]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/netfilter/nf_conntrack_core.c
Merge tag 'for-linus-5.2b-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/siphash.h>
29 #include <linux/err.h>
30 #include <linux/percpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/notifier.h>
33 #include <linux/kernel.h>
34 #include <linux/netdevice.h>
35 #include <linux/socket.h>
36 #include <linux/mm.h>
37 #include <linux/nsproxy.h>
38 #include <linux/rculist_nulls.h>
39
40 #include <net/netfilter/nf_conntrack.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_helper.h>
56 #include <net/netns/hash.h>
57 #include <net/ip.h>
58
59 #include "nf_internals.h"
60
61 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
62 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
63
64 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
65 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
66
67 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
68 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
69
70 struct conntrack_gc_work {
71 struct delayed_work dwork;
72 u32 last_bucket;
73 bool exiting;
74 bool early_drop;
75 long next_gc_run;
76 };
77
78 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
79 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
80 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
81 static __read_mostly bool nf_conntrack_locks_all;
82
83 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
84 #define GC_MAX_BUCKETS_DIV 128u
85 /* upper bound of full table scan */
86 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
87 /* desired ratio of entries found to be expired */
88 #define GC_EVICT_RATIO 50u
89
90 static struct conntrack_gc_work conntrack_gc_work;
91
92 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
93 {
94 /* 1) Acquire the lock */
95 spin_lock(lock);
96
97 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
98 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
99 */
100 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
101 return;
102
103 /* fast path failed, unlock */
104 spin_unlock(lock);
105
106 /* Slow path 1) get global lock */
107 spin_lock(&nf_conntrack_locks_all_lock);
108
109 /* Slow path 2) get the lock we want */
110 spin_lock(lock);
111
112 /* Slow path 3) release the global lock */
113 spin_unlock(&nf_conntrack_locks_all_lock);
114 }
115 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
116
117 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
118 {
119 h1 %= CONNTRACK_LOCKS;
120 h2 %= CONNTRACK_LOCKS;
121 spin_unlock(&nf_conntrack_locks[h1]);
122 if (h1 != h2)
123 spin_unlock(&nf_conntrack_locks[h2]);
124 }
125
126 /* return true if we need to recompute hashes (in case hash table was resized) */
127 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
128 unsigned int h2, unsigned int sequence)
129 {
130 h1 %= CONNTRACK_LOCKS;
131 h2 %= CONNTRACK_LOCKS;
132 if (h1 <= h2) {
133 nf_conntrack_lock(&nf_conntrack_locks[h1]);
134 if (h1 != h2)
135 spin_lock_nested(&nf_conntrack_locks[h2],
136 SINGLE_DEPTH_NESTING);
137 } else {
138 nf_conntrack_lock(&nf_conntrack_locks[h2]);
139 spin_lock_nested(&nf_conntrack_locks[h1],
140 SINGLE_DEPTH_NESTING);
141 }
142 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
143 nf_conntrack_double_unlock(h1, h2);
144 return true;
145 }
146 return false;
147 }
148
149 static void nf_conntrack_all_lock(void)
150 {
151 int i;
152
153 spin_lock(&nf_conntrack_locks_all_lock);
154
155 nf_conntrack_locks_all = true;
156
157 for (i = 0; i < CONNTRACK_LOCKS; i++) {
158 spin_lock(&nf_conntrack_locks[i]);
159
160 /* This spin_unlock provides the "release" to ensure that
161 * nf_conntrack_locks_all==true is visible to everyone that
162 * acquired spin_lock(&nf_conntrack_locks[]).
163 */
164 spin_unlock(&nf_conntrack_locks[i]);
165 }
166 }
167
168 static void nf_conntrack_all_unlock(void)
169 {
170 /* All prior stores must be complete before we clear
171 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
172 * might observe the false value but not the entire
173 * critical section.
174 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
175 */
176 smp_store_release(&nf_conntrack_locks_all, false);
177 spin_unlock(&nf_conntrack_locks_all_lock);
178 }
179
180 unsigned int nf_conntrack_htable_size __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
182
183 unsigned int nf_conntrack_max __read_mostly;
184 EXPORT_SYMBOL_GPL(nf_conntrack_max);
185 seqcount_t nf_conntrack_generation __read_mostly;
186 static unsigned int nf_conntrack_hash_rnd __read_mostly;
187
188 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
189 const struct net *net)
190 {
191 unsigned int n;
192 u32 seed;
193
194 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
195
196 /* The direction must be ignored, so we hash everything up to the
197 * destination ports (which is a multiple of 4) and treat the last
198 * three bytes manually.
199 */
200 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
201 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
202 return jhash2((u32 *)tuple, n, seed ^
203 (((__force __u16)tuple->dst.u.all << 16) |
204 tuple->dst.protonum));
205 }
206
207 static u32 scale_hash(u32 hash)
208 {
209 return reciprocal_scale(hash, nf_conntrack_htable_size);
210 }
211
212 static u32 __hash_conntrack(const struct net *net,
213 const struct nf_conntrack_tuple *tuple,
214 unsigned int size)
215 {
216 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
217 }
218
219 static u32 hash_conntrack(const struct net *net,
220 const struct nf_conntrack_tuple *tuple)
221 {
222 return scale_hash(hash_conntrack_raw(tuple, net));
223 }
224
225 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
226 unsigned int dataoff,
227 struct nf_conntrack_tuple *tuple)
228 { struct {
229 __be16 sport;
230 __be16 dport;
231 } _inet_hdr, *inet_hdr;
232
233 /* Actually only need first 4 bytes to get ports. */
234 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
235 if (!inet_hdr)
236 return false;
237
238 tuple->src.u.udp.port = inet_hdr->sport;
239 tuple->dst.u.udp.port = inet_hdr->dport;
240 return true;
241 }
242
243 static bool
244 nf_ct_get_tuple(const struct sk_buff *skb,
245 unsigned int nhoff,
246 unsigned int dataoff,
247 u_int16_t l3num,
248 u_int8_t protonum,
249 struct net *net,
250 struct nf_conntrack_tuple *tuple)
251 {
252 unsigned int size;
253 const __be32 *ap;
254 __be32 _addrs[8];
255
256 memset(tuple, 0, sizeof(*tuple));
257
258 tuple->src.l3num = l3num;
259 switch (l3num) {
260 case NFPROTO_IPV4:
261 nhoff += offsetof(struct iphdr, saddr);
262 size = 2 * sizeof(__be32);
263 break;
264 case NFPROTO_IPV6:
265 nhoff += offsetof(struct ipv6hdr, saddr);
266 size = sizeof(_addrs);
267 break;
268 default:
269 return true;
270 }
271
272 ap = skb_header_pointer(skb, nhoff, size, _addrs);
273 if (!ap)
274 return false;
275
276 switch (l3num) {
277 case NFPROTO_IPV4:
278 tuple->src.u3.ip = ap[0];
279 tuple->dst.u3.ip = ap[1];
280 break;
281 case NFPROTO_IPV6:
282 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
283 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
284 break;
285 }
286
287 tuple->dst.protonum = protonum;
288 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
289
290 switch (protonum) {
291 #if IS_ENABLED(CONFIG_IPV6)
292 case IPPROTO_ICMPV6:
293 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
294 #endif
295 case IPPROTO_ICMP:
296 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
297 #ifdef CONFIG_NF_CT_PROTO_GRE
298 case IPPROTO_GRE:
299 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
300 #endif
301 case IPPROTO_TCP:
302 case IPPROTO_UDP: /* fallthrough */
303 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
304 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
305 case IPPROTO_UDPLITE:
306 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
307 #endif
308 #ifdef CONFIG_NF_CT_PROTO_SCTP
309 case IPPROTO_SCTP:
310 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
311 #endif
312 #ifdef CONFIG_NF_CT_PROTO_DCCP
313 case IPPROTO_DCCP:
314 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
315 #endif
316 default:
317 break;
318 }
319
320 return true;
321 }
322
323 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
324 u_int8_t *protonum)
325 {
326 int dataoff = -1;
327 const struct iphdr *iph;
328 struct iphdr _iph;
329
330 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
331 if (!iph)
332 return -1;
333
334 /* Conntrack defragments packets, we might still see fragments
335 * inside ICMP packets though.
336 */
337 if (iph->frag_off & htons(IP_OFFSET))
338 return -1;
339
340 dataoff = nhoff + (iph->ihl << 2);
341 *protonum = iph->protocol;
342
343 /* Check bogus IP headers */
344 if (dataoff > skb->len) {
345 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
346 nhoff, iph->ihl << 2, skb->len);
347 return -1;
348 }
349 return dataoff;
350 }
351
352 #if IS_ENABLED(CONFIG_IPV6)
353 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
354 u8 *protonum)
355 {
356 int protoff = -1;
357 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
358 __be16 frag_off;
359 u8 nexthdr;
360
361 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
362 &nexthdr, sizeof(nexthdr)) != 0) {
363 pr_debug("can't get nexthdr\n");
364 return -1;
365 }
366 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
367 /*
368 * (protoff == skb->len) means the packet has not data, just
369 * IPv6 and possibly extensions headers, but it is tracked anyway
370 */
371 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
372 pr_debug("can't find proto in pkt\n");
373 return -1;
374 }
375
376 *protonum = nexthdr;
377 return protoff;
378 }
379 #endif
380
381 static int get_l4proto(const struct sk_buff *skb,
382 unsigned int nhoff, u8 pf, u8 *l4num)
383 {
384 switch (pf) {
385 case NFPROTO_IPV4:
386 return ipv4_get_l4proto(skb, nhoff, l4num);
387 #if IS_ENABLED(CONFIG_IPV6)
388 case NFPROTO_IPV6:
389 return ipv6_get_l4proto(skb, nhoff, l4num);
390 #endif
391 default:
392 *l4num = 0;
393 break;
394 }
395 return -1;
396 }
397
398 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
399 u_int16_t l3num,
400 struct net *net, struct nf_conntrack_tuple *tuple)
401 {
402 u8 protonum;
403 int protoff;
404
405 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
406 if (protoff <= 0)
407 return false;
408
409 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
410 }
411 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
412
413 bool
414 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
415 const struct nf_conntrack_tuple *orig)
416 {
417 memset(inverse, 0, sizeof(*inverse));
418
419 inverse->src.l3num = orig->src.l3num;
420
421 switch (orig->src.l3num) {
422 case NFPROTO_IPV4:
423 inverse->src.u3.ip = orig->dst.u3.ip;
424 inverse->dst.u3.ip = orig->src.u3.ip;
425 break;
426 case NFPROTO_IPV6:
427 inverse->src.u3.in6 = orig->dst.u3.in6;
428 inverse->dst.u3.in6 = orig->src.u3.in6;
429 break;
430 default:
431 break;
432 }
433
434 inverse->dst.dir = !orig->dst.dir;
435
436 inverse->dst.protonum = orig->dst.protonum;
437
438 switch (orig->dst.protonum) {
439 case IPPROTO_ICMP:
440 return nf_conntrack_invert_icmp_tuple(inverse, orig);
441 #if IS_ENABLED(CONFIG_IPV6)
442 case IPPROTO_ICMPV6:
443 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
444 #endif
445 }
446
447 inverse->src.u.all = orig->dst.u.all;
448 inverse->dst.u.all = orig->src.u.all;
449 return true;
450 }
451 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
452
453 /* Generate a almost-unique pseudo-id for a given conntrack.
454 *
455 * intentionally doesn't re-use any of the seeds used for hash
456 * table location, we assume id gets exposed to userspace.
457 *
458 * Following nf_conn items do not change throughout lifetime
459 * of the nf_conn after it has been committed to main hash table:
460 *
461 * 1. nf_conn address
462 * 2. nf_conn->ext address
463 * 3. nf_conn->master address (normally NULL)
464 * 4. tuple
465 * 5. the associated net namespace
466 */
467 u32 nf_ct_get_id(const struct nf_conn *ct)
468 {
469 static __read_mostly siphash_key_t ct_id_seed;
470 unsigned long a, b, c, d;
471
472 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
473
474 a = (unsigned long)ct;
475 b = (unsigned long)ct->master ^ net_hash_mix(nf_ct_net(ct));
476 c = (unsigned long)ct->ext;
477 d = (unsigned long)siphash(&ct->tuplehash, sizeof(ct->tuplehash),
478 &ct_id_seed);
479 #ifdef CONFIG_64BIT
480 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
481 #else
482 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
483 #endif
484 }
485 EXPORT_SYMBOL_GPL(nf_ct_get_id);
486
487 static void
488 clean_from_lists(struct nf_conn *ct)
489 {
490 pr_debug("clean_from_lists(%p)\n", ct);
491 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
492 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
493
494 /* Destroy all pending expectations */
495 nf_ct_remove_expectations(ct);
496 }
497
498 /* must be called with local_bh_disable */
499 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
500 {
501 struct ct_pcpu *pcpu;
502
503 /* add this conntrack to the (per cpu) dying list */
504 ct->cpu = smp_processor_id();
505 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
506
507 spin_lock(&pcpu->lock);
508 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
509 &pcpu->dying);
510 spin_unlock(&pcpu->lock);
511 }
512
513 /* must be called with local_bh_disable */
514 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
515 {
516 struct ct_pcpu *pcpu;
517
518 /* add this conntrack to the (per cpu) unconfirmed list */
519 ct->cpu = smp_processor_id();
520 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
521
522 spin_lock(&pcpu->lock);
523 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
524 &pcpu->unconfirmed);
525 spin_unlock(&pcpu->lock);
526 }
527
528 /* must be called with local_bh_disable */
529 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
530 {
531 struct ct_pcpu *pcpu;
532
533 /* We overload first tuple to link into unconfirmed or dying list.*/
534 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
535
536 spin_lock(&pcpu->lock);
537 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
538 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
539 spin_unlock(&pcpu->lock);
540 }
541
542 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
543
544 /* Released via destroy_conntrack() */
545 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
546 const struct nf_conntrack_zone *zone,
547 gfp_t flags)
548 {
549 struct nf_conn *tmpl, *p;
550
551 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
552 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
553 if (!tmpl)
554 return NULL;
555
556 p = tmpl;
557 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
558 if (tmpl != p) {
559 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
560 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
561 }
562 } else {
563 tmpl = kzalloc(sizeof(*tmpl), flags);
564 if (!tmpl)
565 return NULL;
566 }
567
568 tmpl->status = IPS_TEMPLATE;
569 write_pnet(&tmpl->ct_net, net);
570 nf_ct_zone_add(tmpl, zone);
571 atomic_set(&tmpl->ct_general.use, 0);
572
573 return tmpl;
574 }
575 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
576
577 void nf_ct_tmpl_free(struct nf_conn *tmpl)
578 {
579 nf_ct_ext_destroy(tmpl);
580 nf_ct_ext_free(tmpl);
581
582 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
583 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
584 else
585 kfree(tmpl);
586 }
587 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
588
589 static void destroy_gre_conntrack(struct nf_conn *ct)
590 {
591 #ifdef CONFIG_NF_CT_PROTO_GRE
592 struct nf_conn *master = ct->master;
593
594 if (master)
595 nf_ct_gre_keymap_destroy(master);
596 #endif
597 }
598
599 static void
600 destroy_conntrack(struct nf_conntrack *nfct)
601 {
602 struct nf_conn *ct = (struct nf_conn *)nfct;
603
604 pr_debug("destroy_conntrack(%p)\n", ct);
605 WARN_ON(atomic_read(&nfct->use) != 0);
606
607 if (unlikely(nf_ct_is_template(ct))) {
608 nf_ct_tmpl_free(ct);
609 return;
610 }
611
612 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
613 destroy_gre_conntrack(ct);
614
615 local_bh_disable();
616 /* Expectations will have been removed in clean_from_lists,
617 * except TFTP can create an expectation on the first packet,
618 * before connection is in the list, so we need to clean here,
619 * too.
620 */
621 nf_ct_remove_expectations(ct);
622
623 nf_ct_del_from_dying_or_unconfirmed_list(ct);
624
625 local_bh_enable();
626
627 if (ct->master)
628 nf_ct_put(ct->master);
629
630 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
631 nf_conntrack_free(ct);
632 }
633
634 static void nf_ct_delete_from_lists(struct nf_conn *ct)
635 {
636 struct net *net = nf_ct_net(ct);
637 unsigned int hash, reply_hash;
638 unsigned int sequence;
639
640 nf_ct_helper_destroy(ct);
641
642 local_bh_disable();
643 do {
644 sequence = read_seqcount_begin(&nf_conntrack_generation);
645 hash = hash_conntrack(net,
646 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
647 reply_hash = hash_conntrack(net,
648 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
649 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
650
651 clean_from_lists(ct);
652 nf_conntrack_double_unlock(hash, reply_hash);
653
654 nf_ct_add_to_dying_list(ct);
655
656 local_bh_enable();
657 }
658
659 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
660 {
661 struct nf_conn_tstamp *tstamp;
662
663 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
664 return false;
665
666 tstamp = nf_conn_tstamp_find(ct);
667 if (tstamp && tstamp->stop == 0)
668 tstamp->stop = ktime_get_real_ns();
669
670 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
671 portid, report) < 0) {
672 /* destroy event was not delivered. nf_ct_put will
673 * be done by event cache worker on redelivery.
674 */
675 nf_ct_delete_from_lists(ct);
676 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
677 return false;
678 }
679
680 nf_conntrack_ecache_work(nf_ct_net(ct));
681 nf_ct_delete_from_lists(ct);
682 nf_ct_put(ct);
683 return true;
684 }
685 EXPORT_SYMBOL_GPL(nf_ct_delete);
686
687 static inline bool
688 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
689 const struct nf_conntrack_tuple *tuple,
690 const struct nf_conntrack_zone *zone,
691 const struct net *net)
692 {
693 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
694
695 /* A conntrack can be recreated with the equal tuple,
696 * so we need to check that the conntrack is confirmed
697 */
698 return nf_ct_tuple_equal(tuple, &h->tuple) &&
699 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
700 nf_ct_is_confirmed(ct) &&
701 net_eq(net, nf_ct_net(ct));
702 }
703
704 static inline bool
705 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
706 {
707 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
708 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
709 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
710 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
711 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
712 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
713 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
714 }
715
716 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
717 static void nf_ct_gc_expired(struct nf_conn *ct)
718 {
719 if (!atomic_inc_not_zero(&ct->ct_general.use))
720 return;
721
722 if (nf_ct_should_gc(ct))
723 nf_ct_kill(ct);
724
725 nf_ct_put(ct);
726 }
727
728 /*
729 * Warning :
730 * - Caller must take a reference on returned object
731 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
732 */
733 static struct nf_conntrack_tuple_hash *
734 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
735 const struct nf_conntrack_tuple *tuple, u32 hash)
736 {
737 struct nf_conntrack_tuple_hash *h;
738 struct hlist_nulls_head *ct_hash;
739 struct hlist_nulls_node *n;
740 unsigned int bucket, hsize;
741
742 begin:
743 nf_conntrack_get_ht(&ct_hash, &hsize);
744 bucket = reciprocal_scale(hash, hsize);
745
746 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
747 struct nf_conn *ct;
748
749 ct = nf_ct_tuplehash_to_ctrack(h);
750 if (nf_ct_is_expired(ct)) {
751 nf_ct_gc_expired(ct);
752 continue;
753 }
754
755 if (nf_ct_is_dying(ct))
756 continue;
757
758 if (nf_ct_key_equal(h, tuple, zone, net))
759 return h;
760 }
761 /*
762 * if the nulls value we got at the end of this lookup is
763 * not the expected one, we must restart lookup.
764 * We probably met an item that was moved to another chain.
765 */
766 if (get_nulls_value(n) != bucket) {
767 NF_CT_STAT_INC_ATOMIC(net, search_restart);
768 goto begin;
769 }
770
771 return NULL;
772 }
773
774 /* Find a connection corresponding to a tuple. */
775 static struct nf_conntrack_tuple_hash *
776 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
777 const struct nf_conntrack_tuple *tuple, u32 hash)
778 {
779 struct nf_conntrack_tuple_hash *h;
780 struct nf_conn *ct;
781
782 rcu_read_lock();
783 begin:
784 h = ____nf_conntrack_find(net, zone, tuple, hash);
785 if (h) {
786 ct = nf_ct_tuplehash_to_ctrack(h);
787 if (unlikely(nf_ct_is_dying(ct) ||
788 !atomic_inc_not_zero(&ct->ct_general.use)))
789 h = NULL;
790 else {
791 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
792 nf_ct_put(ct);
793 goto begin;
794 }
795 }
796 }
797 rcu_read_unlock();
798
799 return h;
800 }
801
802 struct nf_conntrack_tuple_hash *
803 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
804 const struct nf_conntrack_tuple *tuple)
805 {
806 return __nf_conntrack_find_get(net, zone, tuple,
807 hash_conntrack_raw(tuple, net));
808 }
809 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
810
811 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
812 unsigned int hash,
813 unsigned int reply_hash)
814 {
815 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
816 &nf_conntrack_hash[hash]);
817 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
818 &nf_conntrack_hash[reply_hash]);
819 }
820
821 int
822 nf_conntrack_hash_check_insert(struct nf_conn *ct)
823 {
824 const struct nf_conntrack_zone *zone;
825 struct net *net = nf_ct_net(ct);
826 unsigned int hash, reply_hash;
827 struct nf_conntrack_tuple_hash *h;
828 struct hlist_nulls_node *n;
829 unsigned int sequence;
830
831 zone = nf_ct_zone(ct);
832
833 local_bh_disable();
834 do {
835 sequence = read_seqcount_begin(&nf_conntrack_generation);
836 hash = hash_conntrack(net,
837 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
838 reply_hash = hash_conntrack(net,
839 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
840 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
841
842 /* See if there's one in the list already, including reverse */
843 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
844 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
845 zone, net))
846 goto out;
847
848 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
849 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
850 zone, net))
851 goto out;
852
853 smp_wmb();
854 /* The caller holds a reference to this object */
855 atomic_set(&ct->ct_general.use, 2);
856 __nf_conntrack_hash_insert(ct, hash, reply_hash);
857 nf_conntrack_double_unlock(hash, reply_hash);
858 NF_CT_STAT_INC(net, insert);
859 local_bh_enable();
860 return 0;
861
862 out:
863 nf_conntrack_double_unlock(hash, reply_hash);
864 NF_CT_STAT_INC(net, insert_failed);
865 local_bh_enable();
866 return -EEXIST;
867 }
868 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
869
870 static inline void nf_ct_acct_update(struct nf_conn *ct,
871 enum ip_conntrack_info ctinfo,
872 unsigned int len)
873 {
874 struct nf_conn_acct *acct;
875
876 acct = nf_conn_acct_find(ct);
877 if (acct) {
878 struct nf_conn_counter *counter = acct->counter;
879
880 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
881 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
882 }
883 }
884
885 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
886 const struct nf_conn *loser_ct)
887 {
888 struct nf_conn_acct *acct;
889
890 acct = nf_conn_acct_find(loser_ct);
891 if (acct) {
892 struct nf_conn_counter *counter = acct->counter;
893 unsigned int bytes;
894
895 /* u32 should be fine since we must have seen one packet. */
896 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
897 nf_ct_acct_update(ct, ctinfo, bytes);
898 }
899 }
900
901 /* Resolve race on insertion if this protocol allows this. */
902 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
903 enum ip_conntrack_info ctinfo,
904 struct nf_conntrack_tuple_hash *h)
905 {
906 /* This is the conntrack entry already in hashes that won race. */
907 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
908 const struct nf_conntrack_l4proto *l4proto;
909 enum ip_conntrack_info oldinfo;
910 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
911
912 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
913 if (l4proto->allow_clash &&
914 !nf_ct_is_dying(ct) &&
915 atomic_inc_not_zero(&ct->ct_general.use)) {
916 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
917 nf_ct_match(ct, loser_ct)) {
918 nf_ct_acct_merge(ct, ctinfo, loser_ct);
919 nf_conntrack_put(&loser_ct->ct_general);
920 nf_ct_set(skb, ct, oldinfo);
921 return NF_ACCEPT;
922 }
923 nf_ct_put(ct);
924 }
925 NF_CT_STAT_INC(net, drop);
926 return NF_DROP;
927 }
928
929 /* Confirm a connection given skb; places it in hash table */
930 int
931 __nf_conntrack_confirm(struct sk_buff *skb)
932 {
933 const struct nf_conntrack_zone *zone;
934 unsigned int hash, reply_hash;
935 struct nf_conntrack_tuple_hash *h;
936 struct nf_conn *ct;
937 struct nf_conn_help *help;
938 struct nf_conn_tstamp *tstamp;
939 struct hlist_nulls_node *n;
940 enum ip_conntrack_info ctinfo;
941 struct net *net;
942 unsigned int sequence;
943 int ret = NF_DROP;
944
945 ct = nf_ct_get(skb, &ctinfo);
946 net = nf_ct_net(ct);
947
948 /* ipt_REJECT uses nf_conntrack_attach to attach related
949 ICMP/TCP RST packets in other direction. Actual packet
950 which created connection will be IP_CT_NEW or for an
951 expected connection, IP_CT_RELATED. */
952 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
953 return NF_ACCEPT;
954
955 zone = nf_ct_zone(ct);
956 local_bh_disable();
957
958 do {
959 sequence = read_seqcount_begin(&nf_conntrack_generation);
960 /* reuse the hash saved before */
961 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
962 hash = scale_hash(hash);
963 reply_hash = hash_conntrack(net,
964 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
965
966 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
967
968 /* We're not in hash table, and we refuse to set up related
969 * connections for unconfirmed conns. But packet copies and
970 * REJECT will give spurious warnings here.
971 */
972
973 /* Another skb with the same unconfirmed conntrack may
974 * win the race. This may happen for bridge(br_flood)
975 * or broadcast/multicast packets do skb_clone with
976 * unconfirmed conntrack.
977 */
978 if (unlikely(nf_ct_is_confirmed(ct))) {
979 WARN_ON_ONCE(1);
980 nf_conntrack_double_unlock(hash, reply_hash);
981 local_bh_enable();
982 return NF_DROP;
983 }
984
985 pr_debug("Confirming conntrack %p\n", ct);
986 /* We have to check the DYING flag after unlink to prevent
987 * a race against nf_ct_get_next_corpse() possibly called from
988 * user context, else we insert an already 'dead' hash, blocking
989 * further use of that particular connection -JM.
990 */
991 nf_ct_del_from_dying_or_unconfirmed_list(ct);
992
993 if (unlikely(nf_ct_is_dying(ct))) {
994 nf_ct_add_to_dying_list(ct);
995 goto dying;
996 }
997
998 /* See if there's one in the list already, including reverse:
999 NAT could have grabbed it without realizing, since we're
1000 not in the hash. If there is, we lost race. */
1001 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
1002 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1003 zone, net))
1004 goto out;
1005
1006 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1007 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1008 zone, net))
1009 goto out;
1010
1011 /* Timer relative to confirmation time, not original
1012 setting time, otherwise we'd get timer wrap in
1013 weird delay cases. */
1014 ct->timeout += nfct_time_stamp;
1015 atomic_inc(&ct->ct_general.use);
1016 ct->status |= IPS_CONFIRMED;
1017
1018 /* set conntrack timestamp, if enabled. */
1019 tstamp = nf_conn_tstamp_find(ct);
1020 if (tstamp)
1021 tstamp->start = ktime_get_real_ns();
1022
1023 /* Since the lookup is lockless, hash insertion must be done after
1024 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1025 * guarantee that no other CPU can find the conntrack before the above
1026 * stores are visible.
1027 */
1028 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1029 nf_conntrack_double_unlock(hash, reply_hash);
1030 local_bh_enable();
1031
1032 help = nfct_help(ct);
1033 if (help && help->helper)
1034 nf_conntrack_event_cache(IPCT_HELPER, ct);
1035
1036 nf_conntrack_event_cache(master_ct(ct) ?
1037 IPCT_RELATED : IPCT_NEW, ct);
1038 return NF_ACCEPT;
1039
1040 out:
1041 nf_ct_add_to_dying_list(ct);
1042 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1043 dying:
1044 nf_conntrack_double_unlock(hash, reply_hash);
1045 NF_CT_STAT_INC(net, insert_failed);
1046 local_bh_enable();
1047 return ret;
1048 }
1049 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1050
1051 /* Returns true if a connection correspondings to the tuple (required
1052 for NAT). */
1053 int
1054 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1055 const struct nf_conn *ignored_conntrack)
1056 {
1057 struct net *net = nf_ct_net(ignored_conntrack);
1058 const struct nf_conntrack_zone *zone;
1059 struct nf_conntrack_tuple_hash *h;
1060 struct hlist_nulls_head *ct_hash;
1061 unsigned int hash, hsize;
1062 struct hlist_nulls_node *n;
1063 struct nf_conn *ct;
1064
1065 zone = nf_ct_zone(ignored_conntrack);
1066
1067 rcu_read_lock();
1068 begin:
1069 nf_conntrack_get_ht(&ct_hash, &hsize);
1070 hash = __hash_conntrack(net, tuple, hsize);
1071
1072 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1073 ct = nf_ct_tuplehash_to_ctrack(h);
1074
1075 if (ct == ignored_conntrack)
1076 continue;
1077
1078 if (nf_ct_is_expired(ct)) {
1079 nf_ct_gc_expired(ct);
1080 continue;
1081 }
1082
1083 if (nf_ct_key_equal(h, tuple, zone, net)) {
1084 /* Tuple is taken already, so caller will need to find
1085 * a new source port to use.
1086 *
1087 * Only exception:
1088 * If the *original tuples* are identical, then both
1089 * conntracks refer to the same flow.
1090 * This is a rare situation, it can occur e.g. when
1091 * more than one UDP packet is sent from same socket
1092 * in different threads.
1093 *
1094 * Let nf_ct_resolve_clash() deal with this later.
1095 */
1096 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1097 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1098 continue;
1099
1100 NF_CT_STAT_INC_ATOMIC(net, found);
1101 rcu_read_unlock();
1102 return 1;
1103 }
1104 }
1105
1106 if (get_nulls_value(n) != hash) {
1107 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1108 goto begin;
1109 }
1110
1111 rcu_read_unlock();
1112
1113 return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1116
1117 #define NF_CT_EVICTION_RANGE 8
1118
1119 /* There's a small race here where we may free a just-assured
1120 connection. Too bad: we're in trouble anyway. */
1121 static unsigned int early_drop_list(struct net *net,
1122 struct hlist_nulls_head *head)
1123 {
1124 struct nf_conntrack_tuple_hash *h;
1125 struct hlist_nulls_node *n;
1126 unsigned int drops = 0;
1127 struct nf_conn *tmp;
1128
1129 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1130 tmp = nf_ct_tuplehash_to_ctrack(h);
1131
1132 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1133 continue;
1134
1135 if (nf_ct_is_expired(tmp)) {
1136 nf_ct_gc_expired(tmp);
1137 continue;
1138 }
1139
1140 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1141 !net_eq(nf_ct_net(tmp), net) ||
1142 nf_ct_is_dying(tmp))
1143 continue;
1144
1145 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1146 continue;
1147
1148 /* kill only if still in same netns -- might have moved due to
1149 * SLAB_TYPESAFE_BY_RCU rules.
1150 *
1151 * We steal the timer reference. If that fails timer has
1152 * already fired or someone else deleted it. Just drop ref
1153 * and move to next entry.
1154 */
1155 if (net_eq(nf_ct_net(tmp), net) &&
1156 nf_ct_is_confirmed(tmp) &&
1157 nf_ct_delete(tmp, 0, 0))
1158 drops++;
1159
1160 nf_ct_put(tmp);
1161 }
1162
1163 return drops;
1164 }
1165
1166 static noinline int early_drop(struct net *net, unsigned int hash)
1167 {
1168 unsigned int i, bucket;
1169
1170 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1171 struct hlist_nulls_head *ct_hash;
1172 unsigned int hsize, drops;
1173
1174 rcu_read_lock();
1175 nf_conntrack_get_ht(&ct_hash, &hsize);
1176 if (!i)
1177 bucket = reciprocal_scale(hash, hsize);
1178 else
1179 bucket = (bucket + 1) % hsize;
1180
1181 drops = early_drop_list(net, &ct_hash[bucket]);
1182 rcu_read_unlock();
1183
1184 if (drops) {
1185 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1186 return true;
1187 }
1188 }
1189
1190 return false;
1191 }
1192
1193 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1194 {
1195 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1196 }
1197
1198 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1199 {
1200 const struct nf_conntrack_l4proto *l4proto;
1201
1202 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1203 return true;
1204
1205 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1206 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1207 return true;
1208
1209 return false;
1210 }
1211
1212 #define DAY (86400 * HZ)
1213
1214 /* Set an arbitrary timeout large enough not to ever expire, this save
1215 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1216 * nf_ct_is_expired().
1217 */
1218 static void nf_ct_offload_timeout(struct nf_conn *ct)
1219 {
1220 if (nf_ct_expires(ct) < DAY / 2)
1221 ct->timeout = nfct_time_stamp + DAY;
1222 }
1223
1224 static void gc_worker(struct work_struct *work)
1225 {
1226 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1227 unsigned int i, goal, buckets = 0, expired_count = 0;
1228 unsigned int nf_conntrack_max95 = 0;
1229 struct conntrack_gc_work *gc_work;
1230 unsigned int ratio, scanned = 0;
1231 unsigned long next_run;
1232
1233 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1234
1235 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1236 i = gc_work->last_bucket;
1237 if (gc_work->early_drop)
1238 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1239
1240 do {
1241 struct nf_conntrack_tuple_hash *h;
1242 struct hlist_nulls_head *ct_hash;
1243 struct hlist_nulls_node *n;
1244 unsigned int hashsz;
1245 struct nf_conn *tmp;
1246
1247 i++;
1248 rcu_read_lock();
1249
1250 nf_conntrack_get_ht(&ct_hash, &hashsz);
1251 if (i >= hashsz)
1252 i = 0;
1253
1254 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1255 struct net *net;
1256
1257 tmp = nf_ct_tuplehash_to_ctrack(h);
1258
1259 scanned++;
1260 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1261 nf_ct_offload_timeout(tmp);
1262 continue;
1263 }
1264
1265 if (nf_ct_is_expired(tmp)) {
1266 nf_ct_gc_expired(tmp);
1267 expired_count++;
1268 continue;
1269 }
1270
1271 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1272 continue;
1273
1274 net = nf_ct_net(tmp);
1275 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1276 continue;
1277
1278 /* need to take reference to avoid possible races */
1279 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1280 continue;
1281
1282 if (gc_worker_skip_ct(tmp)) {
1283 nf_ct_put(tmp);
1284 continue;
1285 }
1286
1287 if (gc_worker_can_early_drop(tmp))
1288 nf_ct_kill(tmp);
1289
1290 nf_ct_put(tmp);
1291 }
1292
1293 /* could check get_nulls_value() here and restart if ct
1294 * was moved to another chain. But given gc is best-effort
1295 * we will just continue with next hash slot.
1296 */
1297 rcu_read_unlock();
1298 cond_resched();
1299 } while (++buckets < goal);
1300
1301 if (gc_work->exiting)
1302 return;
1303
1304 /*
1305 * Eviction will normally happen from the packet path, and not
1306 * from this gc worker.
1307 *
1308 * This worker is only here to reap expired entries when system went
1309 * idle after a busy period.
1310 *
1311 * The heuristics below are supposed to balance conflicting goals:
1312 *
1313 * 1. Minimize time until we notice a stale entry
1314 * 2. Maximize scan intervals to not waste cycles
1315 *
1316 * Normally, expire ratio will be close to 0.
1317 *
1318 * As soon as a sizeable fraction of the entries have expired
1319 * increase scan frequency.
1320 */
1321 ratio = scanned ? expired_count * 100 / scanned : 0;
1322 if (ratio > GC_EVICT_RATIO) {
1323 gc_work->next_gc_run = min_interval;
1324 } else {
1325 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1326
1327 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1328
1329 gc_work->next_gc_run += min_interval;
1330 if (gc_work->next_gc_run > max)
1331 gc_work->next_gc_run = max;
1332 }
1333
1334 next_run = gc_work->next_gc_run;
1335 gc_work->last_bucket = i;
1336 gc_work->early_drop = false;
1337 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1338 }
1339
1340 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1341 {
1342 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1343 gc_work->next_gc_run = HZ;
1344 gc_work->exiting = false;
1345 }
1346
1347 static struct nf_conn *
1348 __nf_conntrack_alloc(struct net *net,
1349 const struct nf_conntrack_zone *zone,
1350 const struct nf_conntrack_tuple *orig,
1351 const struct nf_conntrack_tuple *repl,
1352 gfp_t gfp, u32 hash)
1353 {
1354 struct nf_conn *ct;
1355
1356 /* We don't want any race condition at early drop stage */
1357 atomic_inc(&net->ct.count);
1358
1359 if (nf_conntrack_max &&
1360 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1361 if (!early_drop(net, hash)) {
1362 if (!conntrack_gc_work.early_drop)
1363 conntrack_gc_work.early_drop = true;
1364 atomic_dec(&net->ct.count);
1365 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1366 return ERR_PTR(-ENOMEM);
1367 }
1368 }
1369
1370 /*
1371 * Do not use kmem_cache_zalloc(), as this cache uses
1372 * SLAB_TYPESAFE_BY_RCU.
1373 */
1374 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1375 if (ct == NULL)
1376 goto out;
1377
1378 spin_lock_init(&ct->lock);
1379 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1380 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1381 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1382 /* save hash for reusing when confirming */
1383 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1384 ct->status = 0;
1385 ct->timeout = 0;
1386 write_pnet(&ct->ct_net, net);
1387 memset(&ct->__nfct_init_offset[0], 0,
1388 offsetof(struct nf_conn, proto) -
1389 offsetof(struct nf_conn, __nfct_init_offset[0]));
1390
1391 nf_ct_zone_add(ct, zone);
1392
1393 /* Because we use RCU lookups, we set ct_general.use to zero before
1394 * this is inserted in any list.
1395 */
1396 atomic_set(&ct->ct_general.use, 0);
1397 return ct;
1398 out:
1399 atomic_dec(&net->ct.count);
1400 return ERR_PTR(-ENOMEM);
1401 }
1402
1403 struct nf_conn *nf_conntrack_alloc(struct net *net,
1404 const struct nf_conntrack_zone *zone,
1405 const struct nf_conntrack_tuple *orig,
1406 const struct nf_conntrack_tuple *repl,
1407 gfp_t gfp)
1408 {
1409 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1410 }
1411 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1412
1413 void nf_conntrack_free(struct nf_conn *ct)
1414 {
1415 struct net *net = nf_ct_net(ct);
1416
1417 /* A freed object has refcnt == 0, that's
1418 * the golden rule for SLAB_TYPESAFE_BY_RCU
1419 */
1420 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1421
1422 nf_ct_ext_destroy(ct);
1423 nf_ct_ext_free(ct);
1424 kmem_cache_free(nf_conntrack_cachep, ct);
1425 smp_mb__before_atomic();
1426 atomic_dec(&net->ct.count);
1427 }
1428 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1429
1430
1431 /* Allocate a new conntrack: we return -ENOMEM if classification
1432 failed due to stress. Otherwise it really is unclassifiable. */
1433 static noinline struct nf_conntrack_tuple_hash *
1434 init_conntrack(struct net *net, struct nf_conn *tmpl,
1435 const struct nf_conntrack_tuple *tuple,
1436 struct sk_buff *skb,
1437 unsigned int dataoff, u32 hash)
1438 {
1439 struct nf_conn *ct;
1440 struct nf_conn_help *help;
1441 struct nf_conntrack_tuple repl_tuple;
1442 struct nf_conntrack_ecache *ecache;
1443 struct nf_conntrack_expect *exp = NULL;
1444 const struct nf_conntrack_zone *zone;
1445 struct nf_conn_timeout *timeout_ext;
1446 struct nf_conntrack_zone tmp;
1447
1448 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1449 pr_debug("Can't invert tuple.\n");
1450 return NULL;
1451 }
1452
1453 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1454 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1455 hash);
1456 if (IS_ERR(ct))
1457 return (struct nf_conntrack_tuple_hash *)ct;
1458
1459 if (!nf_ct_add_synproxy(ct, tmpl)) {
1460 nf_conntrack_free(ct);
1461 return ERR_PTR(-ENOMEM);
1462 }
1463
1464 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1465
1466 if (timeout_ext)
1467 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1468 GFP_ATOMIC);
1469
1470 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1471 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1472 nf_ct_labels_ext_add(ct);
1473
1474 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1475 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1476 ecache ? ecache->expmask : 0,
1477 GFP_ATOMIC);
1478
1479 local_bh_disable();
1480 if (net->ct.expect_count) {
1481 spin_lock(&nf_conntrack_expect_lock);
1482 exp = nf_ct_find_expectation(net, zone, tuple);
1483 if (exp) {
1484 pr_debug("expectation arrives ct=%p exp=%p\n",
1485 ct, exp);
1486 /* Welcome, Mr. Bond. We've been expecting you... */
1487 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1488 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1489 ct->master = exp->master;
1490 if (exp->helper) {
1491 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1492 if (help)
1493 rcu_assign_pointer(help->helper, exp->helper);
1494 }
1495
1496 #ifdef CONFIG_NF_CONNTRACK_MARK
1497 ct->mark = exp->master->mark;
1498 #endif
1499 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1500 ct->secmark = exp->master->secmark;
1501 #endif
1502 NF_CT_STAT_INC(net, expect_new);
1503 }
1504 spin_unlock(&nf_conntrack_expect_lock);
1505 }
1506 if (!exp)
1507 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1508
1509 /* Now it is inserted into the unconfirmed list, bump refcount */
1510 nf_conntrack_get(&ct->ct_general);
1511 nf_ct_add_to_unconfirmed_list(ct);
1512
1513 local_bh_enable();
1514
1515 if (exp) {
1516 if (exp->expectfn)
1517 exp->expectfn(ct, exp);
1518 nf_ct_expect_put(exp);
1519 }
1520
1521 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1522 }
1523
1524 /* On success, returns 0, sets skb->_nfct | ctinfo */
1525 static int
1526 resolve_normal_ct(struct nf_conn *tmpl,
1527 struct sk_buff *skb,
1528 unsigned int dataoff,
1529 u_int8_t protonum,
1530 const struct nf_hook_state *state)
1531 {
1532 const struct nf_conntrack_zone *zone;
1533 struct nf_conntrack_tuple tuple;
1534 struct nf_conntrack_tuple_hash *h;
1535 enum ip_conntrack_info ctinfo;
1536 struct nf_conntrack_zone tmp;
1537 struct nf_conn *ct;
1538 u32 hash;
1539
1540 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1541 dataoff, state->pf, protonum, state->net,
1542 &tuple)) {
1543 pr_debug("Can't get tuple\n");
1544 return 0;
1545 }
1546
1547 /* look for tuple match */
1548 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1549 hash = hash_conntrack_raw(&tuple, state->net);
1550 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1551 if (!h) {
1552 h = init_conntrack(state->net, tmpl, &tuple,
1553 skb, dataoff, hash);
1554 if (!h)
1555 return 0;
1556 if (IS_ERR(h))
1557 return PTR_ERR(h);
1558 }
1559 ct = nf_ct_tuplehash_to_ctrack(h);
1560
1561 /* It exists; we have (non-exclusive) reference. */
1562 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1563 ctinfo = IP_CT_ESTABLISHED_REPLY;
1564 } else {
1565 /* Once we've had two way comms, always ESTABLISHED. */
1566 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1567 pr_debug("normal packet for %p\n", ct);
1568 ctinfo = IP_CT_ESTABLISHED;
1569 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1570 pr_debug("related packet for %p\n", ct);
1571 ctinfo = IP_CT_RELATED;
1572 } else {
1573 pr_debug("new packet for %p\n", ct);
1574 ctinfo = IP_CT_NEW;
1575 }
1576 }
1577 nf_ct_set(skb, ct, ctinfo);
1578 return 0;
1579 }
1580
1581 /*
1582 * icmp packets need special treatment to handle error messages that are
1583 * related to a connection.
1584 *
1585 * Callers need to check if skb has a conntrack assigned when this
1586 * helper returns; in such case skb belongs to an already known connection.
1587 */
1588 static unsigned int __cold
1589 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1590 struct sk_buff *skb,
1591 unsigned int dataoff,
1592 u8 protonum,
1593 const struct nf_hook_state *state)
1594 {
1595 int ret;
1596
1597 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1598 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1599 #if IS_ENABLED(CONFIG_IPV6)
1600 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1601 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1602 #endif
1603 else
1604 return NF_ACCEPT;
1605
1606 if (ret <= 0) {
1607 NF_CT_STAT_INC_ATOMIC(state->net, error);
1608 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1609 }
1610
1611 return ret;
1612 }
1613
1614 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1615 enum ip_conntrack_info ctinfo)
1616 {
1617 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1618
1619 if (!timeout)
1620 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1621
1622 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1623 return NF_ACCEPT;
1624 }
1625
1626 /* Returns verdict for packet, or -1 for invalid. */
1627 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1628 struct sk_buff *skb,
1629 unsigned int dataoff,
1630 enum ip_conntrack_info ctinfo,
1631 const struct nf_hook_state *state)
1632 {
1633 switch (nf_ct_protonum(ct)) {
1634 case IPPROTO_TCP:
1635 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1636 ctinfo, state);
1637 case IPPROTO_UDP:
1638 return nf_conntrack_udp_packet(ct, skb, dataoff,
1639 ctinfo, state);
1640 case IPPROTO_ICMP:
1641 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1642 #if IS_ENABLED(CONFIG_IPV6)
1643 case IPPROTO_ICMPV6:
1644 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1645 #endif
1646 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1647 case IPPROTO_UDPLITE:
1648 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1649 ctinfo, state);
1650 #endif
1651 #ifdef CONFIG_NF_CT_PROTO_SCTP
1652 case IPPROTO_SCTP:
1653 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1654 ctinfo, state);
1655 #endif
1656 #ifdef CONFIG_NF_CT_PROTO_DCCP
1657 case IPPROTO_DCCP:
1658 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1659 ctinfo, state);
1660 #endif
1661 #ifdef CONFIG_NF_CT_PROTO_GRE
1662 case IPPROTO_GRE:
1663 return nf_conntrack_gre_packet(ct, skb, dataoff,
1664 ctinfo, state);
1665 #endif
1666 }
1667
1668 return generic_packet(ct, skb, ctinfo);
1669 }
1670
1671 unsigned int
1672 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1673 {
1674 enum ip_conntrack_info ctinfo;
1675 struct nf_conn *ct, *tmpl;
1676 u_int8_t protonum;
1677 int dataoff, ret;
1678
1679 tmpl = nf_ct_get(skb, &ctinfo);
1680 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1681 /* Previously seen (loopback or untracked)? Ignore. */
1682 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1683 ctinfo == IP_CT_UNTRACKED) {
1684 NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1685 return NF_ACCEPT;
1686 }
1687 skb->_nfct = 0;
1688 }
1689
1690 /* rcu_read_lock()ed by nf_hook_thresh */
1691 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1692 if (dataoff <= 0) {
1693 pr_debug("not prepared to track yet or error occurred\n");
1694 NF_CT_STAT_INC_ATOMIC(state->net, error);
1695 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1696 ret = NF_ACCEPT;
1697 goto out;
1698 }
1699
1700 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1701 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1702 protonum, state);
1703 if (ret <= 0) {
1704 ret = -ret;
1705 goto out;
1706 }
1707 /* ICMP[v6] protocol trackers may assign one conntrack. */
1708 if (skb->_nfct)
1709 goto out;
1710 }
1711 repeat:
1712 ret = resolve_normal_ct(tmpl, skb, dataoff,
1713 protonum, state);
1714 if (ret < 0) {
1715 /* Too stressed to deal. */
1716 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1717 ret = NF_DROP;
1718 goto out;
1719 }
1720
1721 ct = nf_ct_get(skb, &ctinfo);
1722 if (!ct) {
1723 /* Not valid part of a connection */
1724 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1725 ret = NF_ACCEPT;
1726 goto out;
1727 }
1728
1729 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1730 if (ret <= 0) {
1731 /* Invalid: inverse of the return code tells
1732 * the netfilter core what to do */
1733 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1734 nf_conntrack_put(&ct->ct_general);
1735 skb->_nfct = 0;
1736 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1737 if (ret == -NF_DROP)
1738 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1739 /* Special case: TCP tracker reports an attempt to reopen a
1740 * closed/aborted connection. We have to go back and create a
1741 * fresh conntrack.
1742 */
1743 if (ret == -NF_REPEAT)
1744 goto repeat;
1745 ret = -ret;
1746 goto out;
1747 }
1748
1749 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1750 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1751 nf_conntrack_event_cache(IPCT_REPLY, ct);
1752 out:
1753 if (tmpl)
1754 nf_ct_put(tmpl);
1755
1756 return ret;
1757 }
1758 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1759
1760 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1761 implicitly racy: see __nf_conntrack_confirm */
1762 void nf_conntrack_alter_reply(struct nf_conn *ct,
1763 const struct nf_conntrack_tuple *newreply)
1764 {
1765 struct nf_conn_help *help = nfct_help(ct);
1766
1767 /* Should be unconfirmed, so not in hash table yet */
1768 WARN_ON(nf_ct_is_confirmed(ct));
1769
1770 pr_debug("Altering reply tuple of %p to ", ct);
1771 nf_ct_dump_tuple(newreply);
1772
1773 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1774 if (ct->master || (help && !hlist_empty(&help->expectations)))
1775 return;
1776
1777 rcu_read_lock();
1778 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1779 rcu_read_unlock();
1780 }
1781 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1782
1783 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1784 void __nf_ct_refresh_acct(struct nf_conn *ct,
1785 enum ip_conntrack_info ctinfo,
1786 const struct sk_buff *skb,
1787 u32 extra_jiffies,
1788 bool do_acct)
1789 {
1790 /* Only update if this is not a fixed timeout */
1791 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1792 goto acct;
1793
1794 /* If not in hash table, timer will not be active yet */
1795 if (nf_ct_is_confirmed(ct))
1796 extra_jiffies += nfct_time_stamp;
1797
1798 if (ct->timeout != extra_jiffies)
1799 ct->timeout = extra_jiffies;
1800 acct:
1801 if (do_acct)
1802 nf_ct_acct_update(ct, ctinfo, skb->len);
1803 }
1804 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1805
1806 bool nf_ct_kill_acct(struct nf_conn *ct,
1807 enum ip_conntrack_info ctinfo,
1808 const struct sk_buff *skb)
1809 {
1810 nf_ct_acct_update(ct, ctinfo, skb->len);
1811
1812 return nf_ct_delete(ct, 0, 0);
1813 }
1814 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1815
1816 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1817
1818 #include <linux/netfilter/nfnetlink.h>
1819 #include <linux/netfilter/nfnetlink_conntrack.h>
1820 #include <linux/mutex.h>
1821
1822 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1823 * in ip_conntrack_core, since we don't want the protocols to autoload
1824 * or depend on ctnetlink */
1825 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1826 const struct nf_conntrack_tuple *tuple)
1827 {
1828 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1829 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1830 goto nla_put_failure;
1831 return 0;
1832
1833 nla_put_failure:
1834 return -1;
1835 }
1836 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1837
1838 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1839 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1840 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1841 };
1842 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1843
1844 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1845 struct nf_conntrack_tuple *t)
1846 {
1847 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1848 return -EINVAL;
1849
1850 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1851 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1852
1853 return 0;
1854 }
1855 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1856
1857 unsigned int nf_ct_port_nlattr_tuple_size(void)
1858 {
1859 static unsigned int size __read_mostly;
1860
1861 if (!size)
1862 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1863
1864 return size;
1865 }
1866 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1867 #endif
1868
1869 /* Used by ipt_REJECT and ip6t_REJECT. */
1870 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1871 {
1872 struct nf_conn *ct;
1873 enum ip_conntrack_info ctinfo;
1874
1875 /* This ICMP is in reverse direction to the packet which caused it */
1876 ct = nf_ct_get(skb, &ctinfo);
1877 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1878 ctinfo = IP_CT_RELATED_REPLY;
1879 else
1880 ctinfo = IP_CT_RELATED;
1881
1882 /* Attach to new skbuff, and increment count */
1883 nf_ct_set(nskb, ct, ctinfo);
1884 nf_conntrack_get(skb_nfct(nskb));
1885 }
1886
1887 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1888 {
1889 struct nf_conntrack_tuple_hash *h;
1890 struct nf_conntrack_tuple tuple;
1891 enum ip_conntrack_info ctinfo;
1892 struct nf_nat_hook *nat_hook;
1893 unsigned int status;
1894 struct nf_conn *ct;
1895 int dataoff;
1896 u16 l3num;
1897 u8 l4num;
1898
1899 ct = nf_ct_get(skb, &ctinfo);
1900 if (!ct || nf_ct_is_confirmed(ct))
1901 return 0;
1902
1903 l3num = nf_ct_l3num(ct);
1904
1905 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1906 if (dataoff <= 0)
1907 return -1;
1908
1909 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1910 l4num, net, &tuple))
1911 return -1;
1912
1913 if (ct->status & IPS_SRC_NAT) {
1914 memcpy(tuple.src.u3.all,
1915 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1916 sizeof(tuple.src.u3.all));
1917 tuple.src.u.all =
1918 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1919 }
1920
1921 if (ct->status & IPS_DST_NAT) {
1922 memcpy(tuple.dst.u3.all,
1923 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1924 sizeof(tuple.dst.u3.all));
1925 tuple.dst.u.all =
1926 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1927 }
1928
1929 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1930 if (!h)
1931 return 0;
1932
1933 /* Store status bits of the conntrack that is clashing to re-do NAT
1934 * mangling according to what it has been done already to this packet.
1935 */
1936 status = ct->status;
1937
1938 nf_ct_put(ct);
1939 ct = nf_ct_tuplehash_to_ctrack(h);
1940 nf_ct_set(skb, ct, ctinfo);
1941
1942 nat_hook = rcu_dereference(nf_nat_hook);
1943 if (!nat_hook)
1944 return 0;
1945
1946 if (status & IPS_SRC_NAT &&
1947 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1948 IP_CT_DIR_ORIGINAL) == NF_DROP)
1949 return -1;
1950
1951 if (status & IPS_DST_NAT &&
1952 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1953 IP_CT_DIR_ORIGINAL) == NF_DROP)
1954 return -1;
1955
1956 return 0;
1957 }
1958
1959 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1960 const struct sk_buff *skb)
1961 {
1962 const struct nf_conntrack_tuple *src_tuple;
1963 const struct nf_conntrack_tuple_hash *hash;
1964 struct nf_conntrack_tuple srctuple;
1965 enum ip_conntrack_info ctinfo;
1966 struct nf_conn *ct;
1967
1968 ct = nf_ct_get(skb, &ctinfo);
1969 if (ct) {
1970 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1971 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1972 return true;
1973 }
1974
1975 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1976 NFPROTO_IPV4, dev_net(skb->dev),
1977 &srctuple))
1978 return false;
1979
1980 hash = nf_conntrack_find_get(dev_net(skb->dev),
1981 &nf_ct_zone_dflt,
1982 &srctuple);
1983 if (!hash)
1984 return false;
1985
1986 ct = nf_ct_tuplehash_to_ctrack(hash);
1987 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1988 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1989 nf_ct_put(ct);
1990
1991 return true;
1992 }
1993
1994 /* Bring out ya dead! */
1995 static struct nf_conn *
1996 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1997 void *data, unsigned int *bucket)
1998 {
1999 struct nf_conntrack_tuple_hash *h;
2000 struct nf_conn *ct;
2001 struct hlist_nulls_node *n;
2002 spinlock_t *lockp;
2003
2004 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2005 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2006 local_bh_disable();
2007 nf_conntrack_lock(lockp);
2008 if (*bucket < nf_conntrack_htable_size) {
2009 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2010 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2011 continue;
2012 ct = nf_ct_tuplehash_to_ctrack(h);
2013 if (iter(ct, data))
2014 goto found;
2015 }
2016 }
2017 spin_unlock(lockp);
2018 local_bh_enable();
2019 cond_resched();
2020 }
2021
2022 return NULL;
2023 found:
2024 atomic_inc(&ct->ct_general.use);
2025 spin_unlock(lockp);
2026 local_bh_enable();
2027 return ct;
2028 }
2029
2030 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2031 void *data, u32 portid, int report)
2032 {
2033 unsigned int bucket = 0, sequence;
2034 struct nf_conn *ct;
2035
2036 might_sleep();
2037
2038 for (;;) {
2039 sequence = read_seqcount_begin(&nf_conntrack_generation);
2040
2041 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2042 /* Time to push up daises... */
2043
2044 nf_ct_delete(ct, portid, report);
2045 nf_ct_put(ct);
2046 cond_resched();
2047 }
2048
2049 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2050 break;
2051 bucket = 0;
2052 }
2053 }
2054
2055 struct iter_data {
2056 int (*iter)(struct nf_conn *i, void *data);
2057 void *data;
2058 struct net *net;
2059 };
2060
2061 static int iter_net_only(struct nf_conn *i, void *data)
2062 {
2063 struct iter_data *d = data;
2064
2065 if (!net_eq(d->net, nf_ct_net(i)))
2066 return 0;
2067
2068 return d->iter(i, d->data);
2069 }
2070
2071 static void
2072 __nf_ct_unconfirmed_destroy(struct net *net)
2073 {
2074 int cpu;
2075
2076 for_each_possible_cpu(cpu) {
2077 struct nf_conntrack_tuple_hash *h;
2078 struct hlist_nulls_node *n;
2079 struct ct_pcpu *pcpu;
2080
2081 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2082
2083 spin_lock_bh(&pcpu->lock);
2084 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2085 struct nf_conn *ct;
2086
2087 ct = nf_ct_tuplehash_to_ctrack(h);
2088
2089 /* we cannot call iter() on unconfirmed list, the
2090 * owning cpu can reallocate ct->ext at any time.
2091 */
2092 set_bit(IPS_DYING_BIT, &ct->status);
2093 }
2094 spin_unlock_bh(&pcpu->lock);
2095 cond_resched();
2096 }
2097 }
2098
2099 void nf_ct_unconfirmed_destroy(struct net *net)
2100 {
2101 might_sleep();
2102
2103 if (atomic_read(&net->ct.count) > 0) {
2104 __nf_ct_unconfirmed_destroy(net);
2105 nf_queue_nf_hook_drop(net);
2106 synchronize_net();
2107 }
2108 }
2109 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2110
2111 void nf_ct_iterate_cleanup_net(struct net *net,
2112 int (*iter)(struct nf_conn *i, void *data),
2113 void *data, u32 portid, int report)
2114 {
2115 struct iter_data d;
2116
2117 might_sleep();
2118
2119 if (atomic_read(&net->ct.count) == 0)
2120 return;
2121
2122 d.iter = iter;
2123 d.data = data;
2124 d.net = net;
2125
2126 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2127 }
2128 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2129
2130 /**
2131 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2132 * @iter: callback to invoke for each conntrack
2133 * @data: data to pass to @iter
2134 *
2135 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2136 * unconfirmed list as dying (so they will not be inserted into
2137 * main table).
2138 *
2139 * Can only be called in module exit path.
2140 */
2141 void
2142 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2143 {
2144 struct net *net;
2145
2146 down_read(&net_rwsem);
2147 for_each_net(net) {
2148 if (atomic_read(&net->ct.count) == 0)
2149 continue;
2150 __nf_ct_unconfirmed_destroy(net);
2151 nf_queue_nf_hook_drop(net);
2152 }
2153 up_read(&net_rwsem);
2154
2155 /* Need to wait for netns cleanup worker to finish, if its
2156 * running -- it might have deleted a net namespace from
2157 * the global list, so our __nf_ct_unconfirmed_destroy() might
2158 * not have affected all namespaces.
2159 */
2160 net_ns_barrier();
2161
2162 /* a conntrack could have been unlinked from unconfirmed list
2163 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2164 * This makes sure its inserted into conntrack table.
2165 */
2166 synchronize_net();
2167
2168 nf_ct_iterate_cleanup(iter, data, 0, 0);
2169 }
2170 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2171
2172 static int kill_all(struct nf_conn *i, void *data)
2173 {
2174 return net_eq(nf_ct_net(i), data);
2175 }
2176
2177 void nf_conntrack_cleanup_start(void)
2178 {
2179 conntrack_gc_work.exiting = true;
2180 RCU_INIT_POINTER(ip_ct_attach, NULL);
2181 }
2182
2183 void nf_conntrack_cleanup_end(void)
2184 {
2185 RCU_INIT_POINTER(nf_ct_hook, NULL);
2186 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2187 kvfree(nf_conntrack_hash);
2188
2189 nf_conntrack_proto_fini();
2190 nf_conntrack_seqadj_fini();
2191 nf_conntrack_labels_fini();
2192 nf_conntrack_helper_fini();
2193 nf_conntrack_timeout_fini();
2194 nf_conntrack_ecache_fini();
2195 nf_conntrack_tstamp_fini();
2196 nf_conntrack_acct_fini();
2197 nf_conntrack_expect_fini();
2198
2199 kmem_cache_destroy(nf_conntrack_cachep);
2200 }
2201
2202 /*
2203 * Mishearing the voices in his head, our hero wonders how he's
2204 * supposed to kill the mall.
2205 */
2206 void nf_conntrack_cleanup_net(struct net *net)
2207 {
2208 LIST_HEAD(single);
2209
2210 list_add(&net->exit_list, &single);
2211 nf_conntrack_cleanup_net_list(&single);
2212 }
2213
2214 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2215 {
2216 int busy;
2217 struct net *net;
2218
2219 /*
2220 * This makes sure all current packets have passed through
2221 * netfilter framework. Roll on, two-stage module
2222 * delete...
2223 */
2224 synchronize_net();
2225 i_see_dead_people:
2226 busy = 0;
2227 list_for_each_entry(net, net_exit_list, exit_list) {
2228 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2229 if (atomic_read(&net->ct.count) != 0)
2230 busy = 1;
2231 }
2232 if (busy) {
2233 schedule();
2234 goto i_see_dead_people;
2235 }
2236
2237 list_for_each_entry(net, net_exit_list, exit_list) {
2238 nf_conntrack_proto_pernet_fini(net);
2239 nf_conntrack_ecache_pernet_fini(net);
2240 nf_conntrack_expect_pernet_fini(net);
2241 free_percpu(net->ct.stat);
2242 free_percpu(net->ct.pcpu_lists);
2243 }
2244 }
2245
2246 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2247 {
2248 struct hlist_nulls_head *hash;
2249 unsigned int nr_slots, i;
2250
2251 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2252 return NULL;
2253
2254 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2255 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2256
2257 hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2258 GFP_KERNEL | __GFP_ZERO);
2259
2260 if (hash && nulls)
2261 for (i = 0; i < nr_slots; i++)
2262 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2263
2264 return hash;
2265 }
2266 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2267
2268 int nf_conntrack_hash_resize(unsigned int hashsize)
2269 {
2270 int i, bucket;
2271 unsigned int old_size;
2272 struct hlist_nulls_head *hash, *old_hash;
2273 struct nf_conntrack_tuple_hash *h;
2274 struct nf_conn *ct;
2275
2276 if (!hashsize)
2277 return -EINVAL;
2278
2279 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2280 if (!hash)
2281 return -ENOMEM;
2282
2283 old_size = nf_conntrack_htable_size;
2284 if (old_size == hashsize) {
2285 kvfree(hash);
2286 return 0;
2287 }
2288
2289 local_bh_disable();
2290 nf_conntrack_all_lock();
2291 write_seqcount_begin(&nf_conntrack_generation);
2292
2293 /* Lookups in the old hash might happen in parallel, which means we
2294 * might get false negatives during connection lookup. New connections
2295 * created because of a false negative won't make it into the hash
2296 * though since that required taking the locks.
2297 */
2298
2299 for (i = 0; i < nf_conntrack_htable_size; i++) {
2300 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2301 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2302 struct nf_conntrack_tuple_hash, hnnode);
2303 ct = nf_ct_tuplehash_to_ctrack(h);
2304 hlist_nulls_del_rcu(&h->hnnode);
2305 bucket = __hash_conntrack(nf_ct_net(ct),
2306 &h->tuple, hashsize);
2307 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2308 }
2309 }
2310 old_size = nf_conntrack_htable_size;
2311 old_hash = nf_conntrack_hash;
2312
2313 nf_conntrack_hash = hash;
2314 nf_conntrack_htable_size = hashsize;
2315
2316 write_seqcount_end(&nf_conntrack_generation);
2317 nf_conntrack_all_unlock();
2318 local_bh_enable();
2319
2320 synchronize_net();
2321 kvfree(old_hash);
2322 return 0;
2323 }
2324
2325 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2326 {
2327 unsigned int hashsize;
2328 int rc;
2329
2330 if (current->nsproxy->net_ns != &init_net)
2331 return -EOPNOTSUPP;
2332
2333 /* On boot, we can set this without any fancy locking. */
2334 if (!nf_conntrack_hash)
2335 return param_set_uint(val, kp);
2336
2337 rc = kstrtouint(val, 0, &hashsize);
2338 if (rc)
2339 return rc;
2340
2341 return nf_conntrack_hash_resize(hashsize);
2342 }
2343 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2344
2345 static __always_inline unsigned int total_extension_size(void)
2346 {
2347 /* remember to add new extensions below */
2348 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2349
2350 return sizeof(struct nf_ct_ext) +
2351 sizeof(struct nf_conn_help)
2352 #if IS_ENABLED(CONFIG_NF_NAT)
2353 + sizeof(struct nf_conn_nat)
2354 #endif
2355 + sizeof(struct nf_conn_seqadj)
2356 + sizeof(struct nf_conn_acct)
2357 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2358 + sizeof(struct nf_conntrack_ecache)
2359 #endif
2360 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2361 + sizeof(struct nf_conn_tstamp)
2362 #endif
2363 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2364 + sizeof(struct nf_conn_timeout)
2365 #endif
2366 #ifdef CONFIG_NF_CONNTRACK_LABELS
2367 + sizeof(struct nf_conn_labels)
2368 #endif
2369 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2370 + sizeof(struct nf_conn_synproxy)
2371 #endif
2372 ;
2373 };
2374
2375 int nf_conntrack_init_start(void)
2376 {
2377 unsigned long nr_pages = totalram_pages();
2378 int max_factor = 8;
2379 int ret = -ENOMEM;
2380 int i;
2381
2382 /* struct nf_ct_ext uses u8 to store offsets/size */
2383 BUILD_BUG_ON(total_extension_size() > 255u);
2384
2385 seqcount_init(&nf_conntrack_generation);
2386
2387 for (i = 0; i < CONNTRACK_LOCKS; i++)
2388 spin_lock_init(&nf_conntrack_locks[i]);
2389
2390 if (!nf_conntrack_htable_size) {
2391 /* Idea from tcp.c: use 1/16384 of memory.
2392 * On i386: 32MB machine has 512 buckets.
2393 * >= 1GB machines have 16384 buckets.
2394 * >= 4GB machines have 65536 buckets.
2395 */
2396 nf_conntrack_htable_size
2397 = (((nr_pages << PAGE_SHIFT) / 16384)
2398 / sizeof(struct hlist_head));
2399 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2400 nf_conntrack_htable_size = 65536;
2401 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2402 nf_conntrack_htable_size = 16384;
2403 if (nf_conntrack_htable_size < 32)
2404 nf_conntrack_htable_size = 32;
2405
2406 /* Use a max. factor of four by default to get the same max as
2407 * with the old struct list_heads. When a table size is given
2408 * we use the old value of 8 to avoid reducing the max.
2409 * entries. */
2410 max_factor = 4;
2411 }
2412
2413 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2414 if (!nf_conntrack_hash)
2415 return -ENOMEM;
2416
2417 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2418
2419 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2420 sizeof(struct nf_conn),
2421 NFCT_INFOMASK + 1,
2422 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2423 if (!nf_conntrack_cachep)
2424 goto err_cachep;
2425
2426 ret = nf_conntrack_expect_init();
2427 if (ret < 0)
2428 goto err_expect;
2429
2430 ret = nf_conntrack_acct_init();
2431 if (ret < 0)
2432 goto err_acct;
2433
2434 ret = nf_conntrack_tstamp_init();
2435 if (ret < 0)
2436 goto err_tstamp;
2437
2438 ret = nf_conntrack_ecache_init();
2439 if (ret < 0)
2440 goto err_ecache;
2441
2442 ret = nf_conntrack_timeout_init();
2443 if (ret < 0)
2444 goto err_timeout;
2445
2446 ret = nf_conntrack_helper_init();
2447 if (ret < 0)
2448 goto err_helper;
2449
2450 ret = nf_conntrack_labels_init();
2451 if (ret < 0)
2452 goto err_labels;
2453
2454 ret = nf_conntrack_seqadj_init();
2455 if (ret < 0)
2456 goto err_seqadj;
2457
2458 ret = nf_conntrack_proto_init();
2459 if (ret < 0)
2460 goto err_proto;
2461
2462 conntrack_gc_work_init(&conntrack_gc_work);
2463 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2464
2465 return 0;
2466
2467 err_proto:
2468 nf_conntrack_seqadj_fini();
2469 err_seqadj:
2470 nf_conntrack_labels_fini();
2471 err_labels:
2472 nf_conntrack_helper_fini();
2473 err_helper:
2474 nf_conntrack_timeout_fini();
2475 err_timeout:
2476 nf_conntrack_ecache_fini();
2477 err_ecache:
2478 nf_conntrack_tstamp_fini();
2479 err_tstamp:
2480 nf_conntrack_acct_fini();
2481 err_acct:
2482 nf_conntrack_expect_fini();
2483 err_expect:
2484 kmem_cache_destroy(nf_conntrack_cachep);
2485 err_cachep:
2486 kvfree(nf_conntrack_hash);
2487 return ret;
2488 }
2489
2490 static struct nf_ct_hook nf_conntrack_hook = {
2491 .update = nf_conntrack_update,
2492 .destroy = destroy_conntrack,
2493 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2494 };
2495
2496 void nf_conntrack_init_end(void)
2497 {
2498 /* For use by REJECT target */
2499 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2500 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2501 }
2502
2503 /*
2504 * We need to use special "null" values, not used in hash table
2505 */
2506 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2507 #define DYING_NULLS_VAL ((1<<30)+1)
2508 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2509
2510 int nf_conntrack_init_net(struct net *net)
2511 {
2512 int ret = -ENOMEM;
2513 int cpu;
2514
2515 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2516 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2517 atomic_set(&net->ct.count, 0);
2518
2519 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2520 if (!net->ct.pcpu_lists)
2521 goto err_stat;
2522
2523 for_each_possible_cpu(cpu) {
2524 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2525
2526 spin_lock_init(&pcpu->lock);
2527 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2528 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2529 }
2530
2531 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2532 if (!net->ct.stat)
2533 goto err_pcpu_lists;
2534
2535 ret = nf_conntrack_expect_pernet_init(net);
2536 if (ret < 0)
2537 goto err_expect;
2538
2539 nf_conntrack_acct_pernet_init(net);
2540 nf_conntrack_tstamp_pernet_init(net);
2541 nf_conntrack_ecache_pernet_init(net);
2542 nf_conntrack_helper_pernet_init(net);
2543 nf_conntrack_proto_pernet_init(net);
2544
2545 return 0;
2546
2547 err_expect:
2548 free_percpu(net->ct.stat);
2549 err_pcpu_lists:
2550 free_percpu(net->ct.pcpu_lists);
2551 err_stat:
2552 return ret;
2553 }