]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/netfilter/nf_conntrack_core.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-zesty-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 enum nf_nat_manip_type manip,
63 const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 struct conntrack_gc_work {
76 struct delayed_work dwork;
77 u32 last_bucket;
78 bool exiting;
79 long next_gc_run;
80 };
81
82 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
83 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
84 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
85 static __read_mostly bool nf_conntrack_locks_all;
86
87 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
88 #define GC_MAX_BUCKETS_DIV 128u
89 /* upper bound of full table scan */
90 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
91 /* desired ratio of entries found to be expired */
92 #define GC_EVICT_RATIO 50u
93
94 static struct conntrack_gc_work conntrack_gc_work;
95
96 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
97 {
98 spin_lock(lock);
99 while (unlikely(nf_conntrack_locks_all)) {
100 spin_unlock(lock);
101
102 /*
103 * Order the 'nf_conntrack_locks_all' load vs. the
104 * spin_unlock_wait() loads below, to ensure
105 * that 'nf_conntrack_locks_all_lock' is indeed held:
106 */
107 smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
108 spin_unlock_wait(&nf_conntrack_locks_all_lock);
109 spin_lock(lock);
110 }
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116 h1 %= CONNTRACK_LOCKS;
117 h2 %= CONNTRACK_LOCKS;
118 spin_unlock(&nf_conntrack_locks[h1]);
119 if (h1 != h2)
120 spin_unlock(&nf_conntrack_locks[h2]);
121 }
122
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125 unsigned int h2, unsigned int sequence)
126 {
127 h1 %= CONNTRACK_LOCKS;
128 h2 %= CONNTRACK_LOCKS;
129 if (h1 <= h2) {
130 nf_conntrack_lock(&nf_conntrack_locks[h1]);
131 if (h1 != h2)
132 spin_lock_nested(&nf_conntrack_locks[h2],
133 SINGLE_DEPTH_NESTING);
134 } else {
135 nf_conntrack_lock(&nf_conntrack_locks[h2]);
136 spin_lock_nested(&nf_conntrack_locks[h1],
137 SINGLE_DEPTH_NESTING);
138 }
139 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140 nf_conntrack_double_unlock(h1, h2);
141 return true;
142 }
143 return false;
144 }
145
146 static void nf_conntrack_all_lock(void)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151 nf_conntrack_locks_all = true;
152
153 /*
154 * Order the above store of 'nf_conntrack_locks_all' against
155 * the spin_unlock_wait() loads below, such that if
156 * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
157 * we must observe nf_conntrack_locks[] held:
158 */
159 smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
160
161 for (i = 0; i < CONNTRACK_LOCKS; i++) {
162 spin_unlock_wait(&nf_conntrack_locks[i]);
163 }
164 }
165
166 static void nf_conntrack_all_unlock(void)
167 {
168 /*
169 * All prior stores must be complete before we clear
170 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
171 * might observe the false value but not the entire
172 * critical section:
173 */
174 smp_store_release(&nf_conntrack_locks_all, false);
175 spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180
181 unsigned int nf_conntrack_max __read_mostly;
182 seqcount_t nf_conntrack_generation __read_mostly;
183
184 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
185 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
186
187 static unsigned int nf_conntrack_hash_rnd __read_mostly;
188
189 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
190 const struct net *net)
191 {
192 unsigned int n;
193 u32 seed;
194
195 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
196
197 /* The direction must be ignored, so we hash everything up to the
198 * destination ports (which is a multiple of 4) and treat the last
199 * three bytes manually.
200 */
201 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
202 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
203 return jhash2((u32 *)tuple, n, seed ^
204 (((__force __u16)tuple->dst.u.all << 16) |
205 tuple->dst.protonum));
206 }
207
208 static u32 scale_hash(u32 hash)
209 {
210 return reciprocal_scale(hash, nf_conntrack_htable_size);
211 }
212
213 static u32 __hash_conntrack(const struct net *net,
214 const struct nf_conntrack_tuple *tuple,
215 unsigned int size)
216 {
217 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
218 }
219
220 static u32 hash_conntrack(const struct net *net,
221 const struct nf_conntrack_tuple *tuple)
222 {
223 return scale_hash(hash_conntrack_raw(tuple, net));
224 }
225
226 bool
227 nf_ct_get_tuple(const struct sk_buff *skb,
228 unsigned int nhoff,
229 unsigned int dataoff,
230 u_int16_t l3num,
231 u_int8_t protonum,
232 struct net *net,
233 struct nf_conntrack_tuple *tuple,
234 const struct nf_conntrack_l3proto *l3proto,
235 const struct nf_conntrack_l4proto *l4proto)
236 {
237 memset(tuple, 0, sizeof(*tuple));
238
239 tuple->src.l3num = l3num;
240 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
241 return false;
242
243 tuple->dst.protonum = protonum;
244 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
245
246 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
247 }
248 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
249
250 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
251 u_int16_t l3num,
252 struct net *net, struct nf_conntrack_tuple *tuple)
253 {
254 struct nf_conntrack_l3proto *l3proto;
255 struct nf_conntrack_l4proto *l4proto;
256 unsigned int protoff;
257 u_int8_t protonum;
258 int ret;
259
260 rcu_read_lock();
261
262 l3proto = __nf_ct_l3proto_find(l3num);
263 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
264 if (ret != NF_ACCEPT) {
265 rcu_read_unlock();
266 return false;
267 }
268
269 l4proto = __nf_ct_l4proto_find(l3num, protonum);
270
271 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
272 l3proto, l4proto);
273
274 rcu_read_unlock();
275 return ret;
276 }
277 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
278
279 bool
280 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
281 const struct nf_conntrack_tuple *orig,
282 const struct nf_conntrack_l3proto *l3proto,
283 const struct nf_conntrack_l4proto *l4proto)
284 {
285 memset(inverse, 0, sizeof(*inverse));
286
287 inverse->src.l3num = orig->src.l3num;
288 if (l3proto->invert_tuple(inverse, orig) == 0)
289 return false;
290
291 inverse->dst.dir = !orig->dst.dir;
292
293 inverse->dst.protonum = orig->dst.protonum;
294 return l4proto->invert_tuple(inverse, orig);
295 }
296 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
297
298 static void
299 clean_from_lists(struct nf_conn *ct)
300 {
301 pr_debug("clean_from_lists(%p)\n", ct);
302 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
303 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
304
305 /* Destroy all pending expectations */
306 nf_ct_remove_expectations(ct);
307 }
308
309 /* must be called with local_bh_disable */
310 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
311 {
312 struct ct_pcpu *pcpu;
313
314 /* add this conntrack to the (per cpu) dying list */
315 ct->cpu = smp_processor_id();
316 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
317
318 spin_lock(&pcpu->lock);
319 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
320 &pcpu->dying);
321 spin_unlock(&pcpu->lock);
322 }
323
324 /* must be called with local_bh_disable */
325 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
326 {
327 struct ct_pcpu *pcpu;
328
329 /* add this conntrack to the (per cpu) unconfirmed list */
330 ct->cpu = smp_processor_id();
331 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
332
333 spin_lock(&pcpu->lock);
334 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
335 &pcpu->unconfirmed);
336 spin_unlock(&pcpu->lock);
337 }
338
339 /* must be called with local_bh_disable */
340 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
341 {
342 struct ct_pcpu *pcpu;
343
344 /* We overload first tuple to link into unconfirmed or dying list.*/
345 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
346
347 spin_lock(&pcpu->lock);
348 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
349 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
350 spin_unlock(&pcpu->lock);
351 }
352
353 /* Released via destroy_conntrack() */
354 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
355 const struct nf_conntrack_zone *zone,
356 gfp_t flags)
357 {
358 struct nf_conn *tmpl;
359
360 tmpl = kzalloc(sizeof(*tmpl), flags);
361 if (tmpl == NULL)
362 return NULL;
363
364 tmpl->status = IPS_TEMPLATE;
365 write_pnet(&tmpl->ct_net, net);
366 nf_ct_zone_add(tmpl, zone);
367 atomic_set(&tmpl->ct_general.use, 0);
368
369 return tmpl;
370 }
371 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
372
373 void nf_ct_tmpl_free(struct nf_conn *tmpl)
374 {
375 nf_ct_ext_destroy(tmpl);
376 nf_ct_ext_free(tmpl);
377 kfree(tmpl);
378 }
379 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
380
381 static void
382 destroy_conntrack(struct nf_conntrack *nfct)
383 {
384 struct nf_conn *ct = (struct nf_conn *)nfct;
385 struct nf_conntrack_l4proto *l4proto;
386
387 pr_debug("destroy_conntrack(%p)\n", ct);
388 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
389
390 if (unlikely(nf_ct_is_template(ct))) {
391 nf_ct_tmpl_free(ct);
392 return;
393 }
394 rcu_read_lock();
395 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
396 if (l4proto->destroy)
397 l4proto->destroy(ct);
398
399 rcu_read_unlock();
400
401 local_bh_disable();
402 /* Expectations will have been removed in clean_from_lists,
403 * except TFTP can create an expectation on the first packet,
404 * before connection is in the list, so we need to clean here,
405 * too.
406 */
407 nf_ct_remove_expectations(ct);
408
409 nf_ct_del_from_dying_or_unconfirmed_list(ct);
410
411 local_bh_enable();
412
413 if (ct->master)
414 nf_ct_put(ct->master);
415
416 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
417 nf_conntrack_free(ct);
418 }
419
420 static void nf_ct_delete_from_lists(struct nf_conn *ct)
421 {
422 struct net *net = nf_ct_net(ct);
423 unsigned int hash, reply_hash;
424 unsigned int sequence;
425
426 nf_ct_helper_destroy(ct);
427
428 local_bh_disable();
429 do {
430 sequence = read_seqcount_begin(&nf_conntrack_generation);
431 hash = hash_conntrack(net,
432 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
433 reply_hash = hash_conntrack(net,
434 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
435 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
436
437 clean_from_lists(ct);
438 nf_conntrack_double_unlock(hash, reply_hash);
439
440 nf_ct_add_to_dying_list(ct);
441
442 local_bh_enable();
443 }
444
445 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
446 {
447 struct nf_conn_tstamp *tstamp;
448
449 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
450 return false;
451
452 tstamp = nf_conn_tstamp_find(ct);
453 if (tstamp && tstamp->stop == 0)
454 tstamp->stop = ktime_get_real_ns();
455
456 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
457 portid, report) < 0) {
458 /* destroy event was not delivered. nf_ct_put will
459 * be done by event cache worker on redelivery.
460 */
461 nf_ct_delete_from_lists(ct);
462 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
463 return false;
464 }
465
466 nf_conntrack_ecache_work(nf_ct_net(ct));
467 nf_ct_delete_from_lists(ct);
468 nf_ct_put(ct);
469 return true;
470 }
471 EXPORT_SYMBOL_GPL(nf_ct_delete);
472
473 static inline bool
474 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
475 const struct nf_conntrack_tuple *tuple,
476 const struct nf_conntrack_zone *zone,
477 const struct net *net)
478 {
479 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
480
481 /* A conntrack can be recreated with the equal tuple,
482 * so we need to check that the conntrack is confirmed
483 */
484 return nf_ct_tuple_equal(tuple, &h->tuple) &&
485 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
486 nf_ct_is_confirmed(ct) &&
487 net_eq(net, nf_ct_net(ct));
488 }
489
490 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
491 static void nf_ct_gc_expired(struct nf_conn *ct)
492 {
493 if (!atomic_inc_not_zero(&ct->ct_general.use))
494 return;
495
496 if (nf_ct_should_gc(ct))
497 nf_ct_kill(ct);
498
499 nf_ct_put(ct);
500 }
501
502 /*
503 * Warning :
504 * - Caller must take a reference on returned object
505 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
506 */
507 static struct nf_conntrack_tuple_hash *
508 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
509 const struct nf_conntrack_tuple *tuple, u32 hash)
510 {
511 struct nf_conntrack_tuple_hash *h;
512 struct hlist_nulls_head *ct_hash;
513 struct hlist_nulls_node *n;
514 unsigned int bucket, hsize;
515
516 begin:
517 nf_conntrack_get_ht(&ct_hash, &hsize);
518 bucket = reciprocal_scale(hash, hsize);
519
520 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
521 struct nf_conn *ct;
522
523 ct = nf_ct_tuplehash_to_ctrack(h);
524 if (nf_ct_is_expired(ct)) {
525 nf_ct_gc_expired(ct);
526 continue;
527 }
528
529 if (nf_ct_is_dying(ct))
530 continue;
531
532 if (nf_ct_key_equal(h, tuple, zone, net))
533 return h;
534 }
535 /*
536 * if the nulls value we got at the end of this lookup is
537 * not the expected one, we must restart lookup.
538 * We probably met an item that was moved to another chain.
539 */
540 if (get_nulls_value(n) != bucket) {
541 NF_CT_STAT_INC_ATOMIC(net, search_restart);
542 goto begin;
543 }
544
545 return NULL;
546 }
547
548 /* Find a connection corresponding to a tuple. */
549 static struct nf_conntrack_tuple_hash *
550 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
551 const struct nf_conntrack_tuple *tuple, u32 hash)
552 {
553 struct nf_conntrack_tuple_hash *h;
554 struct nf_conn *ct;
555
556 rcu_read_lock();
557 begin:
558 h = ____nf_conntrack_find(net, zone, tuple, hash);
559 if (h) {
560 ct = nf_ct_tuplehash_to_ctrack(h);
561 if (unlikely(nf_ct_is_dying(ct) ||
562 !atomic_inc_not_zero(&ct->ct_general.use)))
563 h = NULL;
564 else {
565 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
566 nf_ct_put(ct);
567 goto begin;
568 }
569 }
570 }
571 rcu_read_unlock();
572
573 return h;
574 }
575
576 struct nf_conntrack_tuple_hash *
577 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
578 const struct nf_conntrack_tuple *tuple)
579 {
580 return __nf_conntrack_find_get(net, zone, tuple,
581 hash_conntrack_raw(tuple, net));
582 }
583 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
584
585 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
586 unsigned int hash,
587 unsigned int reply_hash)
588 {
589 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
590 &nf_conntrack_hash[hash]);
591 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
592 &nf_conntrack_hash[reply_hash]);
593 }
594
595 int
596 nf_conntrack_hash_check_insert(struct nf_conn *ct)
597 {
598 const struct nf_conntrack_zone *zone;
599 struct net *net = nf_ct_net(ct);
600 unsigned int hash, reply_hash;
601 struct nf_conntrack_tuple_hash *h;
602 struct hlist_nulls_node *n;
603 unsigned int sequence;
604
605 zone = nf_ct_zone(ct);
606
607 local_bh_disable();
608 do {
609 sequence = read_seqcount_begin(&nf_conntrack_generation);
610 hash = hash_conntrack(net,
611 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
612 reply_hash = hash_conntrack(net,
613 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
614 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
615
616 /* See if there's one in the list already, including reverse */
617 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
618 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
619 zone, net))
620 goto out;
621
622 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
623 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
624 zone, net))
625 goto out;
626
627 smp_wmb();
628 /* The caller holds a reference to this object */
629 atomic_set(&ct->ct_general.use, 2);
630 __nf_conntrack_hash_insert(ct, hash, reply_hash);
631 nf_conntrack_double_unlock(hash, reply_hash);
632 NF_CT_STAT_INC(net, insert);
633 local_bh_enable();
634 return 0;
635
636 out:
637 nf_conntrack_double_unlock(hash, reply_hash);
638 NF_CT_STAT_INC(net, insert_failed);
639 local_bh_enable();
640 return -EEXIST;
641 }
642 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
643
644 static inline void nf_ct_acct_update(struct nf_conn *ct,
645 enum ip_conntrack_info ctinfo,
646 unsigned int len)
647 {
648 struct nf_conn_acct *acct;
649
650 acct = nf_conn_acct_find(ct);
651 if (acct) {
652 struct nf_conn_counter *counter = acct->counter;
653
654 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
655 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
656 }
657 }
658
659 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
660 const struct nf_conn *loser_ct)
661 {
662 struct nf_conn_acct *acct;
663
664 acct = nf_conn_acct_find(loser_ct);
665 if (acct) {
666 struct nf_conn_counter *counter = acct->counter;
667 unsigned int bytes;
668
669 /* u32 should be fine since we must have seen one packet. */
670 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
671 nf_ct_acct_update(ct, ctinfo, bytes);
672 }
673 }
674
675 /* Resolve race on insertion if this protocol allows this. */
676 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
677 enum ip_conntrack_info ctinfo,
678 struct nf_conntrack_tuple_hash *h)
679 {
680 /* This is the conntrack entry already in hashes that won race. */
681 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
682 struct nf_conntrack_l4proto *l4proto;
683
684 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
685 if (l4proto->allow_clash &&
686 !nfct_nat(ct) &&
687 !nf_ct_is_dying(ct) &&
688 atomic_inc_not_zero(&ct->ct_general.use)) {
689 nf_ct_acct_merge(ct, ctinfo, (struct nf_conn *)skb->nfct);
690 nf_conntrack_put(skb->nfct);
691 /* Assign conntrack already in hashes to this skbuff. Don't
692 * modify skb->nfctinfo to ensure consistent stateful filtering.
693 */
694 skb->nfct = &ct->ct_general;
695 return NF_ACCEPT;
696 }
697 NF_CT_STAT_INC(net, drop);
698 return NF_DROP;
699 }
700
701 /* Confirm a connection given skb; places it in hash table */
702 int
703 __nf_conntrack_confirm(struct sk_buff *skb)
704 {
705 const struct nf_conntrack_zone *zone;
706 unsigned int hash, reply_hash;
707 struct nf_conntrack_tuple_hash *h;
708 struct nf_conn *ct;
709 struct nf_conn_help *help;
710 struct nf_conn_tstamp *tstamp;
711 struct hlist_nulls_node *n;
712 enum ip_conntrack_info ctinfo;
713 struct net *net;
714 unsigned int sequence;
715 int ret = NF_DROP;
716
717 ct = nf_ct_get(skb, &ctinfo);
718 net = nf_ct_net(ct);
719
720 /* ipt_REJECT uses nf_conntrack_attach to attach related
721 ICMP/TCP RST packets in other direction. Actual packet
722 which created connection will be IP_CT_NEW or for an
723 expected connection, IP_CT_RELATED. */
724 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
725 return NF_ACCEPT;
726
727 zone = nf_ct_zone(ct);
728 local_bh_disable();
729
730 do {
731 sequence = read_seqcount_begin(&nf_conntrack_generation);
732 /* reuse the hash saved before */
733 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
734 hash = scale_hash(hash);
735 reply_hash = hash_conntrack(net,
736 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
737
738 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
739
740 /* We're not in hash table, and we refuse to set up related
741 * connections for unconfirmed conns. But packet copies and
742 * REJECT will give spurious warnings here.
743 */
744 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
745
746 /* No external references means no one else could have
747 * confirmed us.
748 */
749 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
750 pr_debug("Confirming conntrack %p\n", ct);
751 /* We have to check the DYING flag after unlink to prevent
752 * a race against nf_ct_get_next_corpse() possibly called from
753 * user context, else we insert an already 'dead' hash, blocking
754 * further use of that particular connection -JM.
755 */
756 nf_ct_del_from_dying_or_unconfirmed_list(ct);
757
758 if (unlikely(nf_ct_is_dying(ct))) {
759 nf_ct_add_to_dying_list(ct);
760 goto dying;
761 }
762
763 /* See if there's one in the list already, including reverse:
764 NAT could have grabbed it without realizing, since we're
765 not in the hash. If there is, we lost race. */
766 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
767 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
768 zone, net))
769 goto out;
770
771 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
772 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
773 zone, net))
774 goto out;
775
776 /* Timer relative to confirmation time, not original
777 setting time, otherwise we'd get timer wrap in
778 weird delay cases. */
779 ct->timeout += nfct_time_stamp;
780 atomic_inc(&ct->ct_general.use);
781 ct->status |= IPS_CONFIRMED;
782
783 /* set conntrack timestamp, if enabled. */
784 tstamp = nf_conn_tstamp_find(ct);
785 if (tstamp) {
786 if (skb->tstamp == 0)
787 __net_timestamp(skb);
788
789 tstamp->start = ktime_to_ns(skb->tstamp);
790 }
791 /* Since the lookup is lockless, hash insertion must be done after
792 * starting the timer and setting the CONFIRMED bit. The RCU barriers
793 * guarantee that no other CPU can find the conntrack before the above
794 * stores are visible.
795 */
796 __nf_conntrack_hash_insert(ct, hash, reply_hash);
797 nf_conntrack_double_unlock(hash, reply_hash);
798 local_bh_enable();
799
800 help = nfct_help(ct);
801 if (help && help->helper)
802 nf_conntrack_event_cache(IPCT_HELPER, ct);
803
804 nf_conntrack_event_cache(master_ct(ct) ?
805 IPCT_RELATED : IPCT_NEW, ct);
806 return NF_ACCEPT;
807
808 out:
809 nf_ct_add_to_dying_list(ct);
810 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
811 dying:
812 nf_conntrack_double_unlock(hash, reply_hash);
813 NF_CT_STAT_INC(net, insert_failed);
814 local_bh_enable();
815 return ret;
816 }
817 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
818
819 /* Returns true if a connection correspondings to the tuple (required
820 for NAT). */
821 int
822 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
823 const struct nf_conn *ignored_conntrack)
824 {
825 struct net *net = nf_ct_net(ignored_conntrack);
826 const struct nf_conntrack_zone *zone;
827 struct nf_conntrack_tuple_hash *h;
828 struct hlist_nulls_head *ct_hash;
829 unsigned int hash, hsize;
830 struct hlist_nulls_node *n;
831 struct nf_conn *ct;
832
833 zone = nf_ct_zone(ignored_conntrack);
834
835 rcu_read_lock();
836 begin:
837 nf_conntrack_get_ht(&ct_hash, &hsize);
838 hash = __hash_conntrack(net, tuple, hsize);
839
840 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
841 ct = nf_ct_tuplehash_to_ctrack(h);
842
843 if (ct == ignored_conntrack)
844 continue;
845
846 if (nf_ct_is_expired(ct)) {
847 nf_ct_gc_expired(ct);
848 continue;
849 }
850
851 if (nf_ct_key_equal(h, tuple, zone, net)) {
852 NF_CT_STAT_INC_ATOMIC(net, found);
853 rcu_read_unlock();
854 return 1;
855 }
856 }
857
858 if (get_nulls_value(n) != hash) {
859 NF_CT_STAT_INC_ATOMIC(net, search_restart);
860 goto begin;
861 }
862
863 rcu_read_unlock();
864
865 return 0;
866 }
867 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
868
869 #define NF_CT_EVICTION_RANGE 8
870
871 /* There's a small race here where we may free a just-assured
872 connection. Too bad: we're in trouble anyway. */
873 static unsigned int early_drop_list(struct net *net,
874 struct hlist_nulls_head *head)
875 {
876 struct nf_conntrack_tuple_hash *h;
877 struct hlist_nulls_node *n;
878 unsigned int drops = 0;
879 struct nf_conn *tmp;
880
881 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
882 tmp = nf_ct_tuplehash_to_ctrack(h);
883
884 if (nf_ct_is_expired(tmp)) {
885 nf_ct_gc_expired(tmp);
886 continue;
887 }
888
889 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
890 !net_eq(nf_ct_net(tmp), net) ||
891 nf_ct_is_dying(tmp))
892 continue;
893
894 if (!atomic_inc_not_zero(&tmp->ct_general.use))
895 continue;
896
897 /* kill only if still in same netns -- might have moved due to
898 * SLAB_DESTROY_BY_RCU rules.
899 *
900 * We steal the timer reference. If that fails timer has
901 * already fired or someone else deleted it. Just drop ref
902 * and move to next entry.
903 */
904 if (net_eq(nf_ct_net(tmp), net) &&
905 nf_ct_is_confirmed(tmp) &&
906 nf_ct_delete(tmp, 0, 0))
907 drops++;
908
909 nf_ct_put(tmp);
910 }
911
912 return drops;
913 }
914
915 static noinline int early_drop(struct net *net, unsigned int _hash)
916 {
917 unsigned int i;
918
919 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
920 struct hlist_nulls_head *ct_hash;
921 unsigned int hash, hsize, drops;
922
923 rcu_read_lock();
924 nf_conntrack_get_ht(&ct_hash, &hsize);
925 hash = reciprocal_scale(_hash++, hsize);
926
927 drops = early_drop_list(net, &ct_hash[hash]);
928 rcu_read_unlock();
929
930 if (drops) {
931 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
932 return true;
933 }
934 }
935
936 return false;
937 }
938
939 static void gc_worker(struct work_struct *work)
940 {
941 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
942 unsigned int i, goal, buckets = 0, expired_count = 0;
943 struct conntrack_gc_work *gc_work;
944 unsigned int ratio, scanned = 0;
945 unsigned long next_run;
946
947 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
948
949 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
950 i = gc_work->last_bucket;
951
952 do {
953 struct nf_conntrack_tuple_hash *h;
954 struct hlist_nulls_head *ct_hash;
955 struct hlist_nulls_node *n;
956 unsigned int hashsz;
957 struct nf_conn *tmp;
958
959 i++;
960 rcu_read_lock();
961
962 nf_conntrack_get_ht(&ct_hash, &hashsz);
963 if (i >= hashsz)
964 i = 0;
965
966 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
967 tmp = nf_ct_tuplehash_to_ctrack(h);
968
969 scanned++;
970 if (nf_ct_is_expired(tmp)) {
971 nf_ct_gc_expired(tmp);
972 expired_count++;
973 continue;
974 }
975 }
976
977 /* could check get_nulls_value() here and restart if ct
978 * was moved to another chain. But given gc is best-effort
979 * we will just continue with next hash slot.
980 */
981 rcu_read_unlock();
982 cond_resched_rcu_qs();
983 } while (++buckets < goal);
984
985 if (gc_work->exiting)
986 return;
987
988 /*
989 * Eviction will normally happen from the packet path, and not
990 * from this gc worker.
991 *
992 * This worker is only here to reap expired entries when system went
993 * idle after a busy period.
994 *
995 * The heuristics below are supposed to balance conflicting goals:
996 *
997 * 1. Minimize time until we notice a stale entry
998 * 2. Maximize scan intervals to not waste cycles
999 *
1000 * Normally, expire ratio will be close to 0.
1001 *
1002 * As soon as a sizeable fraction of the entries have expired
1003 * increase scan frequency.
1004 */
1005 ratio = scanned ? expired_count * 100 / scanned : 0;
1006 if (ratio > GC_EVICT_RATIO) {
1007 gc_work->next_gc_run = min_interval;
1008 } else {
1009 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1010
1011 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1012
1013 gc_work->next_gc_run += min_interval;
1014 if (gc_work->next_gc_run > max)
1015 gc_work->next_gc_run = max;
1016 }
1017
1018 next_run = gc_work->next_gc_run;
1019 gc_work->last_bucket = i;
1020 queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1021 }
1022
1023 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1024 {
1025 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1026 gc_work->next_gc_run = HZ;
1027 gc_work->exiting = false;
1028 }
1029
1030 static struct nf_conn *
1031 __nf_conntrack_alloc(struct net *net,
1032 const struct nf_conntrack_zone *zone,
1033 const struct nf_conntrack_tuple *orig,
1034 const struct nf_conntrack_tuple *repl,
1035 gfp_t gfp, u32 hash)
1036 {
1037 struct nf_conn *ct;
1038
1039 /* We don't want any race condition at early drop stage */
1040 atomic_inc(&net->ct.count);
1041
1042 if (nf_conntrack_max &&
1043 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1044 if (!early_drop(net, hash)) {
1045 atomic_dec(&net->ct.count);
1046 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1047 return ERR_PTR(-ENOMEM);
1048 }
1049 }
1050
1051 /*
1052 * Do not use kmem_cache_zalloc(), as this cache uses
1053 * SLAB_DESTROY_BY_RCU.
1054 */
1055 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1056 if (ct == NULL)
1057 goto out;
1058
1059 spin_lock_init(&ct->lock);
1060 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1061 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1062 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1063 /* save hash for reusing when confirming */
1064 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1065 ct->status = 0;
1066 write_pnet(&ct->ct_net, net);
1067 memset(&ct->__nfct_init_offset[0], 0,
1068 offsetof(struct nf_conn, proto) -
1069 offsetof(struct nf_conn, __nfct_init_offset[0]));
1070
1071 nf_ct_zone_add(ct, zone);
1072
1073 /* Because we use RCU lookups, we set ct_general.use to zero before
1074 * this is inserted in any list.
1075 */
1076 atomic_set(&ct->ct_general.use, 0);
1077 return ct;
1078 out:
1079 atomic_dec(&net->ct.count);
1080 return ERR_PTR(-ENOMEM);
1081 }
1082
1083 struct nf_conn *nf_conntrack_alloc(struct net *net,
1084 const struct nf_conntrack_zone *zone,
1085 const struct nf_conntrack_tuple *orig,
1086 const struct nf_conntrack_tuple *repl,
1087 gfp_t gfp)
1088 {
1089 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1090 }
1091 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1092
1093 void nf_conntrack_free(struct nf_conn *ct)
1094 {
1095 struct net *net = nf_ct_net(ct);
1096
1097 /* A freed object has refcnt == 0, that's
1098 * the golden rule for SLAB_DESTROY_BY_RCU
1099 */
1100 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1101
1102 nf_ct_ext_destroy(ct);
1103 nf_ct_ext_free(ct);
1104 kmem_cache_free(nf_conntrack_cachep, ct);
1105 smp_mb__before_atomic();
1106 atomic_dec(&net->ct.count);
1107 }
1108 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1109
1110
1111 /* Allocate a new conntrack: we return -ENOMEM if classification
1112 failed due to stress. Otherwise it really is unclassifiable. */
1113 static struct nf_conntrack_tuple_hash *
1114 init_conntrack(struct net *net, struct nf_conn *tmpl,
1115 const struct nf_conntrack_tuple *tuple,
1116 struct nf_conntrack_l3proto *l3proto,
1117 struct nf_conntrack_l4proto *l4proto,
1118 struct sk_buff *skb,
1119 unsigned int dataoff, u32 hash)
1120 {
1121 struct nf_conn *ct;
1122 struct nf_conn_help *help;
1123 struct nf_conntrack_tuple repl_tuple;
1124 struct nf_conntrack_ecache *ecache;
1125 struct nf_conntrack_expect *exp = NULL;
1126 const struct nf_conntrack_zone *zone;
1127 struct nf_conn_timeout *timeout_ext;
1128 struct nf_conntrack_zone tmp;
1129 unsigned int *timeouts;
1130
1131 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1132 pr_debug("Can't invert tuple.\n");
1133 return NULL;
1134 }
1135
1136 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1137 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1138 hash);
1139 if (IS_ERR(ct))
1140 return (struct nf_conntrack_tuple_hash *)ct;
1141
1142 if (!nf_ct_add_synproxy(ct, tmpl)) {
1143 nf_conntrack_free(ct);
1144 return ERR_PTR(-ENOMEM);
1145 }
1146
1147 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1148 if (timeout_ext) {
1149 timeouts = nf_ct_timeout_data(timeout_ext);
1150 if (unlikely(!timeouts))
1151 timeouts = l4proto->get_timeouts(net);
1152 } else {
1153 timeouts = l4proto->get_timeouts(net);
1154 }
1155
1156 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1157 nf_conntrack_free(ct);
1158 pr_debug("can't track with proto module\n");
1159 return NULL;
1160 }
1161
1162 if (timeout_ext)
1163 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1164 GFP_ATOMIC);
1165
1166 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1167 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1168 nf_ct_labels_ext_add(ct);
1169
1170 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1171 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1172 ecache ? ecache->expmask : 0,
1173 GFP_ATOMIC);
1174
1175 local_bh_disable();
1176 if (net->ct.expect_count) {
1177 spin_lock(&nf_conntrack_expect_lock);
1178 exp = nf_ct_find_expectation(net, zone, tuple);
1179 if (exp) {
1180 pr_debug("expectation arrives ct=%p exp=%p\n",
1181 ct, exp);
1182 /* Welcome, Mr. Bond. We've been expecting you... */
1183 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1184 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1185 ct->master = exp->master;
1186 if (exp->helper) {
1187 help = nf_ct_helper_ext_add(ct, exp->helper,
1188 GFP_ATOMIC);
1189 if (help)
1190 rcu_assign_pointer(help->helper, exp->helper);
1191 }
1192
1193 #ifdef CONFIG_NF_CONNTRACK_MARK
1194 ct->mark = exp->master->mark;
1195 #endif
1196 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1197 ct->secmark = exp->master->secmark;
1198 #endif
1199 NF_CT_STAT_INC(net, expect_new);
1200 }
1201 spin_unlock(&nf_conntrack_expect_lock);
1202 }
1203 if (!exp)
1204 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1205
1206 /* Now it is inserted into the unconfirmed list, bump refcount */
1207 nf_conntrack_get(&ct->ct_general);
1208 nf_ct_add_to_unconfirmed_list(ct);
1209
1210 local_bh_enable();
1211
1212 if (exp) {
1213 if (exp->expectfn)
1214 exp->expectfn(ct, exp);
1215 nf_ct_expect_put(exp);
1216 }
1217
1218 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1219 }
1220
1221 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1222 static inline struct nf_conn *
1223 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1224 struct sk_buff *skb,
1225 unsigned int dataoff,
1226 u_int16_t l3num,
1227 u_int8_t protonum,
1228 struct nf_conntrack_l3proto *l3proto,
1229 struct nf_conntrack_l4proto *l4proto,
1230 int *set_reply,
1231 enum ip_conntrack_info *ctinfo)
1232 {
1233 const struct nf_conntrack_zone *zone;
1234 struct nf_conntrack_tuple tuple;
1235 struct nf_conntrack_tuple_hash *h;
1236 struct nf_conntrack_zone tmp;
1237 struct nf_conn *ct;
1238 u32 hash;
1239
1240 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1241 dataoff, l3num, protonum, net, &tuple, l3proto,
1242 l4proto)) {
1243 pr_debug("Can't get tuple\n");
1244 return NULL;
1245 }
1246
1247 /* look for tuple match */
1248 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1249 hash = hash_conntrack_raw(&tuple, net);
1250 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1251 if (!h) {
1252 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1253 skb, dataoff, hash);
1254 if (!h)
1255 return NULL;
1256 if (IS_ERR(h))
1257 return (void *)h;
1258 }
1259 ct = nf_ct_tuplehash_to_ctrack(h);
1260
1261 /* It exists; we have (non-exclusive) reference. */
1262 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1263 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1264 /* Please set reply bit if this packet OK */
1265 *set_reply = 1;
1266 } else {
1267 /* Once we've had two way comms, always ESTABLISHED. */
1268 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1269 pr_debug("normal packet for %p\n", ct);
1270 *ctinfo = IP_CT_ESTABLISHED;
1271 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1272 pr_debug("related packet for %p\n", ct);
1273 *ctinfo = IP_CT_RELATED;
1274 } else {
1275 pr_debug("new packet for %p\n", ct);
1276 *ctinfo = IP_CT_NEW;
1277 }
1278 *set_reply = 0;
1279 }
1280 skb->nfct = &ct->ct_general;
1281 skb->nfctinfo = *ctinfo;
1282 return ct;
1283 }
1284
1285 unsigned int
1286 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1287 struct sk_buff *skb)
1288 {
1289 struct nf_conn *ct, *tmpl = NULL;
1290 enum ip_conntrack_info ctinfo;
1291 struct nf_conntrack_l3proto *l3proto;
1292 struct nf_conntrack_l4proto *l4proto;
1293 unsigned int *timeouts;
1294 unsigned int dataoff;
1295 u_int8_t protonum;
1296 int set_reply = 0;
1297 int ret;
1298
1299 if (skb->nfct) {
1300 /* Previously seen (loopback or untracked)? Ignore. */
1301 tmpl = (struct nf_conn *)skb->nfct;
1302 if (!nf_ct_is_template(tmpl)) {
1303 NF_CT_STAT_INC_ATOMIC(net, ignore);
1304 return NF_ACCEPT;
1305 }
1306 skb->nfct = NULL;
1307 }
1308
1309 /* rcu_read_lock()ed by nf_hook_thresh */
1310 l3proto = __nf_ct_l3proto_find(pf);
1311 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1312 &dataoff, &protonum);
1313 if (ret <= 0) {
1314 pr_debug("not prepared to track yet or error occurred\n");
1315 NF_CT_STAT_INC_ATOMIC(net, error);
1316 NF_CT_STAT_INC_ATOMIC(net, invalid);
1317 ret = -ret;
1318 goto out;
1319 }
1320
1321 l4proto = __nf_ct_l4proto_find(pf, protonum);
1322
1323 /* It may be an special packet, error, unclean...
1324 * inverse of the return code tells to the netfilter
1325 * core what to do with the packet. */
1326 if (l4proto->error != NULL) {
1327 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
1328 pf, hooknum);
1329 if (ret <= 0) {
1330 NF_CT_STAT_INC_ATOMIC(net, error);
1331 NF_CT_STAT_INC_ATOMIC(net, invalid);
1332 ret = -ret;
1333 goto out;
1334 }
1335 /* ICMP[v6] protocol trackers may assign one conntrack. */
1336 if (skb->nfct)
1337 goto out;
1338 }
1339 repeat:
1340 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1341 l3proto, l4proto, &set_reply, &ctinfo);
1342 if (!ct) {
1343 /* Not valid part of a connection */
1344 NF_CT_STAT_INC_ATOMIC(net, invalid);
1345 ret = NF_ACCEPT;
1346 goto out;
1347 }
1348
1349 if (IS_ERR(ct)) {
1350 /* Too stressed to deal. */
1351 NF_CT_STAT_INC_ATOMIC(net, drop);
1352 ret = NF_DROP;
1353 goto out;
1354 }
1355
1356 NF_CT_ASSERT(skb->nfct);
1357
1358 /* Decide what timeout policy we want to apply to this flow. */
1359 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1360
1361 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1362 if (ret <= 0) {
1363 /* Invalid: inverse of the return code tells
1364 * the netfilter core what to do */
1365 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1366 nf_conntrack_put(skb->nfct);
1367 skb->nfct = NULL;
1368 NF_CT_STAT_INC_ATOMIC(net, invalid);
1369 if (ret == -NF_DROP)
1370 NF_CT_STAT_INC_ATOMIC(net, drop);
1371 /* Special case: TCP tracker reports an attempt to reopen a
1372 * closed/aborted connection. We have to go back and create a
1373 * fresh conntrack.
1374 */
1375 if (ret == -NF_REPEAT)
1376 goto repeat;
1377 ret = -ret;
1378 goto out;
1379 }
1380
1381 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1382 nf_conntrack_event_cache(IPCT_REPLY, ct);
1383 out:
1384 if (tmpl)
1385 nf_ct_put(tmpl);
1386
1387 return ret;
1388 }
1389 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1390
1391 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1392 const struct nf_conntrack_tuple *orig)
1393 {
1394 bool ret;
1395
1396 rcu_read_lock();
1397 ret = nf_ct_invert_tuple(inverse, orig,
1398 __nf_ct_l3proto_find(orig->src.l3num),
1399 __nf_ct_l4proto_find(orig->src.l3num,
1400 orig->dst.protonum));
1401 rcu_read_unlock();
1402 return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1405
1406 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1407 implicitly racy: see __nf_conntrack_confirm */
1408 void nf_conntrack_alter_reply(struct nf_conn *ct,
1409 const struct nf_conntrack_tuple *newreply)
1410 {
1411 struct nf_conn_help *help = nfct_help(ct);
1412
1413 /* Should be unconfirmed, so not in hash table yet */
1414 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1415
1416 pr_debug("Altering reply tuple of %p to ", ct);
1417 nf_ct_dump_tuple(newreply);
1418
1419 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1420 if (ct->master || (help && !hlist_empty(&help->expectations)))
1421 return;
1422
1423 rcu_read_lock();
1424 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1425 rcu_read_unlock();
1426 }
1427 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1428
1429 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1430 void __nf_ct_refresh_acct(struct nf_conn *ct,
1431 enum ip_conntrack_info ctinfo,
1432 const struct sk_buff *skb,
1433 unsigned long extra_jiffies,
1434 int do_acct)
1435 {
1436 NF_CT_ASSERT(skb);
1437
1438 /* Only update if this is not a fixed timeout */
1439 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1440 goto acct;
1441
1442 /* If not in hash table, timer will not be active yet */
1443 if (nf_ct_is_confirmed(ct))
1444 extra_jiffies += nfct_time_stamp;
1445
1446 ct->timeout = extra_jiffies;
1447 acct:
1448 if (do_acct)
1449 nf_ct_acct_update(ct, ctinfo, skb->len);
1450 }
1451 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1452
1453 bool nf_ct_kill_acct(struct nf_conn *ct,
1454 enum ip_conntrack_info ctinfo,
1455 const struct sk_buff *skb)
1456 {
1457 nf_ct_acct_update(ct, ctinfo, skb->len);
1458
1459 return nf_ct_delete(ct, 0, 0);
1460 }
1461 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1462
1463 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1464
1465 #include <linux/netfilter/nfnetlink.h>
1466 #include <linux/netfilter/nfnetlink_conntrack.h>
1467 #include <linux/mutex.h>
1468
1469 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1470 * in ip_conntrack_core, since we don't want the protocols to autoload
1471 * or depend on ctnetlink */
1472 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1473 const struct nf_conntrack_tuple *tuple)
1474 {
1475 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1476 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1477 goto nla_put_failure;
1478 return 0;
1479
1480 nla_put_failure:
1481 return -1;
1482 }
1483 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1484
1485 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1486 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1487 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1488 };
1489 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1490
1491 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1492 struct nf_conntrack_tuple *t)
1493 {
1494 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1495 return -EINVAL;
1496
1497 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1498 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1499
1500 return 0;
1501 }
1502 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1503
1504 int nf_ct_port_nlattr_tuple_size(void)
1505 {
1506 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1507 }
1508 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1509 #endif
1510
1511 /* Used by ipt_REJECT and ip6t_REJECT. */
1512 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1513 {
1514 struct nf_conn *ct;
1515 enum ip_conntrack_info ctinfo;
1516
1517 /* This ICMP is in reverse direction to the packet which caused it */
1518 ct = nf_ct_get(skb, &ctinfo);
1519 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1520 ctinfo = IP_CT_RELATED_REPLY;
1521 else
1522 ctinfo = IP_CT_RELATED;
1523
1524 /* Attach to new skbuff, and increment count */
1525 nskb->nfct = &ct->ct_general;
1526 nskb->nfctinfo = ctinfo;
1527 nf_conntrack_get(nskb->nfct);
1528 }
1529
1530 /* Bring out ya dead! */
1531 static struct nf_conn *
1532 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1533 void *data, unsigned int *bucket)
1534 {
1535 struct nf_conntrack_tuple_hash *h;
1536 struct nf_conn *ct;
1537 struct hlist_nulls_node *n;
1538 int cpu;
1539 spinlock_t *lockp;
1540
1541 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1542 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1543 local_bh_disable();
1544 nf_conntrack_lock(lockp);
1545 if (*bucket < nf_conntrack_htable_size) {
1546 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1547 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1548 continue;
1549 ct = nf_ct_tuplehash_to_ctrack(h);
1550 if (net_eq(nf_ct_net(ct), net) &&
1551 iter(ct, data))
1552 goto found;
1553 }
1554 }
1555 spin_unlock(lockp);
1556 local_bh_enable();
1557 cond_resched();
1558 }
1559
1560 for_each_possible_cpu(cpu) {
1561 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1562
1563 spin_lock_bh(&pcpu->lock);
1564 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1565 ct = nf_ct_tuplehash_to_ctrack(h);
1566 if (iter(ct, data))
1567 set_bit(IPS_DYING_BIT, &ct->status);
1568 }
1569 spin_unlock_bh(&pcpu->lock);
1570 cond_resched();
1571 }
1572 return NULL;
1573 found:
1574 atomic_inc(&ct->ct_general.use);
1575 spin_unlock(lockp);
1576 local_bh_enable();
1577 return ct;
1578 }
1579
1580 void nf_ct_iterate_cleanup(struct net *net,
1581 int (*iter)(struct nf_conn *i, void *data),
1582 void *data, u32 portid, int report)
1583 {
1584 struct nf_conn *ct;
1585 unsigned int bucket = 0;
1586
1587 might_sleep();
1588
1589 if (atomic_read(&net->ct.count) == 0)
1590 return;
1591
1592 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1593 /* Time to push up daises... */
1594
1595 nf_ct_delete(ct, portid, report);
1596 nf_ct_put(ct);
1597 cond_resched();
1598 }
1599 }
1600 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1601
1602 static int kill_all(struct nf_conn *i, void *data)
1603 {
1604 return 1;
1605 }
1606
1607 void nf_ct_free_hashtable(void *hash, unsigned int size)
1608 {
1609 if (is_vmalloc_addr(hash))
1610 vfree(hash);
1611 else
1612 free_pages((unsigned long)hash,
1613 get_order(sizeof(struct hlist_head) * size));
1614 }
1615 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1616
1617 static int untrack_refs(void)
1618 {
1619 int cnt = 0, cpu;
1620
1621 for_each_possible_cpu(cpu) {
1622 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1623
1624 cnt += atomic_read(&ct->ct_general.use) - 1;
1625 }
1626 return cnt;
1627 }
1628
1629 void nf_conntrack_cleanup_start(void)
1630 {
1631 conntrack_gc_work.exiting = true;
1632 RCU_INIT_POINTER(ip_ct_attach, NULL);
1633 }
1634
1635 void nf_conntrack_cleanup_end(void)
1636 {
1637 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1638 while (untrack_refs() > 0)
1639 schedule();
1640
1641 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1642 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1643
1644 nf_conntrack_proto_fini();
1645 nf_conntrack_seqadj_fini();
1646 nf_conntrack_labels_fini();
1647 nf_conntrack_helper_fini();
1648 nf_conntrack_timeout_fini();
1649 nf_conntrack_ecache_fini();
1650 nf_conntrack_tstamp_fini();
1651 nf_conntrack_acct_fini();
1652 nf_conntrack_expect_fini();
1653
1654 kmem_cache_destroy(nf_conntrack_cachep);
1655 }
1656
1657 /*
1658 * Mishearing the voices in his head, our hero wonders how he's
1659 * supposed to kill the mall.
1660 */
1661 void nf_conntrack_cleanup_net(struct net *net)
1662 {
1663 LIST_HEAD(single);
1664
1665 list_add(&net->exit_list, &single);
1666 nf_conntrack_cleanup_net_list(&single);
1667 }
1668
1669 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1670 {
1671 int busy;
1672 struct net *net;
1673
1674 /*
1675 * This makes sure all current packets have passed through
1676 * netfilter framework. Roll on, two-stage module
1677 * delete...
1678 */
1679 synchronize_net();
1680 i_see_dead_people:
1681 busy = 0;
1682 list_for_each_entry(net, net_exit_list, exit_list) {
1683 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1684 if (atomic_read(&net->ct.count) != 0)
1685 busy = 1;
1686 }
1687 if (busy) {
1688 schedule();
1689 goto i_see_dead_people;
1690 }
1691
1692 list_for_each_entry(net, net_exit_list, exit_list) {
1693 nf_conntrack_proto_pernet_fini(net);
1694 nf_conntrack_helper_pernet_fini(net);
1695 nf_conntrack_ecache_pernet_fini(net);
1696 nf_conntrack_tstamp_pernet_fini(net);
1697 nf_conntrack_acct_pernet_fini(net);
1698 nf_conntrack_expect_pernet_fini(net);
1699 free_percpu(net->ct.stat);
1700 free_percpu(net->ct.pcpu_lists);
1701 }
1702 }
1703
1704 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1705 {
1706 struct hlist_nulls_head *hash;
1707 unsigned int nr_slots, i;
1708 size_t sz;
1709
1710 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1711 return NULL;
1712
1713 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1714 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1715
1716 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1717 return NULL;
1718
1719 sz = nr_slots * sizeof(struct hlist_nulls_head);
1720 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1721 get_order(sz));
1722 if (!hash)
1723 hash = vzalloc(sz);
1724
1725 if (hash && nulls)
1726 for (i = 0; i < nr_slots; i++)
1727 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1728
1729 return hash;
1730 }
1731 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1732
1733 int nf_conntrack_hash_resize(unsigned int hashsize)
1734 {
1735 int i, bucket;
1736 unsigned int old_size;
1737 struct hlist_nulls_head *hash, *old_hash;
1738 struct nf_conntrack_tuple_hash *h;
1739 struct nf_conn *ct;
1740
1741 if (!hashsize)
1742 return -EINVAL;
1743
1744 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1745 if (!hash)
1746 return -ENOMEM;
1747
1748 old_size = nf_conntrack_htable_size;
1749 if (old_size == hashsize) {
1750 nf_ct_free_hashtable(hash, hashsize);
1751 return 0;
1752 }
1753
1754 local_bh_disable();
1755 nf_conntrack_all_lock();
1756 write_seqcount_begin(&nf_conntrack_generation);
1757
1758 /* Lookups in the old hash might happen in parallel, which means we
1759 * might get false negatives during connection lookup. New connections
1760 * created because of a false negative won't make it into the hash
1761 * though since that required taking the locks.
1762 */
1763
1764 for (i = 0; i < nf_conntrack_htable_size; i++) {
1765 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1766 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1767 struct nf_conntrack_tuple_hash, hnnode);
1768 ct = nf_ct_tuplehash_to_ctrack(h);
1769 hlist_nulls_del_rcu(&h->hnnode);
1770 bucket = __hash_conntrack(nf_ct_net(ct),
1771 &h->tuple, hashsize);
1772 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1773 }
1774 }
1775 old_size = nf_conntrack_htable_size;
1776 old_hash = nf_conntrack_hash;
1777
1778 nf_conntrack_hash = hash;
1779 nf_conntrack_htable_size = hashsize;
1780
1781 write_seqcount_end(&nf_conntrack_generation);
1782 nf_conntrack_all_unlock();
1783 local_bh_enable();
1784
1785 synchronize_net();
1786 nf_ct_free_hashtable(old_hash, old_size);
1787 return 0;
1788 }
1789
1790 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1791 {
1792 unsigned int hashsize;
1793 int rc;
1794
1795 if (current->nsproxy->net_ns != &init_net)
1796 return -EOPNOTSUPP;
1797
1798 /* On boot, we can set this without any fancy locking. */
1799 if (!nf_conntrack_htable_size)
1800 return param_set_uint(val, kp);
1801
1802 rc = kstrtouint(val, 0, &hashsize);
1803 if (rc)
1804 return rc;
1805
1806 return nf_conntrack_hash_resize(hashsize);
1807 }
1808 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1809
1810 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1811 &nf_conntrack_htable_size, 0600);
1812
1813 void nf_ct_untracked_status_or(unsigned long bits)
1814 {
1815 int cpu;
1816
1817 for_each_possible_cpu(cpu)
1818 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1819 }
1820 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1821
1822 int nf_conntrack_init_start(void)
1823 {
1824 int max_factor = 8;
1825 int ret = -ENOMEM;
1826 int i, cpu;
1827
1828 seqcount_init(&nf_conntrack_generation);
1829
1830 for (i = 0; i < CONNTRACK_LOCKS; i++)
1831 spin_lock_init(&nf_conntrack_locks[i]);
1832
1833 if (!nf_conntrack_htable_size) {
1834 /* Idea from tcp.c: use 1/16384 of memory.
1835 * On i386: 32MB machine has 512 buckets.
1836 * >= 1GB machines have 16384 buckets.
1837 * >= 4GB machines have 65536 buckets.
1838 */
1839 nf_conntrack_htable_size
1840 = (((totalram_pages << PAGE_SHIFT) / 16384)
1841 / sizeof(struct hlist_head));
1842 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1843 nf_conntrack_htable_size = 65536;
1844 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1845 nf_conntrack_htable_size = 16384;
1846 if (nf_conntrack_htable_size < 32)
1847 nf_conntrack_htable_size = 32;
1848
1849 /* Use a max. factor of four by default to get the same max as
1850 * with the old struct list_heads. When a table size is given
1851 * we use the old value of 8 to avoid reducing the max.
1852 * entries. */
1853 max_factor = 4;
1854 }
1855
1856 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1857 if (!nf_conntrack_hash)
1858 return -ENOMEM;
1859
1860 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1861
1862 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1863 sizeof(struct nf_conn), 0,
1864 SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1865 if (!nf_conntrack_cachep)
1866 goto err_cachep;
1867
1868 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1869 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1870 nf_conntrack_max);
1871
1872 ret = nf_conntrack_expect_init();
1873 if (ret < 0)
1874 goto err_expect;
1875
1876 ret = nf_conntrack_acct_init();
1877 if (ret < 0)
1878 goto err_acct;
1879
1880 ret = nf_conntrack_tstamp_init();
1881 if (ret < 0)
1882 goto err_tstamp;
1883
1884 ret = nf_conntrack_ecache_init();
1885 if (ret < 0)
1886 goto err_ecache;
1887
1888 ret = nf_conntrack_timeout_init();
1889 if (ret < 0)
1890 goto err_timeout;
1891
1892 ret = nf_conntrack_helper_init();
1893 if (ret < 0)
1894 goto err_helper;
1895
1896 ret = nf_conntrack_labels_init();
1897 if (ret < 0)
1898 goto err_labels;
1899
1900 ret = nf_conntrack_seqadj_init();
1901 if (ret < 0)
1902 goto err_seqadj;
1903
1904 ret = nf_conntrack_proto_init();
1905 if (ret < 0)
1906 goto err_proto;
1907
1908 /* Set up fake conntrack: to never be deleted, not in any hashes */
1909 for_each_possible_cpu(cpu) {
1910 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1911 write_pnet(&ct->ct_net, &init_net);
1912 atomic_set(&ct->ct_general.use, 1);
1913 }
1914 /* - and look it like as a confirmed connection */
1915 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1916
1917 conntrack_gc_work_init(&conntrack_gc_work);
1918 queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, HZ);
1919
1920 return 0;
1921
1922 err_proto:
1923 nf_conntrack_seqadj_fini();
1924 err_seqadj:
1925 nf_conntrack_labels_fini();
1926 err_labels:
1927 nf_conntrack_helper_fini();
1928 err_helper:
1929 nf_conntrack_timeout_fini();
1930 err_timeout:
1931 nf_conntrack_ecache_fini();
1932 err_ecache:
1933 nf_conntrack_tstamp_fini();
1934 err_tstamp:
1935 nf_conntrack_acct_fini();
1936 err_acct:
1937 nf_conntrack_expect_fini();
1938 err_expect:
1939 kmem_cache_destroy(nf_conntrack_cachep);
1940 err_cachep:
1941 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1942 return ret;
1943 }
1944
1945 void nf_conntrack_init_end(void)
1946 {
1947 /* For use by REJECT target */
1948 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1949 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1950 }
1951
1952 /*
1953 * We need to use special "null" values, not used in hash table
1954 */
1955 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1956 #define DYING_NULLS_VAL ((1<<30)+1)
1957 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1958
1959 int nf_conntrack_init_net(struct net *net)
1960 {
1961 int ret = -ENOMEM;
1962 int cpu;
1963
1964 atomic_set(&net->ct.count, 0);
1965
1966 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1967 if (!net->ct.pcpu_lists)
1968 goto err_stat;
1969
1970 for_each_possible_cpu(cpu) {
1971 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1972
1973 spin_lock_init(&pcpu->lock);
1974 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1975 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1976 }
1977
1978 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1979 if (!net->ct.stat)
1980 goto err_pcpu_lists;
1981
1982 ret = nf_conntrack_expect_pernet_init(net);
1983 if (ret < 0)
1984 goto err_expect;
1985 ret = nf_conntrack_acct_pernet_init(net);
1986 if (ret < 0)
1987 goto err_acct;
1988 ret = nf_conntrack_tstamp_pernet_init(net);
1989 if (ret < 0)
1990 goto err_tstamp;
1991 ret = nf_conntrack_ecache_pernet_init(net);
1992 if (ret < 0)
1993 goto err_ecache;
1994 ret = nf_conntrack_helper_pernet_init(net);
1995 if (ret < 0)
1996 goto err_helper;
1997 ret = nf_conntrack_proto_pernet_init(net);
1998 if (ret < 0)
1999 goto err_proto;
2000 return 0;
2001
2002 err_proto:
2003 nf_conntrack_helper_pernet_fini(net);
2004 err_helper:
2005 nf_conntrack_ecache_pernet_fini(net);
2006 err_ecache:
2007 nf_conntrack_tstamp_pernet_fini(net);
2008 err_tstamp:
2009 nf_conntrack_acct_pernet_fini(net);
2010 err_acct:
2011 nf_conntrack_expect_pernet_fini(net);
2012 err_expect:
2013 free_percpu(net->ct.stat);
2014 err_pcpu_lists:
2015 free_percpu(net->ct.pcpu_lists);
2016 err_stat:
2017 return ret;
2018 }