]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/nf_conntrack_core.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/types.h>
18 #include <linux/netfilter.h>
19 #include <linux/module.h>
20 #include <linux/sched.h>
21 #include <linux/skbuff.h>
22 #include <linux/proc_fs.h>
23 #include <linux/vmalloc.h>
24 #include <linux/stddef.h>
25 #include <linux/slab.h>
26 #include <linux/random.h>
27 #include <linux/jhash.h>
28 #include <linux/err.h>
29 #include <linux/percpu.h>
30 #include <linux/moduleparam.h>
31 #include <linux/notifier.h>
32 #include <linux/kernel.h>
33 #include <linux/netdevice.h>
34 #include <linux/socket.h>
35 #include <linux/mm.h>
36 #include <linux/nsproxy.h>
37 #include <linux/rculist_nulls.h>
38
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/netfilter/nf_conntrack_l3proto.h>
41 #include <net/netfilter/nf_conntrack_l4proto.h>
42 #include <net/netfilter/nf_conntrack_expect.h>
43 #include <net/netfilter/nf_conntrack_helper.h>
44 #include <net/netfilter/nf_conntrack_seqadj.h>
45 #include <net/netfilter/nf_conntrack_core.h>
46 #include <net/netfilter/nf_conntrack_extend.h>
47 #include <net/netfilter/nf_conntrack_acct.h>
48 #include <net/netfilter/nf_conntrack_ecache.h>
49 #include <net/netfilter/nf_conntrack_zones.h>
50 #include <net/netfilter/nf_conntrack_timestamp.h>
51 #include <net/netfilter/nf_conntrack_timeout.h>
52 #include <net/netfilter/nf_conntrack_labels.h>
53 #include <net/netfilter/nf_conntrack_synproxy.h>
54 #include <net/netfilter/nf_nat.h>
55 #include <net/netfilter/nf_nat_core.h>
56 #include <net/netfilter/nf_nat_helper.h>
57 #include <net/netns/hash.h>
58
59 #define NF_CONNTRACK_VERSION "0.5.0"
60
61 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
62 enum nf_nat_manip_type manip,
63 const struct nlattr *attr) __read_mostly;
64 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
65
66 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
67 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
68
69 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
70 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
71
72 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
73 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
74
75 struct conntrack_gc_work {
76 struct delayed_work dwork;
77 u32 last_bucket;
78 bool exiting;
79 bool early_drop;
80 long next_gc_run;
81 };
82
83 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
84 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
85 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
86 static __read_mostly bool nf_conntrack_locks_all;
87
88 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
89 #define GC_MAX_BUCKETS_DIV 128u
90 /* upper bound of full table scan */
91 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
92 /* desired ratio of entries found to be expired */
93 #define GC_EVICT_RATIO 50u
94
95 static struct conntrack_gc_work conntrack_gc_work;
96
97 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
98 {
99 /* 1) Acquire the lock */
100 spin_lock(lock);
101
102 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
103 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
104 */
105 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
106 return;
107
108 /* fast path failed, unlock */
109 spin_unlock(lock);
110
111 /* Slow path 1) get global lock */
112 spin_lock(&nf_conntrack_locks_all_lock);
113
114 /* Slow path 2) get the lock we want */
115 spin_lock(lock);
116
117 /* Slow path 3) release the global lock */
118 spin_unlock(&nf_conntrack_locks_all_lock);
119 }
120 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
121
122 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
123 {
124 h1 %= CONNTRACK_LOCKS;
125 h2 %= CONNTRACK_LOCKS;
126 spin_unlock(&nf_conntrack_locks[h1]);
127 if (h1 != h2)
128 spin_unlock(&nf_conntrack_locks[h2]);
129 }
130
131 /* return true if we need to recompute hashes (in case hash table was resized) */
132 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
133 unsigned int h2, unsigned int sequence)
134 {
135 h1 %= CONNTRACK_LOCKS;
136 h2 %= CONNTRACK_LOCKS;
137 if (h1 <= h2) {
138 nf_conntrack_lock(&nf_conntrack_locks[h1]);
139 if (h1 != h2)
140 spin_lock_nested(&nf_conntrack_locks[h2],
141 SINGLE_DEPTH_NESTING);
142 } else {
143 nf_conntrack_lock(&nf_conntrack_locks[h2]);
144 spin_lock_nested(&nf_conntrack_locks[h1],
145 SINGLE_DEPTH_NESTING);
146 }
147 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
148 nf_conntrack_double_unlock(h1, h2);
149 return true;
150 }
151 return false;
152 }
153
154 static void nf_conntrack_all_lock(void)
155 {
156 int i;
157
158 spin_lock(&nf_conntrack_locks_all_lock);
159
160 nf_conntrack_locks_all = true;
161
162 for (i = 0; i < CONNTRACK_LOCKS; i++) {
163 spin_lock(&nf_conntrack_locks[i]);
164
165 /* This spin_unlock provides the "release" to ensure that
166 * nf_conntrack_locks_all==true is visible to everyone that
167 * acquired spin_lock(&nf_conntrack_locks[]).
168 */
169 spin_unlock(&nf_conntrack_locks[i]);
170 }
171 }
172
173 static void nf_conntrack_all_unlock(void)
174 {
175 /* All prior stores must be complete before we clear
176 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
177 * might observe the false value but not the entire
178 * critical section.
179 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
180 */
181 smp_store_release(&nf_conntrack_locks_all, false);
182 spin_unlock(&nf_conntrack_locks_all_lock);
183 }
184
185 unsigned int nf_conntrack_htable_size __read_mostly;
186 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
187
188 unsigned int nf_conntrack_max __read_mostly;
189 seqcount_t nf_conntrack_generation __read_mostly;
190 static unsigned int nf_conntrack_hash_rnd __read_mostly;
191
192 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
193 const struct net *net)
194 {
195 unsigned int n;
196 u32 seed;
197
198 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
199
200 /* The direction must be ignored, so we hash everything up to the
201 * destination ports (which is a multiple of 4) and treat the last
202 * three bytes manually.
203 */
204 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
205 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
206 return jhash2((u32 *)tuple, n, seed ^
207 (((__force __u16)tuple->dst.u.all << 16) |
208 tuple->dst.protonum));
209 }
210
211 static u32 scale_hash(u32 hash)
212 {
213 return reciprocal_scale(hash, nf_conntrack_htable_size);
214 }
215
216 static u32 __hash_conntrack(const struct net *net,
217 const struct nf_conntrack_tuple *tuple,
218 unsigned int size)
219 {
220 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
221 }
222
223 static u32 hash_conntrack(const struct net *net,
224 const struct nf_conntrack_tuple *tuple)
225 {
226 return scale_hash(hash_conntrack_raw(tuple, net));
227 }
228
229 bool
230 nf_ct_get_tuple(const struct sk_buff *skb,
231 unsigned int nhoff,
232 unsigned int dataoff,
233 u_int16_t l3num,
234 u_int8_t protonum,
235 struct net *net,
236 struct nf_conntrack_tuple *tuple,
237 const struct nf_conntrack_l3proto *l3proto,
238 const struct nf_conntrack_l4proto *l4proto)
239 {
240 memset(tuple, 0, sizeof(*tuple));
241
242 tuple->src.l3num = l3num;
243 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
244 return false;
245
246 tuple->dst.protonum = protonum;
247 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
248
249 return l4proto->pkt_to_tuple(skb, dataoff, net, tuple);
250 }
251 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
252
253 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
254 u_int16_t l3num,
255 struct net *net, struct nf_conntrack_tuple *tuple)
256 {
257 struct nf_conntrack_l3proto *l3proto;
258 struct nf_conntrack_l4proto *l4proto;
259 unsigned int protoff;
260 u_int8_t protonum;
261 int ret;
262
263 rcu_read_lock();
264
265 l3proto = __nf_ct_l3proto_find(l3num);
266 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
267 if (ret != NF_ACCEPT) {
268 rcu_read_unlock();
269 return false;
270 }
271
272 l4proto = __nf_ct_l4proto_find(l3num, protonum);
273
274 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple,
275 l3proto, l4proto);
276
277 rcu_read_unlock();
278 return ret;
279 }
280 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
281
282 bool
283 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
284 const struct nf_conntrack_tuple *orig,
285 const struct nf_conntrack_l3proto *l3proto,
286 const struct nf_conntrack_l4proto *l4proto)
287 {
288 memset(inverse, 0, sizeof(*inverse));
289
290 inverse->src.l3num = orig->src.l3num;
291 if (l3proto->invert_tuple(inverse, orig) == 0)
292 return false;
293
294 inverse->dst.dir = !orig->dst.dir;
295
296 inverse->dst.protonum = orig->dst.protonum;
297 return l4proto->invert_tuple(inverse, orig);
298 }
299 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
300
301 static void
302 clean_from_lists(struct nf_conn *ct)
303 {
304 pr_debug("clean_from_lists(%p)\n", ct);
305 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
306 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
307
308 /* Destroy all pending expectations */
309 nf_ct_remove_expectations(ct);
310 }
311
312 /* must be called with local_bh_disable */
313 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
314 {
315 struct ct_pcpu *pcpu;
316
317 /* add this conntrack to the (per cpu) dying list */
318 ct->cpu = smp_processor_id();
319 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
320
321 spin_lock(&pcpu->lock);
322 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
323 &pcpu->dying);
324 spin_unlock(&pcpu->lock);
325 }
326
327 /* must be called with local_bh_disable */
328 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
329 {
330 struct ct_pcpu *pcpu;
331
332 /* add this conntrack to the (per cpu) unconfirmed list */
333 ct->cpu = smp_processor_id();
334 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
335
336 spin_lock(&pcpu->lock);
337 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
338 &pcpu->unconfirmed);
339 spin_unlock(&pcpu->lock);
340 }
341
342 /* must be called with local_bh_disable */
343 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
344 {
345 struct ct_pcpu *pcpu;
346
347 /* We overload first tuple to link into unconfirmed or dying list.*/
348 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
349
350 spin_lock(&pcpu->lock);
351 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
352 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
353 spin_unlock(&pcpu->lock);
354 }
355
356 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
357
358 /* Released via destroy_conntrack() */
359 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
360 const struct nf_conntrack_zone *zone,
361 gfp_t flags)
362 {
363 struct nf_conn *tmpl, *p;
364
365 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
366 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
367 if (!tmpl)
368 return NULL;
369
370 p = tmpl;
371 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
372 if (tmpl != p) {
373 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
374 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
375 }
376 } else {
377 tmpl = kzalloc(sizeof(*tmpl), flags);
378 if (!tmpl)
379 return NULL;
380 }
381
382 tmpl->status = IPS_TEMPLATE;
383 write_pnet(&tmpl->ct_net, net);
384 nf_ct_zone_add(tmpl, zone);
385 atomic_set(&tmpl->ct_general.use, 0);
386
387 return tmpl;
388 }
389 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
390
391 void nf_ct_tmpl_free(struct nf_conn *tmpl)
392 {
393 nf_ct_ext_destroy(tmpl);
394 nf_ct_ext_free(tmpl);
395
396 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
397 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
398 else
399 kfree(tmpl);
400 }
401 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
402
403 static void
404 destroy_conntrack(struct nf_conntrack *nfct)
405 {
406 struct nf_conn *ct = (struct nf_conn *)nfct;
407 struct nf_conntrack_l4proto *l4proto;
408
409 pr_debug("destroy_conntrack(%p)\n", ct);
410 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
411
412 if (unlikely(nf_ct_is_template(ct))) {
413 nf_ct_tmpl_free(ct);
414 return;
415 }
416 rcu_read_lock();
417 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
418 if (l4proto->destroy)
419 l4proto->destroy(ct);
420
421 rcu_read_unlock();
422
423 local_bh_disable();
424 /* Expectations will have been removed in clean_from_lists,
425 * except TFTP can create an expectation on the first packet,
426 * before connection is in the list, so we need to clean here,
427 * too.
428 */
429 nf_ct_remove_expectations(ct);
430
431 nf_ct_del_from_dying_or_unconfirmed_list(ct);
432
433 local_bh_enable();
434
435 if (ct->master)
436 nf_ct_put(ct->master);
437
438 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
439 nf_conntrack_free(ct);
440 }
441
442 static void nf_ct_delete_from_lists(struct nf_conn *ct)
443 {
444 struct net *net = nf_ct_net(ct);
445 unsigned int hash, reply_hash;
446 unsigned int sequence;
447
448 nf_ct_helper_destroy(ct);
449
450 local_bh_disable();
451 do {
452 sequence = read_seqcount_begin(&nf_conntrack_generation);
453 hash = hash_conntrack(net,
454 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
455 reply_hash = hash_conntrack(net,
456 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
457 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
458
459 clean_from_lists(ct);
460 nf_conntrack_double_unlock(hash, reply_hash);
461
462 nf_ct_add_to_dying_list(ct);
463
464 local_bh_enable();
465 }
466
467 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
468 {
469 struct nf_conn_tstamp *tstamp;
470
471 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
472 return false;
473
474 tstamp = nf_conn_tstamp_find(ct);
475 if (tstamp && tstamp->stop == 0)
476 tstamp->stop = ktime_get_real_ns();
477
478 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
479 portid, report) < 0) {
480 /* destroy event was not delivered. nf_ct_put will
481 * be done by event cache worker on redelivery.
482 */
483 nf_ct_delete_from_lists(ct);
484 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
485 return false;
486 }
487
488 nf_conntrack_ecache_work(nf_ct_net(ct));
489 nf_ct_delete_from_lists(ct);
490 nf_ct_put(ct);
491 return true;
492 }
493 EXPORT_SYMBOL_GPL(nf_ct_delete);
494
495 static inline bool
496 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
497 const struct nf_conntrack_tuple *tuple,
498 const struct nf_conntrack_zone *zone,
499 const struct net *net)
500 {
501 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
502
503 /* A conntrack can be recreated with the equal tuple,
504 * so we need to check that the conntrack is confirmed
505 */
506 return nf_ct_tuple_equal(tuple, &h->tuple) &&
507 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
508 nf_ct_is_confirmed(ct) &&
509 net_eq(net, nf_ct_net(ct));
510 }
511
512 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
513 static void nf_ct_gc_expired(struct nf_conn *ct)
514 {
515 if (!atomic_inc_not_zero(&ct->ct_general.use))
516 return;
517
518 if (nf_ct_should_gc(ct))
519 nf_ct_kill(ct);
520
521 nf_ct_put(ct);
522 }
523
524 /*
525 * Warning :
526 * - Caller must take a reference on returned object
527 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
528 */
529 static struct nf_conntrack_tuple_hash *
530 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
531 const struct nf_conntrack_tuple *tuple, u32 hash)
532 {
533 struct nf_conntrack_tuple_hash *h;
534 struct hlist_nulls_head *ct_hash;
535 struct hlist_nulls_node *n;
536 unsigned int bucket, hsize;
537
538 begin:
539 nf_conntrack_get_ht(&ct_hash, &hsize);
540 bucket = reciprocal_scale(hash, hsize);
541
542 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
543 struct nf_conn *ct;
544
545 ct = nf_ct_tuplehash_to_ctrack(h);
546 if (nf_ct_is_expired(ct)) {
547 nf_ct_gc_expired(ct);
548 continue;
549 }
550
551 if (nf_ct_is_dying(ct))
552 continue;
553
554 if (nf_ct_key_equal(h, tuple, zone, net))
555 return h;
556 }
557 /*
558 * if the nulls value we got at the end of this lookup is
559 * not the expected one, we must restart lookup.
560 * We probably met an item that was moved to another chain.
561 */
562 if (get_nulls_value(n) != bucket) {
563 NF_CT_STAT_INC_ATOMIC(net, search_restart);
564 goto begin;
565 }
566
567 return NULL;
568 }
569
570 /* Find a connection corresponding to a tuple. */
571 static struct nf_conntrack_tuple_hash *
572 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
573 const struct nf_conntrack_tuple *tuple, u32 hash)
574 {
575 struct nf_conntrack_tuple_hash *h;
576 struct nf_conn *ct;
577
578 rcu_read_lock();
579 begin:
580 h = ____nf_conntrack_find(net, zone, tuple, hash);
581 if (h) {
582 ct = nf_ct_tuplehash_to_ctrack(h);
583 if (unlikely(nf_ct_is_dying(ct) ||
584 !atomic_inc_not_zero(&ct->ct_general.use)))
585 h = NULL;
586 else {
587 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
588 nf_ct_put(ct);
589 goto begin;
590 }
591 }
592 }
593 rcu_read_unlock();
594
595 return h;
596 }
597
598 struct nf_conntrack_tuple_hash *
599 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
600 const struct nf_conntrack_tuple *tuple)
601 {
602 return __nf_conntrack_find_get(net, zone, tuple,
603 hash_conntrack_raw(tuple, net));
604 }
605 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
606
607 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
608 unsigned int hash,
609 unsigned int reply_hash)
610 {
611 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
612 &nf_conntrack_hash[hash]);
613 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
614 &nf_conntrack_hash[reply_hash]);
615 }
616
617 int
618 nf_conntrack_hash_check_insert(struct nf_conn *ct)
619 {
620 const struct nf_conntrack_zone *zone;
621 struct net *net = nf_ct_net(ct);
622 unsigned int hash, reply_hash;
623 struct nf_conntrack_tuple_hash *h;
624 struct hlist_nulls_node *n;
625 unsigned int sequence;
626
627 zone = nf_ct_zone(ct);
628
629 local_bh_disable();
630 do {
631 sequence = read_seqcount_begin(&nf_conntrack_generation);
632 hash = hash_conntrack(net,
633 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
634 reply_hash = hash_conntrack(net,
635 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
636 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
637
638 /* See if there's one in the list already, including reverse */
639 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
640 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
641 zone, net))
642 goto out;
643
644 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
645 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
646 zone, net))
647 goto out;
648
649 smp_wmb();
650 /* The caller holds a reference to this object */
651 atomic_set(&ct->ct_general.use, 2);
652 __nf_conntrack_hash_insert(ct, hash, reply_hash);
653 nf_conntrack_double_unlock(hash, reply_hash);
654 NF_CT_STAT_INC(net, insert);
655 local_bh_enable();
656 return 0;
657
658 out:
659 nf_conntrack_double_unlock(hash, reply_hash);
660 NF_CT_STAT_INC(net, insert_failed);
661 local_bh_enable();
662 return -EEXIST;
663 }
664 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
665
666 static inline void nf_ct_acct_update(struct nf_conn *ct,
667 enum ip_conntrack_info ctinfo,
668 unsigned int len)
669 {
670 struct nf_conn_acct *acct;
671
672 acct = nf_conn_acct_find(ct);
673 if (acct) {
674 struct nf_conn_counter *counter = acct->counter;
675
676 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
677 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
678 }
679 }
680
681 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
682 const struct nf_conn *loser_ct)
683 {
684 struct nf_conn_acct *acct;
685
686 acct = nf_conn_acct_find(loser_ct);
687 if (acct) {
688 struct nf_conn_counter *counter = acct->counter;
689 unsigned int bytes;
690
691 /* u32 should be fine since we must have seen one packet. */
692 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
693 nf_ct_acct_update(ct, ctinfo, bytes);
694 }
695 }
696
697 /* Resolve race on insertion if this protocol allows this. */
698 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
699 enum ip_conntrack_info ctinfo,
700 struct nf_conntrack_tuple_hash *h)
701 {
702 /* This is the conntrack entry already in hashes that won race. */
703 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
704 struct nf_conntrack_l4proto *l4proto;
705
706 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
707 if (l4proto->allow_clash &&
708 ((ct->status & IPS_NAT_DONE_MASK) == 0) &&
709 !nf_ct_is_dying(ct) &&
710 atomic_inc_not_zero(&ct->ct_general.use)) {
711 enum ip_conntrack_info oldinfo;
712 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
713
714 nf_ct_acct_merge(ct, ctinfo, loser_ct);
715 nf_conntrack_put(&loser_ct->ct_general);
716 nf_ct_set(skb, ct, oldinfo);
717 return NF_ACCEPT;
718 }
719 NF_CT_STAT_INC(net, drop);
720 return NF_DROP;
721 }
722
723 /* Confirm a connection given skb; places it in hash table */
724 int
725 __nf_conntrack_confirm(struct sk_buff *skb)
726 {
727 const struct nf_conntrack_zone *zone;
728 unsigned int hash, reply_hash;
729 struct nf_conntrack_tuple_hash *h;
730 struct nf_conn *ct;
731 struct nf_conn_help *help;
732 struct nf_conn_tstamp *tstamp;
733 struct hlist_nulls_node *n;
734 enum ip_conntrack_info ctinfo;
735 struct net *net;
736 unsigned int sequence;
737 int ret = NF_DROP;
738
739 ct = nf_ct_get(skb, &ctinfo);
740 net = nf_ct_net(ct);
741
742 /* ipt_REJECT uses nf_conntrack_attach to attach related
743 ICMP/TCP RST packets in other direction. Actual packet
744 which created connection will be IP_CT_NEW or for an
745 expected connection, IP_CT_RELATED. */
746 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
747 return NF_ACCEPT;
748
749 zone = nf_ct_zone(ct);
750 local_bh_disable();
751
752 do {
753 sequence = read_seqcount_begin(&nf_conntrack_generation);
754 /* reuse the hash saved before */
755 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
756 hash = scale_hash(hash);
757 reply_hash = hash_conntrack(net,
758 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
759
760 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
761
762 /* We're not in hash table, and we refuse to set up related
763 * connections for unconfirmed conns. But packet copies and
764 * REJECT will give spurious warnings here.
765 */
766 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
767
768 /* No external references means no one else could have
769 * confirmed us.
770 */
771 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
772 pr_debug("Confirming conntrack %p\n", ct);
773 /* We have to check the DYING flag after unlink to prevent
774 * a race against nf_ct_get_next_corpse() possibly called from
775 * user context, else we insert an already 'dead' hash, blocking
776 * further use of that particular connection -JM.
777 */
778 nf_ct_del_from_dying_or_unconfirmed_list(ct);
779
780 if (unlikely(nf_ct_is_dying(ct))) {
781 nf_ct_add_to_dying_list(ct);
782 goto dying;
783 }
784
785 /* See if there's one in the list already, including reverse:
786 NAT could have grabbed it without realizing, since we're
787 not in the hash. If there is, we lost race. */
788 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
789 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
790 zone, net))
791 goto out;
792
793 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
794 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
795 zone, net))
796 goto out;
797
798 /* Timer relative to confirmation time, not original
799 setting time, otherwise we'd get timer wrap in
800 weird delay cases. */
801 ct->timeout += nfct_time_stamp;
802 atomic_inc(&ct->ct_general.use);
803 ct->status |= IPS_CONFIRMED;
804
805 /* set conntrack timestamp, if enabled. */
806 tstamp = nf_conn_tstamp_find(ct);
807 if (tstamp) {
808 if (skb->tstamp == 0)
809 __net_timestamp(skb);
810
811 tstamp->start = ktime_to_ns(skb->tstamp);
812 }
813 /* Since the lookup is lockless, hash insertion must be done after
814 * starting the timer and setting the CONFIRMED bit. The RCU barriers
815 * guarantee that no other CPU can find the conntrack before the above
816 * stores are visible.
817 */
818 __nf_conntrack_hash_insert(ct, hash, reply_hash);
819 nf_conntrack_double_unlock(hash, reply_hash);
820 local_bh_enable();
821
822 help = nfct_help(ct);
823 if (help && help->helper)
824 nf_conntrack_event_cache(IPCT_HELPER, ct);
825
826 nf_conntrack_event_cache(master_ct(ct) ?
827 IPCT_RELATED : IPCT_NEW, ct);
828 return NF_ACCEPT;
829
830 out:
831 nf_ct_add_to_dying_list(ct);
832 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
833 dying:
834 nf_conntrack_double_unlock(hash, reply_hash);
835 NF_CT_STAT_INC(net, insert_failed);
836 local_bh_enable();
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
840
841 /* Returns true if a connection correspondings to the tuple (required
842 for NAT). */
843 int
844 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
845 const struct nf_conn *ignored_conntrack)
846 {
847 struct net *net = nf_ct_net(ignored_conntrack);
848 const struct nf_conntrack_zone *zone;
849 struct nf_conntrack_tuple_hash *h;
850 struct hlist_nulls_head *ct_hash;
851 unsigned int hash, hsize;
852 struct hlist_nulls_node *n;
853 struct nf_conn *ct;
854
855 zone = nf_ct_zone(ignored_conntrack);
856
857 rcu_read_lock();
858 begin:
859 nf_conntrack_get_ht(&ct_hash, &hsize);
860 hash = __hash_conntrack(net, tuple, hsize);
861
862 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
863 ct = nf_ct_tuplehash_to_ctrack(h);
864
865 if (ct == ignored_conntrack)
866 continue;
867
868 if (nf_ct_is_expired(ct)) {
869 nf_ct_gc_expired(ct);
870 continue;
871 }
872
873 if (nf_ct_key_equal(h, tuple, zone, net)) {
874 NF_CT_STAT_INC_ATOMIC(net, found);
875 rcu_read_unlock();
876 return 1;
877 }
878 }
879
880 if (get_nulls_value(n) != hash) {
881 NF_CT_STAT_INC_ATOMIC(net, search_restart);
882 goto begin;
883 }
884
885 rcu_read_unlock();
886
887 return 0;
888 }
889 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
890
891 #define NF_CT_EVICTION_RANGE 8
892
893 /* There's a small race here where we may free a just-assured
894 connection. Too bad: we're in trouble anyway. */
895 static unsigned int early_drop_list(struct net *net,
896 struct hlist_nulls_head *head)
897 {
898 struct nf_conntrack_tuple_hash *h;
899 struct hlist_nulls_node *n;
900 unsigned int drops = 0;
901 struct nf_conn *tmp;
902
903 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
904 tmp = nf_ct_tuplehash_to_ctrack(h);
905
906 if (nf_ct_is_expired(tmp)) {
907 nf_ct_gc_expired(tmp);
908 continue;
909 }
910
911 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
912 !net_eq(nf_ct_net(tmp), net) ||
913 nf_ct_is_dying(tmp))
914 continue;
915
916 if (!atomic_inc_not_zero(&tmp->ct_general.use))
917 continue;
918
919 /* kill only if still in same netns -- might have moved due to
920 * SLAB_TYPESAFE_BY_RCU rules.
921 *
922 * We steal the timer reference. If that fails timer has
923 * already fired or someone else deleted it. Just drop ref
924 * and move to next entry.
925 */
926 if (net_eq(nf_ct_net(tmp), net) &&
927 nf_ct_is_confirmed(tmp) &&
928 nf_ct_delete(tmp, 0, 0))
929 drops++;
930
931 nf_ct_put(tmp);
932 }
933
934 return drops;
935 }
936
937 static noinline int early_drop(struct net *net, unsigned int _hash)
938 {
939 unsigned int i;
940
941 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
942 struct hlist_nulls_head *ct_hash;
943 unsigned int hash, hsize, drops;
944
945 rcu_read_lock();
946 nf_conntrack_get_ht(&ct_hash, &hsize);
947 hash = reciprocal_scale(_hash++, hsize);
948
949 drops = early_drop_list(net, &ct_hash[hash]);
950 rcu_read_unlock();
951
952 if (drops) {
953 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
954 return true;
955 }
956 }
957
958 return false;
959 }
960
961 static bool gc_worker_skip_ct(const struct nf_conn *ct)
962 {
963 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
964 }
965
966 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
967 {
968 const struct nf_conntrack_l4proto *l4proto;
969
970 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
971 return true;
972
973 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
974 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
975 return true;
976
977 return false;
978 }
979
980 static void gc_worker(struct work_struct *work)
981 {
982 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
983 unsigned int i, goal, buckets = 0, expired_count = 0;
984 unsigned int nf_conntrack_max95 = 0;
985 struct conntrack_gc_work *gc_work;
986 unsigned int ratio, scanned = 0;
987 unsigned long next_run;
988
989 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
990
991 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
992 i = gc_work->last_bucket;
993 if (gc_work->early_drop)
994 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
995
996 do {
997 struct nf_conntrack_tuple_hash *h;
998 struct hlist_nulls_head *ct_hash;
999 struct hlist_nulls_node *n;
1000 unsigned int hashsz;
1001 struct nf_conn *tmp;
1002
1003 i++;
1004 rcu_read_lock();
1005
1006 nf_conntrack_get_ht(&ct_hash, &hashsz);
1007 if (i >= hashsz)
1008 i = 0;
1009
1010 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1011 struct net *net;
1012
1013 tmp = nf_ct_tuplehash_to_ctrack(h);
1014
1015 scanned++;
1016 if (nf_ct_is_expired(tmp)) {
1017 nf_ct_gc_expired(tmp);
1018 expired_count++;
1019 continue;
1020 }
1021
1022 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1023 continue;
1024
1025 net = nf_ct_net(tmp);
1026 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1027 continue;
1028
1029 /* need to take reference to avoid possible races */
1030 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1031 continue;
1032
1033 if (gc_worker_skip_ct(tmp)) {
1034 nf_ct_put(tmp);
1035 continue;
1036 }
1037
1038 if (gc_worker_can_early_drop(tmp))
1039 nf_ct_kill(tmp);
1040
1041 nf_ct_put(tmp);
1042 }
1043
1044 /* could check get_nulls_value() here and restart if ct
1045 * was moved to another chain. But given gc is best-effort
1046 * we will just continue with next hash slot.
1047 */
1048 rcu_read_unlock();
1049 cond_resched_rcu_qs();
1050 } while (++buckets < goal);
1051
1052 if (gc_work->exiting)
1053 return;
1054
1055 /*
1056 * Eviction will normally happen from the packet path, and not
1057 * from this gc worker.
1058 *
1059 * This worker is only here to reap expired entries when system went
1060 * idle after a busy period.
1061 *
1062 * The heuristics below are supposed to balance conflicting goals:
1063 *
1064 * 1. Minimize time until we notice a stale entry
1065 * 2. Maximize scan intervals to not waste cycles
1066 *
1067 * Normally, expire ratio will be close to 0.
1068 *
1069 * As soon as a sizeable fraction of the entries have expired
1070 * increase scan frequency.
1071 */
1072 ratio = scanned ? expired_count * 100 / scanned : 0;
1073 if (ratio > GC_EVICT_RATIO) {
1074 gc_work->next_gc_run = min_interval;
1075 } else {
1076 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1077
1078 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1079
1080 gc_work->next_gc_run += min_interval;
1081 if (gc_work->next_gc_run > max)
1082 gc_work->next_gc_run = max;
1083 }
1084
1085 next_run = gc_work->next_gc_run;
1086 gc_work->last_bucket = i;
1087 gc_work->early_drop = false;
1088 queue_delayed_work(system_long_wq, &gc_work->dwork, next_run);
1089 }
1090
1091 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1092 {
1093 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1094 gc_work->next_gc_run = HZ;
1095 gc_work->exiting = false;
1096 }
1097
1098 static struct nf_conn *
1099 __nf_conntrack_alloc(struct net *net,
1100 const struct nf_conntrack_zone *zone,
1101 const struct nf_conntrack_tuple *orig,
1102 const struct nf_conntrack_tuple *repl,
1103 gfp_t gfp, u32 hash)
1104 {
1105 struct nf_conn *ct;
1106
1107 /* We don't want any race condition at early drop stage */
1108 atomic_inc(&net->ct.count);
1109
1110 if (nf_conntrack_max &&
1111 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1112 if (!early_drop(net, hash)) {
1113 if (!conntrack_gc_work.early_drop)
1114 conntrack_gc_work.early_drop = true;
1115 atomic_dec(&net->ct.count);
1116 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1117 return ERR_PTR(-ENOMEM);
1118 }
1119 }
1120
1121 /*
1122 * Do not use kmem_cache_zalloc(), as this cache uses
1123 * SLAB_TYPESAFE_BY_RCU.
1124 */
1125 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1126 if (ct == NULL)
1127 goto out;
1128
1129 spin_lock_init(&ct->lock);
1130 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1131 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1132 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1133 /* save hash for reusing when confirming */
1134 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1135 ct->status = 0;
1136 write_pnet(&ct->ct_net, net);
1137 memset(&ct->__nfct_init_offset[0], 0,
1138 offsetof(struct nf_conn, proto) -
1139 offsetof(struct nf_conn, __nfct_init_offset[0]));
1140
1141 nf_ct_zone_add(ct, zone);
1142
1143 /* Because we use RCU lookups, we set ct_general.use to zero before
1144 * this is inserted in any list.
1145 */
1146 atomic_set(&ct->ct_general.use, 0);
1147 return ct;
1148 out:
1149 atomic_dec(&net->ct.count);
1150 return ERR_PTR(-ENOMEM);
1151 }
1152
1153 struct nf_conn *nf_conntrack_alloc(struct net *net,
1154 const struct nf_conntrack_zone *zone,
1155 const struct nf_conntrack_tuple *orig,
1156 const struct nf_conntrack_tuple *repl,
1157 gfp_t gfp)
1158 {
1159 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1160 }
1161 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1162
1163 void nf_conntrack_free(struct nf_conn *ct)
1164 {
1165 struct net *net = nf_ct_net(ct);
1166
1167 /* A freed object has refcnt == 0, that's
1168 * the golden rule for SLAB_TYPESAFE_BY_RCU
1169 */
1170 NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 0);
1171
1172 nf_ct_ext_destroy(ct);
1173 nf_ct_ext_free(ct);
1174 kmem_cache_free(nf_conntrack_cachep, ct);
1175 smp_mb__before_atomic();
1176 atomic_dec(&net->ct.count);
1177 }
1178 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1179
1180
1181 /* Allocate a new conntrack: we return -ENOMEM if classification
1182 failed due to stress. Otherwise it really is unclassifiable. */
1183 static noinline struct nf_conntrack_tuple_hash *
1184 init_conntrack(struct net *net, struct nf_conn *tmpl,
1185 const struct nf_conntrack_tuple *tuple,
1186 struct nf_conntrack_l3proto *l3proto,
1187 struct nf_conntrack_l4proto *l4proto,
1188 struct sk_buff *skb,
1189 unsigned int dataoff, u32 hash)
1190 {
1191 struct nf_conn *ct;
1192 struct nf_conn_help *help;
1193 struct nf_conntrack_tuple repl_tuple;
1194 struct nf_conntrack_ecache *ecache;
1195 struct nf_conntrack_expect *exp = NULL;
1196 const struct nf_conntrack_zone *zone;
1197 struct nf_conn_timeout *timeout_ext;
1198 struct nf_conntrack_zone tmp;
1199 unsigned int *timeouts;
1200
1201 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
1202 pr_debug("Can't invert tuple.\n");
1203 return NULL;
1204 }
1205
1206 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1207 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1208 hash);
1209 if (IS_ERR(ct))
1210 return (struct nf_conntrack_tuple_hash *)ct;
1211
1212 if (!nf_ct_add_synproxy(ct, tmpl)) {
1213 nf_conntrack_free(ct);
1214 return ERR_PTR(-ENOMEM);
1215 }
1216
1217 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1218 if (timeout_ext) {
1219 timeouts = nf_ct_timeout_data(timeout_ext);
1220 if (unlikely(!timeouts))
1221 timeouts = l4proto->get_timeouts(net);
1222 } else {
1223 timeouts = l4proto->get_timeouts(net);
1224 }
1225
1226 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
1227 nf_conntrack_free(ct);
1228 pr_debug("can't track with proto module\n");
1229 return NULL;
1230 }
1231
1232 if (timeout_ext)
1233 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1234 GFP_ATOMIC);
1235
1236 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1237 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1238 nf_ct_labels_ext_add(ct);
1239
1240 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1241 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1242 ecache ? ecache->expmask : 0,
1243 GFP_ATOMIC);
1244
1245 local_bh_disable();
1246 if (net->ct.expect_count) {
1247 spin_lock(&nf_conntrack_expect_lock);
1248 exp = nf_ct_find_expectation(net, zone, tuple);
1249 if (exp) {
1250 pr_debug("expectation arrives ct=%p exp=%p\n",
1251 ct, exp);
1252 /* Welcome, Mr. Bond. We've been expecting you... */
1253 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1254 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1255 ct->master = exp->master;
1256 if (exp->helper) {
1257 help = nf_ct_helper_ext_add(ct, exp->helper,
1258 GFP_ATOMIC);
1259 if (help)
1260 rcu_assign_pointer(help->helper, exp->helper);
1261 }
1262
1263 #ifdef CONFIG_NF_CONNTRACK_MARK
1264 ct->mark = exp->master->mark;
1265 #endif
1266 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1267 ct->secmark = exp->master->secmark;
1268 #endif
1269 NF_CT_STAT_INC(net, expect_new);
1270 }
1271 spin_unlock(&nf_conntrack_expect_lock);
1272 }
1273 if (!exp)
1274 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1275
1276 /* Now it is inserted into the unconfirmed list, bump refcount */
1277 nf_conntrack_get(&ct->ct_general);
1278 nf_ct_add_to_unconfirmed_list(ct);
1279
1280 local_bh_enable();
1281
1282 if (exp) {
1283 if (exp->expectfn)
1284 exp->expectfn(ct, exp);
1285 nf_ct_expect_put(exp);
1286 }
1287
1288 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1289 }
1290
1291 /* On success, returns 0, sets skb->_nfct | ctinfo */
1292 static int
1293 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
1294 struct sk_buff *skb,
1295 unsigned int dataoff,
1296 u_int16_t l3num,
1297 u_int8_t protonum,
1298 struct nf_conntrack_l3proto *l3proto,
1299 struct nf_conntrack_l4proto *l4proto)
1300 {
1301 const struct nf_conntrack_zone *zone;
1302 struct nf_conntrack_tuple tuple;
1303 struct nf_conntrack_tuple_hash *h;
1304 enum ip_conntrack_info ctinfo;
1305 struct nf_conntrack_zone tmp;
1306 struct nf_conn *ct;
1307 u32 hash;
1308
1309 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1310 dataoff, l3num, protonum, net, &tuple, l3proto,
1311 l4proto)) {
1312 pr_debug("Can't get tuple\n");
1313 return 0;
1314 }
1315
1316 /* look for tuple match */
1317 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1318 hash = hash_conntrack_raw(&tuple, net);
1319 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
1320 if (!h) {
1321 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
1322 skb, dataoff, hash);
1323 if (!h)
1324 return 0;
1325 if (IS_ERR(h))
1326 return PTR_ERR(h);
1327 }
1328 ct = nf_ct_tuplehash_to_ctrack(h);
1329
1330 /* It exists; we have (non-exclusive) reference. */
1331 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1332 ctinfo = IP_CT_ESTABLISHED_REPLY;
1333 } else {
1334 /* Once we've had two way comms, always ESTABLISHED. */
1335 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1336 pr_debug("normal packet for %p\n", ct);
1337 ctinfo = IP_CT_ESTABLISHED;
1338 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1339 pr_debug("related packet for %p\n", ct);
1340 ctinfo = IP_CT_RELATED;
1341 } else {
1342 pr_debug("new packet for %p\n", ct);
1343 ctinfo = IP_CT_NEW;
1344 }
1345 }
1346 nf_ct_set(skb, ct, ctinfo);
1347 return 0;
1348 }
1349
1350 unsigned int
1351 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
1352 struct sk_buff *skb)
1353 {
1354 struct nf_conn *ct, *tmpl;
1355 enum ip_conntrack_info ctinfo;
1356 struct nf_conntrack_l3proto *l3proto;
1357 struct nf_conntrack_l4proto *l4proto;
1358 unsigned int *timeouts;
1359 unsigned int dataoff;
1360 u_int8_t protonum;
1361 int ret;
1362
1363 tmpl = nf_ct_get(skb, &ctinfo);
1364 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1365 /* Previously seen (loopback or untracked)? Ignore. */
1366 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1367 ctinfo == IP_CT_UNTRACKED) {
1368 NF_CT_STAT_INC_ATOMIC(net, ignore);
1369 return NF_ACCEPT;
1370 }
1371 skb->_nfct = 0;
1372 }
1373
1374 /* rcu_read_lock()ed by nf_hook_thresh */
1375 l3proto = __nf_ct_l3proto_find(pf);
1376 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
1377 &dataoff, &protonum);
1378 if (ret <= 0) {
1379 pr_debug("not prepared to track yet or error occurred\n");
1380 NF_CT_STAT_INC_ATOMIC(net, error);
1381 NF_CT_STAT_INC_ATOMIC(net, invalid);
1382 ret = -ret;
1383 goto out;
1384 }
1385
1386 l4proto = __nf_ct_l4proto_find(pf, protonum);
1387
1388 /* It may be an special packet, error, unclean...
1389 * inverse of the return code tells to the netfilter
1390 * core what to do with the packet. */
1391 if (l4proto->error != NULL) {
1392 ret = l4proto->error(net, tmpl, skb, dataoff, pf, hooknum);
1393 if (ret <= 0) {
1394 NF_CT_STAT_INC_ATOMIC(net, error);
1395 NF_CT_STAT_INC_ATOMIC(net, invalid);
1396 ret = -ret;
1397 goto out;
1398 }
1399 /* ICMP[v6] protocol trackers may assign one conntrack. */
1400 if (skb->_nfct)
1401 goto out;
1402 }
1403 repeat:
1404 ret = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
1405 l3proto, l4proto);
1406 if (ret < 0) {
1407 /* Too stressed to deal. */
1408 NF_CT_STAT_INC_ATOMIC(net, drop);
1409 ret = NF_DROP;
1410 goto out;
1411 }
1412
1413 ct = nf_ct_get(skb, &ctinfo);
1414 if (!ct) {
1415 /* Not valid part of a connection */
1416 NF_CT_STAT_INC_ATOMIC(net, invalid);
1417 ret = NF_ACCEPT;
1418 goto out;
1419 }
1420
1421 /* Decide what timeout policy we want to apply to this flow. */
1422 timeouts = nf_ct_timeout_lookup(net, ct, l4proto);
1423
1424 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1425 if (ret <= 0) {
1426 /* Invalid: inverse of the return code tells
1427 * the netfilter core what to do */
1428 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1429 nf_conntrack_put(&ct->ct_general);
1430 skb->_nfct = 0;
1431 NF_CT_STAT_INC_ATOMIC(net, invalid);
1432 if (ret == -NF_DROP)
1433 NF_CT_STAT_INC_ATOMIC(net, drop);
1434 /* Special case: TCP tracker reports an attempt to reopen a
1435 * closed/aborted connection. We have to go back and create a
1436 * fresh conntrack.
1437 */
1438 if (ret == -NF_REPEAT)
1439 goto repeat;
1440 ret = -ret;
1441 goto out;
1442 }
1443
1444 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1445 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1446 nf_conntrack_event_cache(IPCT_REPLY, ct);
1447 out:
1448 if (tmpl)
1449 nf_ct_put(tmpl);
1450
1451 return ret;
1452 }
1453 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1454
1455 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1456 const struct nf_conntrack_tuple *orig)
1457 {
1458 bool ret;
1459
1460 rcu_read_lock();
1461 ret = nf_ct_invert_tuple(inverse, orig,
1462 __nf_ct_l3proto_find(orig->src.l3num),
1463 __nf_ct_l4proto_find(orig->src.l3num,
1464 orig->dst.protonum));
1465 rcu_read_unlock();
1466 return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1469
1470 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1471 implicitly racy: see __nf_conntrack_confirm */
1472 void nf_conntrack_alter_reply(struct nf_conn *ct,
1473 const struct nf_conntrack_tuple *newreply)
1474 {
1475 struct nf_conn_help *help = nfct_help(ct);
1476
1477 /* Should be unconfirmed, so not in hash table yet */
1478 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1479
1480 pr_debug("Altering reply tuple of %p to ", ct);
1481 nf_ct_dump_tuple(newreply);
1482
1483 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1484 if (ct->master || (help && !hlist_empty(&help->expectations)))
1485 return;
1486
1487 rcu_read_lock();
1488 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1489 rcu_read_unlock();
1490 }
1491 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1492
1493 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1494 void __nf_ct_refresh_acct(struct nf_conn *ct,
1495 enum ip_conntrack_info ctinfo,
1496 const struct sk_buff *skb,
1497 unsigned long extra_jiffies,
1498 int do_acct)
1499 {
1500 NF_CT_ASSERT(skb);
1501
1502 /* Only update if this is not a fixed timeout */
1503 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1504 goto acct;
1505
1506 /* If not in hash table, timer will not be active yet */
1507 if (nf_ct_is_confirmed(ct))
1508 extra_jiffies += nfct_time_stamp;
1509
1510 ct->timeout = extra_jiffies;
1511 acct:
1512 if (do_acct)
1513 nf_ct_acct_update(ct, ctinfo, skb->len);
1514 }
1515 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1516
1517 bool nf_ct_kill_acct(struct nf_conn *ct,
1518 enum ip_conntrack_info ctinfo,
1519 const struct sk_buff *skb)
1520 {
1521 nf_ct_acct_update(ct, ctinfo, skb->len);
1522
1523 return nf_ct_delete(ct, 0, 0);
1524 }
1525 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1526
1527 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1528
1529 #include <linux/netfilter/nfnetlink.h>
1530 #include <linux/netfilter/nfnetlink_conntrack.h>
1531 #include <linux/mutex.h>
1532
1533 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1534 * in ip_conntrack_core, since we don't want the protocols to autoload
1535 * or depend on ctnetlink */
1536 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1537 const struct nf_conntrack_tuple *tuple)
1538 {
1539 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1540 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1541 goto nla_put_failure;
1542 return 0;
1543
1544 nla_put_failure:
1545 return -1;
1546 }
1547 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1548
1549 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1550 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1551 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1552 };
1553 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1554
1555 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1556 struct nf_conntrack_tuple *t)
1557 {
1558 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1559 return -EINVAL;
1560
1561 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1562 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1563
1564 return 0;
1565 }
1566 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1567
1568 int nf_ct_port_nlattr_tuple_size(void)
1569 {
1570 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1571 }
1572 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1573 #endif
1574
1575 /* Used by ipt_REJECT and ip6t_REJECT. */
1576 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1577 {
1578 struct nf_conn *ct;
1579 enum ip_conntrack_info ctinfo;
1580
1581 /* This ICMP is in reverse direction to the packet which caused it */
1582 ct = nf_ct_get(skb, &ctinfo);
1583 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1584 ctinfo = IP_CT_RELATED_REPLY;
1585 else
1586 ctinfo = IP_CT_RELATED;
1587
1588 /* Attach to new skbuff, and increment count */
1589 nf_ct_set(nskb, ct, ctinfo);
1590 nf_conntrack_get(skb_nfct(nskb));
1591 }
1592
1593 /* Bring out ya dead! */
1594 static struct nf_conn *
1595 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1596 void *data, unsigned int *bucket)
1597 {
1598 struct nf_conntrack_tuple_hash *h;
1599 struct nf_conn *ct;
1600 struct hlist_nulls_node *n;
1601 spinlock_t *lockp;
1602
1603 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
1604 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
1605 local_bh_disable();
1606 nf_conntrack_lock(lockp);
1607 if (*bucket < nf_conntrack_htable_size) {
1608 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
1609 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
1610 continue;
1611 ct = nf_ct_tuplehash_to_ctrack(h);
1612 if (iter(ct, data))
1613 goto found;
1614 }
1615 }
1616 spin_unlock(lockp);
1617 local_bh_enable();
1618 cond_resched();
1619 }
1620
1621 return NULL;
1622 found:
1623 atomic_inc(&ct->ct_general.use);
1624 spin_unlock(lockp);
1625 local_bh_enable();
1626 return ct;
1627 }
1628
1629 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
1630 void *data, u32 portid, int report)
1631 {
1632 unsigned int bucket = 0, sequence;
1633 struct nf_conn *ct;
1634
1635 might_sleep();
1636
1637 for (;;) {
1638 sequence = read_seqcount_begin(&nf_conntrack_generation);
1639
1640 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
1641 /* Time to push up daises... */
1642
1643 nf_ct_delete(ct, portid, report);
1644 nf_ct_put(ct);
1645 cond_resched();
1646 }
1647
1648 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
1649 break;
1650 bucket = 0;
1651 }
1652 }
1653
1654 struct iter_data {
1655 int (*iter)(struct nf_conn *i, void *data);
1656 void *data;
1657 struct net *net;
1658 };
1659
1660 static int iter_net_only(struct nf_conn *i, void *data)
1661 {
1662 struct iter_data *d = data;
1663
1664 if (!net_eq(d->net, nf_ct_net(i)))
1665 return 0;
1666
1667 return d->iter(i, d->data);
1668 }
1669
1670 static void
1671 __nf_ct_unconfirmed_destroy(struct net *net)
1672 {
1673 int cpu;
1674
1675 for_each_possible_cpu(cpu) {
1676 struct nf_conntrack_tuple_hash *h;
1677 struct hlist_nulls_node *n;
1678 struct ct_pcpu *pcpu;
1679
1680 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
1681
1682 spin_lock_bh(&pcpu->lock);
1683 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
1684 struct nf_conn *ct;
1685
1686 ct = nf_ct_tuplehash_to_ctrack(h);
1687
1688 /* we cannot call iter() on unconfirmed list, the
1689 * owning cpu can reallocate ct->ext at any time.
1690 */
1691 set_bit(IPS_DYING_BIT, &ct->status);
1692 }
1693 spin_unlock_bh(&pcpu->lock);
1694 cond_resched();
1695 }
1696 }
1697
1698 void nf_ct_iterate_cleanup_net(struct net *net,
1699 int (*iter)(struct nf_conn *i, void *data),
1700 void *data, u32 portid, int report)
1701 {
1702 struct iter_data d;
1703
1704 might_sleep();
1705
1706 if (atomic_read(&net->ct.count) == 0)
1707 return;
1708
1709 __nf_ct_unconfirmed_destroy(net);
1710
1711 d.iter = iter;
1712 d.data = data;
1713 d.net = net;
1714
1715 synchronize_net();
1716
1717 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
1718 }
1719 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
1720
1721 /**
1722 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
1723 * @iter: callback to invoke for each conntrack
1724 * @data: data to pass to @iter
1725 *
1726 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
1727 * unconfirmed list as dying (so they will not be inserted into
1728 * main table).
1729 *
1730 * Can only be called in module exit path.
1731 */
1732 void
1733 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
1734 {
1735 struct net *net;
1736
1737 rtnl_lock();
1738 for_each_net(net) {
1739 if (atomic_read(&net->ct.count) == 0)
1740 continue;
1741 __nf_ct_unconfirmed_destroy(net);
1742 }
1743 rtnl_unlock();
1744
1745 /* Need to wait for netns cleanup worker to finish, if its
1746 * running -- it might have deleted a net namespace from
1747 * the global list, so our __nf_ct_unconfirmed_destroy() might
1748 * not have affected all namespaces.
1749 */
1750 net_ns_barrier();
1751
1752 /* a conntrack could have been unlinked from unconfirmed list
1753 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
1754 * This makes sure its inserted into conntrack table.
1755 */
1756 synchronize_net();
1757
1758 nf_ct_iterate_cleanup(iter, data, 0, 0);
1759 }
1760 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
1761
1762 static int kill_all(struct nf_conn *i, void *data)
1763 {
1764 return net_eq(nf_ct_net(i), data);
1765 }
1766
1767 void nf_ct_free_hashtable(void *hash, unsigned int size)
1768 {
1769 if (is_vmalloc_addr(hash))
1770 vfree(hash);
1771 else
1772 free_pages((unsigned long)hash,
1773 get_order(sizeof(struct hlist_head) * size));
1774 }
1775 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1776
1777 void nf_conntrack_cleanup_start(void)
1778 {
1779 conntrack_gc_work.exiting = true;
1780 RCU_INIT_POINTER(ip_ct_attach, NULL);
1781 }
1782
1783 void nf_conntrack_cleanup_end(void)
1784 {
1785 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1786
1787 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
1788 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
1789
1790 nf_conntrack_proto_fini();
1791 nf_conntrack_seqadj_fini();
1792 nf_conntrack_labels_fini();
1793 nf_conntrack_helper_fini();
1794 nf_conntrack_timeout_fini();
1795 nf_conntrack_ecache_fini();
1796 nf_conntrack_tstamp_fini();
1797 nf_conntrack_acct_fini();
1798 nf_conntrack_expect_fini();
1799
1800 kmem_cache_destroy(nf_conntrack_cachep);
1801 }
1802
1803 /*
1804 * Mishearing the voices in his head, our hero wonders how he's
1805 * supposed to kill the mall.
1806 */
1807 void nf_conntrack_cleanup_net(struct net *net)
1808 {
1809 LIST_HEAD(single);
1810
1811 list_add(&net->exit_list, &single);
1812 nf_conntrack_cleanup_net_list(&single);
1813 }
1814
1815 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
1816 {
1817 int busy;
1818 struct net *net;
1819
1820 /*
1821 * This makes sure all current packets have passed through
1822 * netfilter framework. Roll on, two-stage module
1823 * delete...
1824 */
1825 synchronize_net();
1826 i_see_dead_people:
1827 busy = 0;
1828 list_for_each_entry(net, net_exit_list, exit_list) {
1829 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
1830 if (atomic_read(&net->ct.count) != 0)
1831 busy = 1;
1832 }
1833 if (busy) {
1834 schedule();
1835 goto i_see_dead_people;
1836 }
1837
1838 list_for_each_entry(net, net_exit_list, exit_list) {
1839 nf_conntrack_proto_pernet_fini(net);
1840 nf_conntrack_helper_pernet_fini(net);
1841 nf_conntrack_ecache_pernet_fini(net);
1842 nf_conntrack_tstamp_pernet_fini(net);
1843 nf_conntrack_acct_pernet_fini(net);
1844 nf_conntrack_expect_pernet_fini(net);
1845 free_percpu(net->ct.stat);
1846 free_percpu(net->ct.pcpu_lists);
1847 }
1848 }
1849
1850 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1851 {
1852 struct hlist_nulls_head *hash;
1853 unsigned int nr_slots, i;
1854 size_t sz;
1855
1856 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1857 return NULL;
1858
1859 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1860 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1861
1862 if (nr_slots > (UINT_MAX / sizeof(struct hlist_nulls_head)))
1863 return NULL;
1864
1865 sz = nr_slots * sizeof(struct hlist_nulls_head);
1866 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1867 get_order(sz));
1868 if (!hash)
1869 hash = vzalloc(sz);
1870
1871 if (hash && nulls)
1872 for (i = 0; i < nr_slots; i++)
1873 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1874
1875 return hash;
1876 }
1877 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1878
1879 int nf_conntrack_hash_resize(unsigned int hashsize)
1880 {
1881 int i, bucket;
1882 unsigned int old_size;
1883 struct hlist_nulls_head *hash, *old_hash;
1884 struct nf_conntrack_tuple_hash *h;
1885 struct nf_conn *ct;
1886
1887 if (!hashsize)
1888 return -EINVAL;
1889
1890 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1891 if (!hash)
1892 return -ENOMEM;
1893
1894 old_size = nf_conntrack_htable_size;
1895 if (old_size == hashsize) {
1896 nf_ct_free_hashtable(hash, hashsize);
1897 return 0;
1898 }
1899
1900 local_bh_disable();
1901 nf_conntrack_all_lock();
1902 write_seqcount_begin(&nf_conntrack_generation);
1903
1904 /* Lookups in the old hash might happen in parallel, which means we
1905 * might get false negatives during connection lookup. New connections
1906 * created because of a false negative won't make it into the hash
1907 * though since that required taking the locks.
1908 */
1909
1910 for (i = 0; i < nf_conntrack_htable_size; i++) {
1911 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
1912 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
1913 struct nf_conntrack_tuple_hash, hnnode);
1914 ct = nf_ct_tuplehash_to_ctrack(h);
1915 hlist_nulls_del_rcu(&h->hnnode);
1916 bucket = __hash_conntrack(nf_ct_net(ct),
1917 &h->tuple, hashsize);
1918 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1919 }
1920 }
1921 old_size = nf_conntrack_htable_size;
1922 old_hash = nf_conntrack_hash;
1923
1924 nf_conntrack_hash = hash;
1925 nf_conntrack_htable_size = hashsize;
1926
1927 write_seqcount_end(&nf_conntrack_generation);
1928 nf_conntrack_all_unlock();
1929 local_bh_enable();
1930
1931 synchronize_net();
1932 nf_ct_free_hashtable(old_hash, old_size);
1933 return 0;
1934 }
1935
1936 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1937 {
1938 unsigned int hashsize;
1939 int rc;
1940
1941 if (current->nsproxy->net_ns != &init_net)
1942 return -EOPNOTSUPP;
1943
1944 /* On boot, we can set this without any fancy locking. */
1945 if (!nf_conntrack_htable_size)
1946 return param_set_uint(val, kp);
1947
1948 rc = kstrtouint(val, 0, &hashsize);
1949 if (rc)
1950 return rc;
1951
1952 return nf_conntrack_hash_resize(hashsize);
1953 }
1954 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1955
1956 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1957 &nf_conntrack_htable_size, 0600);
1958
1959 static __always_inline unsigned int total_extension_size(void)
1960 {
1961 /* remember to add new extensions below */
1962 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
1963
1964 return sizeof(struct nf_ct_ext) +
1965 sizeof(struct nf_conn_help)
1966 #if IS_ENABLED(CONFIG_NF_NAT)
1967 + sizeof(struct nf_conn_nat)
1968 #endif
1969 + sizeof(struct nf_conn_seqadj)
1970 + sizeof(struct nf_conn_acct)
1971 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1972 + sizeof(struct nf_conntrack_ecache)
1973 #endif
1974 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
1975 + sizeof(struct nf_conn_tstamp)
1976 #endif
1977 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1978 + sizeof(struct nf_conn_timeout)
1979 #endif
1980 #ifdef CONFIG_NF_CONNTRACK_LABELS
1981 + sizeof(struct nf_conn_labels)
1982 #endif
1983 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
1984 + sizeof(struct nf_conn_synproxy)
1985 #endif
1986 ;
1987 };
1988
1989 int nf_conntrack_init_start(void)
1990 {
1991 int max_factor = 8;
1992 int ret = -ENOMEM;
1993 int i;
1994
1995 /* struct nf_ct_ext uses u8 to store offsets/size */
1996 BUILD_BUG_ON(total_extension_size() > 255u);
1997
1998 seqcount_init(&nf_conntrack_generation);
1999
2000 for (i = 0; i < CONNTRACK_LOCKS; i++)
2001 spin_lock_init(&nf_conntrack_locks[i]);
2002
2003 if (!nf_conntrack_htable_size) {
2004 /* Idea from tcp.c: use 1/16384 of memory.
2005 * On i386: 32MB machine has 512 buckets.
2006 * >= 1GB machines have 16384 buckets.
2007 * >= 4GB machines have 65536 buckets.
2008 */
2009 nf_conntrack_htable_size
2010 = (((totalram_pages << PAGE_SHIFT) / 16384)
2011 / sizeof(struct hlist_head));
2012 if (totalram_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2013 nf_conntrack_htable_size = 65536;
2014 else if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2015 nf_conntrack_htable_size = 16384;
2016 if (nf_conntrack_htable_size < 32)
2017 nf_conntrack_htable_size = 32;
2018
2019 /* Use a max. factor of four by default to get the same max as
2020 * with the old struct list_heads. When a table size is given
2021 * we use the old value of 8 to avoid reducing the max.
2022 * entries. */
2023 max_factor = 4;
2024 }
2025
2026 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2027 if (!nf_conntrack_hash)
2028 return -ENOMEM;
2029
2030 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2031
2032 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2033 sizeof(struct nf_conn),
2034 NFCT_INFOMASK + 1,
2035 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2036 if (!nf_conntrack_cachep)
2037 goto err_cachep;
2038
2039 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
2040 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
2041 nf_conntrack_max);
2042
2043 ret = nf_conntrack_expect_init();
2044 if (ret < 0)
2045 goto err_expect;
2046
2047 ret = nf_conntrack_acct_init();
2048 if (ret < 0)
2049 goto err_acct;
2050
2051 ret = nf_conntrack_tstamp_init();
2052 if (ret < 0)
2053 goto err_tstamp;
2054
2055 ret = nf_conntrack_ecache_init();
2056 if (ret < 0)
2057 goto err_ecache;
2058
2059 ret = nf_conntrack_timeout_init();
2060 if (ret < 0)
2061 goto err_timeout;
2062
2063 ret = nf_conntrack_helper_init();
2064 if (ret < 0)
2065 goto err_helper;
2066
2067 ret = nf_conntrack_labels_init();
2068 if (ret < 0)
2069 goto err_labels;
2070
2071 ret = nf_conntrack_seqadj_init();
2072 if (ret < 0)
2073 goto err_seqadj;
2074
2075 ret = nf_conntrack_proto_init();
2076 if (ret < 0)
2077 goto err_proto;
2078
2079 conntrack_gc_work_init(&conntrack_gc_work);
2080 queue_delayed_work(system_long_wq, &conntrack_gc_work.dwork, HZ);
2081
2082 return 0;
2083
2084 err_proto:
2085 nf_conntrack_seqadj_fini();
2086 err_seqadj:
2087 nf_conntrack_labels_fini();
2088 err_labels:
2089 nf_conntrack_helper_fini();
2090 err_helper:
2091 nf_conntrack_timeout_fini();
2092 err_timeout:
2093 nf_conntrack_ecache_fini();
2094 err_ecache:
2095 nf_conntrack_tstamp_fini();
2096 err_tstamp:
2097 nf_conntrack_acct_fini();
2098 err_acct:
2099 nf_conntrack_expect_fini();
2100 err_expect:
2101 kmem_cache_destroy(nf_conntrack_cachep);
2102 err_cachep:
2103 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_htable_size);
2104 return ret;
2105 }
2106
2107 void nf_conntrack_init_end(void)
2108 {
2109 /* For use by REJECT target */
2110 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2111 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
2112 }
2113
2114 /*
2115 * We need to use special "null" values, not used in hash table
2116 */
2117 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2118 #define DYING_NULLS_VAL ((1<<30)+1)
2119 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2120
2121 int nf_conntrack_init_net(struct net *net)
2122 {
2123 int ret = -ENOMEM;
2124 int cpu;
2125
2126 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2127 atomic_set(&net->ct.count, 0);
2128
2129 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2130 if (!net->ct.pcpu_lists)
2131 goto err_stat;
2132
2133 for_each_possible_cpu(cpu) {
2134 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2135
2136 spin_lock_init(&pcpu->lock);
2137 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2138 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2139 }
2140
2141 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2142 if (!net->ct.stat)
2143 goto err_pcpu_lists;
2144
2145 ret = nf_conntrack_expect_pernet_init(net);
2146 if (ret < 0)
2147 goto err_expect;
2148 ret = nf_conntrack_acct_pernet_init(net);
2149 if (ret < 0)
2150 goto err_acct;
2151 ret = nf_conntrack_tstamp_pernet_init(net);
2152 if (ret < 0)
2153 goto err_tstamp;
2154 ret = nf_conntrack_ecache_pernet_init(net);
2155 if (ret < 0)
2156 goto err_ecache;
2157 ret = nf_conntrack_helper_pernet_init(net);
2158 if (ret < 0)
2159 goto err_helper;
2160 ret = nf_conntrack_proto_pernet_init(net);
2161 if (ret < 0)
2162 goto err_proto;
2163 return 0;
2164
2165 err_proto:
2166 nf_conntrack_helper_pernet_fini(net);
2167 err_helper:
2168 nf_conntrack_ecache_pernet_fini(net);
2169 err_ecache:
2170 nf_conntrack_tstamp_pernet_fini(net);
2171 err_tstamp:
2172 nf_conntrack_acct_pernet_fini(net);
2173 err_acct:
2174 nf_conntrack_expect_pernet_fini(net);
2175 err_expect:
2176 free_percpu(net->ct.stat);
2177 err_pcpu_lists:
2178 free_percpu(net->ct.pcpu_lists);
2179 err_stat:
2180 return ret;
2181 }