]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/netfilter/nf_conntrack_core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-jammy-kernel.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68 struct delayed_work dwork;
69 u32 last_bucket;
70 bool exiting;
71 bool early_drop;
72 long next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
77 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
81 #define GC_MAX_BUCKETS_DIV 128u
82 /* upper bound of full table scan */
83 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
84 /* desired ratio of entries found to be expired */
85 #define GC_EVICT_RATIO 50u
86
87 static struct conntrack_gc_work conntrack_gc_work;
88
89 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
90 {
91 /* 1) Acquire the lock */
92 spin_lock(lock);
93
94 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
95 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
96 */
97 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
98 return;
99
100 /* fast path failed, unlock */
101 spin_unlock(lock);
102
103 /* Slow path 1) get global lock */
104 spin_lock(&nf_conntrack_locks_all_lock);
105
106 /* Slow path 2) get the lock we want */
107 spin_lock(lock);
108
109 /* Slow path 3) release the global lock */
110 spin_unlock(&nf_conntrack_locks_all_lock);
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116 h1 %= CONNTRACK_LOCKS;
117 h2 %= CONNTRACK_LOCKS;
118 spin_unlock(&nf_conntrack_locks[h1]);
119 if (h1 != h2)
120 spin_unlock(&nf_conntrack_locks[h2]);
121 }
122
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125 unsigned int h2, unsigned int sequence)
126 {
127 h1 %= CONNTRACK_LOCKS;
128 h2 %= CONNTRACK_LOCKS;
129 if (h1 <= h2) {
130 nf_conntrack_lock(&nf_conntrack_locks[h1]);
131 if (h1 != h2)
132 spin_lock_nested(&nf_conntrack_locks[h2],
133 SINGLE_DEPTH_NESTING);
134 } else {
135 nf_conntrack_lock(&nf_conntrack_locks[h2]);
136 spin_lock_nested(&nf_conntrack_locks[h1],
137 SINGLE_DEPTH_NESTING);
138 }
139 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140 nf_conntrack_double_unlock(h1, h2);
141 return true;
142 }
143 return false;
144 }
145
146 static void nf_conntrack_all_lock(void)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151
152 nf_conntrack_locks_all = true;
153
154 for (i = 0; i < CONNTRACK_LOCKS; i++) {
155 spin_lock(&nf_conntrack_locks[i]);
156
157 /* This spin_unlock provides the "release" to ensure that
158 * nf_conntrack_locks_all==true is visible to everyone that
159 * acquired spin_lock(&nf_conntrack_locks[]).
160 */
161 spin_unlock(&nf_conntrack_locks[i]);
162 }
163 }
164
165 static void nf_conntrack_all_unlock(void)
166 {
167 /* All prior stores must be complete before we clear
168 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
169 * might observe the false value but not the entire
170 * critical section.
171 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
172 */
173 smp_store_release(&nf_conntrack_locks_all, false);
174 spin_unlock(&nf_conntrack_locks_all_lock);
175 }
176
177 unsigned int nf_conntrack_htable_size __read_mostly;
178 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
179
180 unsigned int nf_conntrack_max __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_max);
182 seqcount_t nf_conntrack_generation __read_mostly;
183 static unsigned int nf_conntrack_hash_rnd __read_mostly;
184
185 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
186 const struct net *net)
187 {
188 unsigned int n;
189 u32 seed;
190
191 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
192
193 /* The direction must be ignored, so we hash everything up to the
194 * destination ports (which is a multiple of 4) and treat the last
195 * three bytes manually.
196 */
197 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
198 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
199 return jhash2((u32 *)tuple, n, seed ^
200 (((__force __u16)tuple->dst.u.all << 16) |
201 tuple->dst.protonum));
202 }
203
204 static u32 scale_hash(u32 hash)
205 {
206 return reciprocal_scale(hash, nf_conntrack_htable_size);
207 }
208
209 static u32 __hash_conntrack(const struct net *net,
210 const struct nf_conntrack_tuple *tuple,
211 unsigned int size)
212 {
213 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
214 }
215
216 static u32 hash_conntrack(const struct net *net,
217 const struct nf_conntrack_tuple *tuple)
218 {
219 return scale_hash(hash_conntrack_raw(tuple, net));
220 }
221
222 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
223 unsigned int dataoff,
224 struct nf_conntrack_tuple *tuple)
225 { struct {
226 __be16 sport;
227 __be16 dport;
228 } _inet_hdr, *inet_hdr;
229
230 /* Actually only need first 4 bytes to get ports. */
231 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
232 if (!inet_hdr)
233 return false;
234
235 tuple->src.u.udp.port = inet_hdr->sport;
236 tuple->dst.u.udp.port = inet_hdr->dport;
237 return true;
238 }
239
240 static bool
241 nf_ct_get_tuple(const struct sk_buff *skb,
242 unsigned int nhoff,
243 unsigned int dataoff,
244 u_int16_t l3num,
245 u_int8_t protonum,
246 struct net *net,
247 struct nf_conntrack_tuple *tuple)
248 {
249 unsigned int size;
250 const __be32 *ap;
251 __be32 _addrs[8];
252
253 memset(tuple, 0, sizeof(*tuple));
254
255 tuple->src.l3num = l3num;
256 switch (l3num) {
257 case NFPROTO_IPV4:
258 nhoff += offsetof(struct iphdr, saddr);
259 size = 2 * sizeof(__be32);
260 break;
261 case NFPROTO_IPV6:
262 nhoff += offsetof(struct ipv6hdr, saddr);
263 size = sizeof(_addrs);
264 break;
265 default:
266 return true;
267 }
268
269 ap = skb_header_pointer(skb, nhoff, size, _addrs);
270 if (!ap)
271 return false;
272
273 switch (l3num) {
274 case NFPROTO_IPV4:
275 tuple->src.u3.ip = ap[0];
276 tuple->dst.u3.ip = ap[1];
277 break;
278 case NFPROTO_IPV6:
279 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
280 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
281 break;
282 }
283
284 tuple->dst.protonum = protonum;
285 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
286
287 switch (protonum) {
288 #if IS_ENABLED(CONFIG_IPV6)
289 case IPPROTO_ICMPV6:
290 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
291 #endif
292 case IPPROTO_ICMP:
293 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
294 #ifdef CONFIG_NF_CT_PROTO_GRE
295 case IPPROTO_GRE:
296 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
297 #endif
298 case IPPROTO_TCP:
299 case IPPROTO_UDP: /* fallthrough */
300 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
301 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
302 case IPPROTO_UDPLITE:
303 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
304 #endif
305 #ifdef CONFIG_NF_CT_PROTO_SCTP
306 case IPPROTO_SCTP:
307 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
308 #endif
309 #ifdef CONFIG_NF_CT_PROTO_DCCP
310 case IPPROTO_DCCP:
311 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
312 #endif
313 default:
314 break;
315 }
316
317 return true;
318 }
319
320 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
321 u_int8_t *protonum)
322 {
323 int dataoff = -1;
324 const struct iphdr *iph;
325 struct iphdr _iph;
326
327 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
328 if (!iph)
329 return -1;
330
331 /* Conntrack defragments packets, we might still see fragments
332 * inside ICMP packets though.
333 */
334 if (iph->frag_off & htons(IP_OFFSET))
335 return -1;
336
337 dataoff = nhoff + (iph->ihl << 2);
338 *protonum = iph->protocol;
339
340 /* Check bogus IP headers */
341 if (dataoff > skb->len) {
342 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
343 nhoff, iph->ihl << 2, skb->len);
344 return -1;
345 }
346 return dataoff;
347 }
348
349 #if IS_ENABLED(CONFIG_IPV6)
350 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351 u8 *protonum)
352 {
353 int protoff = -1;
354 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
355 __be16 frag_off;
356 u8 nexthdr;
357
358 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
359 &nexthdr, sizeof(nexthdr)) != 0) {
360 pr_debug("can't get nexthdr\n");
361 return -1;
362 }
363 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
364 /*
365 * (protoff == skb->len) means the packet has not data, just
366 * IPv6 and possibly extensions headers, but it is tracked anyway
367 */
368 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
369 pr_debug("can't find proto in pkt\n");
370 return -1;
371 }
372
373 *protonum = nexthdr;
374 return protoff;
375 }
376 #endif
377
378 static int get_l4proto(const struct sk_buff *skb,
379 unsigned int nhoff, u8 pf, u8 *l4num)
380 {
381 switch (pf) {
382 case NFPROTO_IPV4:
383 return ipv4_get_l4proto(skb, nhoff, l4num);
384 #if IS_ENABLED(CONFIG_IPV6)
385 case NFPROTO_IPV6:
386 return ipv6_get_l4proto(skb, nhoff, l4num);
387 #endif
388 default:
389 *l4num = 0;
390 break;
391 }
392 return -1;
393 }
394
395 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
396 u_int16_t l3num,
397 struct net *net, struct nf_conntrack_tuple *tuple)
398 {
399 u8 protonum;
400 int protoff;
401
402 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
403 if (protoff <= 0)
404 return false;
405
406 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
407 }
408 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
409
410 bool
411 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
412 const struct nf_conntrack_tuple *orig)
413 {
414 memset(inverse, 0, sizeof(*inverse));
415
416 inverse->src.l3num = orig->src.l3num;
417
418 switch (orig->src.l3num) {
419 case NFPROTO_IPV4:
420 inverse->src.u3.ip = orig->dst.u3.ip;
421 inverse->dst.u3.ip = orig->src.u3.ip;
422 break;
423 case NFPROTO_IPV6:
424 inverse->src.u3.in6 = orig->dst.u3.in6;
425 inverse->dst.u3.in6 = orig->src.u3.in6;
426 break;
427 default:
428 break;
429 }
430
431 inverse->dst.dir = !orig->dst.dir;
432
433 inverse->dst.protonum = orig->dst.protonum;
434
435 switch (orig->dst.protonum) {
436 case IPPROTO_ICMP:
437 return nf_conntrack_invert_icmp_tuple(inverse, orig);
438 #if IS_ENABLED(CONFIG_IPV6)
439 case IPPROTO_ICMPV6:
440 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
441 #endif
442 }
443
444 inverse->src.u.all = orig->dst.u.all;
445 inverse->dst.u.all = orig->src.u.all;
446 return true;
447 }
448 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
449
450 /* Generate a almost-unique pseudo-id for a given conntrack.
451 *
452 * intentionally doesn't re-use any of the seeds used for hash
453 * table location, we assume id gets exposed to userspace.
454 *
455 * Following nf_conn items do not change throughout lifetime
456 * of the nf_conn after it has been committed to main hash table:
457 *
458 * 1. nf_conn address
459 * 2. nf_conn->ext address
460 * 3. nf_conn->master address (normally NULL)
461 * 4. tuple
462 * 5. the associated net namespace
463 */
464 u32 nf_ct_get_id(const struct nf_conn *ct)
465 {
466 static __read_mostly siphash_key_t ct_id_seed;
467 unsigned long a, b, c, d;
468
469 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
470
471 a = (unsigned long)ct;
472 b = (unsigned long)ct->master ^ net_hash_mix(nf_ct_net(ct));
473 c = (unsigned long)ct->ext;
474 d = (unsigned long)siphash(&ct->tuplehash, sizeof(ct->tuplehash),
475 &ct_id_seed);
476 #ifdef CONFIG_64BIT
477 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
478 #else
479 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
480 #endif
481 }
482 EXPORT_SYMBOL_GPL(nf_ct_get_id);
483
484 static void
485 clean_from_lists(struct nf_conn *ct)
486 {
487 pr_debug("clean_from_lists(%p)\n", ct);
488 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
489 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
490
491 /* Destroy all pending expectations */
492 nf_ct_remove_expectations(ct);
493 }
494
495 /* must be called with local_bh_disable */
496 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
497 {
498 struct ct_pcpu *pcpu;
499
500 /* add this conntrack to the (per cpu) dying list */
501 ct->cpu = smp_processor_id();
502 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
503
504 spin_lock(&pcpu->lock);
505 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
506 &pcpu->dying);
507 spin_unlock(&pcpu->lock);
508 }
509
510 /* must be called with local_bh_disable */
511 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
512 {
513 struct ct_pcpu *pcpu;
514
515 /* add this conntrack to the (per cpu) unconfirmed list */
516 ct->cpu = smp_processor_id();
517 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
518
519 spin_lock(&pcpu->lock);
520 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
521 &pcpu->unconfirmed);
522 spin_unlock(&pcpu->lock);
523 }
524
525 /* must be called with local_bh_disable */
526 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
527 {
528 struct ct_pcpu *pcpu;
529
530 /* We overload first tuple to link into unconfirmed or dying list.*/
531 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
532
533 spin_lock(&pcpu->lock);
534 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
535 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
536 spin_unlock(&pcpu->lock);
537 }
538
539 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
540
541 /* Released via destroy_conntrack() */
542 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
543 const struct nf_conntrack_zone *zone,
544 gfp_t flags)
545 {
546 struct nf_conn *tmpl, *p;
547
548 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
549 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
550 if (!tmpl)
551 return NULL;
552
553 p = tmpl;
554 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
555 if (tmpl != p) {
556 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
557 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
558 }
559 } else {
560 tmpl = kzalloc(sizeof(*tmpl), flags);
561 if (!tmpl)
562 return NULL;
563 }
564
565 tmpl->status = IPS_TEMPLATE;
566 write_pnet(&tmpl->ct_net, net);
567 nf_ct_zone_add(tmpl, zone);
568 atomic_set(&tmpl->ct_general.use, 0);
569
570 return tmpl;
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
573
574 void nf_ct_tmpl_free(struct nf_conn *tmpl)
575 {
576 nf_ct_ext_destroy(tmpl);
577 nf_ct_ext_free(tmpl);
578
579 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581 else
582 kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585
586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589 struct nf_conn *master = ct->master;
590
591 if (master)
592 nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595
596 static void
597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599 struct nf_conn *ct = (struct nf_conn *)nfct;
600
601 pr_debug("destroy_conntrack(%p)\n", ct);
602 WARN_ON(atomic_read(&nfct->use) != 0);
603
604 if (unlikely(nf_ct_is_template(ct))) {
605 nf_ct_tmpl_free(ct);
606 return;
607 }
608
609 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610 destroy_gre_conntrack(ct);
611
612 local_bh_disable();
613 /* Expectations will have been removed in clean_from_lists,
614 * except TFTP can create an expectation on the first packet,
615 * before connection is in the list, so we need to clean here,
616 * too.
617 */
618 nf_ct_remove_expectations(ct);
619
620 nf_ct_del_from_dying_or_unconfirmed_list(ct);
621
622 local_bh_enable();
623
624 if (ct->master)
625 nf_ct_put(ct->master);
626
627 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628 nf_conntrack_free(ct);
629 }
630
631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633 struct net *net = nf_ct_net(ct);
634 unsigned int hash, reply_hash;
635 unsigned int sequence;
636
637 nf_ct_helper_destroy(ct);
638
639 local_bh_disable();
640 do {
641 sequence = read_seqcount_begin(&nf_conntrack_generation);
642 hash = hash_conntrack(net,
643 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644 reply_hash = hash_conntrack(net,
645 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647
648 clean_from_lists(ct);
649 nf_conntrack_double_unlock(hash, reply_hash);
650
651 nf_ct_add_to_dying_list(ct);
652
653 local_bh_enable();
654 }
655
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 struct nf_conn_tstamp *tstamp;
659
660 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661 return false;
662
663 tstamp = nf_conn_tstamp_find(ct);
664 if (tstamp && tstamp->stop == 0)
665 tstamp->stop = ktime_get_real_ns();
666
667 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 portid, report) < 0) {
669 /* destroy event was not delivered. nf_ct_put will
670 * be done by event cache worker on redelivery.
671 */
672 nf_ct_delete_from_lists(ct);
673 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674 return false;
675 }
676
677 nf_conntrack_ecache_work(nf_ct_net(ct));
678 nf_ct_delete_from_lists(ct);
679 nf_ct_put(ct);
680 return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686 const struct nf_conntrack_tuple *tuple,
687 const struct nf_conntrack_zone *zone,
688 const struct net *net)
689 {
690 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692 /* A conntrack can be recreated with the equal tuple,
693 * so we need to check that the conntrack is confirmed
694 */
695 return nf_ct_tuple_equal(tuple, &h->tuple) &&
696 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697 nf_ct_is_confirmed(ct) &&
698 net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716 if (!atomic_inc_not_zero(&ct->ct_general.use))
717 return;
718
719 if (nf_ct_should_gc(ct))
720 nf_ct_kill(ct);
721
722 nf_ct_put(ct);
723 }
724
725 /*
726 * Warning :
727 * - Caller must take a reference on returned object
728 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729 */
730 static struct nf_conntrack_tuple_hash *
731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732 const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734 struct nf_conntrack_tuple_hash *h;
735 struct hlist_nulls_head *ct_hash;
736 struct hlist_nulls_node *n;
737 unsigned int bucket, hsize;
738
739 begin:
740 nf_conntrack_get_ht(&ct_hash, &hsize);
741 bucket = reciprocal_scale(hash, hsize);
742
743 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744 struct nf_conn *ct;
745
746 ct = nf_ct_tuplehash_to_ctrack(h);
747 if (nf_ct_is_expired(ct)) {
748 nf_ct_gc_expired(ct);
749 continue;
750 }
751
752 if (nf_ct_key_equal(h, tuple, zone, net))
753 return h;
754 }
755 /*
756 * if the nulls value we got at the end of this lookup is
757 * not the expected one, we must restart lookup.
758 * We probably met an item that was moved to another chain.
759 */
760 if (get_nulls_value(n) != bucket) {
761 NF_CT_STAT_INC_ATOMIC(net, search_restart);
762 goto begin;
763 }
764
765 return NULL;
766 }
767
768 /* Find a connection corresponding to a tuple. */
769 static struct nf_conntrack_tuple_hash *
770 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
771 const struct nf_conntrack_tuple *tuple, u32 hash)
772 {
773 struct nf_conntrack_tuple_hash *h;
774 struct nf_conn *ct;
775
776 rcu_read_lock();
777
778 h = ____nf_conntrack_find(net, zone, tuple, hash);
779 if (h) {
780 /* We have a candidate that matches the tuple we're interested
781 * in, try to obtain a reference and re-check tuple
782 */
783 ct = nf_ct_tuplehash_to_ctrack(h);
784 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
785 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
786 goto found;
787
788 /* TYPESAFE_BY_RCU recycled the candidate */
789 nf_ct_put(ct);
790 }
791
792 h = NULL;
793 }
794 found:
795 rcu_read_unlock();
796
797 return h;
798 }
799
800 struct nf_conntrack_tuple_hash *
801 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
802 const struct nf_conntrack_tuple *tuple)
803 {
804 return __nf_conntrack_find_get(net, zone, tuple,
805 hash_conntrack_raw(tuple, net));
806 }
807 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
808
809 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
810 unsigned int hash,
811 unsigned int reply_hash)
812 {
813 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
814 &nf_conntrack_hash[hash]);
815 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
816 &nf_conntrack_hash[reply_hash]);
817 }
818
819 int
820 nf_conntrack_hash_check_insert(struct nf_conn *ct)
821 {
822 const struct nf_conntrack_zone *zone;
823 struct net *net = nf_ct_net(ct);
824 unsigned int hash, reply_hash;
825 struct nf_conntrack_tuple_hash *h;
826 struct hlist_nulls_node *n;
827 unsigned int sequence;
828
829 zone = nf_ct_zone(ct);
830
831 local_bh_disable();
832 do {
833 sequence = read_seqcount_begin(&nf_conntrack_generation);
834 hash = hash_conntrack(net,
835 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
836 reply_hash = hash_conntrack(net,
837 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
838 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
839
840 /* See if there's one in the list already, including reverse */
841 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
842 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
843 zone, net))
844 goto out;
845
846 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
847 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
848 zone, net))
849 goto out;
850
851 smp_wmb();
852 /* The caller holds a reference to this object */
853 atomic_set(&ct->ct_general.use, 2);
854 __nf_conntrack_hash_insert(ct, hash, reply_hash);
855 nf_conntrack_double_unlock(hash, reply_hash);
856 NF_CT_STAT_INC(net, insert);
857 local_bh_enable();
858 return 0;
859
860 out:
861 nf_conntrack_double_unlock(hash, reply_hash);
862 NF_CT_STAT_INC(net, insert_failed);
863 local_bh_enable();
864 return -EEXIST;
865 }
866 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
867
868 static inline void nf_ct_acct_update(struct nf_conn *ct,
869 enum ip_conntrack_info ctinfo,
870 unsigned int len)
871 {
872 struct nf_conn_acct *acct;
873
874 acct = nf_conn_acct_find(ct);
875 if (acct) {
876 struct nf_conn_counter *counter = acct->counter;
877
878 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
879 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
880 }
881 }
882
883 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
884 const struct nf_conn *loser_ct)
885 {
886 struct nf_conn_acct *acct;
887
888 acct = nf_conn_acct_find(loser_ct);
889 if (acct) {
890 struct nf_conn_counter *counter = acct->counter;
891 unsigned int bytes;
892
893 /* u32 should be fine since we must have seen one packet. */
894 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
895 nf_ct_acct_update(ct, ctinfo, bytes);
896 }
897 }
898
899 /* Resolve race on insertion if this protocol allows this. */
900 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
901 enum ip_conntrack_info ctinfo,
902 struct nf_conntrack_tuple_hash *h)
903 {
904 /* This is the conntrack entry already in hashes that won race. */
905 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
906 const struct nf_conntrack_l4proto *l4proto;
907 enum ip_conntrack_info oldinfo;
908 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
909
910 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
911 if (l4proto->allow_clash &&
912 !nf_ct_is_dying(ct) &&
913 atomic_inc_not_zero(&ct->ct_general.use)) {
914 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
915 nf_ct_match(ct, loser_ct)) {
916 nf_ct_acct_merge(ct, ctinfo, loser_ct);
917 nf_conntrack_put(&loser_ct->ct_general);
918 nf_ct_set(skb, ct, oldinfo);
919 return NF_ACCEPT;
920 }
921 nf_ct_put(ct);
922 }
923 NF_CT_STAT_INC(net, drop);
924 return NF_DROP;
925 }
926
927 /* Confirm a connection given skb; places it in hash table */
928 int
929 __nf_conntrack_confirm(struct sk_buff *skb)
930 {
931 const struct nf_conntrack_zone *zone;
932 unsigned int hash, reply_hash;
933 struct nf_conntrack_tuple_hash *h;
934 struct nf_conn *ct;
935 struct nf_conn_help *help;
936 struct nf_conn_tstamp *tstamp;
937 struct hlist_nulls_node *n;
938 enum ip_conntrack_info ctinfo;
939 struct net *net;
940 unsigned int sequence;
941 int ret = NF_DROP;
942
943 ct = nf_ct_get(skb, &ctinfo);
944 net = nf_ct_net(ct);
945
946 /* ipt_REJECT uses nf_conntrack_attach to attach related
947 ICMP/TCP RST packets in other direction. Actual packet
948 which created connection will be IP_CT_NEW or for an
949 expected connection, IP_CT_RELATED. */
950 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
951 return NF_ACCEPT;
952
953 zone = nf_ct_zone(ct);
954 local_bh_disable();
955
956 do {
957 sequence = read_seqcount_begin(&nf_conntrack_generation);
958 /* reuse the hash saved before */
959 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
960 hash = scale_hash(hash);
961 reply_hash = hash_conntrack(net,
962 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
963
964 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
965
966 /* We're not in hash table, and we refuse to set up related
967 * connections for unconfirmed conns. But packet copies and
968 * REJECT will give spurious warnings here.
969 */
970
971 /* Another skb with the same unconfirmed conntrack may
972 * win the race. This may happen for bridge(br_flood)
973 * or broadcast/multicast packets do skb_clone with
974 * unconfirmed conntrack.
975 */
976 if (unlikely(nf_ct_is_confirmed(ct))) {
977 WARN_ON_ONCE(1);
978 nf_conntrack_double_unlock(hash, reply_hash);
979 local_bh_enable();
980 return NF_DROP;
981 }
982
983 pr_debug("Confirming conntrack %p\n", ct);
984 /* We have to check the DYING flag after unlink to prevent
985 * a race against nf_ct_get_next_corpse() possibly called from
986 * user context, else we insert an already 'dead' hash, blocking
987 * further use of that particular connection -JM.
988 */
989 nf_ct_del_from_dying_or_unconfirmed_list(ct);
990
991 if (unlikely(nf_ct_is_dying(ct))) {
992 nf_ct_add_to_dying_list(ct);
993 goto dying;
994 }
995
996 /* See if there's one in the list already, including reverse:
997 NAT could have grabbed it without realizing, since we're
998 not in the hash. If there is, we lost race. */
999 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1000 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1001 zone, net))
1002 goto out;
1003
1004 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1005 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1006 zone, net))
1007 goto out;
1008
1009 /* Timer relative to confirmation time, not original
1010 setting time, otherwise we'd get timer wrap in
1011 weird delay cases. */
1012 ct->timeout += nfct_time_stamp;
1013 atomic_inc(&ct->ct_general.use);
1014 ct->status |= IPS_CONFIRMED;
1015
1016 /* set conntrack timestamp, if enabled. */
1017 tstamp = nf_conn_tstamp_find(ct);
1018 if (tstamp)
1019 tstamp->start = ktime_get_real_ns();
1020
1021 /* Since the lookup is lockless, hash insertion must be done after
1022 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1023 * guarantee that no other CPU can find the conntrack before the above
1024 * stores are visible.
1025 */
1026 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1027 nf_conntrack_double_unlock(hash, reply_hash);
1028 local_bh_enable();
1029
1030 help = nfct_help(ct);
1031 if (help && help->helper)
1032 nf_conntrack_event_cache(IPCT_HELPER, ct);
1033
1034 nf_conntrack_event_cache(master_ct(ct) ?
1035 IPCT_RELATED : IPCT_NEW, ct);
1036 return NF_ACCEPT;
1037
1038 out:
1039 nf_ct_add_to_dying_list(ct);
1040 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1041 dying:
1042 nf_conntrack_double_unlock(hash, reply_hash);
1043 NF_CT_STAT_INC(net, insert_failed);
1044 local_bh_enable();
1045 return ret;
1046 }
1047 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1048
1049 /* Returns true if a connection correspondings to the tuple (required
1050 for NAT). */
1051 int
1052 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1053 const struct nf_conn *ignored_conntrack)
1054 {
1055 struct net *net = nf_ct_net(ignored_conntrack);
1056 const struct nf_conntrack_zone *zone;
1057 struct nf_conntrack_tuple_hash *h;
1058 struct hlist_nulls_head *ct_hash;
1059 unsigned int hash, hsize;
1060 struct hlist_nulls_node *n;
1061 struct nf_conn *ct;
1062
1063 zone = nf_ct_zone(ignored_conntrack);
1064
1065 rcu_read_lock();
1066 begin:
1067 nf_conntrack_get_ht(&ct_hash, &hsize);
1068 hash = __hash_conntrack(net, tuple, hsize);
1069
1070 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1071 ct = nf_ct_tuplehash_to_ctrack(h);
1072
1073 if (ct == ignored_conntrack)
1074 continue;
1075
1076 if (nf_ct_is_expired(ct)) {
1077 nf_ct_gc_expired(ct);
1078 continue;
1079 }
1080
1081 if (nf_ct_key_equal(h, tuple, zone, net)) {
1082 /* Tuple is taken already, so caller will need to find
1083 * a new source port to use.
1084 *
1085 * Only exception:
1086 * If the *original tuples* are identical, then both
1087 * conntracks refer to the same flow.
1088 * This is a rare situation, it can occur e.g. when
1089 * more than one UDP packet is sent from same socket
1090 * in different threads.
1091 *
1092 * Let nf_ct_resolve_clash() deal with this later.
1093 */
1094 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1095 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1096 continue;
1097
1098 NF_CT_STAT_INC_ATOMIC(net, found);
1099 rcu_read_unlock();
1100 return 1;
1101 }
1102 }
1103
1104 if (get_nulls_value(n) != hash) {
1105 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1106 goto begin;
1107 }
1108
1109 rcu_read_unlock();
1110
1111 return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1114
1115 #define NF_CT_EVICTION_RANGE 8
1116
1117 /* There's a small race here where we may free a just-assured
1118 connection. Too bad: we're in trouble anyway. */
1119 static unsigned int early_drop_list(struct net *net,
1120 struct hlist_nulls_head *head)
1121 {
1122 struct nf_conntrack_tuple_hash *h;
1123 struct hlist_nulls_node *n;
1124 unsigned int drops = 0;
1125 struct nf_conn *tmp;
1126
1127 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1128 tmp = nf_ct_tuplehash_to_ctrack(h);
1129
1130 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1131 continue;
1132
1133 if (nf_ct_is_expired(tmp)) {
1134 nf_ct_gc_expired(tmp);
1135 continue;
1136 }
1137
1138 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1139 !net_eq(nf_ct_net(tmp), net) ||
1140 nf_ct_is_dying(tmp))
1141 continue;
1142
1143 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1144 continue;
1145
1146 /* kill only if still in same netns -- might have moved due to
1147 * SLAB_TYPESAFE_BY_RCU rules.
1148 *
1149 * We steal the timer reference. If that fails timer has
1150 * already fired or someone else deleted it. Just drop ref
1151 * and move to next entry.
1152 */
1153 if (net_eq(nf_ct_net(tmp), net) &&
1154 nf_ct_is_confirmed(tmp) &&
1155 nf_ct_delete(tmp, 0, 0))
1156 drops++;
1157
1158 nf_ct_put(tmp);
1159 }
1160
1161 return drops;
1162 }
1163
1164 static noinline int early_drop(struct net *net, unsigned int hash)
1165 {
1166 unsigned int i, bucket;
1167
1168 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1169 struct hlist_nulls_head *ct_hash;
1170 unsigned int hsize, drops;
1171
1172 rcu_read_lock();
1173 nf_conntrack_get_ht(&ct_hash, &hsize);
1174 if (!i)
1175 bucket = reciprocal_scale(hash, hsize);
1176 else
1177 bucket = (bucket + 1) % hsize;
1178
1179 drops = early_drop_list(net, &ct_hash[bucket]);
1180 rcu_read_unlock();
1181
1182 if (drops) {
1183 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1184 return true;
1185 }
1186 }
1187
1188 return false;
1189 }
1190
1191 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1192 {
1193 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1194 }
1195
1196 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1197 {
1198 const struct nf_conntrack_l4proto *l4proto;
1199
1200 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1201 return true;
1202
1203 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1204 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1205 return true;
1206
1207 return false;
1208 }
1209
1210 #define DAY (86400 * HZ)
1211
1212 /* Set an arbitrary timeout large enough not to ever expire, this save
1213 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1214 * nf_ct_is_expired().
1215 */
1216 static void nf_ct_offload_timeout(struct nf_conn *ct)
1217 {
1218 if (nf_ct_expires(ct) < DAY / 2)
1219 ct->timeout = nfct_time_stamp + DAY;
1220 }
1221
1222 static void gc_worker(struct work_struct *work)
1223 {
1224 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1225 unsigned int i, goal, buckets = 0, expired_count = 0;
1226 unsigned int nf_conntrack_max95 = 0;
1227 struct conntrack_gc_work *gc_work;
1228 unsigned int ratio, scanned = 0;
1229 unsigned long next_run;
1230
1231 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1232
1233 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1234 i = gc_work->last_bucket;
1235 if (gc_work->early_drop)
1236 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1237
1238 do {
1239 struct nf_conntrack_tuple_hash *h;
1240 struct hlist_nulls_head *ct_hash;
1241 struct hlist_nulls_node *n;
1242 unsigned int hashsz;
1243 struct nf_conn *tmp;
1244
1245 i++;
1246 rcu_read_lock();
1247
1248 nf_conntrack_get_ht(&ct_hash, &hashsz);
1249 if (i >= hashsz)
1250 i = 0;
1251
1252 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1253 struct net *net;
1254
1255 tmp = nf_ct_tuplehash_to_ctrack(h);
1256
1257 scanned++;
1258 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1259 nf_ct_offload_timeout(tmp);
1260 continue;
1261 }
1262
1263 if (nf_ct_is_expired(tmp)) {
1264 nf_ct_gc_expired(tmp);
1265 expired_count++;
1266 continue;
1267 }
1268
1269 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1270 continue;
1271
1272 net = nf_ct_net(tmp);
1273 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1274 continue;
1275
1276 /* need to take reference to avoid possible races */
1277 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1278 continue;
1279
1280 if (gc_worker_skip_ct(tmp)) {
1281 nf_ct_put(tmp);
1282 continue;
1283 }
1284
1285 if (gc_worker_can_early_drop(tmp))
1286 nf_ct_kill(tmp);
1287
1288 nf_ct_put(tmp);
1289 }
1290
1291 /* could check get_nulls_value() here and restart if ct
1292 * was moved to another chain. But given gc is best-effort
1293 * we will just continue with next hash slot.
1294 */
1295 rcu_read_unlock();
1296 cond_resched();
1297 } while (++buckets < goal);
1298
1299 if (gc_work->exiting)
1300 return;
1301
1302 /*
1303 * Eviction will normally happen from the packet path, and not
1304 * from this gc worker.
1305 *
1306 * This worker is only here to reap expired entries when system went
1307 * idle after a busy period.
1308 *
1309 * The heuristics below are supposed to balance conflicting goals:
1310 *
1311 * 1. Minimize time until we notice a stale entry
1312 * 2. Maximize scan intervals to not waste cycles
1313 *
1314 * Normally, expire ratio will be close to 0.
1315 *
1316 * As soon as a sizeable fraction of the entries have expired
1317 * increase scan frequency.
1318 */
1319 ratio = scanned ? expired_count * 100 / scanned : 0;
1320 if (ratio > GC_EVICT_RATIO) {
1321 gc_work->next_gc_run = min_interval;
1322 } else {
1323 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1324
1325 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1326
1327 gc_work->next_gc_run += min_interval;
1328 if (gc_work->next_gc_run > max)
1329 gc_work->next_gc_run = max;
1330 }
1331
1332 next_run = gc_work->next_gc_run;
1333 gc_work->last_bucket = i;
1334 gc_work->early_drop = false;
1335 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1336 }
1337
1338 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1339 {
1340 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1341 gc_work->next_gc_run = HZ;
1342 gc_work->exiting = false;
1343 }
1344
1345 static struct nf_conn *
1346 __nf_conntrack_alloc(struct net *net,
1347 const struct nf_conntrack_zone *zone,
1348 const struct nf_conntrack_tuple *orig,
1349 const struct nf_conntrack_tuple *repl,
1350 gfp_t gfp, u32 hash)
1351 {
1352 struct nf_conn *ct;
1353
1354 /* We don't want any race condition at early drop stage */
1355 atomic_inc(&net->ct.count);
1356
1357 if (nf_conntrack_max &&
1358 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1359 if (!early_drop(net, hash)) {
1360 if (!conntrack_gc_work.early_drop)
1361 conntrack_gc_work.early_drop = true;
1362 atomic_dec(&net->ct.count);
1363 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1364 return ERR_PTR(-ENOMEM);
1365 }
1366 }
1367
1368 /*
1369 * Do not use kmem_cache_zalloc(), as this cache uses
1370 * SLAB_TYPESAFE_BY_RCU.
1371 */
1372 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1373 if (ct == NULL)
1374 goto out;
1375
1376 spin_lock_init(&ct->lock);
1377 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1378 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1379 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1380 /* save hash for reusing when confirming */
1381 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1382 ct->status = 0;
1383 ct->timeout = 0;
1384 write_pnet(&ct->ct_net, net);
1385 memset(&ct->__nfct_init_offset[0], 0,
1386 offsetof(struct nf_conn, proto) -
1387 offsetof(struct nf_conn, __nfct_init_offset[0]));
1388
1389 nf_ct_zone_add(ct, zone);
1390
1391 /* Because we use RCU lookups, we set ct_general.use to zero before
1392 * this is inserted in any list.
1393 */
1394 atomic_set(&ct->ct_general.use, 0);
1395 return ct;
1396 out:
1397 atomic_dec(&net->ct.count);
1398 return ERR_PTR(-ENOMEM);
1399 }
1400
1401 struct nf_conn *nf_conntrack_alloc(struct net *net,
1402 const struct nf_conntrack_zone *zone,
1403 const struct nf_conntrack_tuple *orig,
1404 const struct nf_conntrack_tuple *repl,
1405 gfp_t gfp)
1406 {
1407 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1408 }
1409 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1410
1411 void nf_conntrack_free(struct nf_conn *ct)
1412 {
1413 struct net *net = nf_ct_net(ct);
1414
1415 /* A freed object has refcnt == 0, that's
1416 * the golden rule for SLAB_TYPESAFE_BY_RCU
1417 */
1418 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1419
1420 nf_ct_ext_destroy(ct);
1421 nf_ct_ext_free(ct);
1422 kmem_cache_free(nf_conntrack_cachep, ct);
1423 smp_mb__before_atomic();
1424 atomic_dec(&net->ct.count);
1425 }
1426 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1427
1428
1429 /* Allocate a new conntrack: we return -ENOMEM if classification
1430 failed due to stress. Otherwise it really is unclassifiable. */
1431 static noinline struct nf_conntrack_tuple_hash *
1432 init_conntrack(struct net *net, struct nf_conn *tmpl,
1433 const struct nf_conntrack_tuple *tuple,
1434 struct sk_buff *skb,
1435 unsigned int dataoff, u32 hash)
1436 {
1437 struct nf_conn *ct;
1438 struct nf_conn_help *help;
1439 struct nf_conntrack_tuple repl_tuple;
1440 struct nf_conntrack_ecache *ecache;
1441 struct nf_conntrack_expect *exp = NULL;
1442 const struct nf_conntrack_zone *zone;
1443 struct nf_conn_timeout *timeout_ext;
1444 struct nf_conntrack_zone tmp;
1445
1446 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1447 pr_debug("Can't invert tuple.\n");
1448 return NULL;
1449 }
1450
1451 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1452 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1453 hash);
1454 if (IS_ERR(ct))
1455 return (struct nf_conntrack_tuple_hash *)ct;
1456
1457 if (!nf_ct_add_synproxy(ct, tmpl)) {
1458 nf_conntrack_free(ct);
1459 return ERR_PTR(-ENOMEM);
1460 }
1461
1462 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1463
1464 if (timeout_ext)
1465 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1466 GFP_ATOMIC);
1467
1468 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1469 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1470 nf_ct_labels_ext_add(ct);
1471
1472 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1473 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1474 ecache ? ecache->expmask : 0,
1475 GFP_ATOMIC);
1476
1477 local_bh_disable();
1478 if (net->ct.expect_count) {
1479 spin_lock(&nf_conntrack_expect_lock);
1480 exp = nf_ct_find_expectation(net, zone, tuple);
1481 if (exp) {
1482 pr_debug("expectation arrives ct=%p exp=%p\n",
1483 ct, exp);
1484 /* Welcome, Mr. Bond. We've been expecting you... */
1485 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1486 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1487 ct->master = exp->master;
1488 if (exp->helper) {
1489 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1490 if (help)
1491 rcu_assign_pointer(help->helper, exp->helper);
1492 }
1493
1494 #ifdef CONFIG_NF_CONNTRACK_MARK
1495 ct->mark = exp->master->mark;
1496 #endif
1497 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1498 ct->secmark = exp->master->secmark;
1499 #endif
1500 NF_CT_STAT_INC(net, expect_new);
1501 }
1502 spin_unlock(&nf_conntrack_expect_lock);
1503 }
1504 if (!exp)
1505 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1506
1507 /* Now it is inserted into the unconfirmed list, bump refcount */
1508 nf_conntrack_get(&ct->ct_general);
1509 nf_ct_add_to_unconfirmed_list(ct);
1510
1511 local_bh_enable();
1512
1513 if (exp) {
1514 if (exp->expectfn)
1515 exp->expectfn(ct, exp);
1516 nf_ct_expect_put(exp);
1517 }
1518
1519 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1520 }
1521
1522 /* On success, returns 0, sets skb->_nfct | ctinfo */
1523 static int
1524 resolve_normal_ct(struct nf_conn *tmpl,
1525 struct sk_buff *skb,
1526 unsigned int dataoff,
1527 u_int8_t protonum,
1528 const struct nf_hook_state *state)
1529 {
1530 const struct nf_conntrack_zone *zone;
1531 struct nf_conntrack_tuple tuple;
1532 struct nf_conntrack_tuple_hash *h;
1533 enum ip_conntrack_info ctinfo;
1534 struct nf_conntrack_zone tmp;
1535 struct nf_conn *ct;
1536 u32 hash;
1537
1538 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1539 dataoff, state->pf, protonum, state->net,
1540 &tuple)) {
1541 pr_debug("Can't get tuple\n");
1542 return 0;
1543 }
1544
1545 /* look for tuple match */
1546 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1547 hash = hash_conntrack_raw(&tuple, state->net);
1548 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1549 if (!h) {
1550 h = init_conntrack(state->net, tmpl, &tuple,
1551 skb, dataoff, hash);
1552 if (!h)
1553 return 0;
1554 if (IS_ERR(h))
1555 return PTR_ERR(h);
1556 }
1557 ct = nf_ct_tuplehash_to_ctrack(h);
1558
1559 /* It exists; we have (non-exclusive) reference. */
1560 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1561 ctinfo = IP_CT_ESTABLISHED_REPLY;
1562 } else {
1563 /* Once we've had two way comms, always ESTABLISHED. */
1564 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1565 pr_debug("normal packet for %p\n", ct);
1566 ctinfo = IP_CT_ESTABLISHED;
1567 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1568 pr_debug("related packet for %p\n", ct);
1569 ctinfo = IP_CT_RELATED;
1570 } else {
1571 pr_debug("new packet for %p\n", ct);
1572 ctinfo = IP_CT_NEW;
1573 }
1574 }
1575 nf_ct_set(skb, ct, ctinfo);
1576 return 0;
1577 }
1578
1579 /*
1580 * icmp packets need special treatment to handle error messages that are
1581 * related to a connection.
1582 *
1583 * Callers need to check if skb has a conntrack assigned when this
1584 * helper returns; in such case skb belongs to an already known connection.
1585 */
1586 static unsigned int __cold
1587 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1588 struct sk_buff *skb,
1589 unsigned int dataoff,
1590 u8 protonum,
1591 const struct nf_hook_state *state)
1592 {
1593 int ret;
1594
1595 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1596 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1597 #if IS_ENABLED(CONFIG_IPV6)
1598 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1599 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1600 #endif
1601 else
1602 return NF_ACCEPT;
1603
1604 if (ret <= 0) {
1605 NF_CT_STAT_INC_ATOMIC(state->net, error);
1606 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1607 }
1608
1609 return ret;
1610 }
1611
1612 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1613 enum ip_conntrack_info ctinfo)
1614 {
1615 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1616
1617 if (!timeout)
1618 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1619
1620 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1621 return NF_ACCEPT;
1622 }
1623
1624 /* Returns verdict for packet, or -1 for invalid. */
1625 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1626 struct sk_buff *skb,
1627 unsigned int dataoff,
1628 enum ip_conntrack_info ctinfo,
1629 const struct nf_hook_state *state)
1630 {
1631 switch (nf_ct_protonum(ct)) {
1632 case IPPROTO_TCP:
1633 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1634 ctinfo, state);
1635 case IPPROTO_UDP:
1636 return nf_conntrack_udp_packet(ct, skb, dataoff,
1637 ctinfo, state);
1638 case IPPROTO_ICMP:
1639 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1640 #if IS_ENABLED(CONFIG_IPV6)
1641 case IPPROTO_ICMPV6:
1642 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1643 #endif
1644 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1645 case IPPROTO_UDPLITE:
1646 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1647 ctinfo, state);
1648 #endif
1649 #ifdef CONFIG_NF_CT_PROTO_SCTP
1650 case IPPROTO_SCTP:
1651 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1652 ctinfo, state);
1653 #endif
1654 #ifdef CONFIG_NF_CT_PROTO_DCCP
1655 case IPPROTO_DCCP:
1656 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1657 ctinfo, state);
1658 #endif
1659 #ifdef CONFIG_NF_CT_PROTO_GRE
1660 case IPPROTO_GRE:
1661 return nf_conntrack_gre_packet(ct, skb, dataoff,
1662 ctinfo, state);
1663 #endif
1664 }
1665
1666 return generic_packet(ct, skb, ctinfo);
1667 }
1668
1669 unsigned int
1670 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1671 {
1672 enum ip_conntrack_info ctinfo;
1673 struct nf_conn *ct, *tmpl;
1674 u_int8_t protonum;
1675 int dataoff, ret;
1676
1677 tmpl = nf_ct_get(skb, &ctinfo);
1678 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1679 /* Previously seen (loopback or untracked)? Ignore. */
1680 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1681 ctinfo == IP_CT_UNTRACKED) {
1682 NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1683 return NF_ACCEPT;
1684 }
1685 skb->_nfct = 0;
1686 }
1687
1688 /* rcu_read_lock()ed by nf_hook_thresh */
1689 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1690 if (dataoff <= 0) {
1691 pr_debug("not prepared to track yet or error occurred\n");
1692 NF_CT_STAT_INC_ATOMIC(state->net, error);
1693 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1694 ret = NF_ACCEPT;
1695 goto out;
1696 }
1697
1698 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1699 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1700 protonum, state);
1701 if (ret <= 0) {
1702 ret = -ret;
1703 goto out;
1704 }
1705 /* ICMP[v6] protocol trackers may assign one conntrack. */
1706 if (skb->_nfct)
1707 goto out;
1708 }
1709 repeat:
1710 ret = resolve_normal_ct(tmpl, skb, dataoff,
1711 protonum, state);
1712 if (ret < 0) {
1713 /* Too stressed to deal. */
1714 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1715 ret = NF_DROP;
1716 goto out;
1717 }
1718
1719 ct = nf_ct_get(skb, &ctinfo);
1720 if (!ct) {
1721 /* Not valid part of a connection */
1722 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1723 ret = NF_ACCEPT;
1724 goto out;
1725 }
1726
1727 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1728 if (ret <= 0) {
1729 /* Invalid: inverse of the return code tells
1730 * the netfilter core what to do */
1731 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1732 nf_conntrack_put(&ct->ct_general);
1733 skb->_nfct = 0;
1734 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1735 if (ret == -NF_DROP)
1736 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1737 /* Special case: TCP tracker reports an attempt to reopen a
1738 * closed/aborted connection. We have to go back and create a
1739 * fresh conntrack.
1740 */
1741 if (ret == -NF_REPEAT)
1742 goto repeat;
1743 ret = -ret;
1744 goto out;
1745 }
1746
1747 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1748 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1749 nf_conntrack_event_cache(IPCT_REPLY, ct);
1750 out:
1751 if (tmpl)
1752 nf_ct_put(tmpl);
1753
1754 return ret;
1755 }
1756 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1757
1758 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1759 implicitly racy: see __nf_conntrack_confirm */
1760 void nf_conntrack_alter_reply(struct nf_conn *ct,
1761 const struct nf_conntrack_tuple *newreply)
1762 {
1763 struct nf_conn_help *help = nfct_help(ct);
1764
1765 /* Should be unconfirmed, so not in hash table yet */
1766 WARN_ON(nf_ct_is_confirmed(ct));
1767
1768 pr_debug("Altering reply tuple of %p to ", ct);
1769 nf_ct_dump_tuple(newreply);
1770
1771 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1772 if (ct->master || (help && !hlist_empty(&help->expectations)))
1773 return;
1774
1775 rcu_read_lock();
1776 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1777 rcu_read_unlock();
1778 }
1779 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1780
1781 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1782 void __nf_ct_refresh_acct(struct nf_conn *ct,
1783 enum ip_conntrack_info ctinfo,
1784 const struct sk_buff *skb,
1785 u32 extra_jiffies,
1786 bool do_acct)
1787 {
1788 /* Only update if this is not a fixed timeout */
1789 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1790 goto acct;
1791
1792 /* If not in hash table, timer will not be active yet */
1793 if (nf_ct_is_confirmed(ct))
1794 extra_jiffies += nfct_time_stamp;
1795
1796 if (ct->timeout != extra_jiffies)
1797 ct->timeout = extra_jiffies;
1798 acct:
1799 if (do_acct)
1800 nf_ct_acct_update(ct, ctinfo, skb->len);
1801 }
1802 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1803
1804 bool nf_ct_kill_acct(struct nf_conn *ct,
1805 enum ip_conntrack_info ctinfo,
1806 const struct sk_buff *skb)
1807 {
1808 nf_ct_acct_update(ct, ctinfo, skb->len);
1809
1810 return nf_ct_delete(ct, 0, 0);
1811 }
1812 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1813
1814 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1815
1816 #include <linux/netfilter/nfnetlink.h>
1817 #include <linux/netfilter/nfnetlink_conntrack.h>
1818 #include <linux/mutex.h>
1819
1820 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1821 * in ip_conntrack_core, since we don't want the protocols to autoload
1822 * or depend on ctnetlink */
1823 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1824 const struct nf_conntrack_tuple *tuple)
1825 {
1826 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1827 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1828 goto nla_put_failure;
1829 return 0;
1830
1831 nla_put_failure:
1832 return -1;
1833 }
1834 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1835
1836 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1837 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1838 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1839 };
1840 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1841
1842 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1843 struct nf_conntrack_tuple *t)
1844 {
1845 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1846 return -EINVAL;
1847
1848 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1849 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1850
1851 return 0;
1852 }
1853 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1854
1855 unsigned int nf_ct_port_nlattr_tuple_size(void)
1856 {
1857 static unsigned int size __read_mostly;
1858
1859 if (!size)
1860 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1861
1862 return size;
1863 }
1864 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1865 #endif
1866
1867 /* Used by ipt_REJECT and ip6t_REJECT. */
1868 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1869 {
1870 struct nf_conn *ct;
1871 enum ip_conntrack_info ctinfo;
1872
1873 /* This ICMP is in reverse direction to the packet which caused it */
1874 ct = nf_ct_get(skb, &ctinfo);
1875 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1876 ctinfo = IP_CT_RELATED_REPLY;
1877 else
1878 ctinfo = IP_CT_RELATED;
1879
1880 /* Attach to new skbuff, and increment count */
1881 nf_ct_set(nskb, ct, ctinfo);
1882 nf_conntrack_get(skb_nfct(nskb));
1883 }
1884
1885 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1886 {
1887 struct nf_conntrack_tuple_hash *h;
1888 struct nf_conntrack_tuple tuple;
1889 enum ip_conntrack_info ctinfo;
1890 struct nf_nat_hook *nat_hook;
1891 unsigned int status;
1892 struct nf_conn *ct;
1893 int dataoff;
1894 u16 l3num;
1895 u8 l4num;
1896
1897 ct = nf_ct_get(skb, &ctinfo);
1898 if (!ct || nf_ct_is_confirmed(ct))
1899 return 0;
1900
1901 l3num = nf_ct_l3num(ct);
1902
1903 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1904 if (dataoff <= 0)
1905 return -1;
1906
1907 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1908 l4num, net, &tuple))
1909 return -1;
1910
1911 if (ct->status & IPS_SRC_NAT) {
1912 memcpy(tuple.src.u3.all,
1913 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1914 sizeof(tuple.src.u3.all));
1915 tuple.src.u.all =
1916 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1917 }
1918
1919 if (ct->status & IPS_DST_NAT) {
1920 memcpy(tuple.dst.u3.all,
1921 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1922 sizeof(tuple.dst.u3.all));
1923 tuple.dst.u.all =
1924 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1925 }
1926
1927 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1928 if (!h)
1929 return 0;
1930
1931 /* Store status bits of the conntrack that is clashing to re-do NAT
1932 * mangling according to what it has been done already to this packet.
1933 */
1934 status = ct->status;
1935
1936 nf_ct_put(ct);
1937 ct = nf_ct_tuplehash_to_ctrack(h);
1938 nf_ct_set(skb, ct, ctinfo);
1939
1940 nat_hook = rcu_dereference(nf_nat_hook);
1941 if (!nat_hook)
1942 return 0;
1943
1944 if (status & IPS_SRC_NAT &&
1945 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1946 IP_CT_DIR_ORIGINAL) == NF_DROP)
1947 return -1;
1948
1949 if (status & IPS_DST_NAT &&
1950 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1951 IP_CT_DIR_ORIGINAL) == NF_DROP)
1952 return -1;
1953
1954 return 0;
1955 }
1956
1957 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1958 const struct sk_buff *skb)
1959 {
1960 const struct nf_conntrack_tuple *src_tuple;
1961 const struct nf_conntrack_tuple_hash *hash;
1962 struct nf_conntrack_tuple srctuple;
1963 enum ip_conntrack_info ctinfo;
1964 struct nf_conn *ct;
1965
1966 ct = nf_ct_get(skb, &ctinfo);
1967 if (ct) {
1968 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1969 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1970 return true;
1971 }
1972
1973 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1974 NFPROTO_IPV4, dev_net(skb->dev),
1975 &srctuple))
1976 return false;
1977
1978 hash = nf_conntrack_find_get(dev_net(skb->dev),
1979 &nf_ct_zone_dflt,
1980 &srctuple);
1981 if (!hash)
1982 return false;
1983
1984 ct = nf_ct_tuplehash_to_ctrack(hash);
1985 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1986 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1987 nf_ct_put(ct);
1988
1989 return true;
1990 }
1991
1992 /* Bring out ya dead! */
1993 static struct nf_conn *
1994 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1995 void *data, unsigned int *bucket)
1996 {
1997 struct nf_conntrack_tuple_hash *h;
1998 struct nf_conn *ct;
1999 struct hlist_nulls_node *n;
2000 spinlock_t *lockp;
2001
2002 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2003 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2004 local_bh_disable();
2005 nf_conntrack_lock(lockp);
2006 if (*bucket < nf_conntrack_htable_size) {
2007 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2008 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2009 continue;
2010 ct = nf_ct_tuplehash_to_ctrack(h);
2011 if (iter(ct, data))
2012 goto found;
2013 }
2014 }
2015 spin_unlock(lockp);
2016 local_bh_enable();
2017 cond_resched();
2018 }
2019
2020 return NULL;
2021 found:
2022 atomic_inc(&ct->ct_general.use);
2023 spin_unlock(lockp);
2024 local_bh_enable();
2025 return ct;
2026 }
2027
2028 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2029 void *data, u32 portid, int report)
2030 {
2031 unsigned int bucket = 0, sequence;
2032 struct nf_conn *ct;
2033
2034 might_sleep();
2035
2036 for (;;) {
2037 sequence = read_seqcount_begin(&nf_conntrack_generation);
2038
2039 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2040 /* Time to push up daises... */
2041
2042 nf_ct_delete(ct, portid, report);
2043 nf_ct_put(ct);
2044 cond_resched();
2045 }
2046
2047 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2048 break;
2049 bucket = 0;
2050 }
2051 }
2052
2053 struct iter_data {
2054 int (*iter)(struct nf_conn *i, void *data);
2055 void *data;
2056 struct net *net;
2057 };
2058
2059 static int iter_net_only(struct nf_conn *i, void *data)
2060 {
2061 struct iter_data *d = data;
2062
2063 if (!net_eq(d->net, nf_ct_net(i)))
2064 return 0;
2065
2066 return d->iter(i, d->data);
2067 }
2068
2069 static void
2070 __nf_ct_unconfirmed_destroy(struct net *net)
2071 {
2072 int cpu;
2073
2074 for_each_possible_cpu(cpu) {
2075 struct nf_conntrack_tuple_hash *h;
2076 struct hlist_nulls_node *n;
2077 struct ct_pcpu *pcpu;
2078
2079 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2080
2081 spin_lock_bh(&pcpu->lock);
2082 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2083 struct nf_conn *ct;
2084
2085 ct = nf_ct_tuplehash_to_ctrack(h);
2086
2087 /* we cannot call iter() on unconfirmed list, the
2088 * owning cpu can reallocate ct->ext at any time.
2089 */
2090 set_bit(IPS_DYING_BIT, &ct->status);
2091 }
2092 spin_unlock_bh(&pcpu->lock);
2093 cond_resched();
2094 }
2095 }
2096
2097 void nf_ct_unconfirmed_destroy(struct net *net)
2098 {
2099 might_sleep();
2100
2101 if (atomic_read(&net->ct.count) > 0) {
2102 __nf_ct_unconfirmed_destroy(net);
2103 nf_queue_nf_hook_drop(net);
2104 synchronize_net();
2105 }
2106 }
2107 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2108
2109 void nf_ct_iterate_cleanup_net(struct net *net,
2110 int (*iter)(struct nf_conn *i, void *data),
2111 void *data, u32 portid, int report)
2112 {
2113 struct iter_data d;
2114
2115 might_sleep();
2116
2117 if (atomic_read(&net->ct.count) == 0)
2118 return;
2119
2120 d.iter = iter;
2121 d.data = data;
2122 d.net = net;
2123
2124 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2125 }
2126 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2127
2128 /**
2129 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2130 * @iter: callback to invoke for each conntrack
2131 * @data: data to pass to @iter
2132 *
2133 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2134 * unconfirmed list as dying (so they will not be inserted into
2135 * main table).
2136 *
2137 * Can only be called in module exit path.
2138 */
2139 void
2140 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2141 {
2142 struct net *net;
2143
2144 down_read(&net_rwsem);
2145 for_each_net(net) {
2146 if (atomic_read(&net->ct.count) == 0)
2147 continue;
2148 __nf_ct_unconfirmed_destroy(net);
2149 nf_queue_nf_hook_drop(net);
2150 }
2151 up_read(&net_rwsem);
2152
2153 /* Need to wait for netns cleanup worker to finish, if its
2154 * running -- it might have deleted a net namespace from
2155 * the global list, so our __nf_ct_unconfirmed_destroy() might
2156 * not have affected all namespaces.
2157 */
2158 net_ns_barrier();
2159
2160 /* a conntrack could have been unlinked from unconfirmed list
2161 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2162 * This makes sure its inserted into conntrack table.
2163 */
2164 synchronize_net();
2165
2166 nf_ct_iterate_cleanup(iter, data, 0, 0);
2167 }
2168 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2169
2170 static int kill_all(struct nf_conn *i, void *data)
2171 {
2172 return net_eq(nf_ct_net(i), data);
2173 }
2174
2175 void nf_conntrack_cleanup_start(void)
2176 {
2177 conntrack_gc_work.exiting = true;
2178 RCU_INIT_POINTER(ip_ct_attach, NULL);
2179 }
2180
2181 void nf_conntrack_cleanup_end(void)
2182 {
2183 RCU_INIT_POINTER(nf_ct_hook, NULL);
2184 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2185 kvfree(nf_conntrack_hash);
2186
2187 nf_conntrack_proto_fini();
2188 nf_conntrack_seqadj_fini();
2189 nf_conntrack_labels_fini();
2190 nf_conntrack_helper_fini();
2191 nf_conntrack_timeout_fini();
2192 nf_conntrack_ecache_fini();
2193 nf_conntrack_tstamp_fini();
2194 nf_conntrack_acct_fini();
2195 nf_conntrack_expect_fini();
2196
2197 kmem_cache_destroy(nf_conntrack_cachep);
2198 }
2199
2200 /*
2201 * Mishearing the voices in his head, our hero wonders how he's
2202 * supposed to kill the mall.
2203 */
2204 void nf_conntrack_cleanup_net(struct net *net)
2205 {
2206 LIST_HEAD(single);
2207
2208 list_add(&net->exit_list, &single);
2209 nf_conntrack_cleanup_net_list(&single);
2210 }
2211
2212 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2213 {
2214 int busy;
2215 struct net *net;
2216
2217 /*
2218 * This makes sure all current packets have passed through
2219 * netfilter framework. Roll on, two-stage module
2220 * delete...
2221 */
2222 synchronize_net();
2223 i_see_dead_people:
2224 busy = 0;
2225 list_for_each_entry(net, net_exit_list, exit_list) {
2226 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2227 if (atomic_read(&net->ct.count) != 0)
2228 busy = 1;
2229 }
2230 if (busy) {
2231 schedule();
2232 goto i_see_dead_people;
2233 }
2234
2235 list_for_each_entry(net, net_exit_list, exit_list) {
2236 nf_conntrack_proto_pernet_fini(net);
2237 nf_conntrack_ecache_pernet_fini(net);
2238 nf_conntrack_expect_pernet_fini(net);
2239 free_percpu(net->ct.stat);
2240 free_percpu(net->ct.pcpu_lists);
2241 }
2242 }
2243
2244 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2245 {
2246 struct hlist_nulls_head *hash;
2247 unsigned int nr_slots, i;
2248
2249 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2250 return NULL;
2251
2252 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2253 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2254
2255 hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2256 GFP_KERNEL | __GFP_ZERO);
2257
2258 if (hash && nulls)
2259 for (i = 0; i < nr_slots; i++)
2260 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2261
2262 return hash;
2263 }
2264 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2265
2266 int nf_conntrack_hash_resize(unsigned int hashsize)
2267 {
2268 int i, bucket;
2269 unsigned int old_size;
2270 struct hlist_nulls_head *hash, *old_hash;
2271 struct nf_conntrack_tuple_hash *h;
2272 struct nf_conn *ct;
2273
2274 if (!hashsize)
2275 return -EINVAL;
2276
2277 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2278 if (!hash)
2279 return -ENOMEM;
2280
2281 old_size = nf_conntrack_htable_size;
2282 if (old_size == hashsize) {
2283 kvfree(hash);
2284 return 0;
2285 }
2286
2287 local_bh_disable();
2288 nf_conntrack_all_lock();
2289 write_seqcount_begin(&nf_conntrack_generation);
2290
2291 /* Lookups in the old hash might happen in parallel, which means we
2292 * might get false negatives during connection lookup. New connections
2293 * created because of a false negative won't make it into the hash
2294 * though since that required taking the locks.
2295 */
2296
2297 for (i = 0; i < nf_conntrack_htable_size; i++) {
2298 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2299 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2300 struct nf_conntrack_tuple_hash, hnnode);
2301 ct = nf_ct_tuplehash_to_ctrack(h);
2302 hlist_nulls_del_rcu(&h->hnnode);
2303 bucket = __hash_conntrack(nf_ct_net(ct),
2304 &h->tuple, hashsize);
2305 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2306 }
2307 }
2308 old_size = nf_conntrack_htable_size;
2309 old_hash = nf_conntrack_hash;
2310
2311 nf_conntrack_hash = hash;
2312 nf_conntrack_htable_size = hashsize;
2313
2314 write_seqcount_end(&nf_conntrack_generation);
2315 nf_conntrack_all_unlock();
2316 local_bh_enable();
2317
2318 synchronize_net();
2319 kvfree(old_hash);
2320 return 0;
2321 }
2322
2323 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2324 {
2325 unsigned int hashsize;
2326 int rc;
2327
2328 if (current->nsproxy->net_ns != &init_net)
2329 return -EOPNOTSUPP;
2330
2331 /* On boot, we can set this without any fancy locking. */
2332 if (!nf_conntrack_hash)
2333 return param_set_uint(val, kp);
2334
2335 rc = kstrtouint(val, 0, &hashsize);
2336 if (rc)
2337 return rc;
2338
2339 return nf_conntrack_hash_resize(hashsize);
2340 }
2341 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2342
2343 static __always_inline unsigned int total_extension_size(void)
2344 {
2345 /* remember to add new extensions below */
2346 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2347
2348 return sizeof(struct nf_ct_ext) +
2349 sizeof(struct nf_conn_help)
2350 #if IS_ENABLED(CONFIG_NF_NAT)
2351 + sizeof(struct nf_conn_nat)
2352 #endif
2353 + sizeof(struct nf_conn_seqadj)
2354 + sizeof(struct nf_conn_acct)
2355 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2356 + sizeof(struct nf_conntrack_ecache)
2357 #endif
2358 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2359 + sizeof(struct nf_conn_tstamp)
2360 #endif
2361 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2362 + sizeof(struct nf_conn_timeout)
2363 #endif
2364 #ifdef CONFIG_NF_CONNTRACK_LABELS
2365 + sizeof(struct nf_conn_labels)
2366 #endif
2367 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2368 + sizeof(struct nf_conn_synproxy)
2369 #endif
2370 ;
2371 };
2372
2373 int nf_conntrack_init_start(void)
2374 {
2375 unsigned long nr_pages = totalram_pages();
2376 int max_factor = 8;
2377 int ret = -ENOMEM;
2378 int i;
2379
2380 /* struct nf_ct_ext uses u8 to store offsets/size */
2381 BUILD_BUG_ON(total_extension_size() > 255u);
2382
2383 seqcount_init(&nf_conntrack_generation);
2384
2385 for (i = 0; i < CONNTRACK_LOCKS; i++)
2386 spin_lock_init(&nf_conntrack_locks[i]);
2387
2388 if (!nf_conntrack_htable_size) {
2389 /* Idea from tcp.c: use 1/16384 of memory.
2390 * On i386: 32MB machine has 512 buckets.
2391 * >= 1GB machines have 16384 buckets.
2392 * >= 4GB machines have 65536 buckets.
2393 */
2394 nf_conntrack_htable_size
2395 = (((nr_pages << PAGE_SHIFT) / 16384)
2396 / sizeof(struct hlist_head));
2397 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2398 nf_conntrack_htable_size = 65536;
2399 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2400 nf_conntrack_htable_size = 16384;
2401 if (nf_conntrack_htable_size < 32)
2402 nf_conntrack_htable_size = 32;
2403
2404 /* Use a max. factor of four by default to get the same max as
2405 * with the old struct list_heads. When a table size is given
2406 * we use the old value of 8 to avoid reducing the max.
2407 * entries. */
2408 max_factor = 4;
2409 }
2410
2411 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2412 if (!nf_conntrack_hash)
2413 return -ENOMEM;
2414
2415 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2416
2417 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2418 sizeof(struct nf_conn),
2419 NFCT_INFOMASK + 1,
2420 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2421 if (!nf_conntrack_cachep)
2422 goto err_cachep;
2423
2424 ret = nf_conntrack_expect_init();
2425 if (ret < 0)
2426 goto err_expect;
2427
2428 ret = nf_conntrack_acct_init();
2429 if (ret < 0)
2430 goto err_acct;
2431
2432 ret = nf_conntrack_tstamp_init();
2433 if (ret < 0)
2434 goto err_tstamp;
2435
2436 ret = nf_conntrack_ecache_init();
2437 if (ret < 0)
2438 goto err_ecache;
2439
2440 ret = nf_conntrack_timeout_init();
2441 if (ret < 0)
2442 goto err_timeout;
2443
2444 ret = nf_conntrack_helper_init();
2445 if (ret < 0)
2446 goto err_helper;
2447
2448 ret = nf_conntrack_labels_init();
2449 if (ret < 0)
2450 goto err_labels;
2451
2452 ret = nf_conntrack_seqadj_init();
2453 if (ret < 0)
2454 goto err_seqadj;
2455
2456 ret = nf_conntrack_proto_init();
2457 if (ret < 0)
2458 goto err_proto;
2459
2460 conntrack_gc_work_init(&conntrack_gc_work);
2461 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2462
2463 return 0;
2464
2465 err_proto:
2466 nf_conntrack_seqadj_fini();
2467 err_seqadj:
2468 nf_conntrack_labels_fini();
2469 err_labels:
2470 nf_conntrack_helper_fini();
2471 err_helper:
2472 nf_conntrack_timeout_fini();
2473 err_timeout:
2474 nf_conntrack_ecache_fini();
2475 err_ecache:
2476 nf_conntrack_tstamp_fini();
2477 err_tstamp:
2478 nf_conntrack_acct_fini();
2479 err_acct:
2480 nf_conntrack_expect_fini();
2481 err_expect:
2482 kmem_cache_destroy(nf_conntrack_cachep);
2483 err_cachep:
2484 kvfree(nf_conntrack_hash);
2485 return ret;
2486 }
2487
2488 static struct nf_ct_hook nf_conntrack_hook = {
2489 .update = nf_conntrack_update,
2490 .destroy = destroy_conntrack,
2491 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2492 };
2493
2494 void nf_conntrack_init_end(void)
2495 {
2496 /* For use by REJECT target */
2497 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2498 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2499 }
2500
2501 /*
2502 * We need to use special "null" values, not used in hash table
2503 */
2504 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2505 #define DYING_NULLS_VAL ((1<<30)+1)
2506 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2507
2508 int nf_conntrack_init_net(struct net *net)
2509 {
2510 int ret = -ENOMEM;
2511 int cpu;
2512
2513 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2514 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2515 atomic_set(&net->ct.count, 0);
2516
2517 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2518 if (!net->ct.pcpu_lists)
2519 goto err_stat;
2520
2521 for_each_possible_cpu(cpu) {
2522 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2523
2524 spin_lock_init(&pcpu->lock);
2525 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2526 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2527 }
2528
2529 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2530 if (!net->ct.stat)
2531 goto err_pcpu_lists;
2532
2533 ret = nf_conntrack_expect_pernet_init(net);
2534 if (ret < 0)
2535 goto err_expect;
2536
2537 nf_conntrack_acct_pernet_init(net);
2538 nf_conntrack_tstamp_pernet_init(net);
2539 nf_conntrack_ecache_pernet_init(net);
2540 nf_conntrack_helper_pernet_init(net);
2541 nf_conntrack_proto_pernet_init(net);
2542
2543 return 0;
2544
2545 err_expect:
2546 free_percpu(net->ct.stat);
2547 err_pcpu_lists:
2548 free_percpu(net->ct.pcpu_lists);
2549 err_stat:
2550 return ret;
2551 }