]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/netfilter/nf_conntrack_core.c
80097cb86aa24b2544c58ea0e1cb47d922fbefe7
[mirror_ubuntu-bionic-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #include "nf_internals.h"
60
61 #define NF_CONNTRACK_VERSION "0.5.0"
62
63 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
64 enum nf_nat_manip_type manip,
65 const struct nlattr *attr) __read_mostly;
66 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
67
68 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
69 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
70
71 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
72 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
73
74 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
75 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
76
77 struct conntrack_gc_work {
78 struct delayed_work dwork;
79 u32 last_bucket;
80 bool exiting;
81 bool early_drop;
82 long next_gc_run;
83 };
84
85 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
86 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
87 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
88 static __read_mostly bool nf_conntrack_locks_all;
89
90 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
91 #define GC_MAX_BUCKETS_DIV 128u
92 /* upper bound of full table scan */
93 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
94 /* desired ratio of entries found to be expired */
95 #define GC_EVICT_RATIO 50u
96
97 static struct conntrack_gc_work conntrack_gc_work;
98
99 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
100 {
101 /* 1) Acquire the lock */
102 spin_lock(lock);
103
104 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
105 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
106 */
107 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
108 return;
109
110 /* fast path failed, unlock */
111 spin_unlock(lock);
112
113 /* Slow path 1) get global lock */
114 spin_lock(&nf_conntrack_locks_all_lock);
115
116 /* Slow path 2) get the lock we want */
117 spin_lock(lock);
118
119 /* Slow path 3) release the global lock */
120 spin_unlock(&nf_conntrack_locks_all_lock);
121 }
122 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
123
124 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
125 {
126 h1 %= CONNTRACK_LOCKS;
127 h2 %= CONNTRACK_LOCKS;
128 spin_unlock(&nf_conntrack_locks[h1]);
129 if (h1 != h2)
130 spin_unlock(&nf_conntrack_locks[h2]);
131 }
132
133 /* return true if we need to recompute hashes (in case hash table was resized) */
134 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
135 unsigned int h2, unsigned int sequence)
136 {
137 h1 %= CONNTRACK_LOCKS;
138 h2 %= CONNTRACK_LOCKS;
139 if (h1 <= h2) {
140 nf_conntrack_lock(&nf_conntrack_locks[h1]);
141 if (h1 != h2)
142 spin_lock_nested(&nf_conntrack_locks[h2],
143 SINGLE_DEPTH_NESTING);
144 } else {
145 nf_conntrack_lock(&nf_conntrack_locks[h2]);
146 spin_lock_nested(&nf_conntrack_locks[h1],
147 SINGLE_DEPTH_NESTING);
148 }
149 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
150 nf_conntrack_double_unlock(h1, h2);
151 return true;
152 }
153 return false;
154 }
155
156 static void nf_conntrack_all_lock(void)
157 {
158 int i;
159
160 spin_lock(&nf_conntrack_locks_all_lock);
161
162 nf_conntrack_locks_all = true;
163
164 for (i = 0; i < CONNTRACK_LOCKS; i++) {
165 spin_lock(&nf_conntrack_locks[i]);
166
167 /* This spin_unlock provides the "release" to ensure that
168 * nf_conntrack_locks_all==true is visible to everyone that
169 * acquired spin_lock(&nf_conntrack_locks[]).
170 */
171 spin_unlock(&nf_conntrack_locks[i]);
172 }
173 }
174
175 static void nf_conntrack_all_unlock(void)
176 {
177 /* All prior stores must be complete before we clear
178 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
179 * might observe the false value but not the entire
180 * critical section.
181 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
182 */
183 smp_store_release(&nf_conntrack_locks_all, false);
184 spin_unlock(&nf_conntrack_locks_all_lock);
185 }
186
187 unsigned int nf_conntrack_htable_size __read_mostly;
188 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
189
190 unsigned int nf_conntrack_max __read_mostly;
191 seqcount_t nf_conntrack_generation __read_mostly;
192 static unsigned int nf_conntrack_hash_rnd __read_mostly;
193
194 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
195 const struct net *net)
196 {
197 unsigned int n;
198 u32 seed;
199
200 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
201
202 /* The direction must be ignored, so we hash everything up to the
203 * destination ports (which is a multiple of 4) and treat the last
204 * three bytes manually.
205 */
206 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
207 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
208 return jhash2((u32 *)tuple, n, seed ^
209 (((__force __u16)tuple->dst.u.all << 16) |
210 tuple->dst.protonum));
211 }
212
213 static u32 scale_hash(u32 hash)
214 {
215 return reciprocal_scale(hash, nf_conntrack_htable_size);
216 }
217
218 static u32 __hash_conntrack(const struct net *net,
219 const struct nf_conntrack_tuple *tuple,
220 unsigned int size)
221 {
222 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
223 }
224
225 static u32 hash_conntrack(const struct net *net,
226 const struct nf_conntrack_tuple *tuple)
227 {
228 return scale_hash(hash_conntrack_raw(tuple, net));
229 }
230
231 bool
232 nf_ct_get_tuple(const struct sk_buff *skb,
233 unsigned int nhoff,
234 unsigned int dataoff,
235 u_int16_t l3num,
236 u_int8_t protonum,
237 struct net *net,
238 struct nf_conntrack_tuple *tuple,
239 const struct nf_conntrack_l3proto *l3proto,
240 const struct nf_conntrack_l4proto *l4proto)
241 {
242 memset(tuple, 0, sizeof(*tuple));
243
244 tuple->src.l3num = l3num;
245 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
246 return false;
247
248 tuple->dst.protonum = protonum;
249 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
250
251 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
252 }
253 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
254
255 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
256 u_int16_t l3num,
257 struct net *net, struct nf_conntrack_tuple *tuple)
258 {
259 const struct nf_conntrack_l3proto *l3proto;
260 const struct nf_conntrack_l4proto *l4proto;
261 unsigned int protoff;
262 u_int8_t protonum;
263 int ret;
264
265 rcu_read_lock();
266
267 l3proto = __nf_ct_l3proto_find(l3num);
268 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
269 if (ret != NF_ACCEPT) {
270 rcu_read_unlock();
271 return false;
272 }
273
274 l4proto = __nf_ct_l4proto_find(l3num, protonum);
275
276 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
277 l3proto, l4proto);
278
279 rcu_read_unlock();
280 return ret;
281 }
282 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
283
284 bool
285 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
286 const struct nf_conntrack_tuple *orig,
287 const struct nf_conntrack_l3proto *l3proto,
288 const struct nf_conntrack_l4proto *l4proto)
289 {
290 memset(inverse, 0, sizeof(*inverse));
291
292 inverse->src.l3num = orig->src.l3num;
293 if (l3proto->invert_tuple(inverse, orig) == 0)
294 return false;
295
296 inverse->dst.dir = !orig->dst.dir;
297
298 inverse->dst.protonum = orig->dst.protonum;
299 return l4proto->invert_tuple(inverse, orig);
300 }
301 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
302
303 static void
304 clean_from_lists(struct nf_conn *ct)
305 {
306 pr_debug("clean_from_lists(%p)\n", ct);
307 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
308 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
309
310 /* Destroy all pending expectations */
311 nf_ct_remove_expectations(ct);
312 }
313
314 /* must be called with local_bh_disable */
315 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
316 {
317 struct ct_pcpu *pcpu;
318
319 /* add this conntrack to the (per cpu) dying list */
320 ct->cpu = smp_processor_id();
321 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
322
323 spin_lock(&pcpu->lock);
324 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
325 &pcpu->dying);
326 spin_unlock(&pcpu->lock);
327 }
328
329 /* must be called with local_bh_disable */
330 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
331 {
332 struct ct_pcpu *pcpu;
333
334 /* add this conntrack to the (per cpu) unconfirmed list */
335 ct->cpu = smp_processor_id();
336 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
337
338 spin_lock(&pcpu->lock);
339 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
340 &pcpu->unconfirmed);
341 spin_unlock(&pcpu->lock);
342 }
343
344 /* must be called with local_bh_disable */
345 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
346 {
347 struct ct_pcpu *pcpu;
348
349 /* We overload first tuple to link into unconfirmed or dying list.*/
350 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
351
352 spin_lock(&pcpu->lock);
353 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
354 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
355 spin_unlock(&pcpu->lock);
356 }
357
358 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
359
360 /* Released via destroy_conntrack() */
361 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
362 const struct nf_conntrack_zone *zone,
363 gfp_t flags)
364 {
365 struct nf_conn *tmpl, *p;
366
367 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
368 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
369 if (!tmpl)
370 return NULL;
371
372 p = tmpl;
373 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
374 if (tmpl != p) {
375 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
376 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
377 }
378 } else {
379 tmpl = kzalloc(sizeof(*tmpl), flags);
380 if (!tmpl)
381 return NULL;
382 }
383
384 tmpl->status = IPS_TEMPLATE;
385 write_pnet(&tmpl->ct_net, net);
386 nf_ct_zone_add(tmpl, zone);
387 atomic_set(&tmpl->ct_general.use, 0);
388
389 return tmpl;
390 }
391 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
392
393 void nf_ct_tmpl_free(struct nf_conn *tmpl)
394 {
395 nf_ct_ext_destroy(tmpl);
396 nf_ct_ext_free(tmpl);
397
398 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
399 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
400 else
401 kfree(tmpl);
402 }
403 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
404
405 static void
406 destroy_conntrack(struct nf_conntrack *nfct)
407 {
408 struct nf_conn *ct = (struct nf_conn *)nfct;
409 const struct nf_conntrack_l4proto *l4proto;
410
411 pr_debug("destroy_conntrack(%p)\n", ct);
412 WARN_ON(atomic_read(&nfct->use) != 0);
413
414 if (unlikely(nf_ct_is_template(ct))) {
415 nf_ct_tmpl_free(ct);
416 return;
417 }
418 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
419 if (l4proto->destroy)
420 l4proto->destroy(ct);
421
422 local_bh_disable();
423 /* Expectations will have been removed in clean_from_lists,
424 * except TFTP can create an expectation on the first packet,
425 * before connection is in the list, so we need to clean here,
426 * too.
427 */
428 nf_ct_remove_expectations(ct);
429
430 nf_ct_del_from_dying_or_unconfirmed_list(ct);
431
432 local_bh_enable();
433
434 if (ct->master)
435 nf_ct_put(ct->master);
436
437 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
438 nf_conntrack_free(ct);
439 }
440
441 static void nf_ct_delete_from_lists(struct nf_conn *ct)
442 {
443 struct net *net = nf_ct_net(ct);
444 unsigned int hash, reply_hash;
445 unsigned int sequence;
446
447 nf_ct_helper_destroy(ct);
448
449 local_bh_disable();
450 do {
451 sequence = read_seqcount_begin(&nf_conntrack_generation);
452 hash = hash_conntrack(net,
453 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
454 reply_hash = hash_conntrack(net,
455 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
456 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
457
458 clean_from_lists(ct);
459 nf_conntrack_double_unlock(hash, reply_hash);
460
461 nf_ct_add_to_dying_list(ct);
462
463 local_bh_enable();
464 }
465
466 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
467 {
468 struct nf_conn_tstamp *tstamp;
469
470 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
471 return false;
472
473 tstamp = nf_conn_tstamp_find(ct);
474 if (tstamp && tstamp->stop == 0)
475 tstamp->stop = ktime_get_real_ns();
476
477 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
478 portid, report) < 0) {
479 /* destroy event was not delivered. nf_ct_put will
480 * be done by event cache worker on redelivery.
481 */
482 nf_ct_delete_from_lists(ct);
483 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
484 return false;
485 }
486
487 nf_conntrack_ecache_work(nf_ct_net(ct));
488 nf_ct_delete_from_lists(ct);
489 nf_ct_put(ct);
490 return true;
491 }
492 EXPORT_SYMBOL_GPL(nf_ct_delete);
493
494 static inline bool
495 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
496 const struct nf_conntrack_tuple *tuple,
497 const struct nf_conntrack_zone *zone,
498 const struct net *net)
499 {
500 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
501
502 /* A conntrack can be recreated with the equal tuple,
503 * so we need to check that the conntrack is confirmed
504 */
505 return nf_ct_tuple_equal(tuple, &h->tuple) &&
506 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
507 nf_ct_is_confirmed(ct) &&
508 net_eq(net, nf_ct_net(ct));
509 }
510
511 static inline bool
512 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
513 {
514 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
515 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
516 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
517 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
518 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
519 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
520 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
521 }
522
523 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
524 static void nf_ct_gc_expired(struct nf_conn *ct)
525 {
526 if (!atomic_inc_not_zero(&ct->ct_general.use))
527 return;
528
529 if (nf_ct_should_gc(ct))
530 nf_ct_kill(ct);
531
532 nf_ct_put(ct);
533 }
534
535 /*
536 * Warning :
537 * - Caller must take a reference on returned object
538 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
539 */
540 static struct nf_conntrack_tuple_hash *
541 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
542 const struct nf_conntrack_tuple *tuple, u32 hash)
543 {
544 struct nf_conntrack_tuple_hash *h;
545 struct hlist_nulls_head *ct_hash;
546 struct hlist_nulls_node *n;
547 unsigned int bucket, hsize;
548
549 begin:
550 nf_conntrack_get_ht(&ct_hash, &hsize);
551 bucket = reciprocal_scale(hash, hsize);
552
553 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
554 struct nf_conn *ct;
555
556 ct = nf_ct_tuplehash_to_ctrack(h);
557 if (nf_ct_is_expired(ct)) {
558 nf_ct_gc_expired(ct);
559 continue;
560 }
561
562 if (nf_ct_is_dying(ct))
563 continue;
564
565 if (nf_ct_key_equal(h, tuple, zone, net))
566 return h;
567 }
568 /*
569 * if the nulls value we got at the end of this lookup is
570 * not the expected one, we must restart lookup.
571 * We probably met an item that was moved to another chain.
572 */
573 if (get_nulls_value(n) != bucket) {
574 NF_CT_STAT_INC_ATOMIC(net, search_restart);
575 goto begin;
576 }
577
578 return NULL;
579 }
580
581 /* Find a connection corresponding to a tuple. */
582 static struct nf_conntrack_tuple_hash *
583 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
584 const struct nf_conntrack_tuple *tuple, u32 hash)
585 {
586 struct nf_conntrack_tuple_hash *h;
587 struct nf_conn *ct;
588
589 rcu_read_lock();
590 begin:
591 h = ____nf_conntrack_find(net, zone, tuple, hash);
592 if (h) {
593 ct = nf_ct_tuplehash_to_ctrack(h);
594 if (unlikely(nf_ct_is_dying(ct) ||
595 !atomic_inc_not_zero(&ct->ct_general.use)))
596 h = NULL;
597 else {
598 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
599 nf_ct_put(ct);
600 goto begin;
601 }
602 }
603 }
604 rcu_read_unlock();
605
606 return h;
607 }
608
609 struct nf_conntrack_tuple_hash *
610 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
611 const struct nf_conntrack_tuple *tuple)
612 {
613 return __nf_conntrack_find_get(net, zone, tuple,
614 hash_conntrack_raw(tuple, net));
615 }
616 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
617
618 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
619 unsigned int hash,
620 unsigned int reply_hash)
621 {
622 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
623 &nf_conntrack_hash[hash]);
624 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
625 &nf_conntrack_hash[reply_hash]);
626 }
627
628 int
629 nf_conntrack_hash_check_insert(struct nf_conn *ct)
630 {
631 const struct nf_conntrack_zone *zone;
632 struct net *net = nf_ct_net(ct);
633 unsigned int hash, reply_hash;
634 struct nf_conntrack_tuple_hash *h;
635 struct hlist_nulls_node *n;
636 unsigned int sequence;
637
638 zone = nf_ct_zone(ct);
639
640 local_bh_disable();
641 do {
642 sequence = read_seqcount_begin(&nf_conntrack_generation);
643 hash = hash_conntrack(net,
644 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
645 reply_hash = hash_conntrack(net,
646 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
647 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
648
649 /* See if there's one in the list already, including reverse */
650 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
651 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
652 zone, net))
653 goto out;
654
655 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
656 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
657 zone, net))
658 goto out;
659
660 smp_wmb();
661 /* The caller holds a reference to this object */
662 atomic_set(&ct->ct_general.use, 2);
663 __nf_conntrack_hash_insert(ct, hash, reply_hash);
664 nf_conntrack_double_unlock(hash, reply_hash);
665 NF_CT_STAT_INC(net, insert);
666 local_bh_enable();
667 return 0;
668
669 out:
670 nf_conntrack_double_unlock(hash, reply_hash);
671 NF_CT_STAT_INC(net, insert_failed);
672 local_bh_enable();
673 return -EEXIST;
674 }
675 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
676
677 static inline void nf_ct_acct_update(struct nf_conn *ct,
678 enum ip_conntrack_info ctinfo,
679 unsigned int len)
680 {
681 struct nf_conn_acct *acct;
682
683 acct = nf_conn_acct_find(ct);
684 if (acct) {
685 struct nf_conn_counter *counter = acct->counter;
686
687 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
688 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
689 }
690 }
691
692 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
693 const struct nf_conn *loser_ct)
694 {
695 struct nf_conn_acct *acct;
696
697 acct = nf_conn_acct_find(loser_ct);
698 if (acct) {
699 struct nf_conn_counter *counter = acct->counter;
700 unsigned int bytes;
701
702 /* u32 should be fine since we must have seen one packet. */
703 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
704 nf_ct_acct_update(ct, ctinfo, bytes);
705 }
706 }
707
708 /* Resolve race on insertion if this protocol allows this. */
709 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
710 enum ip_conntrack_info ctinfo,
711 struct nf_conntrack_tuple_hash *h)
712 {
713 /* This is the conntrack entry already in hashes that won race. */
714 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
715 const struct nf_conntrack_l4proto *l4proto;
716 enum ip_conntrack_info oldinfo;
717 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
718
719 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
720 if (l4proto->allow_clash &&
721 !nf_ct_is_dying(ct) &&
722 atomic_inc_not_zero(&ct->ct_general.use)) {
723 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
724 nf_ct_match(ct, loser_ct)) {
725 nf_ct_acct_merge(ct, ctinfo, loser_ct);
726 nf_conntrack_put(&loser_ct->ct_general);
727 nf_ct_set(skb, ct, oldinfo);
728 return NF_ACCEPT;
729 }
730 nf_ct_put(ct);
731 }
732 NF_CT_STAT_INC(net, drop);
733 return NF_DROP;
734 }
735
736 /* Confirm a connection given skb; places it in hash table */
737 int
738 __nf_conntrack_confirm(struct sk_buff *skb)
739 {
740 const struct nf_conntrack_zone *zone;
741 unsigned int hash, reply_hash;
742 struct nf_conntrack_tuple_hash *h;
743 struct nf_conn *ct;
744 struct nf_conn_help *help;
745 struct nf_conn_tstamp *tstamp;
746 struct hlist_nulls_node *n;
747 enum ip_conntrack_info ctinfo;
748 struct net *net;
749 unsigned int sequence;
750 int ret = NF_DROP;
751
752 ct = nf_ct_get(skb, &ctinfo);
753 net = nf_ct_net(ct);
754
755 /* ipt_REJECT uses nf_conntrack_attach to attach related
756 ICMP/TCP RST packets in other direction. Actual packet
757 which created connection will be IP_CT_NEW or for an
758 expected connection, IP_CT_RELATED. */
759 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
760 return NF_ACCEPT;
761
762 zone = nf_ct_zone(ct);
763 local_bh_disable();
764
765 do {
766 sequence = read_seqcount_begin(&nf_conntrack_generation);
767 /* reuse the hash saved before */
768 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
769 hash = scale_hash(hash);
770 reply_hash = hash_conntrack(net,
771 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
772
773 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
774
775 /* We're not in hash table, and we refuse to set up related
776 * connections for unconfirmed conns. But packet copies and
777 * REJECT will give spurious warnings here.
778 */
779
780 /* Another skb with the same unconfirmed conntrack may
781 * win the race. This may happen for bridge(br_flood)
782 * or broadcast/multicast packets do skb_clone with
783 * unconfirmed conntrack.
784 */
785 if (unlikely(nf_ct_is_confirmed(ct))) {
786 WARN_ON_ONCE(1);
787 nf_conntrack_double_unlock(hash, reply_hash);
788 local_bh_enable();
789 return NF_DROP;
790 }
791
792 pr_debug("Confirming conntrack %p\n", ct);
793 /* We have to check the DYING flag after unlink to prevent
794 * a race against nf_ct_get_next_corpse() possibly called from
795 * user context, else we insert an already 'dead' hash, blocking
796 * further use of that particular connection -JM.
797 */
798 nf_ct_del_from_dying_or_unconfirmed_list(ct);
799
800 if (unlikely(nf_ct_is_dying(ct))) {
801 nf_ct_add_to_dying_list(ct);
802 goto dying;
803 }
804
805 /* See if there's one in the list already, including reverse:
806 NAT could have grabbed it without realizing, since we're
807 not in the hash. If there is, we lost race. */
808 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
809 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
810 zone, net))
811 goto out;
812
813 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
814 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
815 zone, net))
816 goto out;
817
818 /* Timer relative to confirmation time, not original
819 setting time, otherwise we'd get timer wrap in
820 weird delay cases. */
821 ct->timeout += nfct_time_stamp;
822 atomic_inc(&ct->ct_general.use);
823 ct->status |= IPS_CONFIRMED;
824
825 /* set conntrack timestamp, if enabled. */
826 tstamp = nf_conn_tstamp_find(ct);
827 if (tstamp) {
828 if (skb->tstamp == 0)
829 __net_timestamp(skb);
830
831 tstamp->start = ktime_to_ns(skb->tstamp);
832 }
833 /* Since the lookup is lockless, hash insertion must be done after
834 * starting the timer and setting the CONFIRMED bit. The RCU barriers
835 * guarantee that no other CPU can find the conntrack before the above
836 * stores are visible.
837 */
838 __nf_conntrack_hash_insert(ct, hash, reply_hash);
839 nf_conntrack_double_unlock(hash, reply_hash);
840 local_bh_enable();
841
842 help = nfct_help(ct);
843 if (help && help->helper)
844 nf_conntrack_event_cache(IPCT_HELPER, ct);
845
846 nf_conntrack_event_cache(master_ct(ct) ?
847 IPCT_RELATED : IPCT_NEW, ct);
848 return NF_ACCEPT;
849
850 out:
851 nf_ct_add_to_dying_list(ct);
852 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
853 dying:
854 nf_conntrack_double_unlock(hash, reply_hash);
855 NF_CT_STAT_INC(net, insert_failed);
856 local_bh_enable();
857 return ret;
858 }
859 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
860
861 /* Returns true if a connection correspondings to the tuple (required
862 for NAT). */
863 int
864 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
865 const struct nf_conn *ignored_conntrack)
866 {
867 struct net *net = nf_ct_net(ignored_conntrack);
868 const struct nf_conntrack_zone *zone;
869 struct nf_conntrack_tuple_hash *h;
870 struct hlist_nulls_head *ct_hash;
871 unsigned int hash, hsize;
872 struct hlist_nulls_node *n;
873 struct nf_conn *ct;
874
875 zone = nf_ct_zone(ignored_conntrack);
876
877 rcu_read_lock();
878 begin:
879 nf_conntrack_get_ht(&ct_hash, &hsize);
880 hash = __hash_conntrack(net, tuple, hsize);
881
882 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
883 ct = nf_ct_tuplehash_to_ctrack(h);
884
885 if (ct == ignored_conntrack)
886 continue;
887
888 if (nf_ct_is_expired(ct)) {
889 nf_ct_gc_expired(ct);
890 continue;
891 }
892
893 if (nf_ct_key_equal(h, tuple, zone, net)) {
894 /* Tuple is taken already, so caller will need to find
895 * a new source port to use.
896 *
897 * Only exception:
898 * If the *original tuples* are identical, then both
899 * conntracks refer to the same flow.
900 * This is a rare situation, it can occur e.g. when
901 * more than one UDP packet is sent from same socket
902 * in different threads.
903 *
904 * Let nf_ct_resolve_clash() deal with this later.
905 */
906 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
907 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
908 continue;
909
910 NF_CT_STAT_INC_ATOMIC(net, found);
911 rcu_read_unlock();
912 return 1;
913 }
914 }
915
916 if (get_nulls_value(n) != hash) {
917 NF_CT_STAT_INC_ATOMIC(net, search_restart);
918 goto begin;
919 }
920
921 rcu_read_unlock();
922
923 return 0;
924 }
925 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
926
927 #define NF_CT_EVICTION_RANGE 8
928
929 /* There's a small race here where we may free a just-assured
930 connection. Too bad: we're in trouble anyway. */
931 static unsigned int early_drop_list(struct net *net,
932 struct hlist_nulls_head *head)
933 {
934 struct nf_conntrack_tuple_hash *h;
935 struct hlist_nulls_node *n;
936 unsigned int drops = 0;
937 struct nf_conn *tmp;
938
939 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
940 tmp = nf_ct_tuplehash_to_ctrack(h);
941
942 if (nf_ct_is_expired(tmp)) {
943 nf_ct_gc_expired(tmp);
944 continue;
945 }
946
947 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
948 !net_eq(nf_ct_net(tmp), net) ||
949 nf_ct_is_dying(tmp))
950 continue;
951
952 if (!atomic_inc_not_zero(&tmp->ct_general.use))
953 continue;
954
955 /* kill only if still in same netns -- might have moved due to
956 * SLAB_TYPESAFE_BY_RCU rules.
957 *
958 * We steal the timer reference. If that fails timer has
959 * already fired or someone else deleted it. Just drop ref
960 * and move to next entry.
961 */
962 if (net_eq(nf_ct_net(tmp), net) &&
963 nf_ct_is_confirmed(tmp) &&
964 nf_ct_delete(tmp, 0, 0))
965 drops++;
966
967 nf_ct_put(tmp);
968 }
969
970 return drops;
971 }
972
973 static noinline int early_drop(struct net *net, unsigned int hash)
974 {
975 unsigned int i, bucket;
976
977 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
978 struct hlist_nulls_head *ct_hash;
979 unsigned int hsize, drops;
980
981 rcu_read_lock();
982 nf_conntrack_get_ht(&ct_hash, &hsize);
983 if (!i)
984 bucket = reciprocal_scale(hash, hsize);
985 else
986 bucket = (bucket + 1) % hsize;
987
988 drops = early_drop_list(net, &ct_hash[bucket]);
989 rcu_read_unlock();
990
991 if (drops) {
992 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
993 return true;
994 }
995 }
996
997 return false;
998 }
999
1000 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1001 {
1002 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1003 }
1004
1005 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1006 {
1007 const struct nf_conntrack_l4proto *l4proto;
1008
1009 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1010 return true;
1011
1012 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
1013 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1014 return true;
1015
1016 return false;
1017 }
1018
1019 static void gc_worker(struct work_struct *work)
1020 {
1021 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1022 unsigned int i, goal, buckets = 0, expired_count = 0;
1023 unsigned int nf_conntrack_max95 = 0;
1024 struct conntrack_gc_work *gc_work;
1025 unsigned int ratio, scanned = 0;
1026 unsigned long next_run;
1027
1028 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1029
1030 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1031 i = gc_work->last_bucket;
1032 if (gc_work->early_drop)
1033 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1034
1035 do {
1036 struct nf_conntrack_tuple_hash *h;
1037 struct hlist_nulls_head *ct_hash;
1038 struct hlist_nulls_node *n;
1039 unsigned int hashsz;
1040 struct nf_conn *tmp;
1041
1042 i++;
1043 rcu_read_lock();
1044
1045 nf_conntrack_get_ht(&ct_hash, &hashsz);
1046 if (i >= hashsz)
1047 i = 0;
1048
1049 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1050 struct net *net;
1051
1052 tmp = nf_ct_tuplehash_to_ctrack(h);
1053
1054 scanned++;
1055 if (nf_ct_is_expired(tmp)) {
1056 nf_ct_gc_expired(tmp);
1057 expired_count++;
1058 continue;
1059 }
1060
1061 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1062 continue;
1063
1064 net = nf_ct_net(tmp);
1065 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1066 continue;
1067
1068 /* need to take reference to avoid possible races */
1069 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1070 continue;
1071
1072 if (gc_worker_skip_ct(tmp)) {
1073 nf_ct_put(tmp);
1074 continue;
1075 }
1076
1077 if (gc_worker_can_early_drop(tmp))
1078 nf_ct_kill(tmp);
1079
1080 nf_ct_put(tmp);
1081 }
1082
1083 /* could check get_nulls_value() here and restart if ct
1084 * was moved to another chain. But given gc is best-effort
1085 * we will just continue with next hash slot.
1086 */
1087 rcu_read_unlock();
1088 cond_resched_rcu_qs();
1089 } while (++buckets < goal);
1090
1091 if (gc_work->exiting)
1092 return;
1093
1094 /*
1095 * Eviction will normally happen from the packet path, and not
1096 * from this gc worker.
1097 *
1098 * This worker is only here to reap expired entries when system went
1099 * idle after a busy period.
1100 *
1101 * The heuristics below are supposed to balance conflicting goals:
1102 *
1103 * 1. Minimize time until we notice a stale entry
1104 * 2. Maximize scan intervals to not waste cycles
1105 *
1106 * Normally, expire ratio will be close to 0.
1107 *
1108 * As soon as a sizeable fraction of the entries have expired
1109 * increase scan frequency.
1110 */
1111 ratio = scanned ? expired_count * 100 / scanned : 0;
1112 if (ratio > GC_EVICT_RATIO) {
1113 gc_work->next_gc_run = min_interval;
1114 } else {
1115 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1116
1117 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1118
1119 gc_work->next_gc_run += min_interval;
1120 if (gc_work->next_gc_run > max)
1121 gc_work->next_gc_run = max;
1122 }
1123
1124 next_run = gc_work->next_gc_run;
1125 gc_work->last_bucket = i;
1126 gc_work->early_drop = false;
1127 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1128 }
1129
1130 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1131 {
1132 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1133 gc_work->next_gc_run = HZ;
1134 gc_work->exiting = false;
1135 }
1136
1137 static struct nf_conn *
1138 __nf_conntrack_alloc(struct net *net,
1139 const struct nf_conntrack_zone *zone,
1140 const struct nf_conntrack_tuple *orig,
1141 const struct nf_conntrack_tuple *repl,
1142 gfp_t gfp, u32 hash)
1143 {
1144 struct nf_conn *ct;
1145
1146 /* We don't want any race condition at early drop stage */
1147 atomic_inc(&net->ct.count);
1148
1149 if (nf_conntrack_max &&
1150 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1151 if (!early_drop(net, hash)) {
1152 if (!conntrack_gc_work.early_drop)
1153 conntrack_gc_work.early_drop = true;
1154 atomic_dec(&net->ct.count);
1155 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1156 return ERR_PTR(-ENOMEM);
1157 }
1158 }
1159
1160 /*
1161 * Do not use kmem_cache_zalloc(), as this cache uses
1162 * SLAB_TYPESAFE_BY_RCU.
1163 */
1164 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1165 if (ct == NULL)
1166 goto out;
1167
1168 spin_lock_init(&ct->lock);
1169 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1170 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1171 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1172 /* save hash for reusing when confirming */
1173 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1174 ct->status = 0;
1175 write_pnet(&ct->ct_net, net);
1176 memset(&ct->__nfct_init_offset[0], 0,
1177 offsetof(struct nf_conn, proto) -
1178 offsetof(struct nf_conn, __nfct_init_offset[0]));
1179
1180 nf_ct_zone_add(ct, zone);
1181
1182 /* Because we use RCU lookups, we set ct_general.use to zero before
1183 * this is inserted in any list.
1184 */
1185 atomic_set(&ct->ct_general.use, 0);
1186 return ct;
1187 out:
1188 atomic_dec(&net->ct.count);
1189 return ERR_PTR(-ENOMEM);
1190 }
1191
1192 struct nf_conn *nf_conntrack_alloc(struct net *net,
1193 const struct nf_conntrack_zone *zone,
1194 const struct nf_conntrack_tuple *orig,
1195 const struct nf_conntrack_tuple *repl,
1196 gfp_t gfp)
1197 {
1198 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1199 }
1200 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1201
1202 void nf_conntrack_free(struct nf_conn *ct)
1203 {
1204 struct net *net = nf_ct_net(ct);
1205
1206 /* A freed object has refcnt == 0, that's
1207 * the golden rule for SLAB_TYPESAFE_BY_RCU
1208 */
1209 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1210
1211 nf_ct_ext_destroy(ct);
1212 nf_ct_ext_free(ct);
1213 kmem_cache_free(nf_conntrack_cachep, ct);
1214 smp_mb__before_atomic();
1215 atomic_dec(&net->ct.count);
1216 }
1217 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1218
1219
1220 /* Allocate a new conntrack: we return -ENOMEM if classification
1221 failed due to stress. Otherwise it really is unclassifiable. */
1222 static noinline struct nf_conntrack_tuple_hash *
1223 init_conntrack(struct net *net, struct nf_conn *tmpl,
1224 const struct nf_conntrack_tuple *tuple,
1225 const struct nf_conntrack_l3proto *l3proto,
1226 const struct nf_conntrack_l4proto *l4proto,
1227 struct sk_buff *skb,
1228 unsigned int dataoff, u32 hash)
1229 {
1230 struct nf_conn *ct;
1231 struct nf_conn_help *help;
1232 struct nf_conntrack_tuple repl_tuple;
1233 struct nf_conntrack_ecache *ecache;
1234 struct nf_conntrack_expect *exp = NULL;
1235 const struct nf_conntrack_zone *zone;
1236 struct nf_conn_timeout *timeout_ext;
1237 struct nf_conntrack_zone tmp;
1238 unsigned int *timeouts;
1239
1240 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1241 pr_debug("Can't invert tuple.\n");
1242 return NULL;
1243 }
1244
1245 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1246 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1247 hash);
1248 if (IS_ERR(ct))
1249 return (struct nf_conntrack_tuple_hash *)ct;
1250
1251 if (!nf_ct_add_synproxy(ct, tmpl)) {
1252 nf_conntrack_free(ct);
1253 return ERR_PTR(-ENOMEM);
1254 }
1255
1256 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1257 if (timeout_ext) {
1258 timeouts = nf_ct_timeout_data(timeout_ext);
1259 if (unlikely(!timeouts))
1260 timeouts = l4proto->get_timeouts(net);
1261 } else {
1262 timeouts = l4proto->get_timeouts(net);
1263 }
1264
1265 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1266 nf_conntrack_free(ct);
1267 pr_debug("can't track with proto module\n");
1268 return NULL;
1269 }
1270
1271 if (timeout_ext)
1272 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1273 GFP_ATOMIC);
1274
1275 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1276 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1277 nf_ct_labels_ext_add(ct);
1278
1279 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1280 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1281 ecache ? ecache->expmask : 0,
1282 GFP_ATOMIC);
1283
1284 local_bh_disable();
1285 if (net->ct.expect_count) {
1286 spin_lock(&nf_conntrack_expect_lock);
1287 exp = nf_ct_find_expectation(net, zone, tuple);
1288 if (exp) {
1289 pr_debug("expectation arrives ct=%p exp=%p\n",
1290 ct, exp);
1291 /* Welcome, Mr. Bond. We've been expecting you... */
1292 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1293 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1294 ct->master = exp->master;
1295 if (exp->helper) {
1296 help = nf_ct_helper_ext_add(ct, exp->helper,
1297 GFP_ATOMIC);
1298 if (help)
1299 rcu_assign_pointer(help->helper, exp->helper);
1300 }
1301
1302 #ifdef CONFIG_NF_CONNTRACK_MARK
1303 ct->mark = exp->master->mark;
1304 #endif
1305 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1306 ct->secmark = exp->master->secmark;
1307 #endif
1308 NF_CT_STAT_INC(net, expect_new);
1309 }
1310 spin_unlock(&nf_conntrack_expect_lock);
1311 }
1312 if (!exp)
1313 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1314
1315 /* Now it is inserted into the unconfirmed list, bump refcount */
1316 nf_conntrack_get(&ct->ct_general);
1317 nf_ct_add_to_unconfirmed_list(ct);
1318
1319 local_bh_enable();
1320
1321 if (exp) {
1322 if (exp->expectfn)
1323 exp->expectfn(ct, exp);
1324 nf_ct_expect_put(exp);
1325 }
1326
1327 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1328 }
1329
1330 /* On success, returns 0, sets skb->_nfct | ctinfo */
1331 static int
1332 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1333 struct sk_buff *skb,
1334 unsigned int dataoff,
1335 u_int16_t l3num,
1336 u_int8_t protonum,
1337 const struct nf_conntrack_l3proto *l3proto,
1338 const struct nf_conntrack_l4proto *l4proto)
1339 {
1340 const struct nf_conntrack_zone *zone;
1341 struct nf_conntrack_tuple tuple;
1342 struct nf_conntrack_tuple_hash *h;
1343 enum ip_conntrack_info ctinfo;
1344 struct nf_conntrack_zone tmp;
1345 struct nf_conn *ct;
1346 u32 hash;
1347
1348 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1349 dataoff, l3num, protonum, net, &tuple, l3proto,
1350 l4proto)) {
1351 pr_debug("Can't get tuple\n");
1352 return 0;
1353 }
1354
1355 /* look for tuple match */
1356 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1357 hash = hash_conntrack_raw(&tuple, net);
1358 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1359 if (!h) {
1360 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1361 skb, dataoff, hash);
1362 if (!h)
1363 return 0;
1364 if (IS_ERR(h))
1365 return PTR_ERR(h);
1366 }
1367 ct = nf_ct_tuplehash_to_ctrack(h);
1368
1369 /* It exists; we have (non-exclusive) reference. */
1370 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1371 ctinfo = IP_CT_ESTABLISHED_REPLY;
1372 } else {
1373 /* Once we've had two way comms, always ESTABLISHED. */
1374 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1375 pr_debug("normal packet for %p\n", ct);
1376 ctinfo = IP_CT_ESTABLISHED;
1377 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1378 pr_debug("related packet for %p\n", ct);
1379 ctinfo = IP_CT_RELATED;
1380 } else {
1381 pr_debug("new packet for %p\n", ct);
1382 ctinfo = IP_CT_NEW;
1383 }
1384 }
1385 nf_ct_set(skb, ct, ctinfo);
1386 return 0;
1387 }
1388
1389 unsigned int
1390 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1391 struct sk_buff *skb)
1392 {
1393 const struct nf_conntrack_l3proto *l3proto;
1394 const struct nf_conntrack_l4proto *l4proto;
1395 struct nf_conn *ct, *tmpl;
1396 enum ip_conntrack_info ctinfo;
1397 unsigned int *timeouts;
1398 unsigned int dataoff;
1399 u_int8_t protonum;
1400 int ret;
1401
1402 tmpl = nf_ct_get(skb, &ctinfo);
1403 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1404 /* Previously seen (loopback or untracked)? Ignore. */
1405 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1406 ctinfo == IP_CT_UNTRACKED) {
1407 NF_CT_STAT_INC_ATOMIC(net, ignore);
1408 return NF_ACCEPT;
1409 }
1410 skb->_nfct = 0;
1411 }
1412
1413 /* rcu_read_lock()ed by nf_hook_thresh */
1414 l3proto = __nf_ct_l3proto_find(pf);
1415 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1416 &dataoff, &protonum);
1417 if (ret <= 0) {
1418 pr_debug("not prepared to track yet or error occurred\n");
1419 NF_CT_STAT_INC_ATOMIC(net, error);
1420 NF_CT_STAT_INC_ATOMIC(net, invalid);
1421 ret = -ret;
1422 goto out;
1423 }
1424
1425 l4proto = __nf_ct_l4proto_find(pf, protonum);
1426
1427 /* It may be an special packet, error, unclean...
1428 * inverse of the return code tells to the netfilter
1429 * core what to do with the packet. */
1430 if (l4proto->error != NULL) {
1431 ret = l4proto->error(net, tmpl, skb, dataoff, pf, hooknum);
1432 if (ret <= 0) {
1433 NF_CT_STAT_INC_ATOMIC(net, error);
1434 NF_CT_STAT_INC_ATOMIC(net, invalid);
1435 ret = -ret;
1436 goto out;
1437 }
1438 /* ICMP[v6] protocol trackers may assign one conntrack. */
1439 if (skb->_nfct)
1440 goto out;
1441 }
1442 repeat:
1443 ret = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1444 l3proto, l4proto);
1445 if (ret < 0) {
1446 /* Too stressed to deal. */
1447 NF_CT_STAT_INC_ATOMIC(net, drop);
1448 ret = NF_DROP;
1449 goto out;
1450 }
1451
1452 ct = nf_ct_get(skb, &ctinfo);
1453 if (!ct) {
1454 /* Not valid part of a connection */
1455 NF_CT_STAT_INC_ATOMIC(net, invalid);
1456 ret = NF_ACCEPT;
1457 goto out;
1458 }
1459
1460 /* Decide what timeout policy we want to apply to this flow. */
1461 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1462
1463 ret = l4proto->packet(ct, skb, dataoff, ctinfo, timeouts);
1464 if (ret <= 0) {
1465 /* Invalid: inverse of the return code tells
1466 * the netfilter core what to do */
1467 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1468 nf_conntrack_put(&ct->ct_general);
1469 skb->_nfct = 0;
1470 NF_CT_STAT_INC_ATOMIC(net, invalid);
1471 if (ret == -NF_DROP)
1472 NF_CT_STAT_INC_ATOMIC(net, drop);
1473 /* Special case: TCP tracker reports an attempt to reopen a
1474 * closed/aborted connection. We have to go back and create a
1475 * fresh conntrack.
1476 */
1477 if (ret == -NF_REPEAT)
1478 goto repeat;
1479 ret = -ret;
1480 goto out;
1481 }
1482
1483 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1484 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1485 nf_conntrack_event_cache(IPCT_REPLY, ct);
1486 out:
1487 if (tmpl)
1488 nf_ct_put(tmpl);
1489
1490 return ret;
1491 }
1492 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1493
1494 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1495 const struct nf_conntrack_tuple *orig)
1496 {
1497 bool ret;
1498
1499 rcu_read_lock();
1500 ret = nf_ct_invert_tuple(inverse, orig,
1501 __nf_ct_l3proto_find(orig->src.l3num),
1502 __nf_ct_l4proto_find(orig->src.l3num,
1503 orig->dst.protonum));
1504 rcu_read_unlock();
1505 return ret;
1506 }
1507 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1508
1509 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1510 implicitly racy: see __nf_conntrack_confirm */
1511 void nf_conntrack_alter_reply(struct nf_conn *ct,
1512 const struct nf_conntrack_tuple *newreply)
1513 {
1514 struct nf_conn_help *help = nfct_help(ct);
1515
1516 /* Should be unconfirmed, so not in hash table yet */
1517 WARN_ON(nf_ct_is_confirmed(ct));
1518
1519 pr_debug("Altering reply tuple of %p to ", ct);
1520 nf_ct_dump_tuple(newreply);
1521
1522 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1523 if (ct->master || (help && !hlist_empty(&help->expectations)))
1524 return;
1525
1526 rcu_read_lock();
1527 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1528 rcu_read_unlock();
1529 }
1530 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1531
1532 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1533 void __nf_ct_refresh_acct(struct nf_conn *ct,
1534 enum ip_conntrack_info ctinfo,
1535 const struct sk_buff *skb,
1536 unsigned long extra_jiffies,
1537 int do_acct)
1538 {
1539 WARN_ON(!skb);
1540
1541 /* Only update if this is not a fixed timeout */
1542 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1543 goto acct;
1544
1545 /* If not in hash table, timer will not be active yet */
1546 if (nf_ct_is_confirmed(ct))
1547 extra_jiffies += nfct_time_stamp;
1548
1549 ct->timeout = extra_jiffies;
1550 acct:
1551 if (do_acct)
1552 nf_ct_acct_update(ct, ctinfo, skb->len);
1553 }
1554 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1555
1556 bool nf_ct_kill_acct(struct nf_conn *ct,
1557 enum ip_conntrack_info ctinfo,
1558 const struct sk_buff *skb)
1559 {
1560 nf_ct_acct_update(ct, ctinfo, skb->len);
1561
1562 return nf_ct_delete(ct, 0, 0);
1563 }
1564 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1565
1566 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1567
1568 #include <linux/netfilter/nfnetlink.h>
1569 #include <linux/netfilter/nfnetlink_conntrack.h>
1570 #include <linux/mutex.h>
1571
1572 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1573 * in ip_conntrack_core, since we don't want the protocols to autoload
1574 * or depend on ctnetlink */
1575 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1576 const struct nf_conntrack_tuple *tuple)
1577 {
1578 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1579 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1580 goto nla_put_failure;
1581 return 0;
1582
1583 nla_put_failure:
1584 return -1;
1585 }
1586 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1587
1588 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1589 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1590 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1591 };
1592 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1593
1594 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1595 struct nf_conntrack_tuple *t)
1596 {
1597 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1598 return -EINVAL;
1599
1600 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1601 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1602
1603 return 0;
1604 }
1605 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1606
1607 unsigned int nf_ct_port_nlattr_tuple_size(void)
1608 {
1609 static unsigned int size __read_mostly;
1610
1611 if (!size)
1612 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1613
1614 return size;
1615 }
1616 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1617 #endif
1618
1619 /* Used by ipt_REJECT and ip6t_REJECT. */
1620 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1621 {
1622 struct nf_conn *ct;
1623 enum ip_conntrack_info ctinfo;
1624
1625 /* This ICMP is in reverse direction to the packet which caused it */
1626 ct = nf_ct_get(skb, &ctinfo);
1627 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1628 ctinfo = IP_CT_RELATED_REPLY;
1629 else
1630 ctinfo = IP_CT_RELATED;
1631
1632 /* Attach to new skbuff, and increment count */
1633 nf_ct_set(nskb, ct, ctinfo);
1634 nf_conntrack_get(skb_nfct(nskb));
1635 }
1636
1637 /* Bring out ya dead! */
1638 static struct nf_conn *
1639 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1640 void *data, unsigned int *bucket)
1641 {
1642 struct nf_conntrack_tuple_hash *h;
1643 struct nf_conn *ct;
1644 struct hlist_nulls_node *n;
1645 spinlock_t *lockp;
1646
1647 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1648 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1649 local_bh_disable();
1650 nf_conntrack_lock(lockp);
1651 if (*bucket < nf_conntrack_htable_size) {
1652 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1653 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1654 continue;
1655 ct = nf_ct_tuplehash_to_ctrack(h);
1656 if (iter(ct, data))
1657 goto found;
1658 }
1659 }
1660 spin_unlock(lockp);
1661 local_bh_enable();
1662 cond_resched();
1663 }
1664
1665 return NULL;
1666 found:
1667 atomic_inc(&ct->ct_general.use);
1668 spin_unlock(lockp);
1669 local_bh_enable();
1670 return ct;
1671 }
1672
1673 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
1674 void *data, u32 portid, int report)
1675 {
1676 unsigned int bucket = 0, sequence;
1677 struct nf_conn *ct;
1678
1679 might_sleep();
1680
1681 for (;;) {
1682 sequence = read_seqcount_begin(&nf_conntrack_generation);
1683
1684 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1685 /* Time to push up daises... */
1686
1687 nf_ct_delete(ct, portid, report);
1688 nf_ct_put(ct);
1689 cond_resched();
1690 }
1691
1692 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
1693 break;
1694 bucket = 0;
1695 }
1696 }
1697
1698 struct iter_data {
1699 int (*iter)(struct nf_conn *i, void *data);
1700 void *data;
1701 struct net *net;
1702 };
1703
1704 static int iter_net_only(struct nf_conn *i, void *data)
1705 {
1706 struct iter_data *d = data;
1707
1708 if (!net_eq(d->net, nf_ct_net(i)))
1709 return 0;
1710
1711 return d->iter(i, d->data);
1712 }
1713
1714 static void
1715 __nf_ct_unconfirmed_destroy(struct net *net)
1716 {
1717 int cpu;
1718
1719 for_each_possible_cpu(cpu) {
1720 struct nf_conntrack_tuple_hash *h;
1721 struct hlist_nulls_node *n;
1722 struct ct_pcpu *pcpu;
1723
1724 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1725
1726 spin_lock_bh(&pcpu->lock);
1727 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1728 struct nf_conn *ct;
1729
1730 ct = nf_ct_tuplehash_to_ctrack(h);
1731
1732 /* we cannot call iter() on unconfirmed list, the
1733 * owning cpu can reallocate ct->ext at any time.
1734 */
1735 set_bit(IPS_DYING_BIT, &ct->status);
1736 }
1737 spin_unlock_bh(&pcpu->lock);
1738 cond_resched();
1739 }
1740 }
1741
1742 void nf_ct_unconfirmed_destroy(struct net *net)
1743 {
1744 might_sleep();
1745
1746 if (atomic_read(&net->ct.count) > 0) {
1747 __nf_ct_unconfirmed_destroy(net);
1748 nf_queue_nf_hook_drop(net);
1749 synchronize_net();
1750 }
1751 }
1752 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
1753
1754 void nf_ct_iterate_cleanup_net(struct net *net,
1755 int (*iter)(struct nf_conn *i, void *data),
1756 void *data, u32 portid, int report)
1757 {
1758 struct iter_data d;
1759
1760 might_sleep();
1761
1762 if (atomic_read(&net->ct.count) == 0)
1763 return;
1764
1765 d.iter = iter;
1766 d.data = data;
1767 d.net = net;
1768
1769 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
1770 }
1771 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
1772
1773 /**
1774 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
1775 * @iter: callback to invoke for each conntrack
1776 * @data: data to pass to @iter
1777 *
1778 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
1779 * unconfirmed list as dying (so they will not be inserted into
1780 * main table).
1781 *
1782 * Can only be called in module exit path.
1783 */
1784 void
1785 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
1786 {
1787 struct net *net;
1788
1789 rtnl_lock();
1790 for_each_net(net) {
1791 if (atomic_read(&net->ct.count) == 0)
1792 continue;
1793 __nf_ct_unconfirmed_destroy(net);
1794 nf_queue_nf_hook_drop(net);
1795 }
1796 rtnl_unlock();
1797
1798 /* Need to wait for netns cleanup worker to finish, if its
1799 * running -- it might have deleted a net namespace from
1800 * the global list, so our __nf_ct_unconfirmed_destroy() might
1801 * not have affected all namespaces.
1802 */
1803 net_ns_barrier();
1804
1805 /* a conntrack could have been unlinked from unconfirmed list
1806 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
1807 * This makes sure its inserted into conntrack table.
1808 */
1809 synchronize_net();
1810
1811 nf_ct_iterate_cleanup(iter, data, 0, 0);
1812 }
1813 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
1814
1815 static int kill_all(struct nf_conn *i, void *data)
1816 {
1817 return net_eq(nf_ct_net(i), data);
1818 }
1819
1820 void nf_ct_free_hashtable(void *hash, unsigned int size)
1821 {
1822 if (is_vmalloc_addr(hash))
1823 vfree(hash);
1824 else
1825 free_pages((unsigned long)hash,
1826 get_order(sizeof(struct hlist_head) * size));
1827 }
1828 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1829
1830 void nf_conntrack_cleanup_start(void)
1831 {
1832 conntrack_gc_work.exiting = true;
1833 RCU_INIT_POINTER(ip_ct_attach, NULL);
1834 }
1835
1836 void nf_conntrack_cleanup_end(void)
1837 {
1838 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1839
1840 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1841 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1842
1843 nf_conntrack_proto_fini();
1844 nf_conntrack_seqadj_fini();
1845 nf_conntrack_labels_fini();
1846 nf_conntrack_helper_fini();
1847 nf_conntrack_timeout_fini();
1848 nf_conntrack_ecache_fini();
1849 nf_conntrack_tstamp_fini();
1850 nf_conntrack_acct_fini();
1851 nf_conntrack_expect_fini();
1852
1853 kmem_cache_destroy(nf_conntrack_cachep);
1854 }
1855
1856 /*
1857 * Mishearing the voices in his head, our hero wonders how he's
1858 * supposed to kill the mall.
1859 */
1860 void nf_conntrack_cleanup_net(struct net *net)
1861 {
1862 LIST_HEAD(single);
1863
1864 list_add(&net->exit_list, &single);
1865 nf_conntrack_cleanup_net_list(&single);
1866 }
1867
1868 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1869 {
1870 int busy;
1871 struct net *net;
1872
1873 /*
1874 * This makes sure all current packets have passed through
1875 * netfilter framework. Roll on, two-stage module
1876 * delete...
1877 */
1878 synchronize_net();
1879 i_see_dead_people:
1880 busy = 0;
1881 list_for_each_entry(net, net_exit_list, exit_list) {
1882 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
1883 if (atomic_read(&net->ct.count) != 0)
1884 busy = 1;
1885 }
1886 if (busy) {
1887 schedule();
1888 goto i_see_dead_people;
1889 }
1890
1891 list_for_each_entry(net, net_exit_list, exit_list) {
1892 nf_conntrack_proto_pernet_fini(net);
1893 nf_conntrack_helper_pernet_fini(net);
1894 nf_conntrack_ecache_pernet_fini(net);
1895 nf_conntrack_tstamp_pernet_fini(net);
1896 nf_conntrack_acct_pernet_fini(net);
1897 nf_conntrack_expect_pernet_fini(net);
1898 free_percpu(net->ct.stat);
1899 free_percpu(net->ct.pcpu_lists);
1900 }
1901 }
1902
1903 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1904 {
1905 struct hlist_nulls_head *hash;
1906 unsigned int nr_slots, i;
1907 size_t sz;
1908
1909 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1910 return NULL;
1911
1912 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1913 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1914
1915 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1916 return NULL;
1917
1918 sz = nr_slots * sizeof(struct hlist_nulls_head);
1919 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1920 get_order(sz));
1921 if (!hash)
1922 hash = vzalloc(sz);
1923
1924 if (hash && nulls)
1925 for (i = 0; i < nr_slots; i++)
1926 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1927
1928 return hash;
1929 }
1930 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1931
1932 int nf_conntrack_hash_resize(unsigned int hashsize)
1933 {
1934 int i, bucket;
1935 unsigned int old_size;
1936 struct hlist_nulls_head *hash, *old_hash;
1937 struct nf_conntrack_tuple_hash *h;
1938 struct nf_conn *ct;
1939
1940 if (!hashsize)
1941 return -EINVAL;
1942
1943 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1944 if (!hash)
1945 return -ENOMEM;
1946
1947 old_size = nf_conntrack_htable_size;
1948 if (old_size == hashsize) {
1949 nf_ct_free_hashtable(hash, hashsize);
1950 return 0;
1951 }
1952
1953 local_bh_disable();
1954 nf_conntrack_all_lock();
1955 write_seqcount_begin(&nf_conntrack_generation);
1956
1957 /* Lookups in the old hash might happen in parallel, which means we
1958 * might get false negatives during connection lookup. New connections
1959 * created because of a false negative won't make it into the hash
1960 * though since that required taking the locks.
1961 */
1962
1963 for (i = 0; i < nf_conntrack_htable_size; i++) {
1964 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1965 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1966 struct nf_conntrack_tuple_hash, hnnode);
1967 ct = nf_ct_tuplehash_to_ctrack(h);
1968 hlist_nulls_del_rcu(&h->hnnode);
1969 bucket = __hash_conntrack(nf_ct_net(ct),
1970 &h->tuple, hashsize);
1971 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1972 }
1973 }
1974 old_size = nf_conntrack_htable_size;
1975 old_hash = nf_conntrack_hash;
1976
1977 nf_conntrack_hash = hash;
1978 nf_conntrack_htable_size = hashsize;
1979
1980 write_seqcount_end(&nf_conntrack_generation);
1981 nf_conntrack_all_unlock();
1982 local_bh_enable();
1983
1984 synchronize_net();
1985 nf_ct_free_hashtable(old_hash, old_size);
1986 return 0;
1987 }
1988
1989 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
1990 {
1991 unsigned int hashsize;
1992 int rc;
1993
1994 if (current->nsproxy->net_ns != &init_net)
1995 return -EOPNOTSUPP;
1996
1997 /* On boot, we can set this without any fancy locking. */
1998 if (!nf_conntrack_hash)
1999 return param_set_uint(val, kp);
2000
2001 rc = kstrtouint(val, 0, &hashsize);
2002 if (rc)
2003 return rc;
2004
2005 return nf_conntrack_hash_resize(hashsize);
2006 }
2007 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2008
2009 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
2010 &nf_conntrack_htable_size, 0600);
2011
2012 static __always_inline unsigned int total_extension_size(void)
2013 {
2014 /* remember to add new extensions below */
2015 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2016
2017 return sizeof(struct nf_ct_ext) +
2018 sizeof(struct nf_conn_help)
2019 #if IS_ENABLED(CONFIG_NF_NAT)
2020 + sizeof(struct nf_conn_nat)
2021 #endif
2022 + sizeof(struct nf_conn_seqadj)
2023 + sizeof(struct nf_conn_acct)
2024 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2025 + sizeof(struct nf_conntrack_ecache)
2026 #endif
2027 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2028 + sizeof(struct nf_conn_tstamp)
2029 #endif
2030 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2031 + sizeof(struct nf_conn_timeout)
2032 #endif
2033 #ifdef CONFIG_NF_CONNTRACK_LABELS
2034 + sizeof(struct nf_conn_labels)
2035 #endif
2036 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2037 + sizeof(struct nf_conn_synproxy)
2038 #endif
2039 ;
2040 };
2041
2042 int nf_conntrack_init_start(void)
2043 {
2044 int max_factor = 8;
2045 int ret = -ENOMEM;
2046 int i;
2047
2048 /* struct nf_ct_ext uses u8 to store offsets/size */
2049 BUILD_BUG_ON(total_extension_size() > 255u);
2050
2051 seqcount_init(&nf_conntrack_generation);
2052
2053 for (i = 0; i < CONNTRACK_LOCKS; i++)
2054 spin_lock_init(&nf_conntrack_locks[i]);
2055
2056 if (!nf_conntrack_htable_size) {
2057 /* Idea from tcp.c: use 1/16384 of memory.
2058 * On i386: 32MB machine has 512 buckets.
2059 * >= 1GB machines have 16384 buckets.
2060 * >= 4GB machines have 65536 buckets.
2061 */
2062 nf_conntrack_htable_size
2063 = (((totalram_pages << PAGE_SHIFT) / 16384)
2064 / sizeof(struct hlist_head));
2065 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2066 nf_conntrack_htable_size = 65536;
2067 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2068 nf_conntrack_htable_size = 16384;
2069 if (nf_conntrack_htable_size < 32)
2070 nf_conntrack_htable_size = 32;
2071
2072 /* Use a max. factor of four by default to get the same max as
2073 * with the old struct list_heads. When a table size is given
2074 * we use the old value of 8 to avoid reducing the max.
2075 * entries. */
2076 max_factor = 4;
2077 }
2078
2079 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2080 if (!nf_conntrack_hash)
2081 return -ENOMEM;
2082
2083 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2084
2085 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2086 sizeof(struct nf_conn),
2087 NFCT_INFOMASK + 1,
2088 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2089 if (!nf_conntrack_cachep)
2090 goto err_cachep;
2091
2092 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
2093 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
2094 nf_conntrack_max);
2095
2096 ret = nf_conntrack_expect_init();
2097 if (ret < 0)
2098 goto err_expect;
2099
2100 ret = nf_conntrack_acct_init();
2101 if (ret < 0)
2102 goto err_acct;
2103
2104 ret = nf_conntrack_tstamp_init();
2105 if (ret < 0)
2106 goto err_tstamp;
2107
2108 ret = nf_conntrack_ecache_init();
2109 if (ret < 0)
2110 goto err_ecache;
2111
2112 ret = nf_conntrack_timeout_init();
2113 if (ret < 0)
2114 goto err_timeout;
2115
2116 ret = nf_conntrack_helper_init();
2117 if (ret < 0)
2118 goto err_helper;
2119
2120 ret = nf_conntrack_labels_init();
2121 if (ret < 0)
2122 goto err_labels;
2123
2124 ret = nf_conntrack_seqadj_init();
2125 if (ret < 0)
2126 goto err_seqadj;
2127
2128 ret = nf_conntrack_proto_init();
2129 if (ret < 0)
2130 goto err_proto;
2131
2132 conntrack_gc_work_init(&conntrack_gc_work);
2133 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2134
2135 return 0;
2136
2137 err_proto:
2138 nf_conntrack_seqadj_fini();
2139 err_seqadj:
2140 nf_conntrack_labels_fini();
2141 err_labels:
2142 nf_conntrack_helper_fini();
2143 err_helper:
2144 nf_conntrack_timeout_fini();
2145 err_timeout:
2146 nf_conntrack_ecache_fini();
2147 err_ecache:
2148 nf_conntrack_tstamp_fini();
2149 err_tstamp:
2150 nf_conntrack_acct_fini();
2151 err_acct:
2152 nf_conntrack_expect_fini();
2153 err_expect:
2154 kmem_cache_destroy(nf_conntrack_cachep);
2155 err_cachep:
2156 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
2157 return ret;
2158 }
2159
2160 void nf_conntrack_init_end(void)
2161 {
2162 /* For use by REJECT target */
2163 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2164 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
2165 }
2166
2167 /*
2168 * We need to use special "null" values, not used in hash table
2169 */
2170 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2171 #define DYING_NULLS_VAL ((1<<30)+1)
2172 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2173
2174 int nf_conntrack_init_net(struct net *net)
2175 {
2176 int ret = -ENOMEM;
2177 int cpu;
2178
2179 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2180 atomic_set(&net->ct.count, 0);
2181
2182 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2183 if (!net->ct.pcpu_lists)
2184 goto err_stat;
2185
2186 for_each_possible_cpu(cpu) {
2187 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2188
2189 spin_lock_init(&pcpu->lock);
2190 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2191 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2192 }
2193
2194 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2195 if (!net->ct.stat)
2196 goto err_pcpu_lists;
2197
2198 ret = nf_conntrack_expect_pernet_init(net);
2199 if (ret < 0)
2200 goto err_expect;
2201 ret = nf_conntrack_acct_pernet_init(net);
2202 if (ret < 0)
2203 goto err_acct;
2204 ret = nf_conntrack_tstamp_pernet_init(net);
2205 if (ret < 0)
2206 goto err_tstamp;
2207 ret = nf_conntrack_ecache_pernet_init(net);
2208 if (ret < 0)
2209 goto err_ecache;
2210 ret = nf_conntrack_helper_pernet_init(net);
2211 if (ret < 0)
2212 goto err_helper;
2213 ret = nf_conntrack_proto_pernet_init(net);
2214 if (ret < 0)
2215 goto err_proto;
2216 return 0;
2217
2218 err_proto:
2219 nf_conntrack_helper_pernet_fini(net);
2220 err_helper:
2221 nf_conntrack_ecache_pernet_fini(net);
2222 err_ecache:
2223 nf_conntrack_tstamp_pernet_fini(net);
2224 err_tstamp:
2225 nf_conntrack_acct_pernet_fini(net);
2226 err_acct:
2227 nf_conntrack_expect_pernet_fini(net);
2228 err_expect:
2229 free_percpu(net->ct.stat);
2230 err_pcpu_lists:
2231 free_percpu(net->ct.pcpu_lists);
2232 err_stat:
2233 return ret;
2234 }