack_get_ht(&ct_hash, &hsize);
930 hash = reciprocal_scale(_hash++, hsize);
931
932 drops = early_drop_list(net, &ct_hash[hash]);
933 rcu_read_unlock();
934
935 if (drops) {
936 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
937 return true;
938 }
939 }
940
941 return false;
942 }
943
944 static void gc_worker(struct work_struct *work)
945 {
946 unsigned int i, goal, buckets = 0, expired_count = 0;
947 unsigned long next_run = GC_INTERVAL;
948 unsigned int ratio, scanned = 0;
949 struct conntrack_gc_work *gc_work;
950
951 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
952
953 goal = min(nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV, GC_MAX_BUCKETS);
954 i = gc_work->last_bucket;
955
956 do {
957 struct nf_conntrack_tuple_hash *h;
958 struct hlist_nulls_head *ct_hash;
959 struct hlist_nulls_node *n;
960 unsigned int hashsz;
961 struct nf_conn *tmp;
962
963 i++;
964 rcu_read_lock();
965
966 nf_conntrack_get_ht(&ct_hash, &hashsz);
967 if (i >= hashsz)
968 i = 0;
969
970 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
971 tmp = nf_ct_tuplehash_to_ctrack(h);
972
973 scanned++;
974 if (nf_ct_is_expired(tmp)) {
975 nf_ct_gc_expired(tmp);
976 expired_count++;
977 continue;
978 }
979 }
980
981 /* could check get_nulls_value() here and restart if ct
982 * was moved to another chain. But given gc is best-effort
983 * we will just continue with next hash slot.
984 */
985 rcu_read_unlock();
986 cond_resched_rcu_qs();
987 } while (++buckets < goal &&
988 expired_count < GC_MAX_EVICTS);
989
990 if (gc_work->exiting)
991 return;
992
993 ratio = scanned ? expired_count * 100 / scanned : 0;
994 if (ratio >= 90)
995 next_run = 0;
996
997 gc_work->last_bucket = i;
998 schedule_delayed_work(&gc_work->dwork, next_run);
999 }
1000
1001 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1002 {
1003 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1004 gc_work->exiting = false;
1005 }
1006
1007 static struct nf_conn *
1008 __nf_conntrack_alloc(struct net *net,
1009 const struct nf_conntrack_zone *zone,
1010 const struct nf_conntrack_tuple *orig,
1011 const struct nf_conntrack_tuple *repl,
1012 gfp_t gfp, u32 hash)
1013 {
1014 struct nf_conn *ct;
1015
1016 /* We don't want any race condition at early drop stage */
1017 atomic_inc(&net->ct.count);
1018
1019 if (nf_conntrack_max &&
1020 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1021 if (!early_drop(net, hash)) {
1022 atomic_dec(&net->ct.count);
1023 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1024 return ERR_PTR(-ENOMEM);
1025 }
1026 }
1027
1028 /*
1029 * Do not use kmem_cache_zalloc(), as this cache uses
1030 * SLAB_DESTROY_BY_RCU.
1031 */
1032 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1033 if (ct == NULL)
1034 goto out;
1035
1036 spin_lock_init(&ct->lock);
1037 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1038 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1039 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1040 /* save hash for reusing when confirming */
1041 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1042 ct->status = 0;
1043 write_pnet(&ct->ct_net, net);
1044 memset(&ct->__nfct_init_offset[0], 0,
1045 offsetof(struct nf_conn, proto) -
1046 offsetof(struct nf_conn, __nfct_init_offset[0]));
1047
1048 nf_ct_zone_add(ct, zone);
1049
1050 /* Because we use RCU lookups, we set ct_general.use to zero before
1051 * this is inserted in any list.
1052 */
1053 atomic_set(&ct->ct_general.use, 0);
1054 return ct;
1055 out:
1056 atomic_dec(&net->ct.count);
1057 return ERR_PTR(-ENOMEM);
1058 }
1059
1060 struct nf_conn *nf_conntrack_alloc(struct net *net,
1061 const struct nf_conntrack_zone *zone,
1062 const struct nf_conntrack_tuple *orig,
1063 const struct nf_conntrack_tuple *repl,
1064 gfp_t gfp)
1065 {
1066 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1067 }
1068 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1069
1070 void nf_conntrack_free(struct nf_conn *ct)
1071 {
1072 struct net *net = nf_ct_net(ct);
1073
1074 /* A freed object has refcnt == 0, that's
1075 * the golden rule for SLAB_DESTROY_BY_RCU
1076 */
1077 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1078
1079 nf_ct_ext_destroy(ct);
1080 nf_ct_ext_free(ct);
1081 kmem_cache_free(nf_conntrack_cachep, ct);
1082 smp_mb__before_atomic();
1083 atomic_dec(&net->ct.count);
1084 }
1085 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1086
1087
1088 /* Allocate a new conntrack: we return -ENOMEM if classification
1089 failed due to stress. Otherwise it really is unclassifiable. */
1090 static struct nf_conntrack_tuple_hash *
1091 init_conntrack(struct net *net, struct nf_conn *tmpl,
1092 const struct nf_conntrack_tuple *tuple,
1093 struct nf_conntrack_l3proto *l3proto,
1094 struct nf_conntrack_l4proto *l4proto,
1095 struct sk_buff *skb,
1096 unsigned int dataoff, u32 hash)
1097 {
1098 struct nf_conn *ct;
1099 struct nf_conn_help *help;
1100 struct nf_conntrack_tuple repl_tuple;
1101 struct nf_conntrack_ecache *ecache;
1102 struct nf_conntrack_expect *exp = NULL;
1103 const struct nf_conntrack_zone *zone;
1104 struct nf_conn_timeout *timeout_ext;
1105 struct nf_conntrack_zone tmp;
1106 unsigned int *timeouts;
1107
1108 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1109 pr_debug("Can't invert tuple.\n");
1110 return NULL;
1111 }
1112
1113 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1114 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1115 hash);
1116 if (IS_ERR(ct))
1117 return (struct nf_conntrack_tuple_hash *)ct;
1118
1119 if (tmpl && nfct_synproxy(tmpl)) {
1120 nfct_seqadj_ext_add(ct);
1121 nfct_synproxy_ext_add(ct);
1122 }
1123
1124 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1125 if (timeout_ext) {
1126 timeouts = nf_ct_timeout_data(timeout_ext);
1127 if (unlikely(!timeouts))
1128 timeouts = l4proto->get_timeouts(net);
1129 } else {
1130 timeouts = l4proto->get_timeouts(net);
1131 }
1132
1133 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1134 nf_conntrack_free(ct);
1135 pr_debug("can't track with proto module\n");
1136 return NULL;
1137 }
1138
1139 if (timeout_ext)
1140 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1141 GFP_ATOMIC);
1142
1143 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1144 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1145 nf_ct_labels_ext_add(ct);
1146
1147 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1148 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1149 ecache ? ecache->expmask : 0,
1150 GFP_ATOMIC);
1151
1152 local_bh_disable();
1153 if (net->ct.expect_count) {
1154 spin_lock(&nf_conntrack_expect_lock);
1155 exp = nf_ct_find_expectation(net, zone, tuple);
1156 if (exp) {
1157 pr_debug("expectation arrives ct=%p exp=%p\n",
1158 ct, exp);
1159 /* Welcome, Mr. Bond. We've been expecting you... */
1160 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1161 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1162 ct->master = exp->master;
1163 if (exp->helper) {
1164 help = nf_ct_helper_ext_add(ct, exp->helper,
1165 GFP_ATOMIC);
1166 if (help)
1167 rcu_assign_pointer(help->helper, exp->helper);
1168 }
1169
1170 #ifdef CONFIG_NF_CONNTRACK_MARK
1171 ct->mark = exp->master->mark;
1172 #endif
1173 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1174 ct->secmark = exp->master->secmark;
1175 #endif
1176 NF_CT_STAT_INC(net, expect_new);
1177 }
1178 spin_unlock(&nf_conntrack_expect_lock);
1179 }
1180 if (!exp) {
1181 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1182 NF_CT_STAT_INC(net, new);
1183 }
1184
1185 /* Now it is inserted into the unconfirmed list, bump refcount */
1186 nf_conntrack_get(&ct->ct_general);
1187 nf_ct_add_to_unconfirmed_list(ct);
1188
1189 local_bh_enable();
1190
1191 if (exp) {
1192 if (exp->expectfn)
1193 exp->expectfn(ct, exp);
1194 nf_ct_expect_put(exp);
1195 }
1196
1197 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1198 }
1199
1200 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1201 static inline struct nf_conn *
1202 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1203 struct sk_buff *skb,
1204 unsigned int dataoff,
1205 u_int16_t l3num,
1206 u_int8_t protonum,
1207 struct nf_conntrack_l3proto *l3proto,
1208 struct nf_conntrack_l4proto *l4proto,
1209 int *set_reply,
1210 enum ip_conntrack_info *ctinfo)
1211 {
1212 const struct nf_conntrack_zone *zone;
1213 struct nf_conntrack_tuple tuple;
1214 struct nf_conntrack_tuple_hash *h;
1215 struct nf_conntrack_zone tmp;
1216 struct nf_conn *ct;
1217 u32 hash;
1218
1219 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1220 dataoff, l3num, protonum, net, &tuple, l3proto,
1221 l4proto)) {
1222 pr_debug("Can't get tuple\n");
1223 return NULL;
1224 }
1225
1226 /* look for tuple match */
1227 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1228 hash = hash_conntrack_raw(&tuple, net);
1229 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1230 if (!h) {
1231 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1232 skb, dataoff, hash);
1233 if (!h)
1234 return NULL;
1235 if (IS_ERR(h))
1236 return (void *)h;
1237 }
1238 ct = nf_ct_tuplehash_to_ctrack(h);
1239
1240 /* It exists; we have (non-exclusive) reference. */
1241 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1242 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1243 /* Please set reply bit if this packet OK */
1244 *set_reply = 1;
1245 } else {
1246 /* Once we've had two way comms, always ESTABLISHED. */
1247 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1248 pr_debug("normal packet for %p\n", ct);
1249 *ctinfo = IP_CT_ESTABLISHED;
1250 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1251 pr_debug("related packet for %p\n", ct);
1252 *ctinfo = IP_CT_RELATED;
1253 } else {
1254 pr_debug("new packet for %p\n", ct);
1255 *ctinfo = IP_CT_NEW;
1256 }
1257 *set_reply = 0;
1258 }
1259 skb->nfct = &ct->ct_general;
1260 skb->nfctinfo = *ctinfo;
1261 return ct;
1262 }
1263
1264 unsigned int
1265 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1266 struct sk_buff *skb)
1267 {
1268 struct nf_conn *ct, *tmpl = NULL;
1269 enum ip_conntrack_info ctinfo;
1270 struct nf_conntrack_l3proto *l3proto;
1271 struct nf_conntrack_l4proto *l4proto;
1272 unsigned int *timeouts;
1273 unsigned int dataoff;
1274 u_int8_t protonum;
1275 int set_reply = 0;
1276 int ret;
1277
1278 if (skb->nfct) {
1279 /* Previously seen (loopback or untracked)? Ignore. */
1280 tmpl = (struct nf_conn *)skb->nfct;
1281 if (!nf_ct_is_template(tmpl)) {
1282 NF_CT_STAT_INC_ATOMIC(net, ignore);
1283 return NF_ACCEPT;
1284 }
1285 skb->nfct = NULL;
1286 }
1287
1288 /* rcu_read_lock()ed by nf_hook_slow */
1289 l3proto = __nf_ct_l3proto_find(pf);
1290 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1291 &dataoff, &protonum);
1292 if (ret <= 0) {
1293 pr_debug("not prepared to track yet or error occurred\n");
1294 NF_CT_STAT_INC_ATOMIC(net, error);
1295 NF_CT_STAT_INC_ATOMIC(net, invalid);
1296 ret = -ret;
1297 goto out;
1298 }
1299
1300 l4proto = __nf_ct_l4proto_find(pf, protonum);
1301
1302 /* It may be an special packet, error, unclean...
1303 * inverse of the return code tells to the netfilter
1304 * core what to do with the packet. */
1305 if (l4proto->error != NULL) {
1306 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1307 pf, hooknum);
1308 if (ret <= 0) {
1309 NF_CT_STAT_INC_ATOMIC(net, error);
1310 NF_CT_STAT_INC_ATOMIC(net, invalid);
1311 ret = -ret;
1312 goto out;
1313 }
1314 /* ICMP[v6] protocol trackers may assign one conntrack. */
1315 if (skb->nfct)
1316 goto out;
1317 }
1318
1319 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1320 l3proto, l4proto, &set_reply, &ctinfo);
1321 if (!ct) {
1322 /* Not valid part of a connection */
1323 NF_CT_STAT_INC_ATOMIC(net, invalid);
1324 ret = NF_ACCEPT;
1325 goto out;
1326 }
1327
1328 if (IS_ERR(ct)) {
1329 /* Too stressed to deal. */
1330 NF_CT_STAT_INC_ATOMIC(net, drop);
1331 ret = NF_DROP;
1332 goto out;
1333 }
1334
1335 NF_CT_ASSERT(skb->nfct);
1336
1337 /* Decide what timeout policy we want to apply to this flow. */
1338 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1339
1340 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1341 if (ret <= 0) {
1342 /* Invalid: inverse of the return code tells
1343 * the netfilter core what to do */
1344 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1345 nf_conntrack_put(skb->nfct);
1346 skb->nfct = NULL;
1347 NF_CT_STAT_INC_ATOMIC(net, invalid);
1348 if (ret == -NF_DROP)
1349 NF_CT_STAT_INC_ATOMIC(net, drop);
1350 ret = -ret;
1351 goto out;
1352 }
1353
1354 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1355 nf_conntrack_event_cache(IPCT_REPLY, ct);
1356 out:
1357 if (tmpl) {
1358 /* Special case: we have to repeat this hook, assign the
1359 * template again to this packet. We assume that this packet
1360 * has no conntrack assigned. This is used by nf_ct_tcp. */
1361 if (ret == NF_REPEAT)
1362 skb->nfct = (struct nf_conntrack *)tmpl;
1363 else
1364 nf_ct_put(tmpl);
1365 }
1366
1367 return ret;
1368 }
1369 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1370
1371 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1372 const struct nf_conntrack_tuple *orig)
1373 {
1374 bool ret;
1375
1376 rcu_read_lock();
1377 ret = nf_ct_invert_tuple(inverse, orig,
1378 __nf_ct_l3proto_find(orig->src.l3num),
1379 __nf_ct_l4proto_find(orig->src.l3num,
1380 orig->dst.protonum));
1381 rcu_read_unlock();
1382 return ret;
1383 }
1384 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1385
1386 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1387 implicitly racy: see __nf_conntrack_confirm */
1388 void nf_conntrack_alter_reply(struct nf_conn *ct,
1389 const struct nf_conntrack_tuple *newreply)
1390 {
1391 struct nf_conn_help *help = nfct_help(ct);
1392
1393 /* Should be unconfirmed, so not in hash table yet */
1394 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1395
1396 pr_debug("Altering reply tuple of %p to ", ct);
1397 nf_ct_dump_tuple(newreply);
1398
1399 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1400 if (ct->master || (help && !hlist_empty(&help->expectations)))
1401 return;
1402
1403 rcu_read_lock();
1404 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1405 rcu_read_unlock();
1406 }
1407 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1408
1409 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1410 void __nf_ct_refresh_acct(struct nf_conn *ct,
1411 enum ip_conntrack_info ctinfo,
1412 const struct sk_buff *skb,
1413 unsigned long extra_jiffies,
1414 int do_acct)
1415 {
1416 NF_CT_ASSERT(skb);
1417
1418 /* Only update if this is not a fixed timeout */
1419 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1420 goto acct;
1421
1422 /* If not in hash table, timer will not be active yet */
1423 if (nf_ct_is_confirmed(ct))
1424 extra_jiffies += nfct_time_stamp;
1425
1426 ct->timeout = extra_jiffies;
1427 acct:
1428 if (do_acct)
1429 nf_ct_acct_update(ct, ctinfo, skb->len);
1430 }
1431 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1432
1433 bool __nf_ct_kill_acct(struct nf_conn *ct,
1434 enum ip_conntrack_info ctinfo,
1435 const struct sk_buff *skb,
1436 int do_acct)
1437 {
1438 if (do_acct)
1439 nf_ct_acct_update(ct, ctinfo, skb->len);
1440
1441 return nf_ct_delete(ct, 0, 0);
1442 }
1443 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1444
1445 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1446
1447 #include <linux/netfilter/nfnetlink.h>
1448 #include <linux/netfilter/nfnetlink_conntrack.h>
1449 #include <linux/mutex.h>
1450
1451 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1452 * in ip_conntrack_core, since we don't want the protocols to autoload
1453 * or depend on ctnetlink */
1454 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1455 const struct nf_conntrack_tuple *tuple)
1456 {
1457 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1458 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1459 goto nla_put_failure;
1460 return 0;
1461
1462 nla_put_failure:
1463 return -1;
1464 }
1465 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1466
1467 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1468 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1469 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1470 };
1471 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1472
1473 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1474 struct nf_conntrack_tuple *t)
1475 {
1476 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1477 return -EINVAL;
1478
1479 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1480 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1481
1482 return 0;
1483 }
1484 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1485
1486 int nf_ct_port_nlattr_tuple_size(void)
1487 {
1488 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1489 }
1490 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1491 #endif
1492
1493 /* Used by ipt_REJECT and ip6t_REJECT. */
1494 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1495 {
1496 struct nf_conn *ct;
1497 enum ip_conntrack_info ctinfo;
1498
1499 /* This ICMP is in reverse direction to the packet which caused it */
1500 ct = nf_ct_get(skb, &ctinfo);
1501 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1502 ctinfo = IP_CT_RELATED_REPLY;
1503 else
1504 ctinfo = IP_CT_RELATED;
1505
1506 /* Attach to new skbuff, and increment count */
1507 nskb->nfct = &ct->ct_general;
1508 nskb->nfctinfo = ctinfo;
1509 nf_conntrack_get(nskb->nfct);
1510 }
1511
1512 /* Bring out ya dead! */
1513 static struct nf_conn *
1514 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1515 void *data, unsigned int *bucket)
1516 {
1517 struct nf_conntrack_tuple_hash *h;
1518 struct nf_conn *ct;
1519 struct hlist_nulls_node *n;
1520 int cpu;
1521 spinlock_t *lockp;
1522
1523 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1524 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1525 local_bh_disable();
1526 nf_conntrack_lock(lockp);
1527 if (*bucket < nf_conntrack_htable_size) {
1528 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1529 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1530 continue;
1531 ct = nf_ct_tuplehash_to_ctrack(h);
1532 if (net_eq(nf_ct_net(ct), net) &&
1533 iter(ct, data))
1534 goto found;
1535 }
1536 }
1537 spin_unlock(lockp);
1538 local_bh_enable();
1539 cond_resched();
1540 }
1541
1542 for_each_possible_cpu(cpu) {
1543 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1544
1545 spin_lock_bh(&pcpu->lock);
1546 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1547 ct = nf_ct_tuplehash_to_ctrack(h);
1548 if (iter(ct, data))
1549 set_bit(IPS_DYING_BIT, &ct->status);
1550 }
1551 spin_unlock_bh(&pcpu->lock);
1552 cond_resched();
1553 }
1554 return NULL;
1555 found:
1556 atomic_inc(&ct->ct_general.use);
1557 spin_unlock(lockp);
1558 local_bh_enable();
1559 return ct;
1560 }
1561
1562 void nf_ct_iterate_cleanup(struct net *net,
1563 int (*iter)(struct nf_conn *i, void *data),
1564 void *data, u32 portid, int report)
1565 {
1566 struct nf_conn *ct;
1567 unsigned int bucket = 0;
1568
1569 might_sleep();
1570
1571 if (atomic_read(&net->ct.count) == 0)
1572 return;
1573
1574 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1575 /* Time to push up daises... */
1576
1577 nf_ct_delete(ct, portid, report);
1578 nf_ct_put(ct);
1579 cond_resched();
1580 }
1581 }
1582 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1583
1584 static int kill_all(struct nf_conn *i, void *data)
1585 {
1586 return 1;
1587 }
1588
1589 void nf_ct_free_hashtable(void *hash, unsigned int size)
1590 {
1591 if (is_vmalloc_addr(hash))
1592 vfree(hash);
1593 else
1594 free_pages((unsigned long)hash,
1595 get_order(sizeof(struct hlist_head) * size));
1596 }
1597 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1598
1599 static int untrack_refs(void)
1600 {
1601 int cnt = 0, cpu;
1602
1603 for_each_possible_cpu(cpu) {
1604 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1605
1606 cnt += atomic_read(&ct->ct_general.use) - 1;
1607 }
1608 return cnt;
1609 }
1610
1611 void nf_conntrack_cleanup_start(void)
1612 {
1613 conntrack_gc_work.exiting = true;
1614 RCU_INIT_POINTER(ip_ct_attach, NULL);
1615 }
1616
1617 void nf_conntrack_cleanup_end(void)
1618 {
1619 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1620 while (untrack_refs() > 0)
1621 schedule();
1622
1623 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1624 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1625
1626 nf_conntrack_proto_fini();
1627 nf_conntrack_seqadj_fini();
1628 nf_conntrack_labels_fini();
1629 nf_conntrack_helper_fini();
1630 nf_conntrack_timeout_fini();
1631 nf_conntrack_ecache_fini();
1632 nf_conntrack_tstamp_fini();
1633 nf_conntrack_acct_fini();
1634 nf_conntrack_expect_fini();
1635
1636 kmem_cache_destroy(nf_conntrack_cachep);
1637 }
1638
1639 /*
1640 * Mishearing the voices in his head, our hero wonders how he's
1641 * supposed to kill the mall.
1642 */
1643 void nf_conntrack_cleanup_net(struct net *net)
1644 {
1645 LIST_HEAD(single);
1646
1647 list_add(&net->exit_list, &single);
1648 nf_conntrack_cleanup_net_list(&single);
1649 }
1650
1651 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1652 {
1653 int busy;
1654 struct net *net;
1655
1656 /*
1657 * This makes sure all current packets have passed through
1658 * netfilter framework. Roll on, two-stage module
1659 * delete...
1660 */
1661 synchronize_net();
1662 i_see_dead_people:
1663 busy = 0;
1664 list_for_each_entry(net, net_exit_list, exit_list) {
1665 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1666 if (atomic_read(&net->ct.count) != 0)
1667 busy = 1;
1668 }
1669 if (busy) {
1670 schedule();
1671 goto i_see_dead_people;
1672 }
1673
1674 list_for_each_entry(net, net_exit_list, exit_list) {
1675 nf_conntrack_proto_pernet_fini(net);
1676 nf_conntrack_helper_pernet_fini(net);
1677 nf_conntrack_ecache_pernet_fini(net);
1678 nf_conntrack_tstamp_pernet_fini(net);
1679 nf_conntrack_acct_pernet_fini(net);
1680 nf_conntrack_expect_pernet_fini(net);
1681 free_percpu(net->ct.stat);
1682 free_percpu(net->ct.pcpu_lists);
1683 }
1684 }
1685
1686 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1687 {
1688 struct hlist_nulls_head *hash;
1689 unsigned int nr_slots, i;
1690 size_t sz;
1691
1692 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1693 return NULL;
1694
1695 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1696 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1697
1698 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1699 return NULL;
1700
1701 sz = nr_slots * sizeof(struct hlist_nulls_head);
1702 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1703 get_order(sz));
1704 if (!hash)
1705 hash = vzalloc(sz);
1706
1707 if (hash && nulls)
1708 for (i = 0; i < nr_slots; i++)
1709 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1710
1711 return hash;
1712 }
1713 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1714
1715 int nf_conntrack_hash_resize(unsigned int hashsize)
1716 {
1717 int i, bucket;
1718 unsigned int old_size;
1719 struct hlist_nulls_head *hash, *old_hash;
1720 struct nf_conntrack_tuple_hash *h;
1721 struct nf_conn *ct;
1722
1723 if (!hashsize)
1724 return -EINVAL;
1725
1726 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1727 if (!hash)
1728 return -ENOMEM;
1729
1730 old_size = nf_conntrack_htable_size;
1731 if (old_size == hashsize) {
1732 nf_ct_free_hashtable(hash, hashsize);
1733 return 0;
1734 }
1735
1736 local_bh_disable();
1737 nf_conntrack_all_lock();
1738 write_seqcount_begin(&nf_conntrack_generation);
1739
1740 /* Lookups in the old hash might happen in parallel, which means we
1741 * might get false negatives during connection lookup. New connections
1742 * created because of a false negative won't make it into the hash
1743 * though since that required taking the locks.
1744 */
1745
1746 for (i = 0; i < nf_conntrack_htable_size; i++) {
1747 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1748 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1749 struct nf_conntrack_tuple_hash, hnnode);
1750 ct = nf_ct_tuplehash_to_ctrack(h);
1751 hlist_nulls_del_rcu(&h->hnnode);
1752 bucket = __hash_conntrack(nf_ct_net(ct),
1753 &h->tuple, hashsize);
1754 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1755 }
1756 }
1757 old_size = nf_conntrack_htable_size;
1758 old_hash = nf_conntrack_hash;
1759
1760 nf_conntrack_hash = hash;
1761 nf_conntrack_htable_size = hashsize;
1762
1763 write_seqcount_end(&nf_conntrack_generation);
1764 nf_conntrack_all_unlock();
1765 local_bh_enable();
1766
1767 synchronize_net();
1768 nf_ct_free_hashtable(old_hash, old_size);
1769 return 0;
1770 }
1771
1772 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1773 {
1774 unsigned int hashsize;
1775 int rc;
1776
1777 if (current->nsproxy->net_ns != &init_net)
1778 return -EOPNOTSUPP;
1779
1780 /* On boot, we can set this without any fancy locking. */
1781 if (!nf_conntrack_htable_size)
1782 return param_set_uint(val, kp);
1783
1784 rc = kstrtouint(val, 0, &hashsize);
1785 if (rc)
1786 return rc;
1787
1788 return nf_conntrack_hash_resize(hashsize);
1789 }
1790 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1791
1792 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1793 &nf_conntrack_htable_size, 0600);
1794
1795 void nf_ct_untracked_status_or(unsigned long bits)
1796 {
1797 int cpu;
1798
1799 for_each_possible_cpu(cpu)
1800 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1801 }
1802 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1803
1804 int nf_conntrack_init_start(void)
1805 {
1806 int max_factor = 8;
1807 int ret = -ENOMEM;
1808 int i, cpu;
1809
1810 seqcount_init(&nf_conntrack_generation);
1811
1812 for (i = 0; i < CONNTRACK_LOCKS; i++)
1813 spin_lock_init(&nf_conntrack_locks[i]);
1814
1815 if (!nf_conntrack_htable_size) {
1816 /* Idea from tcp.c: use 1/16384 of memory.
1817 * On i386: 32MB machine has 512 buckets.
1818 * >= 1GB machines have 16384 buckets.
1819 * >= 4GB machines have 65536 buckets.
1820 */
1821 nf_conntrack_htable_size
1822 = (((totalram_pages << PAGE_SHIFT) / 16384)
1823 / sizeof(struct hlist_head));
1824 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1825 nf_conntrack_htable_size = 65536;
1826 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1827 nf_conntrack_htable_size = 16384;
1828 if (nf_conntrack_htable_size < 32)
1829 nf_conntrack_htable_size = 32;
1830
1831 /* Use a max. factor of four by default to get the same max as
1832 * with the old struct list_heads. When a table size is given
1833 * we use the old value of 8 to avoid reducing the max.
1834 * entries. */
1835 max_factor = 4;
1836 }
1837
1838 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1839 if (!nf_conntrack_hash)
1840 return -ENOMEM;
1841
1842 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1843
1844 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1845 sizeof(struct nf_conn), 0,
1846 SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1847 if (!nf_conntrack_cachep)
1848 goto err_cachep;
1849
1850 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1851 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1852 nf_conntrack_max);
1853
1854 ret = nf_conntrack_expect_init();
1855 if (ret < 0)
1856 goto err_expect;
1857
1858 ret = nf_conntrack_acct_init();
1859 if (ret < 0)
1860 goto err_acct;
1861
1862 ret = nf_conntrack_tstamp_init();
1863 if (ret < 0)
1864 goto err_tstamp;
1865
1866 ret = nf_conntrack_ecache_init();
1867 if (ret < 0)
1868 goto err_ecache;
1869
1870 ret = nf_conntrack_timeout_init();
1871 if (ret < 0)
1872 goto err_timeout;
1873
1874 ret = nf_conntrack_helper_init();
1875 if (ret < 0)
1876 goto err_helper;
1877
1878 ret = nf_conntrack_labels_init();
1879 if (ret < 0)
1880 goto err_labels;
1881
1882 ret = nf_conntrack_seqadj_init();
1883 if (ret < 0)
1884 goto err_seqadj;
1885
1886 ret = nf_conntrack_proto_init();
1887 if (ret < 0)
1888 goto err_proto;
1889
1890 /* Set up fake conntrack: to never be deleted, not in any hashes */
1891 for_each_possible_cpu(cpu) {
1892 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1893 write_pnet(&ct->ct_net, &init_net);
1894 atomic_set(&ct->ct_general.use, 1);
1895 }
1896 /* - and look it like as a confirmed connection */
1897 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1898
1899 conntrack_gc_work_init(&conntrack_gc_work);
1900 schedule_delayed_work(&conntrack_gc_work.dwork, GC_INTERVAL);
1901
1902 return 0;
1903
1904 err_proto:
1905 nf_conntrack_seqadj_fini();
1906 err_seqadj:
1907 nf_conntrack_labels_fini();
1908 err_labels:
1909 nf_conntrack_helper_fini();
1910 err_helper:
1911 nf_conntrack_timeout_fini();
1912 err_timeout:
1913 nf_conntrack_ecache_fini();
1914 err_ecache:
1915 nf_conntrack_tstamp_fini();
1916 err_tstamp:
1917 nf_conntrack_acct_fini();
1918 err_acct:
1919 nf_conntrack_expect_fini();
1920 err_expect:
1921 kmem_cache_destroy(nf_conntrack_cachep);
1922 err_cachep:
1923 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1924 return ret;
1925 }
1926
1927 void nf_conntrack_init_end(void)
1928 {
1929 /* For use by REJECT target */
1930 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1931 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1932 }
1933
1934 /*
1935 * We need to use special "null" values, not used in hash table
1936 */
1937 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1938 #define DYING_NULLS_VAL ((1<<30)+1)
1939 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1940
1941 int nf_conntrack_init_net(struct net *net)
1942 {
1943 int ret = -ENOMEM;
1944 int cpu;
1945
1946 atomic_set(&net->ct.count, 0);
1947
1948 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1949 if (!net->ct.pcpu_lists)
1950 goto err_stat;
1951
1952 for_each_possible_cpu(cpu) {
1953 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1954
1955 spin_lock_init(&pcpu->lock);
1956 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1957 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1958 }
1959
1960 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1961 if (!net->ct.stat)
1962 goto err_pcpu_lists;
1963
1964 ret = nf_conntrack_expect_pernet_init(net);
1965 if (ret < 0)
1966 goto err_expect;
1967 ret = nf_conntrack_acct_pernet_init(net);
1968 if (ret < 0)
1969 goto err_acct;
1970 ret = nf_conntrack_tstamp_pernet_init(net);
1971 if (ret < 0)
1972 goto err_tstamp;
1973 ret = nf_conntrack_ecache_pernet_init(net);
1974 if (ret < 0)
1975 goto err_ecache;
1976 ret = nf_conntrack_helper_pernet_init(net);
1977 if (ret < 0)
1978 goto err_helper;
1979 ret = nf_conntrack_proto_pernet_init(net);
1980 if (ret < 0)
1981 goto err_proto;
1982 return 0;
1983
1984 err_proto:
1985 nf_conntrack_helper_pernet_fini(net);
1986 err_helper:
1987 nf_conntrack_ecache_pernet_fini(net);
1988 err_ecache:
1989 nf_conntrack_tstamp_pernet_fini(net);
1990 err_tstamp:
1991 nf_conntrack_acct_pernet_fini(net);
1992 err_acct:
1993 nf_conntrack_expect_pernet_fini(net);
1994 err_expect:
1995 free_percpu(net->ct.stat);
1996 err_pcpu_lists:
1997 free_percpu(net->ct.pcpu_lists);
1998 err_stat:
1999 return ret;
2000 }