]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/nf_conntrack_core.c
[NETFILTER]: nf_conntrack/nf_nat: fix incorrect config ifdefs
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * 23 Apr 2001: Harald Welte <laforge@gnumonks.org>
14 * - new API and handling of conntrack/nat helpers
15 * - now capable of multiple expectations for one master
16 * 16 Jul 2002: Harald Welte <laforge@gnumonks.org>
17 * - add usage/reference counts to ip_conntrack_expect
18 * - export ip_conntrack[_expect]_{find_get,put} functions
19 * 16 Dec 2003: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
20 * - generalize L3 protocol denendent part.
21 * 23 Mar 2004: Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
22 * - add support various size of conntrack structures.
23 * 26 Jan 2006: Harald Welte <laforge@netfilter.org>
24 * - restructure nf_conn (introduce nf_conn_help)
25 * - redesign 'features' how they were originally intended
26 * 26 Feb 2006: Pablo Neira Ayuso <pablo@eurodev.net>
27 * - add support for L3 protocol module load on demand.
28 *
29 * Derived from net/ipv4/netfilter/ip_conntrack_core.c
30 */
31
32 #include <linux/types.h>
33 #include <linux/netfilter.h>
34 #include <linux/module.h>
35 #include <linux/skbuff.h>
36 #include <linux/proc_fs.h>
37 #include <linux/vmalloc.h>
38 #include <linux/stddef.h>
39 #include <linux/slab.h>
40 #include <linux/random.h>
41 #include <linux/jhash.h>
42 #include <linux/err.h>
43 #include <linux/percpu.h>
44 #include <linux/moduleparam.h>
45 #include <linux/notifier.h>
46 #include <linux/kernel.h>
47 #include <linux/netdevice.h>
48 #include <linux/socket.h>
49 #include <linux/mm.h>
50
51 #include <net/netfilter/nf_conntrack.h>
52 #include <net/netfilter/nf_conntrack_l3proto.h>
53 #include <net/netfilter/nf_conntrack_l4proto.h>
54 #include <net/netfilter/nf_conntrack_expect.h>
55 #include <net/netfilter/nf_conntrack_helper.h>
56 #include <net/netfilter/nf_conntrack_core.h>
57
58 #define NF_CONNTRACK_VERSION "0.5.0"
59
60 #if 0
61 #define DEBUGP printk
62 #else
63 #define DEBUGP(format, args...)
64 #endif
65
66 DEFINE_RWLOCK(nf_conntrack_lock);
67 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
68
69 /* nf_conntrack_standalone needs this */
70 atomic_t nf_conntrack_count = ATOMIC_INIT(0);
71 EXPORT_SYMBOL_GPL(nf_conntrack_count);
72
73 void (*nf_conntrack_destroyed)(struct nf_conn *conntrack);
74 EXPORT_SYMBOL_GPL(nf_conntrack_destroyed);
75
76 unsigned int nf_conntrack_htable_size __read_mostly;
77 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
78
79 int nf_conntrack_max __read_mostly;
80 EXPORT_SYMBOL_GPL(nf_conntrack_max);
81
82 struct list_head *nf_conntrack_hash __read_mostly;
83 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
84
85 struct nf_conn nf_conntrack_untracked __read_mostly;
86 EXPORT_SYMBOL_GPL(nf_conntrack_untracked);
87
88 unsigned int nf_ct_log_invalid __read_mostly;
89 LIST_HEAD(unconfirmed);
90 static int nf_conntrack_vmalloc __read_mostly;
91
92 static unsigned int nf_conntrack_next_id;
93
94 DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
95 EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
96
97 /*
98 * This scheme offers various size of "struct nf_conn" dependent on
99 * features(helper, nat, ...)
100 */
101
102 #define NF_CT_FEATURES_NAMELEN 256
103 static struct {
104 /* name of slab cache. printed in /proc/slabinfo */
105 char *name;
106
107 /* size of slab cache */
108 size_t size;
109
110 /* slab cache pointer */
111 struct kmem_cache *cachep;
112
113 /* allocated slab cache + modules which uses this slab cache */
114 int use;
115
116 } nf_ct_cache[NF_CT_F_NUM];
117
118 /* protect members of nf_ct_cache except of "use" */
119 DEFINE_RWLOCK(nf_ct_cache_lock);
120
121 /* This avoids calling kmem_cache_create() with same name simultaneously */
122 static DEFINE_MUTEX(nf_ct_cache_mutex);
123
124 static int nf_conntrack_hash_rnd_initted;
125 static unsigned int nf_conntrack_hash_rnd;
126
127 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
128 unsigned int size, unsigned int rnd)
129 {
130 unsigned int a, b;
131 a = jhash((void *)tuple->src.u3.all, sizeof(tuple->src.u3.all),
132 ((tuple->src.l3num) << 16) | tuple->dst.protonum);
133 b = jhash((void *)tuple->dst.u3.all, sizeof(tuple->dst.u3.all),
134 (tuple->src.u.all << 16) | tuple->dst.u.all);
135
136 return jhash_2words(a, b, rnd) % size;
137 }
138
139 static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
140 {
141 return __hash_conntrack(tuple, nf_conntrack_htable_size,
142 nf_conntrack_hash_rnd);
143 }
144
145 int nf_conntrack_register_cache(u_int32_t features, const char *name,
146 size_t size)
147 {
148 int ret = 0;
149 char *cache_name;
150 struct kmem_cache *cachep;
151
152 DEBUGP("nf_conntrack_register_cache: features=0x%x, name=%s, size=%d\n",
153 features, name, size);
154
155 if (features < NF_CT_F_BASIC || features >= NF_CT_F_NUM) {
156 DEBUGP("nf_conntrack_register_cache: invalid features.: 0x%x\n",
157 features);
158 return -EINVAL;
159 }
160
161 mutex_lock(&nf_ct_cache_mutex);
162
163 write_lock_bh(&nf_ct_cache_lock);
164 /* e.g: multiple helpers are loaded */
165 if (nf_ct_cache[features].use > 0) {
166 DEBUGP("nf_conntrack_register_cache: already resisterd.\n");
167 if ((!strncmp(nf_ct_cache[features].name, name,
168 NF_CT_FEATURES_NAMELEN))
169 && nf_ct_cache[features].size == size) {
170 DEBUGP("nf_conntrack_register_cache: reusing.\n");
171 nf_ct_cache[features].use++;
172 ret = 0;
173 } else
174 ret = -EBUSY;
175
176 write_unlock_bh(&nf_ct_cache_lock);
177 mutex_unlock(&nf_ct_cache_mutex);
178 return ret;
179 }
180 write_unlock_bh(&nf_ct_cache_lock);
181
182 /*
183 * The memory space for name of slab cache must be alive until
184 * cache is destroyed.
185 */
186 cache_name = kmalloc(sizeof(char)*NF_CT_FEATURES_NAMELEN, GFP_ATOMIC);
187 if (cache_name == NULL) {
188 DEBUGP("nf_conntrack_register_cache: can't alloc cache_name\n");
189 ret = -ENOMEM;
190 goto out_up_mutex;
191 }
192
193 if (strlcpy(cache_name, name, NF_CT_FEATURES_NAMELEN)
194 >= NF_CT_FEATURES_NAMELEN) {
195 printk("nf_conntrack_register_cache: name too long\n");
196 ret = -EINVAL;
197 goto out_free_name;
198 }
199
200 cachep = kmem_cache_create(cache_name, size, 0, 0,
201 NULL, NULL);
202 if (!cachep) {
203 printk("nf_conntrack_register_cache: Can't create slab cache "
204 "for the features = 0x%x\n", features);
205 ret = -ENOMEM;
206 goto out_free_name;
207 }
208
209 write_lock_bh(&nf_ct_cache_lock);
210 nf_ct_cache[features].use = 1;
211 nf_ct_cache[features].size = size;
212 nf_ct_cache[features].cachep = cachep;
213 nf_ct_cache[features].name = cache_name;
214 write_unlock_bh(&nf_ct_cache_lock);
215
216 goto out_up_mutex;
217
218 out_free_name:
219 kfree(cache_name);
220 out_up_mutex:
221 mutex_unlock(&nf_ct_cache_mutex);
222 return ret;
223 }
224 EXPORT_SYMBOL_GPL(nf_conntrack_register_cache);
225
226 /* FIXME: In the current, only nf_conntrack_cleanup() can call this function. */
227 void nf_conntrack_unregister_cache(u_int32_t features)
228 {
229 struct kmem_cache *cachep;
230 char *name;
231
232 /*
233 * This assures that kmem_cache_create() isn't called before destroying
234 * slab cache.
235 */
236 DEBUGP("nf_conntrack_unregister_cache: 0x%04x\n", features);
237 mutex_lock(&nf_ct_cache_mutex);
238
239 write_lock_bh(&nf_ct_cache_lock);
240 if (--nf_ct_cache[features].use > 0) {
241 write_unlock_bh(&nf_ct_cache_lock);
242 mutex_unlock(&nf_ct_cache_mutex);
243 return;
244 }
245 cachep = nf_ct_cache[features].cachep;
246 name = nf_ct_cache[features].name;
247 nf_ct_cache[features].cachep = NULL;
248 nf_ct_cache[features].name = NULL;
249 nf_ct_cache[features].size = 0;
250 write_unlock_bh(&nf_ct_cache_lock);
251
252 synchronize_net();
253
254 kmem_cache_destroy(cachep);
255 kfree(name);
256
257 mutex_unlock(&nf_ct_cache_mutex);
258 }
259 EXPORT_SYMBOL_GPL(nf_conntrack_unregister_cache);
260
261 int
262 nf_ct_get_tuple(const struct sk_buff *skb,
263 unsigned int nhoff,
264 unsigned int dataoff,
265 u_int16_t l3num,
266 u_int8_t protonum,
267 struct nf_conntrack_tuple *tuple,
268 const struct nf_conntrack_l3proto *l3proto,
269 const struct nf_conntrack_l4proto *l4proto)
270 {
271 NF_CT_TUPLE_U_BLANK(tuple);
272
273 tuple->src.l3num = l3num;
274 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
275 return 0;
276
277 tuple->dst.protonum = protonum;
278 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
279
280 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
281 }
282 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
283
284 int
285 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
286 const struct nf_conntrack_tuple *orig,
287 const struct nf_conntrack_l3proto *l3proto,
288 const struct nf_conntrack_l4proto *l4proto)
289 {
290 NF_CT_TUPLE_U_BLANK(inverse);
291
292 inverse->src.l3num = orig->src.l3num;
293 if (l3proto->invert_tuple(inverse, orig) == 0)
294 return 0;
295
296 inverse->dst.dir = !orig->dst.dir;
297
298 inverse->dst.protonum = orig->dst.protonum;
299 return l4proto->invert_tuple(inverse, orig);
300 }
301 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
302
303 static void
304 clean_from_lists(struct nf_conn *ct)
305 {
306 DEBUGP("clean_from_lists(%p)\n", ct);
307 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
308 list_del(&ct->tuplehash[IP_CT_DIR_REPLY].list);
309
310 /* Destroy all pending expectations */
311 nf_ct_remove_expectations(ct);
312 }
313
314 static void
315 destroy_conntrack(struct nf_conntrack *nfct)
316 {
317 struct nf_conn *ct = (struct nf_conn *)nfct;
318 struct nf_conn_help *help = nfct_help(ct);
319 struct nf_conntrack_l3proto *l3proto;
320 struct nf_conntrack_l4proto *l4proto;
321 typeof(nf_conntrack_destroyed) destroyed;
322
323 DEBUGP("destroy_conntrack(%p)\n", ct);
324 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
325 NF_CT_ASSERT(!timer_pending(&ct->timeout));
326
327 nf_conntrack_event(IPCT_DESTROY, ct);
328 set_bit(IPS_DYING_BIT, &ct->status);
329
330 if (help && help->helper && help->helper->destroy)
331 help->helper->destroy(ct);
332
333 /* To make sure we don't get any weird locking issues here:
334 * destroy_conntrack() MUST NOT be called with a write lock
335 * to nf_conntrack_lock!!! -HW */
336 rcu_read_lock();
337 l3proto = __nf_ct_l3proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num);
338 if (l3proto && l3proto->destroy)
339 l3proto->destroy(ct);
340
341 l4proto = __nf_ct_l4proto_find(ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.l3num,
342 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.protonum);
343 if (l4proto && l4proto->destroy)
344 l4proto->destroy(ct);
345
346 destroyed = rcu_dereference(nf_conntrack_destroyed);
347 if (destroyed)
348 destroyed(ct);
349
350 rcu_read_unlock();
351
352 write_lock_bh(&nf_conntrack_lock);
353 /* Expectations will have been removed in clean_from_lists,
354 * except TFTP can create an expectation on the first packet,
355 * before connection is in the list, so we need to clean here,
356 * too. */
357 nf_ct_remove_expectations(ct);
358
359 /* We overload first tuple to link into unconfirmed list. */
360 if (!nf_ct_is_confirmed(ct)) {
361 BUG_ON(list_empty(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list));
362 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
363 }
364
365 NF_CT_STAT_INC(delete);
366 write_unlock_bh(&nf_conntrack_lock);
367
368 if (ct->master)
369 nf_ct_put(ct->master);
370
371 DEBUGP("destroy_conntrack: returning ct=%p to slab\n", ct);
372 nf_conntrack_free(ct);
373 }
374
375 static void death_by_timeout(unsigned long ul_conntrack)
376 {
377 struct nf_conn *ct = (void *)ul_conntrack;
378
379 write_lock_bh(&nf_conntrack_lock);
380 /* Inside lock so preempt is disabled on module removal path.
381 * Otherwise we can get spurious warnings. */
382 NF_CT_STAT_INC(delete_list);
383 clean_from_lists(ct);
384 write_unlock_bh(&nf_conntrack_lock);
385 nf_ct_put(ct);
386 }
387
388 struct nf_conntrack_tuple_hash *
389 __nf_conntrack_find(const struct nf_conntrack_tuple *tuple,
390 const struct nf_conn *ignored_conntrack)
391 {
392 struct nf_conntrack_tuple_hash *h;
393 unsigned int hash = hash_conntrack(tuple);
394
395 list_for_each_entry(h, &nf_conntrack_hash[hash], list) {
396 if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
397 nf_ct_tuple_equal(tuple, &h->tuple)) {
398 NF_CT_STAT_INC(found);
399 return h;
400 }
401 NF_CT_STAT_INC(searched);
402 }
403
404 return NULL;
405 }
406 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
407
408 /* Find a connection corresponding to a tuple. */
409 struct nf_conntrack_tuple_hash *
410 nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple,
411 const struct nf_conn *ignored_conntrack)
412 {
413 struct nf_conntrack_tuple_hash *h;
414
415 read_lock_bh(&nf_conntrack_lock);
416 h = __nf_conntrack_find(tuple, ignored_conntrack);
417 if (h)
418 atomic_inc(&nf_ct_tuplehash_to_ctrack(h)->ct_general.use);
419 read_unlock_bh(&nf_conntrack_lock);
420
421 return h;
422 }
423 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
424
425 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
426 unsigned int hash,
427 unsigned int repl_hash)
428 {
429 ct->id = ++nf_conntrack_next_id;
430 list_add(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list,
431 &nf_conntrack_hash[hash]);
432 list_add(&ct->tuplehash[IP_CT_DIR_REPLY].list,
433 &nf_conntrack_hash[repl_hash]);
434 }
435
436 void nf_conntrack_hash_insert(struct nf_conn *ct)
437 {
438 unsigned int hash, repl_hash;
439
440 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
441 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
442
443 write_lock_bh(&nf_conntrack_lock);
444 __nf_conntrack_hash_insert(ct, hash, repl_hash);
445 write_unlock_bh(&nf_conntrack_lock);
446 }
447 EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
448
449 /* Confirm a connection given skb; places it in hash table */
450 int
451 __nf_conntrack_confirm(struct sk_buff **pskb)
452 {
453 unsigned int hash, repl_hash;
454 struct nf_conntrack_tuple_hash *h;
455 struct nf_conn *ct;
456 struct nf_conn_help *help;
457 enum ip_conntrack_info ctinfo;
458
459 ct = nf_ct_get(*pskb, &ctinfo);
460
461 /* ipt_REJECT uses nf_conntrack_attach to attach related
462 ICMP/TCP RST packets in other direction. Actual packet
463 which created connection will be IP_CT_NEW or for an
464 expected connection, IP_CT_RELATED. */
465 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
466 return NF_ACCEPT;
467
468 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
469 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
470
471 /* We're not in hash table, and we refuse to set up related
472 connections for unconfirmed conns. But packet copies and
473 REJECT will give spurious warnings here. */
474 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
475
476 /* No external references means noone else could have
477 confirmed us. */
478 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
479 DEBUGP("Confirming conntrack %p\n", ct);
480
481 write_lock_bh(&nf_conntrack_lock);
482
483 /* See if there's one in the list already, including reverse:
484 NAT could have grabbed it without realizing, since we're
485 not in the hash. If there is, we lost race. */
486 list_for_each_entry(h, &nf_conntrack_hash[hash], list)
487 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
488 &h->tuple))
489 goto out;
490 list_for_each_entry(h, &nf_conntrack_hash[repl_hash], list)
491 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
492 &h->tuple))
493 goto out;
494
495 /* Remove from unconfirmed list */
496 list_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].list);
497
498 __nf_conntrack_hash_insert(ct, hash, repl_hash);
499 /* Timer relative to confirmation time, not original
500 setting time, otherwise we'd get timer wrap in
501 weird delay cases. */
502 ct->timeout.expires += jiffies;
503 add_timer(&ct->timeout);
504 atomic_inc(&ct->ct_general.use);
505 set_bit(IPS_CONFIRMED_BIT, &ct->status);
506 NF_CT_STAT_INC(insert);
507 write_unlock_bh(&nf_conntrack_lock);
508 help = nfct_help(ct);
509 if (help && help->helper)
510 nf_conntrack_event_cache(IPCT_HELPER, *pskb);
511 #ifdef CONFIG_NF_NAT_NEEDED
512 if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
513 test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
514 nf_conntrack_event_cache(IPCT_NATINFO, *pskb);
515 #endif
516 nf_conntrack_event_cache(master_ct(ct) ?
517 IPCT_RELATED : IPCT_NEW, *pskb);
518 return NF_ACCEPT;
519
520 out:
521 NF_CT_STAT_INC(insert_failed);
522 write_unlock_bh(&nf_conntrack_lock);
523 return NF_DROP;
524 }
525 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
526
527 /* Returns true if a connection correspondings to the tuple (required
528 for NAT). */
529 int
530 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
531 const struct nf_conn *ignored_conntrack)
532 {
533 struct nf_conntrack_tuple_hash *h;
534
535 read_lock_bh(&nf_conntrack_lock);
536 h = __nf_conntrack_find(tuple, ignored_conntrack);
537 read_unlock_bh(&nf_conntrack_lock);
538
539 return h != NULL;
540 }
541 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
542
543 /* There's a small race here where we may free a just-assured
544 connection. Too bad: we're in trouble anyway. */
545 static int early_drop(struct list_head *chain)
546 {
547 /* Traverse backwards: gives us oldest, which is roughly LRU */
548 struct nf_conntrack_tuple_hash *h;
549 struct nf_conn *ct = NULL, *tmp;
550 int dropped = 0;
551
552 read_lock_bh(&nf_conntrack_lock);
553 list_for_each_entry_reverse(h, chain, list) {
554 tmp = nf_ct_tuplehash_to_ctrack(h);
555 if (!test_bit(IPS_ASSURED_BIT, &tmp->status)) {
556 ct = tmp;
557 atomic_inc(&ct->ct_general.use);
558 break;
559 }
560 }
561 read_unlock_bh(&nf_conntrack_lock);
562
563 if (!ct)
564 return dropped;
565
566 if (del_timer(&ct->timeout)) {
567 death_by_timeout((unsigned long)ct);
568 dropped = 1;
569 NF_CT_STAT_INC_ATOMIC(early_drop);
570 }
571 nf_ct_put(ct);
572 return dropped;
573 }
574
575 static struct nf_conn *
576 __nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
577 const struct nf_conntrack_tuple *repl,
578 const struct nf_conntrack_l3proto *l3proto,
579 u_int32_t features)
580 {
581 struct nf_conn *conntrack = NULL;
582 struct nf_conntrack_helper *helper;
583
584 if (unlikely(!nf_conntrack_hash_rnd_initted)) {
585 get_random_bytes(&nf_conntrack_hash_rnd, 4);
586 nf_conntrack_hash_rnd_initted = 1;
587 }
588
589 /* We don't want any race condition at early drop stage */
590 atomic_inc(&nf_conntrack_count);
591
592 if (nf_conntrack_max
593 && atomic_read(&nf_conntrack_count) > nf_conntrack_max) {
594 unsigned int hash = hash_conntrack(orig);
595 /* Try dropping from this hash chain. */
596 if (!early_drop(&nf_conntrack_hash[hash])) {
597 atomic_dec(&nf_conntrack_count);
598 if (net_ratelimit())
599 printk(KERN_WARNING
600 "nf_conntrack: table full, dropping"
601 " packet.\n");
602 return ERR_PTR(-ENOMEM);
603 }
604 }
605
606 /* find features needed by this conntrack. */
607 features |= l3proto->get_features(orig);
608
609 /* FIXME: protect helper list per RCU */
610 read_lock_bh(&nf_conntrack_lock);
611 helper = __nf_ct_helper_find(repl);
612 /* NAT might want to assign a helper later */
613 if (helper || features & NF_CT_F_NAT)
614 features |= NF_CT_F_HELP;
615 read_unlock_bh(&nf_conntrack_lock);
616
617 DEBUGP("nf_conntrack_alloc: features=0x%x\n", features);
618
619 read_lock_bh(&nf_ct_cache_lock);
620
621 if (unlikely(!nf_ct_cache[features].use)) {
622 DEBUGP("nf_conntrack_alloc: not supported features = 0x%x\n",
623 features);
624 goto out;
625 }
626
627 conntrack = kmem_cache_alloc(nf_ct_cache[features].cachep, GFP_ATOMIC);
628 if (conntrack == NULL) {
629 DEBUGP("nf_conntrack_alloc: Can't alloc conntrack from cache\n");
630 goto out;
631 }
632
633 memset(conntrack, 0, nf_ct_cache[features].size);
634 conntrack->features = features;
635 atomic_set(&conntrack->ct_general.use, 1);
636 conntrack->ct_general.destroy = destroy_conntrack;
637 conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
638 conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
639 /* Don't set timer yet: wait for confirmation */
640 init_timer(&conntrack->timeout);
641 conntrack->timeout.data = (unsigned long)conntrack;
642 conntrack->timeout.function = death_by_timeout;
643 read_unlock_bh(&nf_ct_cache_lock);
644
645 return conntrack;
646 out:
647 read_unlock_bh(&nf_ct_cache_lock);
648 atomic_dec(&nf_conntrack_count);
649 return conntrack;
650 }
651
652 struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
653 const struct nf_conntrack_tuple *repl)
654 {
655 struct nf_conntrack_l3proto *l3proto;
656 struct nf_conn *ct;
657
658 rcu_read_lock();
659 l3proto = __nf_ct_l3proto_find(orig->src.l3num);
660 ct = __nf_conntrack_alloc(orig, repl, l3proto, 0);
661 rcu_read_unlock();
662
663 return ct;
664 }
665 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
666
667 void nf_conntrack_free(struct nf_conn *conntrack)
668 {
669 u_int32_t features = conntrack->features;
670 NF_CT_ASSERT(features >= NF_CT_F_BASIC && features < NF_CT_F_NUM);
671 DEBUGP("nf_conntrack_free: features = 0x%x, conntrack=%p\n", features,
672 conntrack);
673 kmem_cache_free(nf_ct_cache[features].cachep, conntrack);
674 atomic_dec(&nf_conntrack_count);
675 }
676 EXPORT_SYMBOL_GPL(nf_conntrack_free);
677
678 /* Allocate a new conntrack: we return -ENOMEM if classification
679 failed due to stress. Otherwise it really is unclassifiable. */
680 static struct nf_conntrack_tuple_hash *
681 init_conntrack(const struct nf_conntrack_tuple *tuple,
682 struct nf_conntrack_l3proto *l3proto,
683 struct nf_conntrack_l4proto *l4proto,
684 struct sk_buff *skb,
685 unsigned int dataoff)
686 {
687 struct nf_conn *conntrack;
688 struct nf_conntrack_tuple repl_tuple;
689 struct nf_conntrack_expect *exp;
690 u_int32_t features = 0;
691
692 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
693 DEBUGP("Can't invert tuple.\n");
694 return NULL;
695 }
696
697 read_lock_bh(&nf_conntrack_lock);
698 exp = __nf_conntrack_expect_find(tuple);
699 if (exp && exp->helper)
700 features = NF_CT_F_HELP;
701 read_unlock_bh(&nf_conntrack_lock);
702
703 conntrack = __nf_conntrack_alloc(tuple, &repl_tuple, l3proto, features);
704 if (conntrack == NULL || IS_ERR(conntrack)) {
705 DEBUGP("Can't allocate conntrack.\n");
706 return (struct nf_conntrack_tuple_hash *)conntrack;
707 }
708
709 if (!l4proto->new(conntrack, skb, dataoff)) {
710 nf_conntrack_free(conntrack);
711 DEBUGP("init conntrack: can't track with proto module\n");
712 return NULL;
713 }
714
715 write_lock_bh(&nf_conntrack_lock);
716 exp = find_expectation(tuple);
717
718 if (exp) {
719 DEBUGP("conntrack: expectation arrives ct=%p exp=%p\n",
720 conntrack, exp);
721 /* Welcome, Mr. Bond. We've been expecting you... */
722 __set_bit(IPS_EXPECTED_BIT, &conntrack->status);
723 conntrack->master = exp->master;
724 if (exp->helper)
725 nfct_help(conntrack)->helper = exp->helper;
726 #ifdef CONFIG_NF_CONNTRACK_MARK
727 conntrack->mark = exp->master->mark;
728 #endif
729 #ifdef CONFIG_NF_CONNTRACK_SECMARK
730 conntrack->secmark = exp->master->secmark;
731 #endif
732 nf_conntrack_get(&conntrack->master->ct_general);
733 NF_CT_STAT_INC(expect_new);
734 } else {
735 struct nf_conn_help *help = nfct_help(conntrack);
736
737 if (help)
738 help->helper = __nf_ct_helper_find(&repl_tuple);
739 NF_CT_STAT_INC(new);
740 }
741
742 /* Overload tuple linked list to put us in unconfirmed list. */
743 list_add(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].list, &unconfirmed);
744
745 write_unlock_bh(&nf_conntrack_lock);
746
747 if (exp) {
748 if (exp->expectfn)
749 exp->expectfn(conntrack, exp);
750 nf_conntrack_expect_put(exp);
751 }
752
753 return &conntrack->tuplehash[IP_CT_DIR_ORIGINAL];
754 }
755
756 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
757 static inline struct nf_conn *
758 resolve_normal_ct(struct sk_buff *skb,
759 unsigned int dataoff,
760 u_int16_t l3num,
761 u_int8_t protonum,
762 struct nf_conntrack_l3proto *l3proto,
763 struct nf_conntrack_l4proto *l4proto,
764 int *set_reply,
765 enum ip_conntrack_info *ctinfo)
766 {
767 struct nf_conntrack_tuple tuple;
768 struct nf_conntrack_tuple_hash *h;
769 struct nf_conn *ct;
770
771 if (!nf_ct_get_tuple(skb, (unsigned int)(skb->nh.raw - skb->data),
772 dataoff, l3num, protonum, &tuple, l3proto,
773 l4proto)) {
774 DEBUGP("resolve_normal_ct: Can't get tuple\n");
775 return NULL;
776 }
777
778 /* look for tuple match */
779 h = nf_conntrack_find_get(&tuple, NULL);
780 if (!h) {
781 h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
782 if (!h)
783 return NULL;
784 if (IS_ERR(h))
785 return (void *)h;
786 }
787 ct = nf_ct_tuplehash_to_ctrack(h);
788
789 /* It exists; we have (non-exclusive) reference. */
790 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
791 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
792 /* Please set reply bit if this packet OK */
793 *set_reply = 1;
794 } else {
795 /* Once we've had two way comms, always ESTABLISHED. */
796 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
797 DEBUGP("nf_conntrack_in: normal packet for %p\n", ct);
798 *ctinfo = IP_CT_ESTABLISHED;
799 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
800 DEBUGP("nf_conntrack_in: related packet for %p\n", ct);
801 *ctinfo = IP_CT_RELATED;
802 } else {
803 DEBUGP("nf_conntrack_in: new packet for %p\n", ct);
804 *ctinfo = IP_CT_NEW;
805 }
806 *set_reply = 0;
807 }
808 skb->nfct = &ct->ct_general;
809 skb->nfctinfo = *ctinfo;
810 return ct;
811 }
812
813 unsigned int
814 nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff **pskb)
815 {
816 struct nf_conn *ct;
817 enum ip_conntrack_info ctinfo;
818 struct nf_conntrack_l3proto *l3proto;
819 struct nf_conntrack_l4proto *l4proto;
820 unsigned int dataoff;
821 u_int8_t protonum;
822 int set_reply = 0;
823 int ret;
824
825 /* Previously seen (loopback or untracked)? Ignore. */
826 if ((*pskb)->nfct) {
827 NF_CT_STAT_INC_ATOMIC(ignore);
828 return NF_ACCEPT;
829 }
830
831 /* rcu_read_lock()ed by nf_hook_slow */
832 l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
833
834 if ((ret = l3proto->prepare(pskb, hooknum, &dataoff, &protonum)) <= 0) {
835 DEBUGP("not prepared to track yet or error occured\n");
836 return -ret;
837 }
838
839 l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
840
841 /* It may be an special packet, error, unclean...
842 * inverse of the return code tells to the netfilter
843 * core what to do with the packet. */
844 if (l4proto->error != NULL &&
845 (ret = l4proto->error(*pskb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
846 NF_CT_STAT_INC_ATOMIC(error);
847 NF_CT_STAT_INC_ATOMIC(invalid);
848 return -ret;
849 }
850
851 ct = resolve_normal_ct(*pskb, dataoff, pf, protonum, l3proto, l4proto,
852 &set_reply, &ctinfo);
853 if (!ct) {
854 /* Not valid part of a connection */
855 NF_CT_STAT_INC_ATOMIC(invalid);
856 return NF_ACCEPT;
857 }
858
859 if (IS_ERR(ct)) {
860 /* Too stressed to deal. */
861 NF_CT_STAT_INC_ATOMIC(drop);
862 return NF_DROP;
863 }
864
865 NF_CT_ASSERT((*pskb)->nfct);
866
867 ret = l4proto->packet(ct, *pskb, dataoff, ctinfo, pf, hooknum);
868 if (ret < 0) {
869 /* Invalid: inverse of the return code tells
870 * the netfilter core what to do */
871 DEBUGP("nf_conntrack_in: Can't track with proto module\n");
872 nf_conntrack_put((*pskb)->nfct);
873 (*pskb)->nfct = NULL;
874 NF_CT_STAT_INC_ATOMIC(invalid);
875 return -ret;
876 }
877
878 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
879 nf_conntrack_event_cache(IPCT_STATUS, *pskb);
880
881 return ret;
882 }
883 EXPORT_SYMBOL_GPL(nf_conntrack_in);
884
885 int nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
886 const struct nf_conntrack_tuple *orig)
887 {
888 int ret;
889
890 rcu_read_lock();
891 ret = nf_ct_invert_tuple(inverse, orig,
892 __nf_ct_l3proto_find(orig->src.l3num),
893 __nf_ct_l4proto_find(orig->src.l3num,
894 orig->dst.protonum));
895 rcu_read_unlock();
896 return ret;
897 }
898 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
899
900 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
901 implicitly racy: see __nf_conntrack_confirm */
902 void nf_conntrack_alter_reply(struct nf_conn *ct,
903 const struct nf_conntrack_tuple *newreply)
904 {
905 struct nf_conn_help *help = nfct_help(ct);
906
907 write_lock_bh(&nf_conntrack_lock);
908 /* Should be unconfirmed, so not in hash table yet */
909 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
910
911 DEBUGP("Altering reply tuple of %p to ", ct);
912 NF_CT_DUMP_TUPLE(newreply);
913
914 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
915 if (!ct->master && help && help->expecting == 0)
916 help->helper = __nf_ct_helper_find(newreply);
917 write_unlock_bh(&nf_conntrack_lock);
918 }
919 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
920
921 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
922 void __nf_ct_refresh_acct(struct nf_conn *ct,
923 enum ip_conntrack_info ctinfo,
924 const struct sk_buff *skb,
925 unsigned long extra_jiffies,
926 int do_acct)
927 {
928 int event = 0;
929
930 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
931 NF_CT_ASSERT(skb);
932
933 write_lock_bh(&nf_conntrack_lock);
934
935 /* Only update if this is not a fixed timeout */
936 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status)) {
937 write_unlock_bh(&nf_conntrack_lock);
938 return;
939 }
940
941 /* If not in hash table, timer will not be active yet */
942 if (!nf_ct_is_confirmed(ct)) {
943 ct->timeout.expires = extra_jiffies;
944 event = IPCT_REFRESH;
945 } else {
946 unsigned long newtime = jiffies + extra_jiffies;
947
948 /* Only update the timeout if the new timeout is at least
949 HZ jiffies from the old timeout. Need del_timer for race
950 avoidance (may already be dying). */
951 if (newtime - ct->timeout.expires >= HZ
952 && del_timer(&ct->timeout)) {
953 ct->timeout.expires = newtime;
954 add_timer(&ct->timeout);
955 event = IPCT_REFRESH;
956 }
957 }
958
959 #ifdef CONFIG_NF_CT_ACCT
960 if (do_acct) {
961 ct->counters[CTINFO2DIR(ctinfo)].packets++;
962 ct->counters[CTINFO2DIR(ctinfo)].bytes +=
963 skb->len - (unsigned int)(skb->nh.raw - skb->data);
964
965 if ((ct->counters[CTINFO2DIR(ctinfo)].packets & 0x80000000)
966 || (ct->counters[CTINFO2DIR(ctinfo)].bytes & 0x80000000))
967 event |= IPCT_COUNTER_FILLING;
968 }
969 #endif
970
971 write_unlock_bh(&nf_conntrack_lock);
972
973 /* must be unlocked when calling event cache */
974 if (event)
975 nf_conntrack_event_cache(event, skb);
976 }
977 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
978
979 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
980
981 #include <linux/netfilter/nfnetlink.h>
982 #include <linux/netfilter/nfnetlink_conntrack.h>
983 #include <linux/mutex.h>
984
985
986 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
987 * in ip_conntrack_core, since we don't want the protocols to autoload
988 * or depend on ctnetlink */
989 int nf_ct_port_tuple_to_nfattr(struct sk_buff *skb,
990 const struct nf_conntrack_tuple *tuple)
991 {
992 NFA_PUT(skb, CTA_PROTO_SRC_PORT, sizeof(u_int16_t),
993 &tuple->src.u.tcp.port);
994 NFA_PUT(skb, CTA_PROTO_DST_PORT, sizeof(u_int16_t),
995 &tuple->dst.u.tcp.port);
996 return 0;
997
998 nfattr_failure:
999 return -1;
1000 }
1001 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nfattr);
1002
1003 static const size_t cta_min_proto[CTA_PROTO_MAX] = {
1004 [CTA_PROTO_SRC_PORT-1] = sizeof(u_int16_t),
1005 [CTA_PROTO_DST_PORT-1] = sizeof(u_int16_t)
1006 };
1007
1008 int nf_ct_port_nfattr_to_tuple(struct nfattr *tb[],
1009 struct nf_conntrack_tuple *t)
1010 {
1011 if (!tb[CTA_PROTO_SRC_PORT-1] || !tb[CTA_PROTO_DST_PORT-1])
1012 return -EINVAL;
1013
1014 if (nfattr_bad_size(tb, CTA_PROTO_MAX, cta_min_proto))
1015 return -EINVAL;
1016
1017 t->src.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_SRC_PORT-1]);
1018 t->dst.u.tcp.port = *(__be16 *)NFA_DATA(tb[CTA_PROTO_DST_PORT-1]);
1019
1020 return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(nf_ct_port_nfattr_to_tuple);
1023 #endif
1024
1025 /* Used by ipt_REJECT and ip6t_REJECT. */
1026 void __nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1027 {
1028 struct nf_conn *ct;
1029 enum ip_conntrack_info ctinfo;
1030
1031 /* This ICMP is in reverse direction to the packet which caused it */
1032 ct = nf_ct_get(skb, &ctinfo);
1033 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1034 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
1035 else
1036 ctinfo = IP_CT_RELATED;
1037
1038 /* Attach to new skbuff, and increment count */
1039 nskb->nfct = &ct->ct_general;
1040 nskb->nfctinfo = ctinfo;
1041 nf_conntrack_get(nskb->nfct);
1042 }
1043 EXPORT_SYMBOL_GPL(__nf_conntrack_attach);
1044
1045 static inline int
1046 do_iter(const struct nf_conntrack_tuple_hash *i,
1047 int (*iter)(struct nf_conn *i, void *data),
1048 void *data)
1049 {
1050 return iter(nf_ct_tuplehash_to_ctrack(i), data);
1051 }
1052
1053 /* Bring out ya dead! */
1054 static struct nf_conn *
1055 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1056 void *data, unsigned int *bucket)
1057 {
1058 struct nf_conntrack_tuple_hash *h;
1059 struct nf_conn *ct;
1060
1061 write_lock_bh(&nf_conntrack_lock);
1062 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1063 list_for_each_entry(h, &nf_conntrack_hash[*bucket], list) {
1064 ct = nf_ct_tuplehash_to_ctrack(h);
1065 if (iter(ct, data))
1066 goto found;
1067 }
1068 }
1069 list_for_each_entry(h, &unconfirmed, list) {
1070 ct = nf_ct_tuplehash_to_ctrack(h);
1071 if (iter(ct, data))
1072 set_bit(IPS_DYING_BIT, &ct->status);
1073 }
1074 write_unlock_bh(&nf_conntrack_lock);
1075 return NULL;
1076 found:
1077 atomic_inc(&ct->ct_general.use);
1078 write_unlock_bh(&nf_conntrack_lock);
1079 return ct;
1080 }
1081
1082 void
1083 nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
1084 {
1085 struct nf_conn *ct;
1086 unsigned int bucket = 0;
1087
1088 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1089 /* Time to push up daises... */
1090 if (del_timer(&ct->timeout))
1091 death_by_timeout((unsigned long)ct);
1092 /* ... else the timer will get him soon. */
1093
1094 nf_ct_put(ct);
1095 }
1096 }
1097 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1098
1099 static int kill_all(struct nf_conn *i, void *data)
1100 {
1101 return 1;
1102 }
1103
1104 static void free_conntrack_hash(struct list_head *hash, int vmalloced, int size)
1105 {
1106 if (vmalloced)
1107 vfree(hash);
1108 else
1109 free_pages((unsigned long)hash,
1110 get_order(sizeof(struct list_head) * size));
1111 }
1112
1113 void nf_conntrack_flush(void)
1114 {
1115 nf_ct_iterate_cleanup(kill_all, NULL);
1116 }
1117 EXPORT_SYMBOL_GPL(nf_conntrack_flush);
1118
1119 /* Mishearing the voices in his head, our hero wonders how he's
1120 supposed to kill the mall. */
1121 void nf_conntrack_cleanup(void)
1122 {
1123 int i;
1124
1125 rcu_assign_pointer(ip_ct_attach, NULL);
1126
1127 /* This makes sure all current packets have passed through
1128 netfilter framework. Roll on, two-stage module
1129 delete... */
1130 synchronize_net();
1131
1132 nf_ct_event_cache_flush();
1133 i_see_dead_people:
1134 nf_conntrack_flush();
1135 if (atomic_read(&nf_conntrack_count) != 0) {
1136 schedule();
1137 goto i_see_dead_people;
1138 }
1139 /* wait until all references to nf_conntrack_untracked are dropped */
1140 while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1141 schedule();
1142
1143 for (i = 0; i < NF_CT_F_NUM; i++) {
1144 if (nf_ct_cache[i].use == 0)
1145 continue;
1146
1147 NF_CT_ASSERT(nf_ct_cache[i].use == 1);
1148 nf_ct_cache[i].use = 1;
1149 nf_conntrack_unregister_cache(i);
1150 }
1151 kmem_cache_destroy(nf_conntrack_expect_cachep);
1152 free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1153 nf_conntrack_htable_size);
1154
1155 nf_conntrack_l4proto_unregister(&nf_conntrack_l4proto_generic);
1156
1157 /* free l3proto protocol tables */
1158 for (i = 0; i < PF_MAX; i++)
1159 if (nf_ct_protos[i]) {
1160 kfree(nf_ct_protos[i]);
1161 nf_ct_protos[i] = NULL;
1162 }
1163 }
1164
1165 static struct list_head *alloc_hashtable(int size, int *vmalloced)
1166 {
1167 struct list_head *hash;
1168 unsigned int i;
1169
1170 *vmalloced = 0;
1171 hash = (void*)__get_free_pages(GFP_KERNEL,
1172 get_order(sizeof(struct list_head)
1173 * size));
1174 if (!hash) {
1175 *vmalloced = 1;
1176 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1177 hash = vmalloc(sizeof(struct list_head) * size);
1178 }
1179
1180 if (hash)
1181 for (i = 0; i < size; i++)
1182 INIT_LIST_HEAD(&hash[i]);
1183
1184 return hash;
1185 }
1186
1187 int set_hashsize(const char *val, struct kernel_param *kp)
1188 {
1189 int i, bucket, hashsize, vmalloced;
1190 int old_vmalloced, old_size;
1191 int rnd;
1192 struct list_head *hash, *old_hash;
1193 struct nf_conntrack_tuple_hash *h;
1194
1195 /* On boot, we can set this without any fancy locking. */
1196 if (!nf_conntrack_htable_size)
1197 return param_set_uint(val, kp);
1198
1199 hashsize = simple_strtol(val, NULL, 0);
1200 if (!hashsize)
1201 return -EINVAL;
1202
1203 hash = alloc_hashtable(hashsize, &vmalloced);
1204 if (!hash)
1205 return -ENOMEM;
1206
1207 /* We have to rehahs for the new table anyway, so we also can
1208 * use a newrandom seed */
1209 get_random_bytes(&rnd, 4);
1210
1211 write_lock_bh(&nf_conntrack_lock);
1212 for (i = 0; i < nf_conntrack_htable_size; i++) {
1213 while (!list_empty(&nf_conntrack_hash[i])) {
1214 h = list_entry(nf_conntrack_hash[i].next,
1215 struct nf_conntrack_tuple_hash, list);
1216 list_del(&h->list);
1217 bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1218 list_add_tail(&h->list, &hash[bucket]);
1219 }
1220 }
1221 old_size = nf_conntrack_htable_size;
1222 old_vmalloced = nf_conntrack_vmalloc;
1223 old_hash = nf_conntrack_hash;
1224
1225 nf_conntrack_htable_size = hashsize;
1226 nf_conntrack_vmalloc = vmalloced;
1227 nf_conntrack_hash = hash;
1228 nf_conntrack_hash_rnd = rnd;
1229 write_unlock_bh(&nf_conntrack_lock);
1230
1231 free_conntrack_hash(old_hash, old_vmalloced, old_size);
1232 return 0;
1233 }
1234
1235 module_param_call(hashsize, set_hashsize, param_get_uint,
1236 &nf_conntrack_htable_size, 0600);
1237
1238 int __init nf_conntrack_init(void)
1239 {
1240 unsigned int i;
1241 int ret;
1242
1243 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1244 * machine has 256 buckets. >= 1GB machines have 8192 buckets. */
1245 if (!nf_conntrack_htable_size) {
1246 nf_conntrack_htable_size
1247 = (((num_physpages << PAGE_SHIFT) / 16384)
1248 / sizeof(struct list_head));
1249 if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1250 nf_conntrack_htable_size = 8192;
1251 if (nf_conntrack_htable_size < 16)
1252 nf_conntrack_htable_size = 16;
1253 }
1254 nf_conntrack_max = 8 * nf_conntrack_htable_size;
1255
1256 printk("nf_conntrack version %s (%u buckets, %d max)\n",
1257 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1258 nf_conntrack_max);
1259
1260 nf_conntrack_hash = alloc_hashtable(nf_conntrack_htable_size,
1261 &nf_conntrack_vmalloc);
1262 if (!nf_conntrack_hash) {
1263 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1264 goto err_out;
1265 }
1266
1267 ret = nf_conntrack_register_cache(NF_CT_F_BASIC, "nf_conntrack:basic",
1268 sizeof(struct nf_conn));
1269 if (ret < 0) {
1270 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1271 goto err_free_hash;
1272 }
1273
1274 nf_conntrack_expect_cachep = kmem_cache_create("nf_conntrack_expect",
1275 sizeof(struct nf_conntrack_expect),
1276 0, 0, NULL, NULL);
1277 if (!nf_conntrack_expect_cachep) {
1278 printk(KERN_ERR "Unable to create nf_expect slab cache\n");
1279 goto err_free_conntrack_slab;
1280 }
1281
1282 ret = nf_conntrack_l4proto_register(&nf_conntrack_l4proto_generic);
1283 if (ret < 0)
1284 goto out_free_expect_slab;
1285
1286 /* Don't NEED lock here, but good form anyway. */
1287 write_lock_bh(&nf_conntrack_lock);
1288 for (i = 0; i < AF_MAX; i++)
1289 nf_ct_l3protos[i] = &nf_conntrack_l3proto_generic;
1290 write_unlock_bh(&nf_conntrack_lock);
1291
1292 /* For use by REJECT target */
1293 rcu_assign_pointer(ip_ct_attach, __nf_conntrack_attach);
1294
1295 /* Set up fake conntrack:
1296 - to never be deleted, not in any hashes */
1297 atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1298 /* - and look it like as a confirmed connection */
1299 set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1300
1301 return ret;
1302
1303 out_free_expect_slab:
1304 kmem_cache_destroy(nf_conntrack_expect_cachep);
1305 err_free_conntrack_slab:
1306 nf_conntrack_unregister_cache(NF_CT_F_BASIC);
1307 err_free_hash:
1308 free_conntrack_hash(nf_conntrack_hash, nf_conntrack_vmalloc,
1309 nf_conntrack_htable_size);
1310 err_out:
1311 return -ENOMEM;
1312 }