]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/netfilter/nf_conntrack_core.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500
[mirror_ubuntu-jammy-kernel.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/siphash.h>
26 #include <linux/err.h>
27 #include <linux/percpu.h>
28 #include <linux/moduleparam.h>
29 #include <linux/notifier.h>
30 #include <linux/kernel.h>
31 #include <linux/netdevice.h>
32 #include <linux/socket.h>
33 #include <linux/mm.h>
34 #include <linux/nsproxy.h>
35 #include <linux/rculist_nulls.h>
36
37 #include <net/netfilter/nf_conntrack.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_seqadj.h>
42 #include <net/netfilter/nf_conntrack_core.h>
43 #include <net/netfilter/nf_conntrack_extend.h>
44 #include <net/netfilter/nf_conntrack_acct.h>
45 #include <net/netfilter/nf_conntrack_ecache.h>
46 #include <net/netfilter/nf_conntrack_zones.h>
47 #include <net/netfilter/nf_conntrack_timestamp.h>
48 #include <net/netfilter/nf_conntrack_timeout.h>
49 #include <net/netfilter/nf_conntrack_labels.h>
50 #include <net/netfilter/nf_conntrack_synproxy.h>
51 #include <net/netfilter/nf_nat.h>
52 #include <net/netfilter/nf_nat_helper.h>
53 #include <net/netns/hash.h>
54 #include <net/ip.h>
55
56 #include "nf_internals.h"
57
58 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
59 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
60
61 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
62 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
63
64 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
66
67 struct conntrack_gc_work {
68 struct delayed_work dwork;
69 u32 last_bucket;
70 bool exiting;
71 bool early_drop;
72 long next_gc_run;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static __read_mostly spinlock_t nf_conntrack_locks_all_lock;
77 static __read_mostly DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* every gc cycle scans at most 1/GC_MAX_BUCKETS_DIV part of table */
81 #define GC_MAX_BUCKETS_DIV 128u
82 /* upper bound of full table scan */
83 #define GC_MAX_SCAN_JIFFIES (16u * HZ)
84 /* desired ratio of entries found to be expired */
85 #define GC_EVICT_RATIO 50u
86
87 static struct conntrack_gc_work conntrack_gc_work;
88
89 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
90 {
91 /* 1) Acquire the lock */
92 spin_lock(lock);
93
94 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
95 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
96 */
97 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
98 return;
99
100 /* fast path failed, unlock */
101 spin_unlock(lock);
102
103 /* Slow path 1) get global lock */
104 spin_lock(&nf_conntrack_locks_all_lock);
105
106 /* Slow path 2) get the lock we want */
107 spin_lock(lock);
108
109 /* Slow path 3) release the global lock */
110 spin_unlock(&nf_conntrack_locks_all_lock);
111 }
112 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
113
114 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
115 {
116 h1 %= CONNTRACK_LOCKS;
117 h2 %= CONNTRACK_LOCKS;
118 spin_unlock(&nf_conntrack_locks[h1]);
119 if (h1 != h2)
120 spin_unlock(&nf_conntrack_locks[h2]);
121 }
122
123 /* return true if we need to recompute hashes (in case hash table was resized) */
124 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
125 unsigned int h2, unsigned int sequence)
126 {
127 h1 %= CONNTRACK_LOCKS;
128 h2 %= CONNTRACK_LOCKS;
129 if (h1 <= h2) {
130 nf_conntrack_lock(&nf_conntrack_locks[h1]);
131 if (h1 != h2)
132 spin_lock_nested(&nf_conntrack_locks[h2],
133 SINGLE_DEPTH_NESTING);
134 } else {
135 nf_conntrack_lock(&nf_conntrack_locks[h2]);
136 spin_lock_nested(&nf_conntrack_locks[h1],
137 SINGLE_DEPTH_NESTING);
138 }
139 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
140 nf_conntrack_double_unlock(h1, h2);
141 return true;
142 }
143 return false;
144 }
145
146 static void nf_conntrack_all_lock(void)
147 {
148 int i;
149
150 spin_lock(&nf_conntrack_locks_all_lock);
151
152 nf_conntrack_locks_all = true;
153
154 for (i = 0; i < CONNTRACK_LOCKS; i++) {
155 spin_lock(&nf_conntrack_locks[i]);
156
157 /* This spin_unlock provides the "release" to ensure that
158 * nf_conntrack_locks_all==true is visible to everyone that
159 * acquired spin_lock(&nf_conntrack_locks[]).
160 */
161 spin_unlock(&nf_conntrack_locks[i]);
162 }
163 }
164
165 static void nf_conntrack_all_unlock(void)
166 {
167 /* All prior stores must be complete before we clear
168 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
169 * might observe the false value but not the entire
170 * critical section.
171 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
172 */
173 smp_store_release(&nf_conntrack_locks_all, false);
174 spin_unlock(&nf_conntrack_locks_all_lock);
175 }
176
177 unsigned int nf_conntrack_htable_size __read_mostly;
178 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
179
180 unsigned int nf_conntrack_max __read_mostly;
181 EXPORT_SYMBOL_GPL(nf_conntrack_max);
182 seqcount_t nf_conntrack_generation __read_mostly;
183 static unsigned int nf_conntrack_hash_rnd __read_mostly;
184
185 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
186 const struct net *net)
187 {
188 unsigned int n;
189 u32 seed;
190
191 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
192
193 /* The direction must be ignored, so we hash everything up to the
194 * destination ports (which is a multiple of 4) and treat the last
195 * three bytes manually.
196 */
197 seed = nf_conntrack_hash_rnd ^ net_hash_mix(net);
198 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
199 return jhash2((u32 *)tuple, n, seed ^
200 (((__force __u16)tuple->dst.u.all << 16) |
201 tuple->dst.protonum));
202 }
203
204 static u32 scale_hash(u32 hash)
205 {
206 return reciprocal_scale(hash, nf_conntrack_htable_size);
207 }
208
209 static u32 __hash_conntrack(const struct net *net,
210 const struct nf_conntrack_tuple *tuple,
211 unsigned int size)
212 {
213 return reciprocal_scale(hash_conntrack_raw(tuple, net), size);
214 }
215
216 static u32 hash_conntrack(const struct net *net,
217 const struct nf_conntrack_tuple *tuple)
218 {
219 return scale_hash(hash_conntrack_raw(tuple, net));
220 }
221
222 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
223 unsigned int dataoff,
224 struct nf_conntrack_tuple *tuple)
225 { struct {
226 __be16 sport;
227 __be16 dport;
228 } _inet_hdr, *inet_hdr;
229
230 /* Actually only need first 4 bytes to get ports. */
231 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
232 if (!inet_hdr)
233 return false;
234
235 tuple->src.u.udp.port = inet_hdr->sport;
236 tuple->dst.u.udp.port = inet_hdr->dport;
237 return true;
238 }
239
240 static bool
241 nf_ct_get_tuple(const struct sk_buff *skb,
242 unsigned int nhoff,
243 unsigned int dataoff,
244 u_int16_t l3num,
245 u_int8_t protonum,
246 struct net *net,
247 struct nf_conntrack_tuple *tuple)
248 {
249 unsigned int size;
250 const __be32 *ap;
251 __be32 _addrs[8];
252
253 memset(tuple, 0, sizeof(*tuple));
254
255 tuple->src.l3num = l3num;
256 switch (l3num) {
257 case NFPROTO_IPV4:
258 nhoff += offsetof(struct iphdr, saddr);
259 size = 2 * sizeof(__be32);
260 break;
261 case NFPROTO_IPV6:
262 nhoff += offsetof(struct ipv6hdr, saddr);
263 size = sizeof(_addrs);
264 break;
265 default:
266 return true;
267 }
268
269 ap = skb_header_pointer(skb, nhoff, size, _addrs);
270 if (!ap)
271 return false;
272
273 switch (l3num) {
274 case NFPROTO_IPV4:
275 tuple->src.u3.ip = ap[0];
276 tuple->dst.u3.ip = ap[1];
277 break;
278 case NFPROTO_IPV6:
279 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
280 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
281 break;
282 }
283
284 tuple->dst.protonum = protonum;
285 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
286
287 switch (protonum) {
288 #if IS_ENABLED(CONFIG_IPV6)
289 case IPPROTO_ICMPV6:
290 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
291 #endif
292 case IPPROTO_ICMP:
293 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
294 #ifdef CONFIG_NF_CT_PROTO_GRE
295 case IPPROTO_GRE:
296 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
297 #endif
298 case IPPROTO_TCP:
299 case IPPROTO_UDP: /* fallthrough */
300 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
301 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
302 case IPPROTO_UDPLITE:
303 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
304 #endif
305 #ifdef CONFIG_NF_CT_PROTO_SCTP
306 case IPPROTO_SCTP:
307 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
308 #endif
309 #ifdef CONFIG_NF_CT_PROTO_DCCP
310 case IPPROTO_DCCP:
311 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
312 #endif
313 default:
314 break;
315 }
316
317 return true;
318 }
319
320 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
321 u_int8_t *protonum)
322 {
323 int dataoff = -1;
324 const struct iphdr *iph;
325 struct iphdr _iph;
326
327 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
328 if (!iph)
329 return -1;
330
331 /* Conntrack defragments packets, we might still see fragments
332 * inside ICMP packets though.
333 */
334 if (iph->frag_off & htons(IP_OFFSET))
335 return -1;
336
337 dataoff = nhoff + (iph->ihl << 2);
338 *protonum = iph->protocol;
339
340 /* Check bogus IP headers */
341 if (dataoff > skb->len) {
342 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
343 nhoff, iph->ihl << 2, skb->len);
344 return -1;
345 }
346 return dataoff;
347 }
348
349 #if IS_ENABLED(CONFIG_IPV6)
350 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
351 u8 *protonum)
352 {
353 int protoff = -1;
354 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
355 __be16 frag_off;
356 u8 nexthdr;
357
358 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
359 &nexthdr, sizeof(nexthdr)) != 0) {
360 pr_debug("can't get nexthdr\n");
361 return -1;
362 }
363 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
364 /*
365 * (protoff == skb->len) means the packet has not data, just
366 * IPv6 and possibly extensions headers, but it is tracked anyway
367 */
368 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
369 pr_debug("can't find proto in pkt\n");
370 return -1;
371 }
372
373 *protonum = nexthdr;
374 return protoff;
375 }
376 #endif
377
378 static int get_l4proto(const struct sk_buff *skb,
379 unsigned int nhoff, u8 pf, u8 *l4num)
380 {
381 switch (pf) {
382 case NFPROTO_IPV4:
383 return ipv4_get_l4proto(skb, nhoff, l4num);
384 #if IS_ENABLED(CONFIG_IPV6)
385 case NFPROTO_IPV6:
386 return ipv6_get_l4proto(skb, nhoff, l4num);
387 #endif
388 default:
389 *l4num = 0;
390 break;
391 }
392 return -1;
393 }
394
395 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
396 u_int16_t l3num,
397 struct net *net, struct nf_conntrack_tuple *tuple)
398 {
399 u8 protonum;
400 int protoff;
401
402 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
403 if (protoff <= 0)
404 return false;
405
406 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
407 }
408 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
409
410 bool
411 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
412 const struct nf_conntrack_tuple *orig)
413 {
414 memset(inverse, 0, sizeof(*inverse));
415
416 inverse->src.l3num = orig->src.l3num;
417
418 switch (orig->src.l3num) {
419 case NFPROTO_IPV4:
420 inverse->src.u3.ip = orig->dst.u3.ip;
421 inverse->dst.u3.ip = orig->src.u3.ip;
422 break;
423 case NFPROTO_IPV6:
424 inverse->src.u3.in6 = orig->dst.u3.in6;
425 inverse->dst.u3.in6 = orig->src.u3.in6;
426 break;
427 default:
428 break;
429 }
430
431 inverse->dst.dir = !orig->dst.dir;
432
433 inverse->dst.protonum = orig->dst.protonum;
434
435 switch (orig->dst.protonum) {
436 case IPPROTO_ICMP:
437 return nf_conntrack_invert_icmp_tuple(inverse, orig);
438 #if IS_ENABLED(CONFIG_IPV6)
439 case IPPROTO_ICMPV6:
440 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
441 #endif
442 }
443
444 inverse->src.u.all = orig->dst.u.all;
445 inverse->dst.u.all = orig->src.u.all;
446 return true;
447 }
448 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
449
450 /* Generate a almost-unique pseudo-id for a given conntrack.
451 *
452 * intentionally doesn't re-use any of the seeds used for hash
453 * table location, we assume id gets exposed to userspace.
454 *
455 * Following nf_conn items do not change throughout lifetime
456 * of the nf_conn after it has been committed to main hash table:
457 *
458 * 1. nf_conn address
459 * 2. nf_conn->ext address
460 * 3. nf_conn->master address (normally NULL)
461 * 4. tuple
462 * 5. the associated net namespace
463 */
464 u32 nf_ct_get_id(const struct nf_conn *ct)
465 {
466 static __read_mostly siphash_key_t ct_id_seed;
467 unsigned long a, b, c, d;
468
469 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
470
471 a = (unsigned long)ct;
472 b = (unsigned long)ct->master ^ net_hash_mix(nf_ct_net(ct));
473 c = (unsigned long)ct->ext;
474 d = (unsigned long)siphash(&ct->tuplehash, sizeof(ct->tuplehash),
475 &ct_id_seed);
476 #ifdef CONFIG_64BIT
477 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
478 #else
479 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
480 #endif
481 }
482 EXPORT_SYMBOL_GPL(nf_ct_get_id);
483
484 static void
485 clean_from_lists(struct nf_conn *ct)
486 {
487 pr_debug("clean_from_lists(%p)\n", ct);
488 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
489 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
490
491 /* Destroy all pending expectations */
492 nf_ct_remove_expectations(ct);
493 }
494
495 /* must be called with local_bh_disable */
496 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
497 {
498 struct ct_pcpu *pcpu;
499
500 /* add this conntrack to the (per cpu) dying list */
501 ct->cpu = smp_processor_id();
502 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
503
504 spin_lock(&pcpu->lock);
505 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
506 &pcpu->dying);
507 spin_unlock(&pcpu->lock);
508 }
509
510 /* must be called with local_bh_disable */
511 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
512 {
513 struct ct_pcpu *pcpu;
514
515 /* add this conntrack to the (per cpu) unconfirmed list */
516 ct->cpu = smp_processor_id();
517 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
518
519 spin_lock(&pcpu->lock);
520 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
521 &pcpu->unconfirmed);
522 spin_unlock(&pcpu->lock);
523 }
524
525 /* must be called with local_bh_disable */
526 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
527 {
528 struct ct_pcpu *pcpu;
529
530 /* We overload first tuple to link into unconfirmed or dying list.*/
531 pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
532
533 spin_lock(&pcpu->lock);
534 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
535 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
536 spin_unlock(&pcpu->lock);
537 }
538
539 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
540
541 /* Released via destroy_conntrack() */
542 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
543 const struct nf_conntrack_zone *zone,
544 gfp_t flags)
545 {
546 struct nf_conn *tmpl, *p;
547
548 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
549 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
550 if (!tmpl)
551 return NULL;
552
553 p = tmpl;
554 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
555 if (tmpl != p) {
556 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
557 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
558 }
559 } else {
560 tmpl = kzalloc(sizeof(*tmpl), flags);
561 if (!tmpl)
562 return NULL;
563 }
564
565 tmpl->status = IPS_TEMPLATE;
566 write_pnet(&tmpl->ct_net, net);
567 nf_ct_zone_add(tmpl, zone);
568 atomic_set(&tmpl->ct_general.use, 0);
569
570 return tmpl;
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
573
574 void nf_ct_tmpl_free(struct nf_conn *tmpl)
575 {
576 nf_ct_ext_destroy(tmpl);
577 nf_ct_ext_free(tmpl);
578
579 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
580 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
581 else
582 kfree(tmpl);
583 }
584 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
585
586 static void destroy_gre_conntrack(struct nf_conn *ct)
587 {
588 #ifdef CONFIG_NF_CT_PROTO_GRE
589 struct nf_conn *master = ct->master;
590
591 if (master)
592 nf_ct_gre_keymap_destroy(master);
593 #endif
594 }
595
596 static void
597 destroy_conntrack(struct nf_conntrack *nfct)
598 {
599 struct nf_conn *ct = (struct nf_conn *)nfct;
600
601 pr_debug("destroy_conntrack(%p)\n", ct);
602 WARN_ON(atomic_read(&nfct->use) != 0);
603
604 if (unlikely(nf_ct_is_template(ct))) {
605 nf_ct_tmpl_free(ct);
606 return;
607 }
608
609 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
610 destroy_gre_conntrack(ct);
611
612 local_bh_disable();
613 /* Expectations will have been removed in clean_from_lists,
614 * except TFTP can create an expectation on the first packet,
615 * before connection is in the list, so we need to clean here,
616 * too.
617 */
618 nf_ct_remove_expectations(ct);
619
620 nf_ct_del_from_dying_or_unconfirmed_list(ct);
621
622 local_bh_enable();
623
624 if (ct->master)
625 nf_ct_put(ct->master);
626
627 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
628 nf_conntrack_free(ct);
629 }
630
631 static void nf_ct_delete_from_lists(struct nf_conn *ct)
632 {
633 struct net *net = nf_ct_net(ct);
634 unsigned int hash, reply_hash;
635 unsigned int sequence;
636
637 nf_ct_helper_destroy(ct);
638
639 local_bh_disable();
640 do {
641 sequence = read_seqcount_begin(&nf_conntrack_generation);
642 hash = hash_conntrack(net,
643 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
644 reply_hash = hash_conntrack(net,
645 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
646 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
647
648 clean_from_lists(ct);
649 nf_conntrack_double_unlock(hash, reply_hash);
650
651 nf_ct_add_to_dying_list(ct);
652
653 local_bh_enable();
654 }
655
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 struct nf_conn_tstamp *tstamp;
659
660 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
661 return false;
662
663 tstamp = nf_conn_tstamp_find(ct);
664 if (tstamp && tstamp->stop == 0)
665 tstamp->stop = ktime_get_real_ns();
666
667 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
668 portid, report) < 0) {
669 /* destroy event was not delivered. nf_ct_put will
670 * be done by event cache worker on redelivery.
671 */
672 nf_ct_delete_from_lists(ct);
673 nf_conntrack_ecache_delayed_work(nf_ct_net(ct));
674 return false;
675 }
676
677 nf_conntrack_ecache_work(nf_ct_net(ct));
678 nf_ct_delete_from_lists(ct);
679 nf_ct_put(ct);
680 return true;
681 }
682 EXPORT_SYMBOL_GPL(nf_ct_delete);
683
684 static inline bool
685 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
686 const struct nf_conntrack_tuple *tuple,
687 const struct nf_conntrack_zone *zone,
688 const struct net *net)
689 {
690 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
691
692 /* A conntrack can be recreated with the equal tuple,
693 * so we need to check that the conntrack is confirmed
694 */
695 return nf_ct_tuple_equal(tuple, &h->tuple) &&
696 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
697 nf_ct_is_confirmed(ct) &&
698 net_eq(net, nf_ct_net(ct));
699 }
700
701 static inline bool
702 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
703 {
704 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
705 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
706 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
707 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
708 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
709 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
710 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
711 }
712
713 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
714 static void nf_ct_gc_expired(struct nf_conn *ct)
715 {
716 if (!atomic_inc_not_zero(&ct->ct_general.use))
717 return;
718
719 if (nf_ct_should_gc(ct))
720 nf_ct_kill(ct);
721
722 nf_ct_put(ct);
723 }
724
725 /*
726 * Warning :
727 * - Caller must take a reference on returned object
728 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
729 */
730 static struct nf_conntrack_tuple_hash *
731 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
732 const struct nf_conntrack_tuple *tuple, u32 hash)
733 {
734 struct nf_conntrack_tuple_hash *h;
735 struct hlist_nulls_head *ct_hash;
736 struct hlist_nulls_node *n;
737 unsigned int bucket, hsize;
738
739 begin:
740 nf_conntrack_get_ht(&ct_hash, &hsize);
741 bucket = reciprocal_scale(hash, hsize);
742
743 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
744 struct nf_conn *ct;
745
746 ct = nf_ct_tuplehash_to_ctrack(h);
747 if (nf_ct_is_expired(ct)) {
748 nf_ct_gc_expired(ct);
749 continue;
750 }
751
752 if (nf_ct_is_dying(ct))
753 continue;
754
755 if (nf_ct_key_equal(h, tuple, zone, net))
756 return h;
757 }
758 /*
759 * if the nulls value we got at the end of this lookup is
760 * not the expected one, we must restart lookup.
761 * We probably met an item that was moved to another chain.
762 */
763 if (get_nulls_value(n) != bucket) {
764 NF_CT_STAT_INC_ATOMIC(net, search_restart);
765 goto begin;
766 }
767
768 return NULL;
769 }
770
771 /* Find a connection corresponding to a tuple. */
772 static struct nf_conntrack_tuple_hash *
773 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
774 const struct nf_conntrack_tuple *tuple, u32 hash)
775 {
776 struct nf_conntrack_tuple_hash *h;
777 struct nf_conn *ct;
778
779 rcu_read_lock();
780 begin:
781 h = ____nf_conntrack_find(net, zone, tuple, hash);
782 if (h) {
783 ct = nf_ct_tuplehash_to_ctrack(h);
784 if (unlikely(nf_ct_is_dying(ct) ||
785 !atomic_inc_not_zero(&ct->ct_general.use)))
786 h = NULL;
787 else {
788 if (unlikely(!nf_ct_key_equal(h, tuple, zone, net))) {
789 nf_ct_put(ct);
790 goto begin;
791 }
792 }
793 }
794 rcu_read_unlock();
795
796 return h;
797 }
798
799 struct nf_conntrack_tuple_hash *
800 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
801 const struct nf_conntrack_tuple *tuple)
802 {
803 return __nf_conntrack_find_get(net, zone, tuple,
804 hash_conntrack_raw(tuple, net));
805 }
806 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
807
808 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
809 unsigned int hash,
810 unsigned int reply_hash)
811 {
812 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
813 &nf_conntrack_hash[hash]);
814 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
815 &nf_conntrack_hash[reply_hash]);
816 }
817
818 int
819 nf_conntrack_hash_check_insert(struct nf_conn *ct)
820 {
821 const struct nf_conntrack_zone *zone;
822 struct net *net = nf_ct_net(ct);
823 unsigned int hash, reply_hash;
824 struct nf_conntrack_tuple_hash *h;
825 struct hlist_nulls_node *n;
826 unsigned int sequence;
827
828 zone = nf_ct_zone(ct);
829
830 local_bh_disable();
831 do {
832 sequence = read_seqcount_begin(&nf_conntrack_generation);
833 hash = hash_conntrack(net,
834 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
835 reply_hash = hash_conntrack(net,
836 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
837 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
838
839 /* See if there's one in the list already, including reverse */
840 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
841 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
842 zone, net))
843 goto out;
844
845 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
846 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
847 zone, net))
848 goto out;
849
850 smp_wmb();
851 /* The caller holds a reference to this object */
852 atomic_set(&ct->ct_general.use, 2);
853 __nf_conntrack_hash_insert(ct, hash, reply_hash);
854 nf_conntrack_double_unlock(hash, reply_hash);
855 NF_CT_STAT_INC(net, insert);
856 local_bh_enable();
857 return 0;
858
859 out:
860 nf_conntrack_double_unlock(hash, reply_hash);
861 NF_CT_STAT_INC(net, insert_failed);
862 local_bh_enable();
863 return -EEXIST;
864 }
865 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
866
867 static inline void nf_ct_acct_update(struct nf_conn *ct,
868 enum ip_conntrack_info ctinfo,
869 unsigned int len)
870 {
871 struct nf_conn_acct *acct;
872
873 acct = nf_conn_acct_find(ct);
874 if (acct) {
875 struct nf_conn_counter *counter = acct->counter;
876
877 atomic64_inc(&counter[CTINFO2DIR(ctinfo)].packets);
878 atomic64_add(len, &counter[CTINFO2DIR(ctinfo)].bytes);
879 }
880 }
881
882 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
883 const struct nf_conn *loser_ct)
884 {
885 struct nf_conn_acct *acct;
886
887 acct = nf_conn_acct_find(loser_ct);
888 if (acct) {
889 struct nf_conn_counter *counter = acct->counter;
890 unsigned int bytes;
891
892 /* u32 should be fine since we must have seen one packet. */
893 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
894 nf_ct_acct_update(ct, ctinfo, bytes);
895 }
896 }
897
898 /* Resolve race on insertion if this protocol allows this. */
899 static int nf_ct_resolve_clash(struct net *net, struct sk_buff *skb,
900 enum ip_conntrack_info ctinfo,
901 struct nf_conntrack_tuple_hash *h)
902 {
903 /* This is the conntrack entry already in hashes that won race. */
904 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
905 const struct nf_conntrack_l4proto *l4proto;
906 enum ip_conntrack_info oldinfo;
907 struct nf_conn *loser_ct = nf_ct_get(skb, &oldinfo);
908
909 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
910 if (l4proto->allow_clash &&
911 !nf_ct_is_dying(ct) &&
912 atomic_inc_not_zero(&ct->ct_general.use)) {
913 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
914 nf_ct_match(ct, loser_ct)) {
915 nf_ct_acct_merge(ct, ctinfo, loser_ct);
916 nf_conntrack_put(&loser_ct->ct_general);
917 nf_ct_set(skb, ct, oldinfo);
918 return NF_ACCEPT;
919 }
920 nf_ct_put(ct);
921 }
922 NF_CT_STAT_INC(net, drop);
923 return NF_DROP;
924 }
925
926 /* Confirm a connection given skb; places it in hash table */
927 int
928 __nf_conntrack_confirm(struct sk_buff *skb)
929 {
930 const struct nf_conntrack_zone *zone;
931 unsigned int hash, reply_hash;
932 struct nf_conntrack_tuple_hash *h;
933 struct nf_conn *ct;
934 struct nf_conn_help *help;
935 struct nf_conn_tstamp *tstamp;
936 struct hlist_nulls_node *n;
937 enum ip_conntrack_info ctinfo;
938 struct net *net;
939 unsigned int sequence;
940 int ret = NF_DROP;
941
942 ct = nf_ct_get(skb, &ctinfo);
943 net = nf_ct_net(ct);
944
945 /* ipt_REJECT uses nf_conntrack_attach to attach related
946 ICMP/TCP RST packets in other direction. Actual packet
947 which created connection will be IP_CT_NEW or for an
948 expected connection, IP_CT_RELATED. */
949 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
950 return NF_ACCEPT;
951
952 zone = nf_ct_zone(ct);
953 local_bh_disable();
954
955 do {
956 sequence = read_seqcount_begin(&nf_conntrack_generation);
957 /* reuse the hash saved before */
958 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
959 hash = scale_hash(hash);
960 reply_hash = hash_conntrack(net,
961 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
962
963 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
964
965 /* We're not in hash table, and we refuse to set up related
966 * connections for unconfirmed conns. But packet copies and
967 * REJECT will give spurious warnings here.
968 */
969
970 /* Another skb with the same unconfirmed conntrack may
971 * win the race. This may happen for bridge(br_flood)
972 * or broadcast/multicast packets do skb_clone with
973 * unconfirmed conntrack.
974 */
975 if (unlikely(nf_ct_is_confirmed(ct))) {
976 WARN_ON_ONCE(1);
977 nf_conntrack_double_unlock(hash, reply_hash);
978 local_bh_enable();
979 return NF_DROP;
980 }
981
982 pr_debug("Confirming conntrack %p\n", ct);
983 /* We have to check the DYING flag after unlink to prevent
984 * a race against nf_ct_get_next_corpse() possibly called from
985 * user context, else we insert an already 'dead' hash, blocking
986 * further use of that particular connection -JM.
987 */
988 nf_ct_del_from_dying_or_unconfirmed_list(ct);
989
990 if (unlikely(nf_ct_is_dying(ct))) {
991 nf_ct_add_to_dying_list(ct);
992 goto dying;
993 }
994
995 /* See if there's one in the list already, including reverse:
996 NAT could have grabbed it without realizing, since we're
997 not in the hash. If there is, we lost race. */
998 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode)
999 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1000 zone, net))
1001 goto out;
1002
1003 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode)
1004 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1005 zone, net))
1006 goto out;
1007
1008 /* Timer relative to confirmation time, not original
1009 setting time, otherwise we'd get timer wrap in
1010 weird delay cases. */
1011 ct->timeout += nfct_time_stamp;
1012 atomic_inc(&ct->ct_general.use);
1013 ct->status |= IPS_CONFIRMED;
1014
1015 /* set conntrack timestamp, if enabled. */
1016 tstamp = nf_conn_tstamp_find(ct);
1017 if (tstamp)
1018 tstamp->start = ktime_get_real_ns();
1019
1020 /* Since the lookup is lockless, hash insertion must be done after
1021 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1022 * guarantee that no other CPU can find the conntrack before the above
1023 * stores are visible.
1024 */
1025 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1026 nf_conntrack_double_unlock(hash, reply_hash);
1027 local_bh_enable();
1028
1029 help = nfct_help(ct);
1030 if (help && help->helper)
1031 nf_conntrack_event_cache(IPCT_HELPER, ct);
1032
1033 nf_conntrack_event_cache(master_ct(ct) ?
1034 IPCT_RELATED : IPCT_NEW, ct);
1035 return NF_ACCEPT;
1036
1037 out:
1038 nf_ct_add_to_dying_list(ct);
1039 ret = nf_ct_resolve_clash(net, skb, ctinfo, h);
1040 dying:
1041 nf_conntrack_double_unlock(hash, reply_hash);
1042 NF_CT_STAT_INC(net, insert_failed);
1043 local_bh_enable();
1044 return ret;
1045 }
1046 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1047
1048 /* Returns true if a connection correspondings to the tuple (required
1049 for NAT). */
1050 int
1051 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1052 const struct nf_conn *ignored_conntrack)
1053 {
1054 struct net *net = nf_ct_net(ignored_conntrack);
1055 const struct nf_conntrack_zone *zone;
1056 struct nf_conntrack_tuple_hash *h;
1057 struct hlist_nulls_head *ct_hash;
1058 unsigned int hash, hsize;
1059 struct hlist_nulls_node *n;
1060 struct nf_conn *ct;
1061
1062 zone = nf_ct_zone(ignored_conntrack);
1063
1064 rcu_read_lock();
1065 begin:
1066 nf_conntrack_get_ht(&ct_hash, &hsize);
1067 hash = __hash_conntrack(net, tuple, hsize);
1068
1069 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1070 ct = nf_ct_tuplehash_to_ctrack(h);
1071
1072 if (ct == ignored_conntrack)
1073 continue;
1074
1075 if (nf_ct_is_expired(ct)) {
1076 nf_ct_gc_expired(ct);
1077 continue;
1078 }
1079
1080 if (nf_ct_key_equal(h, tuple, zone, net)) {
1081 /* Tuple is taken already, so caller will need to find
1082 * a new source port to use.
1083 *
1084 * Only exception:
1085 * If the *original tuples* are identical, then both
1086 * conntracks refer to the same flow.
1087 * This is a rare situation, it can occur e.g. when
1088 * more than one UDP packet is sent from same socket
1089 * in different threads.
1090 *
1091 * Let nf_ct_resolve_clash() deal with this later.
1092 */
1093 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1094 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple))
1095 continue;
1096
1097 NF_CT_STAT_INC_ATOMIC(net, found);
1098 rcu_read_unlock();
1099 return 1;
1100 }
1101 }
1102
1103 if (get_nulls_value(n) != hash) {
1104 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1105 goto begin;
1106 }
1107
1108 rcu_read_unlock();
1109
1110 return 0;
1111 }
1112 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1113
1114 #define NF_CT_EVICTION_RANGE 8
1115
1116 /* There's a small race here where we may free a just-assured
1117 connection. Too bad: we're in trouble anyway. */
1118 static unsigned int early_drop_list(struct net *net,
1119 struct hlist_nulls_head *head)
1120 {
1121 struct nf_conntrack_tuple_hash *h;
1122 struct hlist_nulls_node *n;
1123 unsigned int drops = 0;
1124 struct nf_conn *tmp;
1125
1126 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1127 tmp = nf_ct_tuplehash_to_ctrack(h);
1128
1129 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1130 continue;
1131
1132 if (nf_ct_is_expired(tmp)) {
1133 nf_ct_gc_expired(tmp);
1134 continue;
1135 }
1136
1137 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1138 !net_eq(nf_ct_net(tmp), net) ||
1139 nf_ct_is_dying(tmp))
1140 continue;
1141
1142 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1143 continue;
1144
1145 /* kill only if still in same netns -- might have moved due to
1146 * SLAB_TYPESAFE_BY_RCU rules.
1147 *
1148 * We steal the timer reference. If that fails timer has
1149 * already fired or someone else deleted it. Just drop ref
1150 * and move to next entry.
1151 */
1152 if (net_eq(nf_ct_net(tmp), net) &&
1153 nf_ct_is_confirmed(tmp) &&
1154 nf_ct_delete(tmp, 0, 0))
1155 drops++;
1156
1157 nf_ct_put(tmp);
1158 }
1159
1160 return drops;
1161 }
1162
1163 static noinline int early_drop(struct net *net, unsigned int hash)
1164 {
1165 unsigned int i, bucket;
1166
1167 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1168 struct hlist_nulls_head *ct_hash;
1169 unsigned int hsize, drops;
1170
1171 rcu_read_lock();
1172 nf_conntrack_get_ht(&ct_hash, &hsize);
1173 if (!i)
1174 bucket = reciprocal_scale(hash, hsize);
1175 else
1176 bucket = (bucket + 1) % hsize;
1177
1178 drops = early_drop_list(net, &ct_hash[bucket]);
1179 rcu_read_unlock();
1180
1181 if (drops) {
1182 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1183 return true;
1184 }
1185 }
1186
1187 return false;
1188 }
1189
1190 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1191 {
1192 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1193 }
1194
1195 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1196 {
1197 const struct nf_conntrack_l4proto *l4proto;
1198
1199 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1200 return true;
1201
1202 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1203 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1204 return true;
1205
1206 return false;
1207 }
1208
1209 #define DAY (86400 * HZ)
1210
1211 /* Set an arbitrary timeout large enough not to ever expire, this save
1212 * us a check for the IPS_OFFLOAD_BIT from the packet path via
1213 * nf_ct_is_expired().
1214 */
1215 static void nf_ct_offload_timeout(struct nf_conn *ct)
1216 {
1217 if (nf_ct_expires(ct) < DAY / 2)
1218 ct->timeout = nfct_time_stamp + DAY;
1219 }
1220
1221 static void gc_worker(struct work_struct *work)
1222 {
1223 unsigned int min_interval = max(HZ / GC_MAX_BUCKETS_DIV, 1u);
1224 unsigned int i, goal, buckets = 0, expired_count = 0;
1225 unsigned int nf_conntrack_max95 = 0;
1226 struct conntrack_gc_work *gc_work;
1227 unsigned int ratio, scanned = 0;
1228 unsigned long next_run;
1229
1230 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1231
1232 goal = nf_conntrack_htable_size / GC_MAX_BUCKETS_DIV;
1233 i = gc_work->last_bucket;
1234 if (gc_work->early_drop)
1235 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1236
1237 do {
1238 struct nf_conntrack_tuple_hash *h;
1239 struct hlist_nulls_head *ct_hash;
1240 struct hlist_nulls_node *n;
1241 unsigned int hashsz;
1242 struct nf_conn *tmp;
1243
1244 i++;
1245 rcu_read_lock();
1246
1247 nf_conntrack_get_ht(&ct_hash, &hashsz);
1248 if (i >= hashsz)
1249 i = 0;
1250
1251 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1252 struct net *net;
1253
1254 tmp = nf_ct_tuplehash_to_ctrack(h);
1255
1256 scanned++;
1257 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1258 nf_ct_offload_timeout(tmp);
1259 continue;
1260 }
1261
1262 if (nf_ct_is_expired(tmp)) {
1263 nf_ct_gc_expired(tmp);
1264 expired_count++;
1265 continue;
1266 }
1267
1268 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1269 continue;
1270
1271 net = nf_ct_net(tmp);
1272 if (atomic_read(&net->ct.count) < nf_conntrack_max95)
1273 continue;
1274
1275 /* need to take reference to avoid possible races */
1276 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1277 continue;
1278
1279 if (gc_worker_skip_ct(tmp)) {
1280 nf_ct_put(tmp);
1281 continue;
1282 }
1283
1284 if (gc_worker_can_early_drop(tmp))
1285 nf_ct_kill(tmp);
1286
1287 nf_ct_put(tmp);
1288 }
1289
1290 /* could check get_nulls_value() here and restart if ct
1291 * was moved to another chain. But given gc is best-effort
1292 * we will just continue with next hash slot.
1293 */
1294 rcu_read_unlock();
1295 cond_resched();
1296 } while (++buckets < goal);
1297
1298 if (gc_work->exiting)
1299 return;
1300
1301 /*
1302 * Eviction will normally happen from the packet path, and not
1303 * from this gc worker.
1304 *
1305 * This worker is only here to reap expired entries when system went
1306 * idle after a busy period.
1307 *
1308 * The heuristics below are supposed to balance conflicting goals:
1309 *
1310 * 1. Minimize time until we notice a stale entry
1311 * 2. Maximize scan intervals to not waste cycles
1312 *
1313 * Normally, expire ratio will be close to 0.
1314 *
1315 * As soon as a sizeable fraction of the entries have expired
1316 * increase scan frequency.
1317 */
1318 ratio = scanned ? expired_count * 100 / scanned : 0;
1319 if (ratio > GC_EVICT_RATIO) {
1320 gc_work->next_gc_run = min_interval;
1321 } else {
1322 unsigned int max = GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV;
1323
1324 BUILD_BUG_ON((GC_MAX_SCAN_JIFFIES / GC_MAX_BUCKETS_DIV) == 0);
1325
1326 gc_work->next_gc_run += min_interval;
1327 if (gc_work->next_gc_run > max)
1328 gc_work->next_gc_run = max;
1329 }
1330
1331 next_run = gc_work->next_gc_run;
1332 gc_work->last_bucket = i;
1333 gc_work->early_drop = false;
1334 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1335 }
1336
1337 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1338 {
1339 INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1340 gc_work->next_gc_run = HZ;
1341 gc_work->exiting = false;
1342 }
1343
1344 static struct nf_conn *
1345 __nf_conntrack_alloc(struct net *net,
1346 const struct nf_conntrack_zone *zone,
1347 const struct nf_conntrack_tuple *orig,
1348 const struct nf_conntrack_tuple *repl,
1349 gfp_t gfp, u32 hash)
1350 {
1351 struct nf_conn *ct;
1352
1353 /* We don't want any race condition at early drop stage */
1354 atomic_inc(&net->ct.count);
1355
1356 if (nf_conntrack_max &&
1357 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
1358 if (!early_drop(net, hash)) {
1359 if (!conntrack_gc_work.early_drop)
1360 conntrack_gc_work.early_drop = true;
1361 atomic_dec(&net->ct.count);
1362 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1363 return ERR_PTR(-ENOMEM);
1364 }
1365 }
1366
1367 /*
1368 * Do not use kmem_cache_zalloc(), as this cache uses
1369 * SLAB_TYPESAFE_BY_RCU.
1370 */
1371 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1372 if (ct == NULL)
1373 goto out;
1374
1375 spin_lock_init(&ct->lock);
1376 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1377 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1378 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1379 /* save hash for reusing when confirming */
1380 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1381 ct->status = 0;
1382 ct->timeout = 0;
1383 write_pnet(&ct->ct_net, net);
1384 memset(&ct->__nfct_init_offset[0], 0,
1385 offsetof(struct nf_conn, proto) -
1386 offsetof(struct nf_conn, __nfct_init_offset[0]));
1387
1388 nf_ct_zone_add(ct, zone);
1389
1390 /* Because we use RCU lookups, we set ct_general.use to zero before
1391 * this is inserted in any list.
1392 */
1393 atomic_set(&ct->ct_general.use, 0);
1394 return ct;
1395 out:
1396 atomic_dec(&net->ct.count);
1397 return ERR_PTR(-ENOMEM);
1398 }
1399
1400 struct nf_conn *nf_conntrack_alloc(struct net *net,
1401 const struct nf_conntrack_zone *zone,
1402 const struct nf_conntrack_tuple *orig,
1403 const struct nf_conntrack_tuple *repl,
1404 gfp_t gfp)
1405 {
1406 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1407 }
1408 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1409
1410 void nf_conntrack_free(struct nf_conn *ct)
1411 {
1412 struct net *net = nf_ct_net(ct);
1413
1414 /* A freed object has refcnt == 0, that's
1415 * the golden rule for SLAB_TYPESAFE_BY_RCU
1416 */
1417 WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1418
1419 nf_ct_ext_destroy(ct);
1420 nf_ct_ext_free(ct);
1421 kmem_cache_free(nf_conntrack_cachep, ct);
1422 smp_mb__before_atomic();
1423 atomic_dec(&net->ct.count);
1424 }
1425 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1426
1427
1428 /* Allocate a new conntrack: we return -ENOMEM if classification
1429 failed due to stress. Otherwise it really is unclassifiable. */
1430 static noinline struct nf_conntrack_tuple_hash *
1431 init_conntrack(struct net *net, struct nf_conn *tmpl,
1432 const struct nf_conntrack_tuple *tuple,
1433 struct sk_buff *skb,
1434 unsigned int dataoff, u32 hash)
1435 {
1436 struct nf_conn *ct;
1437 struct nf_conn_help *help;
1438 struct nf_conntrack_tuple repl_tuple;
1439 struct nf_conntrack_ecache *ecache;
1440 struct nf_conntrack_expect *exp = NULL;
1441 const struct nf_conntrack_zone *zone;
1442 struct nf_conn_timeout *timeout_ext;
1443 struct nf_conntrack_zone tmp;
1444
1445 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1446 pr_debug("Can't invert tuple.\n");
1447 return NULL;
1448 }
1449
1450 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1451 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1452 hash);
1453 if (IS_ERR(ct))
1454 return (struct nf_conntrack_tuple_hash *)ct;
1455
1456 if (!nf_ct_add_synproxy(ct, tmpl)) {
1457 nf_conntrack_free(ct);
1458 return ERR_PTR(-ENOMEM);
1459 }
1460
1461 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1462
1463 if (timeout_ext)
1464 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1465 GFP_ATOMIC);
1466
1467 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1468 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1469 nf_ct_labels_ext_add(ct);
1470
1471 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1472 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1473 ecache ? ecache->expmask : 0,
1474 GFP_ATOMIC);
1475
1476 local_bh_disable();
1477 if (net->ct.expect_count) {
1478 spin_lock(&nf_conntrack_expect_lock);
1479 exp = nf_ct_find_expectation(net, zone, tuple);
1480 if (exp) {
1481 pr_debug("expectation arrives ct=%p exp=%p\n",
1482 ct, exp);
1483 /* Welcome, Mr. Bond. We've been expecting you... */
1484 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1485 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1486 ct->master = exp->master;
1487 if (exp->helper) {
1488 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1489 if (help)
1490 rcu_assign_pointer(help->helper, exp->helper);
1491 }
1492
1493 #ifdef CONFIG_NF_CONNTRACK_MARK
1494 ct->mark = exp->master->mark;
1495 #endif
1496 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1497 ct->secmark = exp->master->secmark;
1498 #endif
1499 NF_CT_STAT_INC(net, expect_new);
1500 }
1501 spin_unlock(&nf_conntrack_expect_lock);
1502 }
1503 if (!exp)
1504 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1505
1506 /* Now it is inserted into the unconfirmed list, bump refcount */
1507 nf_conntrack_get(&ct->ct_general);
1508 nf_ct_add_to_unconfirmed_list(ct);
1509
1510 local_bh_enable();
1511
1512 if (exp) {
1513 if (exp->expectfn)
1514 exp->expectfn(ct, exp);
1515 nf_ct_expect_put(exp);
1516 }
1517
1518 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1519 }
1520
1521 /* On success, returns 0, sets skb->_nfct | ctinfo */
1522 static int
1523 resolve_normal_ct(struct nf_conn *tmpl,
1524 struct sk_buff *skb,
1525 unsigned int dataoff,
1526 u_int8_t protonum,
1527 const struct nf_hook_state *state)
1528 {
1529 const struct nf_conntrack_zone *zone;
1530 struct nf_conntrack_tuple tuple;
1531 struct nf_conntrack_tuple_hash *h;
1532 enum ip_conntrack_info ctinfo;
1533 struct nf_conntrack_zone tmp;
1534 struct nf_conn *ct;
1535 u32 hash;
1536
1537 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1538 dataoff, state->pf, protonum, state->net,
1539 &tuple)) {
1540 pr_debug("Can't get tuple\n");
1541 return 0;
1542 }
1543
1544 /* look for tuple match */
1545 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1546 hash = hash_conntrack_raw(&tuple, state->net);
1547 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1548 if (!h) {
1549 h = init_conntrack(state->net, tmpl, &tuple,
1550 skb, dataoff, hash);
1551 if (!h)
1552 return 0;
1553 if (IS_ERR(h))
1554 return PTR_ERR(h);
1555 }
1556 ct = nf_ct_tuplehash_to_ctrack(h);
1557
1558 /* It exists; we have (non-exclusive) reference. */
1559 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1560 ctinfo = IP_CT_ESTABLISHED_REPLY;
1561 } else {
1562 /* Once we've had two way comms, always ESTABLISHED. */
1563 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1564 pr_debug("normal packet for %p\n", ct);
1565 ctinfo = IP_CT_ESTABLISHED;
1566 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1567 pr_debug("related packet for %p\n", ct);
1568 ctinfo = IP_CT_RELATED;
1569 } else {
1570 pr_debug("new packet for %p\n", ct);
1571 ctinfo = IP_CT_NEW;
1572 }
1573 }
1574 nf_ct_set(skb, ct, ctinfo);
1575 return 0;
1576 }
1577
1578 /*
1579 * icmp packets need special treatment to handle error messages that are
1580 * related to a connection.
1581 *
1582 * Callers need to check if skb has a conntrack assigned when this
1583 * helper returns; in such case skb belongs to an already known connection.
1584 */
1585 static unsigned int __cold
1586 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1587 struct sk_buff *skb,
1588 unsigned int dataoff,
1589 u8 protonum,
1590 const struct nf_hook_state *state)
1591 {
1592 int ret;
1593
1594 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1595 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1596 #if IS_ENABLED(CONFIG_IPV6)
1597 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1598 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1599 #endif
1600 else
1601 return NF_ACCEPT;
1602
1603 if (ret <= 0) {
1604 NF_CT_STAT_INC_ATOMIC(state->net, error);
1605 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1606 }
1607
1608 return ret;
1609 }
1610
1611 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1612 enum ip_conntrack_info ctinfo)
1613 {
1614 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1615
1616 if (!timeout)
1617 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1618
1619 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1620 return NF_ACCEPT;
1621 }
1622
1623 /* Returns verdict for packet, or -1 for invalid. */
1624 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1625 struct sk_buff *skb,
1626 unsigned int dataoff,
1627 enum ip_conntrack_info ctinfo,
1628 const struct nf_hook_state *state)
1629 {
1630 switch (nf_ct_protonum(ct)) {
1631 case IPPROTO_TCP:
1632 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1633 ctinfo, state);
1634 case IPPROTO_UDP:
1635 return nf_conntrack_udp_packet(ct, skb, dataoff,
1636 ctinfo, state);
1637 case IPPROTO_ICMP:
1638 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1639 #if IS_ENABLED(CONFIG_IPV6)
1640 case IPPROTO_ICMPV6:
1641 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1642 #endif
1643 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1644 case IPPROTO_UDPLITE:
1645 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1646 ctinfo, state);
1647 #endif
1648 #ifdef CONFIG_NF_CT_PROTO_SCTP
1649 case IPPROTO_SCTP:
1650 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1651 ctinfo, state);
1652 #endif
1653 #ifdef CONFIG_NF_CT_PROTO_DCCP
1654 case IPPROTO_DCCP:
1655 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1656 ctinfo, state);
1657 #endif
1658 #ifdef CONFIG_NF_CT_PROTO_GRE
1659 case IPPROTO_GRE:
1660 return nf_conntrack_gre_packet(ct, skb, dataoff,
1661 ctinfo, state);
1662 #endif
1663 }
1664
1665 return generic_packet(ct, skb, ctinfo);
1666 }
1667
1668 unsigned int
1669 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1670 {
1671 enum ip_conntrack_info ctinfo;
1672 struct nf_conn *ct, *tmpl;
1673 u_int8_t protonum;
1674 int dataoff, ret;
1675
1676 tmpl = nf_ct_get(skb, &ctinfo);
1677 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1678 /* Previously seen (loopback or untracked)? Ignore. */
1679 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1680 ctinfo == IP_CT_UNTRACKED) {
1681 NF_CT_STAT_INC_ATOMIC(state->net, ignore);
1682 return NF_ACCEPT;
1683 }
1684 skb->_nfct = 0;
1685 }
1686
1687 /* rcu_read_lock()ed by nf_hook_thresh */
1688 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1689 if (dataoff <= 0) {
1690 pr_debug("not prepared to track yet or error occurred\n");
1691 NF_CT_STAT_INC_ATOMIC(state->net, error);
1692 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1693 ret = NF_ACCEPT;
1694 goto out;
1695 }
1696
1697 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1698 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1699 protonum, state);
1700 if (ret <= 0) {
1701 ret = -ret;
1702 goto out;
1703 }
1704 /* ICMP[v6] protocol trackers may assign one conntrack. */
1705 if (skb->_nfct)
1706 goto out;
1707 }
1708 repeat:
1709 ret = resolve_normal_ct(tmpl, skb, dataoff,
1710 protonum, state);
1711 if (ret < 0) {
1712 /* Too stressed to deal. */
1713 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1714 ret = NF_DROP;
1715 goto out;
1716 }
1717
1718 ct = nf_ct_get(skb, &ctinfo);
1719 if (!ct) {
1720 /* Not valid part of a connection */
1721 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1722 ret = NF_ACCEPT;
1723 goto out;
1724 }
1725
1726 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1727 if (ret <= 0) {
1728 /* Invalid: inverse of the return code tells
1729 * the netfilter core what to do */
1730 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1731 nf_conntrack_put(&ct->ct_general);
1732 skb->_nfct = 0;
1733 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1734 if (ret == -NF_DROP)
1735 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1736 /* Special case: TCP tracker reports an attempt to reopen a
1737 * closed/aborted connection. We have to go back and create a
1738 * fresh conntrack.
1739 */
1740 if (ret == -NF_REPEAT)
1741 goto repeat;
1742 ret = -ret;
1743 goto out;
1744 }
1745
1746 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1747 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1748 nf_conntrack_event_cache(IPCT_REPLY, ct);
1749 out:
1750 if (tmpl)
1751 nf_ct_put(tmpl);
1752
1753 return ret;
1754 }
1755 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1756
1757 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1758 implicitly racy: see __nf_conntrack_confirm */
1759 void nf_conntrack_alter_reply(struct nf_conn *ct,
1760 const struct nf_conntrack_tuple *newreply)
1761 {
1762 struct nf_conn_help *help = nfct_help(ct);
1763
1764 /* Should be unconfirmed, so not in hash table yet */
1765 WARN_ON(nf_ct_is_confirmed(ct));
1766
1767 pr_debug("Altering reply tuple of %p to ", ct);
1768 nf_ct_dump_tuple(newreply);
1769
1770 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1771 if (ct->master || (help && !hlist_empty(&help->expectations)))
1772 return;
1773
1774 rcu_read_lock();
1775 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1776 rcu_read_unlock();
1777 }
1778 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1779
1780 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1781 void __nf_ct_refresh_acct(struct nf_conn *ct,
1782 enum ip_conntrack_info ctinfo,
1783 const struct sk_buff *skb,
1784 u32 extra_jiffies,
1785 bool do_acct)
1786 {
1787 /* Only update if this is not a fixed timeout */
1788 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1789 goto acct;
1790
1791 /* If not in hash table, timer will not be active yet */
1792 if (nf_ct_is_confirmed(ct))
1793 extra_jiffies += nfct_time_stamp;
1794
1795 if (ct->timeout != extra_jiffies)
1796 ct->timeout = extra_jiffies;
1797 acct:
1798 if (do_acct)
1799 nf_ct_acct_update(ct, ctinfo, skb->len);
1800 }
1801 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1802
1803 bool nf_ct_kill_acct(struct nf_conn *ct,
1804 enum ip_conntrack_info ctinfo,
1805 const struct sk_buff *skb)
1806 {
1807 nf_ct_acct_update(ct, ctinfo, skb->len);
1808
1809 return nf_ct_delete(ct, 0, 0);
1810 }
1811 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
1812
1813 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1814
1815 #include <linux/netfilter/nfnetlink.h>
1816 #include <linux/netfilter/nfnetlink_conntrack.h>
1817 #include <linux/mutex.h>
1818
1819 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1820 * in ip_conntrack_core, since we don't want the protocols to autoload
1821 * or depend on ctnetlink */
1822 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1823 const struct nf_conntrack_tuple *tuple)
1824 {
1825 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
1826 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
1827 goto nla_put_failure;
1828 return 0;
1829
1830 nla_put_failure:
1831 return -1;
1832 }
1833 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1834
1835 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1836 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1837 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1838 };
1839 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1840
1841 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1842 struct nf_conntrack_tuple *t)
1843 {
1844 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1845 return -EINVAL;
1846
1847 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1848 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1849
1850 return 0;
1851 }
1852 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1853
1854 unsigned int nf_ct_port_nlattr_tuple_size(void)
1855 {
1856 static unsigned int size __read_mostly;
1857
1858 if (!size)
1859 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1860
1861 return size;
1862 }
1863 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1864 #endif
1865
1866 /* Used by ipt_REJECT and ip6t_REJECT. */
1867 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
1868 {
1869 struct nf_conn *ct;
1870 enum ip_conntrack_info ctinfo;
1871
1872 /* This ICMP is in reverse direction to the packet which caused it */
1873 ct = nf_ct_get(skb, &ctinfo);
1874 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1875 ctinfo = IP_CT_RELATED_REPLY;
1876 else
1877 ctinfo = IP_CT_RELATED;
1878
1879 /* Attach to new skbuff, and increment count */
1880 nf_ct_set(nskb, ct, ctinfo);
1881 nf_conntrack_get(skb_nfct(nskb));
1882 }
1883
1884 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
1885 {
1886 struct nf_conntrack_tuple_hash *h;
1887 struct nf_conntrack_tuple tuple;
1888 enum ip_conntrack_info ctinfo;
1889 struct nf_nat_hook *nat_hook;
1890 unsigned int status;
1891 struct nf_conn *ct;
1892 int dataoff;
1893 u16 l3num;
1894 u8 l4num;
1895
1896 ct = nf_ct_get(skb, &ctinfo);
1897 if (!ct || nf_ct_is_confirmed(ct))
1898 return 0;
1899
1900 l3num = nf_ct_l3num(ct);
1901
1902 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
1903 if (dataoff <= 0)
1904 return -1;
1905
1906 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
1907 l4num, net, &tuple))
1908 return -1;
1909
1910 if (ct->status & IPS_SRC_NAT) {
1911 memcpy(tuple.src.u3.all,
1912 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
1913 sizeof(tuple.src.u3.all));
1914 tuple.src.u.all =
1915 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
1916 }
1917
1918 if (ct->status & IPS_DST_NAT) {
1919 memcpy(tuple.dst.u3.all,
1920 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
1921 sizeof(tuple.dst.u3.all));
1922 tuple.dst.u.all =
1923 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
1924 }
1925
1926 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
1927 if (!h)
1928 return 0;
1929
1930 /* Store status bits of the conntrack that is clashing to re-do NAT
1931 * mangling according to what it has been done already to this packet.
1932 */
1933 status = ct->status;
1934
1935 nf_ct_put(ct);
1936 ct = nf_ct_tuplehash_to_ctrack(h);
1937 nf_ct_set(skb, ct, ctinfo);
1938
1939 nat_hook = rcu_dereference(nf_nat_hook);
1940 if (!nat_hook)
1941 return 0;
1942
1943 if (status & IPS_SRC_NAT &&
1944 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
1945 IP_CT_DIR_ORIGINAL) == NF_DROP)
1946 return -1;
1947
1948 if (status & IPS_DST_NAT &&
1949 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
1950 IP_CT_DIR_ORIGINAL) == NF_DROP)
1951 return -1;
1952
1953 return 0;
1954 }
1955
1956 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
1957 const struct sk_buff *skb)
1958 {
1959 const struct nf_conntrack_tuple *src_tuple;
1960 const struct nf_conntrack_tuple_hash *hash;
1961 struct nf_conntrack_tuple srctuple;
1962 enum ip_conntrack_info ctinfo;
1963 struct nf_conn *ct;
1964
1965 ct = nf_ct_get(skb, &ctinfo);
1966 if (ct) {
1967 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
1968 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1969 return true;
1970 }
1971
1972 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
1973 NFPROTO_IPV4, dev_net(skb->dev),
1974 &srctuple))
1975 return false;
1976
1977 hash = nf_conntrack_find_get(dev_net(skb->dev),
1978 &nf_ct_zone_dflt,
1979 &srctuple);
1980 if (!hash)
1981 return false;
1982
1983 ct = nf_ct_tuplehash_to_ctrack(hash);
1984 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
1985 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
1986 nf_ct_put(ct);
1987
1988 return true;
1989 }
1990
1991 /* Bring out ya dead! */
1992 static struct nf_conn *
1993 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
1994 void *data, unsigned int *bucket)
1995 {
1996 struct nf_conntrack_tuple_hash *h;
1997 struct nf_conn *ct;
1998 struct hlist_nulls_node *n;
1999 spinlock_t *lockp;
2000
2001 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2002 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2003 local_bh_disable();
2004 nf_conntrack_lock(lockp);
2005 if (*bucket < nf_conntrack_htable_size) {
2006 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnnode) {
2007 if (NF_CT_DIRECTION(h) != IP_CT_DIR_ORIGINAL)
2008 continue;
2009 ct = nf_ct_tuplehash_to_ctrack(h);
2010 if (iter(ct, data))
2011 goto found;
2012 }
2013 }
2014 spin_unlock(lockp);
2015 local_bh_enable();
2016 cond_resched();
2017 }
2018
2019 return NULL;
2020 found:
2021 atomic_inc(&ct->ct_general.use);
2022 spin_unlock(lockp);
2023 local_bh_enable();
2024 return ct;
2025 }
2026
2027 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2028 void *data, u32 portid, int report)
2029 {
2030 unsigned int bucket = 0, sequence;
2031 struct nf_conn *ct;
2032
2033 might_sleep();
2034
2035 for (;;) {
2036 sequence = read_seqcount_begin(&nf_conntrack_generation);
2037
2038 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2039 /* Time to push up daises... */
2040
2041 nf_ct_delete(ct, portid, report);
2042 nf_ct_put(ct);
2043 cond_resched();
2044 }
2045
2046 if (!read_seqcount_retry(&nf_conntrack_generation, sequence))
2047 break;
2048 bucket = 0;
2049 }
2050 }
2051
2052 struct iter_data {
2053 int (*iter)(struct nf_conn *i, void *data);
2054 void *data;
2055 struct net *net;
2056 };
2057
2058 static int iter_net_only(struct nf_conn *i, void *data)
2059 {
2060 struct iter_data *d = data;
2061
2062 if (!net_eq(d->net, nf_ct_net(i)))
2063 return 0;
2064
2065 return d->iter(i, d->data);
2066 }
2067
2068 static void
2069 __nf_ct_unconfirmed_destroy(struct net *net)
2070 {
2071 int cpu;
2072
2073 for_each_possible_cpu(cpu) {
2074 struct nf_conntrack_tuple_hash *h;
2075 struct hlist_nulls_node *n;
2076 struct ct_pcpu *pcpu;
2077
2078 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2079
2080 spin_lock_bh(&pcpu->lock);
2081 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2082 struct nf_conn *ct;
2083
2084 ct = nf_ct_tuplehash_to_ctrack(h);
2085
2086 /* we cannot call iter() on unconfirmed list, the
2087 * owning cpu can reallocate ct->ext at any time.
2088 */
2089 set_bit(IPS_DYING_BIT, &ct->status);
2090 }
2091 spin_unlock_bh(&pcpu->lock);
2092 cond_resched();
2093 }
2094 }
2095
2096 void nf_ct_unconfirmed_destroy(struct net *net)
2097 {
2098 might_sleep();
2099
2100 if (atomic_read(&net->ct.count) > 0) {
2101 __nf_ct_unconfirmed_destroy(net);
2102 nf_queue_nf_hook_drop(net);
2103 synchronize_net();
2104 }
2105 }
2106 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2107
2108 void nf_ct_iterate_cleanup_net(struct net *net,
2109 int (*iter)(struct nf_conn *i, void *data),
2110 void *data, u32 portid, int report)
2111 {
2112 struct iter_data d;
2113
2114 might_sleep();
2115
2116 if (atomic_read(&net->ct.count) == 0)
2117 return;
2118
2119 d.iter = iter;
2120 d.data = data;
2121 d.net = net;
2122
2123 nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2124 }
2125 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2126
2127 /**
2128 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2129 * @iter: callback to invoke for each conntrack
2130 * @data: data to pass to @iter
2131 *
2132 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2133 * unconfirmed list as dying (so they will not be inserted into
2134 * main table).
2135 *
2136 * Can only be called in module exit path.
2137 */
2138 void
2139 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2140 {
2141 struct net *net;
2142
2143 down_read(&net_rwsem);
2144 for_each_net(net) {
2145 if (atomic_read(&net->ct.count) == 0)
2146 continue;
2147 __nf_ct_unconfirmed_destroy(net);
2148 nf_queue_nf_hook_drop(net);
2149 }
2150 up_read(&net_rwsem);
2151
2152 /* Need to wait for netns cleanup worker to finish, if its
2153 * running -- it might have deleted a net namespace from
2154 * the global list, so our __nf_ct_unconfirmed_destroy() might
2155 * not have affected all namespaces.
2156 */
2157 net_ns_barrier();
2158
2159 /* a conntrack could have been unlinked from unconfirmed list
2160 * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2161 * This makes sure its inserted into conntrack table.
2162 */
2163 synchronize_net();
2164
2165 nf_ct_iterate_cleanup(iter, data, 0, 0);
2166 }
2167 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2168
2169 static int kill_all(struct nf_conn *i, void *data)
2170 {
2171 return net_eq(nf_ct_net(i), data);
2172 }
2173
2174 void nf_conntrack_cleanup_start(void)
2175 {
2176 conntrack_gc_work.exiting = true;
2177 RCU_INIT_POINTER(ip_ct_attach, NULL);
2178 }
2179
2180 void nf_conntrack_cleanup_end(void)
2181 {
2182 RCU_INIT_POINTER(nf_ct_hook, NULL);
2183 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2184 kvfree(nf_conntrack_hash);
2185
2186 nf_conntrack_proto_fini();
2187 nf_conntrack_seqadj_fini();
2188 nf_conntrack_labels_fini();
2189 nf_conntrack_helper_fini();
2190 nf_conntrack_timeout_fini();
2191 nf_conntrack_ecache_fini();
2192 nf_conntrack_tstamp_fini();
2193 nf_conntrack_acct_fini();
2194 nf_conntrack_expect_fini();
2195
2196 kmem_cache_destroy(nf_conntrack_cachep);
2197 }
2198
2199 /*
2200 * Mishearing the voices in his head, our hero wonders how he's
2201 * supposed to kill the mall.
2202 */
2203 void nf_conntrack_cleanup_net(struct net *net)
2204 {
2205 LIST_HEAD(single);
2206
2207 list_add(&net->exit_list, &single);
2208 nf_conntrack_cleanup_net_list(&single);
2209 }
2210
2211 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2212 {
2213 int busy;
2214 struct net *net;
2215
2216 /*
2217 * This makes sure all current packets have passed through
2218 * netfilter framework. Roll on, two-stage module
2219 * delete...
2220 */
2221 synchronize_net();
2222 i_see_dead_people:
2223 busy = 0;
2224 list_for_each_entry(net, net_exit_list, exit_list) {
2225 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2226 if (atomic_read(&net->ct.count) != 0)
2227 busy = 1;
2228 }
2229 if (busy) {
2230 schedule();
2231 goto i_see_dead_people;
2232 }
2233
2234 list_for_each_entry(net, net_exit_list, exit_list) {
2235 nf_conntrack_proto_pernet_fini(net);
2236 nf_conntrack_ecache_pernet_fini(net);
2237 nf_conntrack_expect_pernet_fini(net);
2238 free_percpu(net->ct.stat);
2239 free_percpu(net->ct.pcpu_lists);
2240 }
2241 }
2242
2243 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2244 {
2245 struct hlist_nulls_head *hash;
2246 unsigned int nr_slots, i;
2247
2248 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2249 return NULL;
2250
2251 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2252 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2253
2254 hash = kvmalloc_array(nr_slots, sizeof(struct hlist_nulls_head),
2255 GFP_KERNEL | __GFP_ZERO);
2256
2257 if (hash && nulls)
2258 for (i = 0; i < nr_slots; i++)
2259 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2260
2261 return hash;
2262 }
2263 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2264
2265 int nf_conntrack_hash_resize(unsigned int hashsize)
2266 {
2267 int i, bucket;
2268 unsigned int old_size;
2269 struct hlist_nulls_head *hash, *old_hash;
2270 struct nf_conntrack_tuple_hash *h;
2271 struct nf_conn *ct;
2272
2273 if (!hashsize)
2274 return -EINVAL;
2275
2276 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2277 if (!hash)
2278 return -ENOMEM;
2279
2280 old_size = nf_conntrack_htable_size;
2281 if (old_size == hashsize) {
2282 kvfree(hash);
2283 return 0;
2284 }
2285
2286 local_bh_disable();
2287 nf_conntrack_all_lock();
2288 write_seqcount_begin(&nf_conntrack_generation);
2289
2290 /* Lookups in the old hash might happen in parallel, which means we
2291 * might get false negatives during connection lookup. New connections
2292 * created because of a false negative won't make it into the hash
2293 * though since that required taking the locks.
2294 */
2295
2296 for (i = 0; i < nf_conntrack_htable_size; i++) {
2297 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2298 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2299 struct nf_conntrack_tuple_hash, hnnode);
2300 ct = nf_ct_tuplehash_to_ctrack(h);
2301 hlist_nulls_del_rcu(&h->hnnode);
2302 bucket = __hash_conntrack(nf_ct_net(ct),
2303 &h->tuple, hashsize);
2304 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2305 }
2306 }
2307 old_size = nf_conntrack_htable_size;
2308 old_hash = nf_conntrack_hash;
2309
2310 nf_conntrack_hash = hash;
2311 nf_conntrack_htable_size = hashsize;
2312
2313 write_seqcount_end(&nf_conntrack_generation);
2314 nf_conntrack_all_unlock();
2315 local_bh_enable();
2316
2317 synchronize_net();
2318 kvfree(old_hash);
2319 return 0;
2320 }
2321
2322 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2323 {
2324 unsigned int hashsize;
2325 int rc;
2326
2327 if (current->nsproxy->net_ns != &init_net)
2328 return -EOPNOTSUPP;
2329
2330 /* On boot, we can set this without any fancy locking. */
2331 if (!nf_conntrack_hash)
2332 return param_set_uint(val, kp);
2333
2334 rc = kstrtouint(val, 0, &hashsize);
2335 if (rc)
2336 return rc;
2337
2338 return nf_conntrack_hash_resize(hashsize);
2339 }
2340 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
2341
2342 static __always_inline unsigned int total_extension_size(void)
2343 {
2344 /* remember to add new extensions below */
2345 BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2346
2347 return sizeof(struct nf_ct_ext) +
2348 sizeof(struct nf_conn_help)
2349 #if IS_ENABLED(CONFIG_NF_NAT)
2350 + sizeof(struct nf_conn_nat)
2351 #endif
2352 + sizeof(struct nf_conn_seqadj)
2353 + sizeof(struct nf_conn_acct)
2354 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2355 + sizeof(struct nf_conntrack_ecache)
2356 #endif
2357 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2358 + sizeof(struct nf_conn_tstamp)
2359 #endif
2360 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2361 + sizeof(struct nf_conn_timeout)
2362 #endif
2363 #ifdef CONFIG_NF_CONNTRACK_LABELS
2364 + sizeof(struct nf_conn_labels)
2365 #endif
2366 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2367 + sizeof(struct nf_conn_synproxy)
2368 #endif
2369 ;
2370 };
2371
2372 int nf_conntrack_init_start(void)
2373 {
2374 unsigned long nr_pages = totalram_pages();
2375 int max_factor = 8;
2376 int ret = -ENOMEM;
2377 int i;
2378
2379 /* struct nf_ct_ext uses u8 to store offsets/size */
2380 BUILD_BUG_ON(total_extension_size() > 255u);
2381
2382 seqcount_init(&nf_conntrack_generation);
2383
2384 for (i = 0; i < CONNTRACK_LOCKS; i++)
2385 spin_lock_init(&nf_conntrack_locks[i]);
2386
2387 if (!nf_conntrack_htable_size) {
2388 /* Idea from tcp.c: use 1/16384 of memory.
2389 * On i386: 32MB machine has 512 buckets.
2390 * >= 1GB machines have 16384 buckets.
2391 * >= 4GB machines have 65536 buckets.
2392 */
2393 nf_conntrack_htable_size
2394 = (((nr_pages << PAGE_SHIFT) / 16384)
2395 / sizeof(struct hlist_head));
2396 if (nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2397 nf_conntrack_htable_size = 65536;
2398 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2399 nf_conntrack_htable_size = 16384;
2400 if (nf_conntrack_htable_size < 32)
2401 nf_conntrack_htable_size = 32;
2402
2403 /* Use a max. factor of four by default to get the same max as
2404 * with the old struct list_heads. When a table size is given
2405 * we use the old value of 8 to avoid reducing the max.
2406 * entries. */
2407 max_factor = 4;
2408 }
2409
2410 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2411 if (!nf_conntrack_hash)
2412 return -ENOMEM;
2413
2414 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2415
2416 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2417 sizeof(struct nf_conn),
2418 NFCT_INFOMASK + 1,
2419 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2420 if (!nf_conntrack_cachep)
2421 goto err_cachep;
2422
2423 ret = nf_conntrack_expect_init();
2424 if (ret < 0)
2425 goto err_expect;
2426
2427 ret = nf_conntrack_acct_init();
2428 if (ret < 0)
2429 goto err_acct;
2430
2431 ret = nf_conntrack_tstamp_init();
2432 if (ret < 0)
2433 goto err_tstamp;
2434
2435 ret = nf_conntrack_ecache_init();
2436 if (ret < 0)
2437 goto err_ecache;
2438
2439 ret = nf_conntrack_timeout_init();
2440 if (ret < 0)
2441 goto err_timeout;
2442
2443 ret = nf_conntrack_helper_init();
2444 if (ret < 0)
2445 goto err_helper;
2446
2447 ret = nf_conntrack_labels_init();
2448 if (ret < 0)
2449 goto err_labels;
2450
2451 ret = nf_conntrack_seqadj_init();
2452 if (ret < 0)
2453 goto err_seqadj;
2454
2455 ret = nf_conntrack_proto_init();
2456 if (ret < 0)
2457 goto err_proto;
2458
2459 conntrack_gc_work_init(&conntrack_gc_work);
2460 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2461
2462 return 0;
2463
2464 err_proto:
2465 nf_conntrack_seqadj_fini();
2466 err_seqadj:
2467 nf_conntrack_labels_fini();
2468 err_labels:
2469 nf_conntrack_helper_fini();
2470 err_helper:
2471 nf_conntrack_timeout_fini();
2472 err_timeout:
2473 nf_conntrack_ecache_fini();
2474 err_ecache:
2475 nf_conntrack_tstamp_fini();
2476 err_tstamp:
2477 nf_conntrack_acct_fini();
2478 err_acct:
2479 nf_conntrack_expect_fini();
2480 err_expect:
2481 kmem_cache_destroy(nf_conntrack_cachep);
2482 err_cachep:
2483 kvfree(nf_conntrack_hash);
2484 return ret;
2485 }
2486
2487 static struct nf_ct_hook nf_conntrack_hook = {
2488 .update = nf_conntrack_update,
2489 .destroy = destroy_conntrack,
2490 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2491 };
2492
2493 void nf_conntrack_init_end(void)
2494 {
2495 /* For use by REJECT target */
2496 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2497 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2498 }
2499
2500 /*
2501 * We need to use special "null" values, not used in hash table
2502 */
2503 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2504 #define DYING_NULLS_VAL ((1<<30)+1)
2505 #define TEMPLATE_NULLS_VAL ((1<<30)+2)
2506
2507 int nf_conntrack_init_net(struct net *net)
2508 {
2509 int ret = -ENOMEM;
2510 int cpu;
2511
2512 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2513 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2514 atomic_set(&net->ct.count, 0);
2515
2516 net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2517 if (!net->ct.pcpu_lists)
2518 goto err_stat;
2519
2520 for_each_possible_cpu(cpu) {
2521 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2522
2523 spin_lock_init(&pcpu->lock);
2524 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2525 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2526 }
2527
2528 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2529 if (!net->ct.stat)
2530 goto err_pcpu_lists;
2531
2532 ret = nf_conntrack_expect_pernet_init(net);
2533 if (ret < 0)
2534 goto err_expect;
2535
2536 nf_conntrack_acct_pernet_init(net);
2537 nf_conntrack_tstamp_pernet_init(net);
2538 nf_conntrack_ecache_pernet_init(net);
2539 nf_conntrack_helper_pernet_init(net);
2540 nf_conntrack_proto_pernet_init(net);
2541
2542 return 0;
2543
2544 err_expect:
2545 free_percpu(net->ct.stat);
2546 err_pcpu_lists:
2547 free_percpu(net->ct.pcpu_lists);
2548 err_stat:
2549 return ret;
2550 }