]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/nf_conntrack_core.c
netfilter: reduce direct skb->nfct usage
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 enum nf_nat_manip_type manip,
63 const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 struct conntrack_gc_work {
76 struct delayed_work dwork;
77 u32 last_bucket;
78 bool exiting;
79 long next_gc_run;
80 };
81
82 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
83 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
84 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
85 static __read_mostly bool nf_conntrack_locks_all;
86
87 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
88 #define GC_MAX_BUCKETS_DIV 64u
89 /* upper bound of scan intervals */
90 #define GC_INTERVAL_MAX (2 * HZ)
91 /* maximum conntracks to evict per gc run */
92 #define GC_MAX_EVICTS 256u
93
94 static struct conntrack_gc_work conntrack_gc_work;
95
96 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
97 {
98 spin_lock(lock);
99 while (unlikely(nf_conntrack_locks_all)) {
100 spin_unlock(lock);
101
102 /*
103 * Order the 'nf_conntrack_locks_all' load vs. the
104 * spin_unlock_wait() loads below, to ensure
105 * that 'nf_conntrack_locks_all_lock' is indeed held:
106 */
107 smp_rmb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
108 spin_unlock_wait(&nf_conntrack_locks_all_lock);
109 spin_lock(lock);
110 }
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116 h1 %= CONNTRACK_LOCKS;
117 h2 %= CONNTRACK_LOCKS;
118 spin_unlock(&nf_conntrack_locks[h1]);
119 if (h1 != h2)
120 spin_unlock(&nf_conntrack_locks[h2]);
121 }
122
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125 unsigned int h2, unsigned int sequence)
126 {
127 h1 %= CONNTRACK_LOCKS;
128 h2 %= CONNTRACK_LOCKS;
129 if (h1 <= h2) {
130 nf_conntrack_lock(&nf_conntrack_locks[h1]);
131 if (h1 != h2)
132 spin_lock_nested(&nf_conntrack_locks[h2],
133 SINGLE_DEPTH_NESTING);
134 } else {
135 nf_conntrack_lock(&nf_conntrack_locks[h2]);
136 spin_lock_nested(&nf_conntrack_locks[h1],
137 SINGLE_DEPTH_NESTING);
138 }
139 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140 nf_conntrack_double_unlock(h1, h2);
141 return true;
142 }
143 return false;
144 }
145
146 static void nf_conntrack_all_lock(void)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151 nf_conntrack_locks_all = true;
152
153 /*
154 * Order the above store of 'nf_conntrack_locks_all' against
155 * the spin_unlock_wait() loads below, such that if
156 * nf_conntrack_lock() observes 'nf_conntrack_locks_all'
157 * we must observe nf_conntrack_locks[] held:
158 */
159 smp_mb(); /* spin_lock(&nf_conntrack_locks_all_lock) */
160
161 for (i = 0; i < CONNTRACK_LOCKS; i++) {
162 spin_unlock_wait(&nf_conntrack_locks[i]);
163 }
164 }
165
166 static void nf_conntrack_all_unlock(void)
167 {
168 /*
169 * All prior stores must be complete before we clear
170 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
171 * might observe the false value but not the entire
172 * critical section:
173 */
174 smp_store_release(&nf_conntrack_locks_all, false);
175 spin_unlock(&nf_conntrack_locks_all_lock);
176 }
177
178 unsigned int nf_conntrack_htable_size __read_mostly;
179 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
180
181 unsigned int nf_conntrack_max __read_mostly;
182 seqcount_t nf_conntrack_generation __read_mostly;
183
184 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
185 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
186
187 static unsigned int nf_conntrack_hash_rnd __read_mostly;
188
189 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
190 const struct net *net)
191 {
192 unsigned int n;
193 u32 seed;
194
195 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
196
197 /* The direction must be ignored, so we hash everything up to the
198 * destination ports (which is a multiple of 4) and treat the last
199 * three bytes manually.
200 */
201 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
202 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
203 return jhash2((u32 *)tuple, n, seed ^
204 (((__force __u16)tuple->dst.u.all << 16) |
205 tuple->dst.protonum));
206 }
207
208 static u32 scale_hash(u32 hash)
209 {
210 return reciprocal_scale(hash, nf_conntrack_htable_size);
211 }
212
213 static u32 __hash_conntrack(const struct net *net,
214 const struct nf_conntrack_tuple *tuple,
215 unsigned int size)
216 {
217 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
218 }
219
220 static u32 hash_conntrack(const struct net *net,
221 const struct nf_conntrack_tuple *tuple)
222 {
223 return scale_hash(hash_conntrack_raw(tuple, net));
224 }
225
226 bool
227 nf_ct_get_tuple(const struct sk_buff *skb,
228 unsigned int nhoff,
229 unsigned int dataoff,
230 u_int16_t l3num,
231 u_int8_t protonum,
232 struct net *net,
233 struct nf_conntrack_tuple *tuple,
234 const struct nf_conntrack_l3proto *l3proto,
235 const struct nf_conntrack_l4proto *l4proto)
236 {
237 memset(tuple, 0, sizeof(*tuple));
238
239 tuple->src.l3num = l3num;
240 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
241 return false;
242
243 tuple->dst.protonum = protonum;
244 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
245
246 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
247 }
248 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
249
250 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
251 u_int16_t l3num,
252 struct net *net, struct nf_conntrack_tuple *tuple)
253 {
254 struct nf_conntrack_l3proto *l3proto;
255 struct nf_conntrack_l4proto *l4proto;
256 unsigned int protoff;
257 u_int8_t protonum;
258 int ret;
259
260 rcu_read_lock();
261
262 l3proto = __nf_ct_l3proto_find(l3num);
263 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
264 if (ret != NF_ACCEPT) {
265 rcu_read_unlock();
266 return false;
267 }
268
269 l4proto = __nf_ct_l4proto_find(l3num, protonum);
270
271 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
272 l3proto, l4proto);
273
274 rcu_read_unlock();
275 return ret;
276 }
277 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
278
279 bool
280 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
281 const struct nf_conntrack_tuple *orig,
282 const struct nf_conntrack_l3proto *l3proto,
283 const struct nf_conntrack_l4proto *l4proto)
284 {
285 memset(inverse, 0, sizeof(*inverse));
286
287 inverse->src.l3num = orig->src.l3num;
288 if (l3proto->invert_tuple(inverse, orig) == 0)
289 return false;
290
291 inverse->dst.dir = !orig->dst.dir;
292
293 inverse->dst.protonum = orig->dst.protonum;
294 return l4proto->invert_tuple(inverse, orig);
295 }
296 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
297
298 static void
299 clean_from_lists(struct nf_conn *ct)
300 {
301 pr_debug("clean_from_lists(%p)\n", ct);
302 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
303 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
304
305 /* Destroy all pending expectations */
306 nf_ct_remove_expectations(ct);
307 }
308
309 /* must be called with local_bh_disable */
310 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
311 {
312 struct ct_pcpu *pcpu;
313
314 /* add this conntrack to the (per cpu) dying list */
315 ct->cpu = smp_processor_id();
316 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
317
318 spin_lock(&pcpu->lock);
319 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
320 &pcpu->dying);
321 spin_unlock(&pcpu->lock);
322 }
323
324 /* must be called with local_bh_disable */
325 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
326 {
327 struct ct_pcpu *pcpu;
328
329 /* add this conntrack to the (per cpu) unconfirmed list */
330 ct->cpu = smp_processor_id();
331 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
332
333 spin_lock(&pcpu->lock);
334 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
335 &pcpu->unconfirmed);
336 spin_unlock(&pcpu->lock);
337 }
338
339 /* must be called with local_bh_disable */
340 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
341 {
342 struct ct_pcpu *pcpu;
343
344 /* We overload first tuple to link into unconfirmed or dying list.*/
345 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
346
347 spin_lock(&pcpu->lock);
348 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
349 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
350 spin_unlock(&pcpu->lock);
351 }
352
353 /* Released via destroy_conntrack() */
354 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
355 const struct nf_conntrack_zone *zone,
356 gfp_t flags)
357 {
358 struct nf_conn *tmpl;
359
360 tmpl = kzalloc(sizeof(*tmpl), flags);
361 if (tmpl == NULL)
362 return NULL;
363
364 tmpl->status = IPS_TEMPLATE;
365 write_pnet(&tmpl->ct_net, net);
366 nf_ct_zone_add(tmpl, zone);
367 atomic_set(&tmpl->ct_general.use, 0);
368
369 return tmpl;
370 }
371 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
372
373 void nf_ct_tmpl_free(struct nf_conn *tmpl)
374 {
375 nf_ct_ext_destroy(tmpl);
376 nf_ct_ext_free(tmpl);
377 kfree(tmpl);
378 }
379 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
380
381 static void
382 destroy_conntrack(struct nf_conntrack *nfct)
383 {
384 struct nf_conn *ct = (struct nf_conn *)nfct;
385 struct nf_conntrack_l4proto *l4proto;
386
387 pr_debug("destroy_conntrack(%p)\n", ct);
388 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
389
390 if (unlikely(nf_ct_is_template(ct))) {
391 nf_ct_tmpl_free(ct);
392 return;
393 }
394 rcu_read_lock();
395 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
396 if (l4proto->destroy)
397 l4proto->destroy(ct);
398
399 rcu_read_unlock();
400
401 local_bh_disable();
402 /* Expectations will have been removed in clean_from_lists,
403 * except TFTP can create an expectation on the first packet,
404 * before connection is in the list, so we need to clean here,
405 * too.
406 */
407 nf_ct_remove_expectations(ct);
408
409 nf_ct_del_from_dying_or_unconfirmed_list(ct);
410
411 local_bh_enable();
412
413 if (ct->master)
414 nf_ct_put(ct->master);
415
416 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
417 nf_conntrack_free(ct);
418 }
419
420 static void nf_ct_delete_from_lists(struct nf_conn *ct)
421 {
422 struct net *net = nf_ct_net(ct);
423 unsigned int hash, reply_hash;
424 unsigned int sequence;
425
426 nf_ct_helper_destroy(ct);
427
428 local_bh_disable();
429 do {
430 sequence = read_seqcount_begin(&nf_conntrack_generation);
431 hash = hash_conntrack(net,
432 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
433 reply_hash = hash_conntrack(net,
434 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
435 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
436
437 clean_from_lists(ct);
438 nf_conntrack_double_unlock(hash, reply_hash);
439
440 nf_ct_add_to_dying_list(ct);
441
442 local_bh_enable();
443 }
444
445 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
446 {
447 struct nf_conn_tstamp *tstamp;
448
449 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
450 return false;
451
452 tstamp = nf_conn_tstamp_find(ct);
453 if (tstamp && tstamp->stop == 0)
454 tstamp->stop = ktime_get_real_ns();
455
456 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
457 portid, report) < 0) {
458 /* destroy event was not delivered. nf_ct_put will
459 * be done by event cache worker on redelivery.
460 */
461 nf_ct_delete_from_lists(ct);
462 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
463 return false;
464 }
465
466 nf_conntrack_ecache_work(nf_ct_net(ct));
467 nf_ct_delete_from_lists(ct);
468 nf_ct_put(ct);
469 return true;
470 }
471 EXPORT_SYMBOL_GPL(nf_ct_delete);
472
473 static inline bool
474 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
475 const struct nf_conntrack_tuple *tuple,
476 const struct nf_conntrack_zone *zone,
477 const struct net *net)
478 {
479 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
480
481 /* A conntrack can be recreated with the equal tuple,
482 * so we need to check that the conntrack is confirmed
483 */
484 return nf_ct_tuple_equal(tuple, &h->tuple) &&
485 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
486 nf_ct_is_confirmed(ct) &&
487 net_eq(net, nf_ct_net(ct));
488 }
489
490 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
491 static void nf_ct_gc_expired(struct nf_conn *ct)
492 {
493 if (!atomic_inc_not_zero(&ct->ct_general.use))
494 return;
495
496 if (nf_ct_should_gc(ct))
497 nf_ct_kill(ct);
498
499 nf_ct_put(ct);
500 }
501
502 /*
503 * Warning :
504 * - Caller must take a reference on returned object
505 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
506 */
507 static struct nf_conntrack_tuple_hash *
508 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
509 const struct nf_conntrack_tuple *tuple, u32 hash)
510 {
511 struct nf_conntrack_tuple_hash *h;
512 struct hlist_nulls_head *ct_hash;
513 struct hlist_nulls_node *n;
514 unsigned int bucket, hsize;
515
516 begin:
517 nf_conntrack_get_ht(&ct_hash, &hsize);
518 bucket = reciprocal_scale(hash, hsize);
519
520 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
521 struct nf_conn *ct;
522
523 ct = nf_ct_tuplehash_to_ctrack(h);
524 if (nf_ct_is_expired(ct)) {
525 nf_ct_gc_expired(ct);
526 continue;
527 }
528
529 if (nf_ct_is_dying(ct))
530 continue;
531
532 if (nf_ct_key_equal(h, tuple, zone, net))
533 return h;
534 }
535 /*
536 * if the nulls value we got at the end of this lookup is
537 * not the expected one, we must restart lookup.
538 * We probably met an item that was moved to another chain.
539 */
540 if (get_nulls_value(n) != bucket) {
541 NF_CT_STAT_INC_ATOMIC(net, search_restart);
542 goto begin;
543 }
544
545 return NULL;
546 }
547
548 /* Find a connection corresponding to a tuple. */
549 static struct nf_conntrack_tuple_hash *
550 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
551 const struct nf_conntrack_tuple *tuple, u32 hash)
552 {
553 struct nf_conntrack_tuple_hash *h;
554 struct nf_conn *ct;
555
556 rcu_read_lock();
557 begin:
558 h = ____nf_conntrack_find(net, zone, tuple, hash);
559 if (h) {
560 ct = nf_ct_tuplehash_to_ctrack(h);
561 if (unlikely(nf_ct_is_dying(ct) ||
562 !atomic_inc_not_zero(&ct->ct_general.use)))
563 h = NULL;
564 else {
565 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
566 nf_ct_put(ct);
567 goto begin;
568 }
569 }
570 }
571 rcu_read_unlock();
572
573 return h;
574 }
575
576 struct nf_conntrack_tuple_hash *
577 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
578 const struct nf_conntrack_tuple *tuple)
579 {
580 return __nf_conntrack_find_get(net, zone, tuple,
581 hash_conntrack_raw(tuple, net));
582 }
583 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
584
585 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
586 unsigned int hash,
587 unsigned int reply_hash)
588 {
589 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
590 &nf_conntrack_hash[hash]);
591 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
592 &nf_conntrack_hash[reply_hash]);
593 }
594
595 int
596 nf_conntrack_hash_check_insert(struct nf_conn *ct)
597 {
598 const struct nf_conntrack_zone *zone;
599 struct net *net = nf_ct_net(ct);
600 unsigned int hash, reply_hash;
601 struct nf_conntrack_tuple_hash *h;
602 struct hlist_nulls_node *n;
603 unsigned int sequence;
604
605 zone = nf_ct_zone(ct);
606
607 local_bh_disable();
608 do {
609 sequence = read_seqcount_begin(&nf_conntrack_generation);
610 hash = hash_conntrack(net,
611 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
612 reply_hash = hash_conntrack(net,
613 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
614 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
615
616 /* See if there's one in the list already, including reverse */
617 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
618 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
619 zone, net))
620 goto out;
621
622 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
623 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
624 zone, net))
625 goto out;
626
627 smp_wmb();
628 /* The caller holds a reference to this object */
629 atomic_set(&ct->ct_general.use, 2);
630 __nf_conntrack_hash_insert(ct, hash, reply_hash);
631 nf_conntrack_double_unlock(hash, reply_hash);
632 NF_CT_STAT_INC(net, insert);
633 local_bh_enable();
634 return 0;
635
636 out:
637 nf_conntrack_double_unlock(hash, reply_hash);
638 NF_CT_STAT_INC(net, insert_failed);
639 local_bh_enable();
640 return -EEXIST;
641 }
642 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
643
644 static inline void nf_ct_acct_update(struct nf_conn *ct,
645 enum ip_conntrack_info ctinfo,
646 unsigned int len)
647 {
648 struct nf_conn_acct *acct;
649
650 acct = nf_conn_acct_find(ct);
651 if (acct) {
652 struct nf_conn_counter *counter = acct->counter;
653
654 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
655 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
656 }
657 }
658
659 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
660 const struct nf_conn *loser_ct)
661 {
662 struct nf_conn_acct *acct;
663
664 acct = nf_conn_acct_find(loser_ct);
665 if (acct) {
666 struct nf_conn_counter *counter = acct->counter;
667 unsigned int bytes;
668
669 /* u32 should be fine since we must have seen one packet. */
670 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
671 nf_ct_acct_update(ct, ctinfo, bytes);
672 }
673 }
674
675 /* Resolve race on insertion if this protocol allows this. */
676 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
677 enum ip_conntrack_info ctinfo,
678 struct nf_conntrack_tuple_hash *h)
679 {
680 /* This is the conntrack entry already in hashes that won race. */
681 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
682 struct nf_conntrack_l4proto *l4proto;
683
684 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
685 if (l4proto->allow_clash &&
686 !nfct_nat(ct) &&
687 !nf_ct_is_dying(ct) &&
688 atomic_inc_not_zero(&ct->ct_general.use)) {
689 enum ip_conntrack_info oldinfo;
690 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
691
692 nf_ct_acct_merge(ct, ctinfo, loser_ct);
693 nf_conntrack_put(&loser_ct->ct_general);
694 /* Assign conntrack already in hashes to this skbuff. Don't
695 * modify skb->nfctinfo to ensure consistent stateful filtering.
696 */
697 skb->nfct = &ct->ct_general;
698 return NF_ACCEPT;
699 }
700 NF_CT_STAT_INC(net, drop);
701 return NF_DROP;
702 }
703
704 /* Confirm a connection given skb; places it in hash table */
705 int
706 __nf_conntrack_confirm(struct sk_buff *skb)
707 {
708 const struct nf_conntrack_zone *zone;
709 unsigned int hash, reply_hash;
710 struct nf_conntrack_tuple_hash *h;
711 struct nf_conn *ct;
712 struct nf_conn_help *help;
713 struct nf_conn_tstamp *tstamp;
714 struct hlist_nulls_node *n;
715 enum ip_conntrack_info ctinfo;
716 struct net *net;
717 unsigned int sequence;
718 int ret = NF_DROP;
719
720 ct = nf_ct_get(skb, &ctinfo);
721 net = nf_ct_net(ct);
722
723 /* ipt_REJECT uses nf_conntrack_attach to attach related
724 ICMP/TCP RST packets in other direction. Actual packet
725 which created connection will be IP_CT_NEW or for an
726 expected connection, IP_CT_RELATED. */
727 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
728 return NF_ACCEPT;
729
730 zone = nf_ct_zone(ct);
731 local_bh_disable();
732
733 do {
734 sequence = read_seqcount_begin(&nf_conntrack_generation);
735 /* reuse the hash saved before */
736 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
737 hash = scale_hash(hash);
738 reply_hash = hash_conntrack(net,
739 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
740
741 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
742
743 /* We're not in hash table, and we refuse to set up related
744 * connections for unconfirmed conns. But packet copies and
745 * REJECT will give spurious warnings here.
746 */
747 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
748
749 /* No external references means no one else could have
750 * confirmed us.
751 */
752 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
753 pr_debug("Confirming conntrack %p\n", ct);
754 /* We have to check the DYING flag after unlink to prevent
755 * a race against nf_ct_get_next_corpse() possibly called from
756 * user context, else we insert an already 'dead' hash, blocking
757 * further use of that particular connection -JM.
758 */
759 nf_ct_del_from_dying_or_unconfirmed_list(ct);
760
761 if (unlikely(nf_ct_is_dying(ct))) {
762 nf_ct_add_to_dying_list(ct);
763 goto dying;
764 }
765
766 /* See if there's one in the list already, including reverse:
767 NAT could have grabbed it without realizing, since we're
768 not in the hash. If there is, we lost race. */
769 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
770 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
771 zone, net))
772 goto out;
773
774 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
775 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
776 zone, net))
777 goto out;
778
779 /* Timer relative to confirmation time, not original
780 setting time, otherwise we'd get timer wrap in
781 weird delay cases. */
782 ct->timeout += nfct_time_stamp;
783 atomic_inc(&ct->ct_general.use);
784 ct->status |= IPS_CONFIRMED;
785
786 /* set conntrack timestamp, if enabled. */
787 tstamp = nf_conn_tstamp_find(ct);
788 if (tstamp) {
789 if (skb->tstamp == 0)
790 __net_timestamp(skb);
791
792 tstamp->start = ktime_to_ns(skb->tstamp);
793 }
794 /* Since the lookup is lockless, hash insertion must be done after
795 * starting the timer and setting the CONFIRMED bit. The RCU barriers
796 * guarantee that no other CPU can find the conntrack before the above
797 * stores are visible.
798 */
799 __nf_conntrack_hash_insert(ct, hash, reply_hash);
800 nf_conntrack_double_unlock(hash, reply_hash);
801 local_bh_enable();
802
803 help = nfct_help(ct);
804 if (help && help->helper)
805 nf_conntrack_event_cache(IPCT_HELPER, ct);
806
807 nf_conntrack_event_cache(master_ct(ct) ?
808 IPCT_RELATED : IPCT_NEW, ct);
809 return NF_ACCEPT;
810
811 out:
812 nf_ct_add_to_dying_list(ct);
813 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
814 dying:
815 nf_conntrack_double_unlock(hash, reply_hash);
816 NF_CT_STAT_INC(net, insert_failed);
817 local_bh_enable();
818 return ret;
819 }
820 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
821
822 /* Returns true if a connection correspondings to the tuple (required
823 for NAT). */
824 int
825 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
826 const struct nf_conn *ignored_conntrack)
827 {
828 struct net *net = nf_ct_net(ignored_conntrack);
829 const struct nf_conntrack_zone *zone;
830 struct nf_conntrack_tuple_hash *h;
831 struct hlist_nulls_head *ct_hash;
832 unsigned int hash, hsize;
833 struct hlist_nulls_node *n;
834 struct nf_conn *ct;
835
836 zone = nf_ct_zone(ignored_conntrack);
837
838 rcu_read_lock();
839 begin:
840 nf_conntrack_get_ht(&ct_hash, &hsize);
841 hash = __hash_conntrack(net, tuple, hsize);
842
843 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
844 ct = nf_ct_tuplehash_to_ctrack(h);
845
846 if (ct == ignored_conntrack)
847 continue;
848
849 if (nf_ct_is_expired(ct)) {
850 nf_ct_gc_expired(ct);
851 continue;
852 }
853
854 if (nf_ct_key_equal(h, tuple, zone, net)) {
855 NF_CT_STAT_INC_ATOMIC(net, found);
856 rcu_read_unlock();
857 return 1;
858 }
859 }
860
861 if (get_nulls_value(n) != hash) {
862 NF_CT_STAT_INC_ATOMIC(net, search_restart);
863 goto begin;
864 }
865
866 rcu_read_unlock();
867
868 return 0;
869 }
870 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
871
872 #define NF_CT_EVICTION_RANGE 8
873
874 /* There's a small race here where we may free a just-assured
875 connection. Too bad: we're in trouble anyway. */
876 static unsigned int early_drop_list(struct net *net,
877 struct hlist_nulls_head *head)
878 {
879 struct nf_conntrack_tuple_hash *h;
880 struct hlist_nulls_node *n;
881 unsigned int drops = 0;
882 struct nf_conn *tmp;
883
884 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
885 tmp = nf_ct_tuplehash_to_ctrack(h);
886
887 if (nf_ct_is_expired(tmp)) {
888 nf_ct_gc_expired(tmp);
889 continue;
890 }
891
892 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
893 !net_eq(nf_ct_net(tmp), net) ||
894 nf_ct_is_dying(tmp))
895 continue;
896
897 if (!atomic_inc_not_zero(&tmp->ct_general.use))
898 continue;
899
900 /* kill only if still in same netns -- might have moved due to
901 * SLAB_DESTROY_BY_RCU rules.
902 *
903 * We steal the timer reference. If that fails timer has
904 * already fired or someone else deleted it. Just drop ref
905 * and move to next entry.
906 */
907 if (net_eq(nf_ct_net(tmp), net) &&
908 nf_ct_is_confirmed(tmp) &&
909 nf_ct_delete(tmp, 0, 0))
910 drops++;
911
912 nf_ct_put(tmp);
913 }
914
915 return drops;
916 }
917
918 static noinline int early_drop(struct net *net, unsigned int _hash)
919 {
920 unsigned int i;
921
922 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
923 struct hlist_nulls_head *ct_hash;
924 unsigned int hash, hsize, drops;
925
926 rcu_read_lock();
927 nf_conntrack_get_ht(&ct_hash, &hsize);
928 hash = reciprocal_scale(_hash++, hsize);
929
930 drops = early_drop_list(net, &ct_hash[hash]);
931 rcu_read_unlock();
932
933 if (drops) {
934 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
935 return true;
936 }
937 }
938
939 return false;
940 }
941
942 static void gc_worker(struct work_struct *work)
943 {
944 unsigned int i, goal, buckets = 0, expired_count = 0;
945 struct conntrack_gc_work *gc_work;
946 unsigned int ratio, scanned = 0;
947 unsigned long next_run;
948
949 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
950
951 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
952 i = gc_work->last_bucket;
953
954 do {
955 struct nf_conntrack_tuple_hash *h;
956 struct hlist_nulls_head *ct_hash;
957 struct hlist_nulls_node *n;
958 unsigned int hashsz;
959 struct nf_conn *tmp;
960
961 i++;
962 rcu_read_lock();
963
964 nf_conntrack_get_ht(&ct_hash, &hashsz);
965 if (i >= hashsz)
966 i = 0;
967
968 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
969 tmp = nf_ct_tuplehash_to_ctrack(h);
970
971 scanned++;
972 if (nf_ct_is_expired(tmp)) {
973 nf_ct_gc_expired(tmp);
974 expired_count++;
975 continue;
976 }
977 }
978
979 /* could check get_nulls_value() here and restart if ct
980 * was moved to another chain. But given gc is best-effort
981 * we will just continue with next hash slot.
982 */
983 rcu_read_unlock();
984 cond_resched_rcu_qs();
985 } while (++buckets < goal &&
986 expired_count < GC_MAX_EVICTS);
987
988 if (gc_work->exiting)
989 return;
990
991 /*
992 * Eviction will normally happen from the packet path, and not
993 * from this gc worker.
994 *
995 * This worker is only here to reap expired entries when system went
996 * idle after a busy period.
997 *
998 * The heuristics below are supposed to balance conflicting goals:
999 *
1000 * 1. Minimize time until we notice a stale entry
1001 * 2. Maximize scan intervals to not waste cycles
1002 *
1003 * Normally, expired_count will be 0, this increases the next_run time
1004 * to priorize 2) above.
1005 *
1006 * As soon as a timed-out entry is found, move towards 1) and increase
1007 * the scan frequency.
1008 * In case we have lots of evictions next scan is done immediately.
1009 */
1010 ratio = scanned ? expired_count * 100 / scanned : 0;
1011 if (ratio >= 90 || expired_count == GC_MAX_EVICTS) {
1012 gc_work->next_gc_run = 0;
1013 next_run = 0;
1014 } else if (expired_count) {
1015 gc_work->next_gc_run /= 2U;
1016 next_run = msecs_to_jiffies(1);
1017 } else {
1018 if (gc_work->next_gc_run < GC_INTERVAL_MAX)
1019 gc_work->next_gc_run += msecs_to_jiffies(1);
1020
1021 next_run = gc_work->next_gc_run;
1022 }
1023
1024 gc_work->last_bucket = i;
1025 queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1026 }
1027
1028 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1029 {
1030 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1031 gc_work->next_gc_run = GC_INTERVAL_MAX;
1032 gc_work->exiting = false;
1033 }
1034
1035 static struct nf_conn *
1036 __nf_conntrack_alloc(struct net *net,
1037 const struct nf_conntrack_zone *zone,
1038 const struct nf_conntrack_tuple *orig,
1039 const struct nf_conntrack_tuple *repl,
1040 gfp_t gfp, u32 hash)
1041 {
1042 struct nf_conn *ct;
1043
1044 /* We don't want any race condition at early drop stage */
1045 atomic_inc(&net->ct.count);
1046
1047 if (nf_conntrack_max &&
1048 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1049 if (!early_drop(net, hash)) {
1050 atomic_dec(&net->ct.count);
1051 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1052 return ERR_PTR(-ENOMEM);
1053 }
1054 }
1055
1056 /*
1057 * Do not use kmem_cache_zalloc(), as this cache uses
1058 * SLAB_DESTROY_BY_RCU.
1059 */
1060 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1061 if (ct == NULL)
1062 goto out;
1063
1064 spin_lock_init(&ct->lock);
1065 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1066 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1067 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1068 /* save hash for reusing when confirming */
1069 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1070 ct->status = 0;
1071 write_pnet(&ct->ct_net, net);
1072 memset(&ct->__nfct_init_offset[0], 0,
1073 offsetof(struct nf_conn, proto) -
1074 offsetof(struct nf_conn, __nfct_init_offset[0]));
1075
1076 nf_ct_zone_add(ct, zone);
1077
1078 /* Because we use RCU lookups, we set ct_general.use to zero before
1079 * this is inserted in any list.
1080 */
1081 atomic_set(&ct->ct_general.use, 0);
1082 return ct;
1083 out:
1084 atomic_dec(&net->ct.count);
1085 return ERR_PTR(-ENOMEM);
1086 }
1087
1088 struct nf_conn *nf_conntrack_alloc(struct net *net,
1089 const struct nf_conntrack_zone *zone,
1090 const struct nf_conntrack_tuple *orig,
1091 const struct nf_conntrack_tuple *repl,
1092 gfp_t gfp)
1093 {
1094 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1095 }
1096 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1097
1098 void nf_conntrack_free(struct nf_conn *ct)
1099 {
1100 struct net *net = nf_ct_net(ct);
1101
1102 /* A freed object has refcnt == 0, that's
1103 * the golden rule for SLAB_DESTROY_BY_RCU
1104 */
1105 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1106
1107 nf_ct_ext_destroy(ct);
1108 nf_ct_ext_free(ct);
1109 kmem_cache_free(nf_conntrack_cachep, ct);
1110 smp_mb__before_atomic();
1111 atomic_dec(&net->ct.count);
1112 }
1113 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1114
1115
1116 /* Allocate a new conntrack: we return -ENOMEM if classification
1117 failed due to stress. Otherwise it really is unclassifiable. */
1118 static struct nf_conntrack_tuple_hash *
1119 init_conntrack(struct net *net, struct nf_conn *tmpl,
1120 const struct nf_conntrack_tuple *tuple,
1121 struct nf_conntrack_l3proto *l3proto,
1122 struct nf_conntrack_l4proto *l4proto,
1123 struct sk_buff *skb,
1124 unsigned int dataoff, u32 hash)
1125 {
1126 struct nf_conn *ct;
1127 struct nf_conn_help *help;
1128 struct nf_conntrack_tuple repl_tuple;
1129 struct nf_conntrack_ecache *ecache;
1130 struct nf_conntrack_expect *exp = NULL;
1131 const struct nf_conntrack_zone *zone;
1132 struct nf_conn_timeout *timeout_ext;
1133 struct nf_conntrack_zone tmp;
1134 unsigned int *timeouts;
1135
1136 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1137 pr_debug("Can't invert tuple.\n");
1138 return NULL;
1139 }
1140
1141 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1142 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1143 hash);
1144 if (IS_ERR(ct))
1145 return (struct nf_conntrack_tuple_hash *)ct;
1146
1147 if (!nf_ct_add_synproxy(ct, tmpl)) {
1148 nf_conntrack_free(ct);
1149 return ERR_PTR(-ENOMEM);
1150 }
1151
1152 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1153 if (timeout_ext) {
1154 timeouts = nf_ct_timeout_data(timeout_ext);
1155 if (unlikely(!timeouts))
1156 timeouts = l4proto->get_timeouts(net);
1157 } else {
1158 timeouts = l4proto->get_timeouts(net);
1159 }
1160
1161 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1162 nf_conntrack_free(ct);
1163 pr_debug("can't track with proto module\n");
1164 return NULL;
1165 }
1166
1167 if (timeout_ext)
1168 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1169 GFP_ATOMIC);
1170
1171 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1172 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1173 nf_ct_labels_ext_add(ct);
1174
1175 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1176 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1177 ecache ? ecache->expmask : 0,
1178 GFP_ATOMIC);
1179
1180 local_bh_disable();
1181 if (net->ct.expect_count) {
1182 spin_lock(&nf_conntrack_expect_lock);
1183 exp = nf_ct_find_expectation(net, zone, tuple);
1184 if (exp) {
1185 pr_debug("expectation arrives ct=%p exp=%p\n",
1186 ct, exp);
1187 /* Welcome, Mr. Bond. We've been expecting you... */
1188 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1189 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1190 ct->master = exp->master;
1191 if (exp->helper) {
1192 help = nf_ct_helper_ext_add(ct, exp->helper,
1193 GFP_ATOMIC);
1194 if (help)
1195 rcu_assign_pointer(help->helper, exp->helper);
1196 }
1197
1198 #ifdef CONFIG_NF_CONNTRACK_MARK
1199 ct->mark = exp->master->mark;
1200 #endif
1201 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1202 ct->secmark = exp->master->secmark;
1203 #endif
1204 NF_CT_STAT_INC(net, expect_new);
1205 }
1206 spin_unlock(&nf_conntrack_expect_lock);
1207 }
1208 if (!exp)
1209 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1210
1211 /* Now it is inserted into the unconfirmed list, bump refcount */
1212 nf_conntrack_get(&ct->ct_general);
1213 nf_ct_add_to_unconfirmed_list(ct);
1214
1215 local_bh_enable();
1216
1217 if (exp) {
1218 if (exp->expectfn)
1219 exp->expectfn(ct, exp);
1220 nf_ct_expect_put(exp);
1221 }
1222
1223 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1224 }
1225
1226 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
1227 static inline struct nf_conn *
1228 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1229 struct sk_buff *skb,
1230 unsigned int dataoff,
1231 u_int16_t l3num,
1232 u_int8_t protonum,
1233 struct nf_conntrack_l3proto *l3proto,
1234 struct nf_conntrack_l4proto *l4proto,
1235 int *set_reply,
1236 enum ip_conntrack_info *ctinfo)
1237 {
1238 const struct nf_conntrack_zone *zone;
1239 struct nf_conntrack_tuple tuple;
1240 struct nf_conntrack_tuple_hash *h;
1241 struct nf_conntrack_zone tmp;
1242 struct nf_conn *ct;
1243 u32 hash;
1244
1245 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1246 dataoff, l3num, protonum, net, &tuple, l3proto,
1247 l4proto)) {
1248 pr_debug("Can't get tuple\n");
1249 return NULL;
1250 }
1251
1252 /* look for tuple match */
1253 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1254 hash = hash_conntrack_raw(&tuple, net);
1255 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1256 if (!h) {
1257 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1258 skb, dataoff, hash);
1259 if (!h)
1260 return NULL;
1261 if (IS_ERR(h))
1262 return (void *)h;
1263 }
1264 ct = nf_ct_tuplehash_to_ctrack(h);
1265
1266 /* It exists; we have (non-exclusive) reference. */
1267 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1268 *ctinfo = IP_CT_ESTABLISHED_REPLY;
1269 /* Please set reply bit if this packet OK */
1270 *set_reply = 1;
1271 } else {
1272 /* Once we've had two way comms, always ESTABLISHED. */
1273 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1274 pr_debug("normal packet for %p\n", ct);
1275 *ctinfo = IP_CT_ESTABLISHED;
1276 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1277 pr_debug("related packet for %p\n", ct);
1278 *ctinfo = IP_CT_RELATED;
1279 } else {
1280 pr_debug("new packet for %p\n", ct);
1281 *ctinfo = IP_CT_NEW;
1282 }
1283 *set_reply = 0;
1284 }
1285 skb->nfct = &ct->ct_general;
1286 skb->nfctinfo = *ctinfo;
1287 return ct;
1288 }
1289
1290 unsigned int
1291 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1292 struct sk_buff *skb)
1293 {
1294 struct nf_conn *ct, *tmpl;
1295 enum ip_conntrack_info ctinfo;
1296 struct nf_conntrack_l3proto *l3proto;
1297 struct nf_conntrack_l4proto *l4proto;
1298 unsigned int *timeouts;
1299 unsigned int dataoff;
1300 u_int8_t protonum;
1301 int set_reply = 0;
1302 int ret;
1303
1304 tmpl = nf_ct_get(skb, &ctinfo);
1305 if (tmpl) {
1306 /* Previously seen (loopback or untracked)? Ignore. */
1307 if (!nf_ct_is_template(tmpl)) {
1308 NF_CT_STAT_INC_ATOMIC(net, ignore);
1309 return NF_ACCEPT;
1310 }
1311 skb->nfct = NULL;
1312 }
1313
1314 /* rcu_read_lock()ed by nf_hook_thresh */
1315 l3proto = __nf_ct_l3proto_find(pf);
1316 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1317 &dataoff, &protonum);
1318 if (ret <= 0) {
1319 pr_debug("not prepared to track yet or error occurred\n");
1320 NF_CT_STAT_INC_ATOMIC(net, error);
1321 NF_CT_STAT_INC_ATOMIC(net, invalid);
1322 ret = -ret;
1323 goto out;
1324 }
1325
1326 l4proto = __nf_ct_l4proto_find(pf, protonum);
1327
1328 /* It may be an special packet, error, unclean...
1329 * inverse of the return code tells to the netfilter
1330 * core what to do with the packet. */
1331 if (l4proto->error != NULL) {
1332 ret = l4proto->error(net, tmpl, skb, dataoff, pf, hooknum);
1333 if (ret <= 0) {
1334 NF_CT_STAT_INC_ATOMIC(net, error);
1335 NF_CT_STAT_INC_ATOMIC(net, invalid);
1336 ret = -ret;
1337 goto out;
1338 }
1339 /* ICMP[v6] protocol trackers may assign one conntrack. */
1340 if (skb->nfct)
1341 goto out;
1342 }
1343 repeat:
1344 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1345 l3proto, l4proto, &set_reply, &ctinfo);
1346 if (!ct) {
1347 /* Not valid part of a connection */
1348 NF_CT_STAT_INC_ATOMIC(net, invalid);
1349 ret = NF_ACCEPT;
1350 goto out;
1351 }
1352
1353 if (IS_ERR(ct)) {
1354 /* Too stressed to deal. */
1355 NF_CT_STAT_INC_ATOMIC(net, drop);
1356 ret = NF_DROP;
1357 goto out;
1358 }
1359
1360 NF_CT_ASSERT(skb->nfct);
1361
1362 /* Decide what timeout policy we want to apply to this flow. */
1363 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1364
1365 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1366 if (ret <= 0) {
1367 /* Invalid: inverse of the return code tells
1368 * the netfilter core what to do */
1369 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1370 nf_conntrack_put(&ct->ct_general);
1371 skb->nfct = NULL;
1372 NF_CT_STAT_INC_ATOMIC(net, invalid);
1373 if (ret == -NF_DROP)
1374 NF_CT_STAT_INC_ATOMIC(net, drop);
1375 /* Special case: TCP tracker reports an attempt to reopen a
1376 * closed/aborted connection. We have to go back and create a
1377 * fresh conntrack.
1378 */
1379 if (ret == -NF_REPEAT)
1380 goto repeat;
1381 ret = -ret;
1382 goto out;
1383 }
1384
1385 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1386 nf_conntrack_event_cache(IPCT_REPLY, ct);
1387 out:
1388 if (tmpl)
1389 nf_ct_put(tmpl);
1390
1391 return ret;
1392 }
1393 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1394
1395 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1396 const struct nf_conntrack_tuple *orig)
1397 {
1398 bool ret;
1399
1400 rcu_read_lock();
1401 ret = nf_ct_invert_tuple(inverse, orig,
1402 __nf_ct_l3proto_find(orig->src.l3num),
1403 __nf_ct_l4proto_find(orig->src.l3num,
1404 orig->dst.protonum));
1405 rcu_read_unlock();
1406 return ret;
1407 }
1408 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1409
1410 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1411 implicitly racy: see __nf_conntrack_confirm */
1412 void nf_conntrack_alter_reply(struct nf_conn *ct,
1413 const struct nf_conntrack_tuple *newreply)
1414 {
1415 struct nf_conn_help *help = nfct_help(ct);
1416
1417 /* Should be unconfirmed, so not in hash table yet */
1418 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1419
1420 pr_debug("Altering reply tuple of %p to ", ct);
1421 nf_ct_dump_tuple(newreply);
1422
1423 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1424 if (ct->master || (help && !hlist_empty(&help->expectations)))
1425 return;
1426
1427 rcu_read_lock();
1428 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1429 rcu_read_unlock();
1430 }
1431 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1432
1433 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1434 void __nf_ct_refresh_acct(struct nf_conn *ct,
1435 enum ip_conntrack_info ctinfo,
1436 const struct sk_buff *skb,
1437 unsigned long extra_jiffies,
1438 int do_acct)
1439 {
1440 NF_CT_ASSERT(skb);
1441
1442 /* Only update if this is not a fixed timeout */
1443 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1444 goto acct;
1445
1446 /* If not in hash table, timer will not be active yet */
1447 if (nf_ct_is_confirmed(ct))
1448 extra_jiffies += nfct_time_stamp;
1449
1450 ct->timeout = extra_jiffies;
1451 acct:
1452 if (do_acct)
1453 nf_ct_acct_update(ct, ctinfo, skb->len);
1454 }
1455 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1456
1457 bool nf_ct_kill_acct(struct nf_conn *ct,
1458 enum ip_conntrack_info ctinfo,
1459 const struct sk_buff *skb)
1460 {
1461 nf_ct_acct_update(ct, ctinfo, skb->len);
1462
1463 return nf_ct_delete(ct, 0, 0);
1464 }
1465 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1466
1467 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1468
1469 #include <linux/netfilter/nfnetlink.h>
1470 #include <linux/netfilter/nfnetlink_conntrack.h>
1471 #include <linux/mutex.h>
1472
1473 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1474 * in ip_conntrack_core, since we don't want the protocols to autoload
1475 * or depend on ctnetlink */
1476 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1477 const struct nf_conntrack_tuple *tuple)
1478 {
1479 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1480 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1481 goto nla_put_failure;
1482 return 0;
1483
1484 nla_put_failure:
1485 return -1;
1486 }
1487 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1488
1489 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1490 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1491 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1492 };
1493 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1494
1495 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1496 struct nf_conntrack_tuple *t)
1497 {
1498 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1499 return -EINVAL;
1500
1501 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1502 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1503
1504 return 0;
1505 }
1506 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1507
1508 int nf_ct_port_nlattr_tuple_size(void)
1509 {
1510 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1511 }
1512 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1513 #endif
1514
1515 /* Used by ipt_REJECT and ip6t_REJECT. */
1516 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1517 {
1518 struct nf_conn *ct;
1519 enum ip_conntrack_info ctinfo;
1520
1521 /* This ICMP is in reverse direction to the packet which caused it */
1522 ct = nf_ct_get(skb, &ctinfo);
1523 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1524 ctinfo = IP_CT_RELATED_REPLY;
1525 else
1526 ctinfo = IP_CT_RELATED;
1527
1528 /* Attach to new skbuff, and increment count */
1529 nskb->nfct = &ct->ct_general;
1530 nskb->nfctinfo = ctinfo;
1531 nf_conntrack_get(nskb->nfct);
1532 }
1533
1534 /* Bring out ya dead! */
1535 static struct nf_conn *
1536 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1537 void *data, unsigned int *bucket)
1538 {
1539 struct nf_conntrack_tuple_hash *h;
1540 struct nf_conn *ct;
1541 struct hlist_nulls_node *n;
1542 int cpu;
1543 spinlock_t *lockp;
1544
1545 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1546 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1547 local_bh_disable();
1548 nf_conntrack_lock(lockp);
1549 if (*bucket < nf_conntrack_htable_size) {
1550 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1551 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1552 continue;
1553 ct = nf_ct_tuplehash_to_ctrack(h);
1554 if (net_eq(nf_ct_net(ct), net) &&
1555 iter(ct, data))
1556 goto found;
1557 }
1558 }
1559 spin_unlock(lockp);
1560 local_bh_enable();
1561 cond_resched();
1562 }
1563
1564 for_each_possible_cpu(cpu) {
1565 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1566
1567 spin_lock_bh(&pcpu->lock);
1568 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1569 ct = nf_ct_tuplehash_to_ctrack(h);
1570 if (iter(ct, data))
1571 set_bit(IPS_DYING_BIT, &ct->status);
1572 }
1573 spin_unlock_bh(&pcpu->lock);
1574 cond_resched();
1575 }
1576 return NULL;
1577 found:
1578 atomic_inc(&ct->ct_general.use);
1579 spin_unlock(lockp);
1580 local_bh_enable();
1581 return ct;
1582 }
1583
1584 void nf_ct_iterate_cleanup(struct net *net,
1585 int (*iter)(struct nf_conn *i, void *data),
1586 void *data, u32 portid, int report)
1587 {
1588 struct nf_conn *ct;
1589 unsigned int bucket = 0;
1590
1591 might_sleep();
1592
1593 if (atomic_read(&net->ct.count) == 0)
1594 return;
1595
1596 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1597 /* Time to push up daises... */
1598
1599 nf_ct_delete(ct, portid, report);
1600 nf_ct_put(ct);
1601 cond_resched();
1602 }
1603 }
1604 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1605
1606 static int kill_all(struct nf_conn *i, void *data)
1607 {
1608 return 1;
1609 }
1610
1611 void nf_ct_free_hashtable(void *hash, unsigned int size)
1612 {
1613 if (is_vmalloc_addr(hash))
1614 vfree(hash);
1615 else
1616 free_pages((unsigned long)hash,
1617 get_order(sizeof(struct hlist_head) * size));
1618 }
1619 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1620
1621 static int untrack_refs(void)
1622 {
1623 int cnt = 0, cpu;
1624
1625 for_each_possible_cpu(cpu) {
1626 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1627
1628 cnt += atomic_read(&ct->ct_general.use) - 1;
1629 }
1630 return cnt;
1631 }
1632
1633 void nf_conntrack_cleanup_start(void)
1634 {
1635 conntrack_gc_work.exiting = true;
1636 RCU_INIT_POINTER(ip_ct_attach, NULL);
1637 }
1638
1639 void nf_conntrack_cleanup_end(void)
1640 {
1641 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1642 while (untrack_refs() > 0)
1643 schedule();
1644
1645 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1646 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1647
1648 nf_conntrack_proto_fini();
1649 nf_conntrack_seqadj_fini();
1650 nf_conntrack_labels_fini();
1651 nf_conntrack_helper_fini();
1652 nf_conntrack_timeout_fini();
1653 nf_conntrack_ecache_fini();
1654 nf_conntrack_tstamp_fini();
1655 nf_conntrack_acct_fini();
1656 nf_conntrack_expect_fini();
1657
1658 kmem_cache_destroy(nf_conntrack_cachep);
1659 }
1660
1661 /*
1662 * Mishearing the voices in his head, our hero wonders how he's
1663 * supposed to kill the mall.
1664 */
1665 void nf_conntrack_cleanup_net(struct net *net)
1666 {
1667 LIST_HEAD(single);
1668
1669 list_add(&net->exit_list, &single);
1670 nf_conntrack_cleanup_net_list(&single);
1671 }
1672
1673 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1674 {
1675 int busy;
1676 struct net *net;
1677
1678 /*
1679 * This makes sure all current packets have passed through
1680 * netfilter framework. Roll on, two-stage module
1681 * delete...
1682 */
1683 synchronize_net();
1684 i_see_dead_people:
1685 busy = 0;
1686 list_for_each_entry(net, net_exit_list, exit_list) {
1687 nf_ct_iterate_cleanup(net, kill_all, NULL, 0, 0);
1688 if (atomic_read(&net->ct.count) != 0)
1689 busy = 1;
1690 }
1691 if (busy) {
1692 schedule();
1693 goto i_see_dead_people;
1694 }
1695
1696 list_for_each_entry(net, net_exit_list, exit_list) {
1697 nf_conntrack_proto_pernet_fini(net);
1698 nf_conntrack_helper_pernet_fini(net);
1699 nf_conntrack_ecache_pernet_fini(net);
1700 nf_conntrack_tstamp_pernet_fini(net);
1701 nf_conntrack_acct_pernet_fini(net);
1702 nf_conntrack_expect_pernet_fini(net);
1703 free_percpu(net->ct.stat);
1704 free_percpu(net->ct.pcpu_lists);
1705 }
1706 }
1707
1708 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1709 {
1710 struct hlist_nulls_head *hash;
1711 unsigned int nr_slots, i;
1712 size_t sz;
1713
1714 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1715 return NULL;
1716
1717 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1718 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1719
1720 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1721 return NULL;
1722
1723 sz = nr_slots * sizeof(struct hlist_nulls_head);
1724 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1725 get_order(sz));
1726 if (!hash)
1727 hash = vzalloc(sz);
1728
1729 if (hash && nulls)
1730 for (i = 0; i < nr_slots; i++)
1731 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1732
1733 return hash;
1734 }
1735 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1736
1737 int nf_conntrack_hash_resize(unsigned int hashsize)
1738 {
1739 int i, bucket;
1740 unsigned int old_size;
1741 struct hlist_nulls_head *hash, *old_hash;
1742 struct nf_conntrack_tuple_hash *h;
1743 struct nf_conn *ct;
1744
1745 if (!hashsize)
1746 return -EINVAL;
1747
1748 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1749 if (!hash)
1750 return -ENOMEM;
1751
1752 old_size = nf_conntrack_htable_size;
1753 if (old_size == hashsize) {
1754 nf_ct_free_hashtable(hash, hashsize);
1755 return 0;
1756 }
1757
1758 local_bh_disable();
1759 nf_conntrack_all_lock();
1760 write_seqcount_begin(&nf_conntrack_generation);
1761
1762 /* Lookups in the old hash might happen in parallel, which means we
1763 * might get false negatives during connection lookup. New connections
1764 * created because of a false negative won't make it into the hash
1765 * though since that required taking the locks.
1766 */
1767
1768 for (i = 0; i < nf_conntrack_htable_size; i++) {
1769 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1770 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1771 struct nf_conntrack_tuple_hash, hnnode);
1772 ct = nf_ct_tuplehash_to_ctrack(h);
1773 hlist_nulls_del_rcu(&h->hnnode);
1774 bucket = __hash_conntrack(nf_ct_net(ct),
1775 &h->tuple, hashsize);
1776 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1777 }
1778 }
1779 old_size = nf_conntrack_htable_size;
1780 old_hash = nf_conntrack_hash;
1781
1782 nf_conntrack_hash = hash;
1783 nf_conntrack_htable_size = hashsize;
1784
1785 write_seqcount_end(&nf_conntrack_generation);
1786 nf_conntrack_all_unlock();
1787 local_bh_enable();
1788
1789 synchronize_net();
1790 nf_ct_free_hashtable(old_hash, old_size);
1791 return 0;
1792 }
1793
1794 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1795 {
1796 unsigned int hashsize;
1797 int rc;
1798
1799 if (current->nsproxy->net_ns != &init_net)
1800 return -EOPNOTSUPP;
1801
1802 /* On boot, we can set this without any fancy locking. */
1803 if (!nf_conntrack_htable_size)
1804 return param_set_uint(val, kp);
1805
1806 rc = kstrtouint(val, 0, &hashsize);
1807 if (rc)
1808 return rc;
1809
1810 return nf_conntrack_hash_resize(hashsize);
1811 }
1812 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1813
1814 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1815 &nf_conntrack_htable_size, 0600);
1816
1817 void nf_ct_untracked_status_or(unsigned long bits)
1818 {
1819 int cpu;
1820
1821 for_each_possible_cpu(cpu)
1822 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1823 }
1824 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1825
1826 int nf_conntrack_init_start(void)
1827 {
1828 int max_factor = 8;
1829 int ret = -ENOMEM;
1830 int i, cpu;
1831
1832 seqcount_init(&nf_conntrack_generation);
1833
1834 for (i = 0; i < CONNTRACK_LOCKS; i++)
1835 spin_lock_init(&nf_conntrack_locks[i]);
1836
1837 if (!nf_conntrack_htable_size) {
1838 /* Idea from tcp.c: use 1/16384 of memory.
1839 * On i386: 32MB machine has 512 buckets.
1840 * >= 1GB machines have 16384 buckets.
1841 * >= 4GB machines have 65536 buckets.
1842 */
1843 nf_conntrack_htable_size
1844 = (((totalram_pages << PAGE_SHIFT) / 16384)
1845 / sizeof(struct hlist_head));
1846 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
1847 nf_conntrack_htable_size = 65536;
1848 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1849 nf_conntrack_htable_size = 16384;
1850 if (nf_conntrack_htable_size < 32)
1851 nf_conntrack_htable_size = 32;
1852
1853 /* Use a max. factor of four by default to get the same max as
1854 * with the old struct list_heads. When a table size is given
1855 * we use the old value of 8 to avoid reducing the max.
1856 * entries. */
1857 max_factor = 4;
1858 }
1859
1860 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
1861 if (!nf_conntrack_hash)
1862 return -ENOMEM;
1863
1864 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1865
1866 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1867 sizeof(struct nf_conn), 0,
1868 SLAB_DESTROY_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
1869 if (!nf_conntrack_cachep)
1870 goto err_cachep;
1871
1872 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1873 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1874 nf_conntrack_max);
1875
1876 ret = nf_conntrack_expect_init();
1877 if (ret < 0)
1878 goto err_expect;
1879
1880 ret = nf_conntrack_acct_init();
1881 if (ret < 0)
1882 goto err_acct;
1883
1884 ret = nf_conntrack_tstamp_init();
1885 if (ret < 0)
1886 goto err_tstamp;
1887
1888 ret = nf_conntrack_ecache_init();
1889 if (ret < 0)
1890 goto err_ecache;
1891
1892 ret = nf_conntrack_timeout_init();
1893 if (ret < 0)
1894 goto err_timeout;
1895
1896 ret = nf_conntrack_helper_init();
1897 if (ret < 0)
1898 goto err_helper;
1899
1900 ret = nf_conntrack_labels_init();
1901 if (ret < 0)
1902 goto err_labels;
1903
1904 ret = nf_conntrack_seqadj_init();
1905 if (ret < 0)
1906 goto err_seqadj;
1907
1908 ret = nf_conntrack_proto_init();
1909 if (ret < 0)
1910 goto err_proto;
1911
1912 /* Set up fake conntrack: to never be deleted, not in any hashes */
1913 for_each_possible_cpu(cpu) {
1914 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1915 write_pnet(&ct->ct_net, &init_net);
1916 atomic_set(&ct->ct_general.use, 1);
1917 }
1918 /* - and look it like as a confirmed connection */
1919 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1920
1921 conntrack_gc_work_init(&conntrack_gc_work);
1922 queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, GC_INTERVAL_MAX);
1923
1924 return 0;
1925
1926 err_proto:
1927 nf_conntrack_seqadj_fini();
1928 err_seqadj:
1929 nf_conntrack_labels_fini();
1930 err_labels:
1931 nf_conntrack_helper_fini();
1932 err_helper:
1933 nf_conntrack_timeout_fini();
1934 err_timeout:
1935 nf_conntrack_ecache_fini();
1936 err_ecache:
1937 nf_conntrack_tstamp_fini();
1938 err_tstamp:
1939 nf_conntrack_acct_fini();
1940 err_acct:
1941 nf_conntrack_expect_fini();
1942 err_expect:
1943 kmem_cache_destroy(nf_conntrack_cachep);
1944 err_cachep:
1945 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1946 return ret;
1947 }
1948
1949 void nf_conntrack_init_end(void)
1950 {
1951 /* For use by REJECT target */
1952 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1953 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1954 }
1955
1956 /*
1957 * We need to use special "null" values, not used in hash table
1958 */
1959 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1960 #define DYING_NULLS_VAL ((1<<30)+1)
1961 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
1962
1963 int nf_conntrack_init_net(struct net *net)
1964 {
1965 int ret = -ENOMEM;
1966 int cpu;
1967
1968 atomic_set(&net->ct.count, 0);
1969
1970 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
1971 if (!net->ct.pcpu_lists)
1972 goto err_stat;
1973
1974 for_each_possible_cpu(cpu) {
1975 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1976
1977 spin_lock_init(&pcpu->lock);
1978 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
1979 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
1980 }
1981
1982 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1983 if (!net->ct.stat)
1984 goto err_pcpu_lists;
1985
1986 ret = nf_conntrack_expect_pernet_init(net);
1987 if (ret < 0)
1988 goto err_expect;
1989 ret = nf_conntrack_acct_pernet_init(net);
1990 if (ret < 0)
1991 goto err_acct;
1992 ret = nf_conntrack_tstamp_pernet_init(net);
1993 if (ret < 0)
1994 goto err_tstamp;
1995 ret = nf_conntrack_ecache_pernet_init(net);
1996 if (ret < 0)
1997 goto err_ecache;
1998 ret = nf_conntrack_helper_pernet_init(net);
1999 if (ret < 0)
2000 goto err_helper;
2001 ret = nf_conntrack_proto_pernet_init(net);
2002 if (ret < 0)
2003 goto err_proto;
2004 return 0;
2005
2006 err_proto:
2007 nf_conntrack_helper_pernet_fini(net);
2008 err_helper:
2009 nf_conntrack_ecache_pernet_fini(net);
2010 err_ecache:
2011 nf_conntrack_tstamp_pernet_fini(net);
2012 err_tstamp:
2013 nf_conntrack_acct_pernet_fini(net);
2014 err_acct:
2015 nf_conntrack_expect_pernet_fini(net);
2016 err_expect:
2017 free_percpu(net->ct.stat);
2018 err_pcpu_lists:
2019 free_percpu(net->ct.pcpu_lists);
2020 err_stat:
2021 return ret;
2022 }