]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/nf_conntrack_core.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-artful-kernel.git] / net / netfilter / nf_conntrack_core.c
1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/skbuff.h>
18 #include <linux/proc_fs.h>
19 #include <linux/vmalloc.h>
20 #include <linux/stddef.h>
21 #include <linux/slab.h>
22 #include <linux/random.h>
23 #include <linux/jhash.h>
24 #include <linux/err.h>
25 #include <linux/percpu.h>
26 #include <linux/moduleparam.h>
27 #include <linux/notifier.h>
28 #include <linux/kernel.h>
29 #include <linux/netdevice.h>
30 #include <linux/socket.h>
31 #include <linux/mm.h>
32
33 #include <net/netfilter/nf_conntrack.h>
34 #include <net/netfilter/nf_conntrack_l3proto.h>
35 #include <net/netfilter/nf_conntrack_l4proto.h>
36 #include <net/netfilter/nf_conntrack_expect.h>
37 #include <net/netfilter/nf_conntrack_helper.h>
38 #include <net/netfilter/nf_conntrack_core.h>
39 #include <net/netfilter/nf_conntrack_extend.h>
40 #include <net/netfilter/nf_conntrack_acct.h>
41
42 #define NF_CONNTRACK_VERSION "0.5.0"
43
44 DEFINE_SPINLOCK(nf_conntrack_lock);
45 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
46
47 /* nf_conntrack_standalone needs this */
48 atomic_t nf_conntrack_count = ATOMIC_INIT(0);
49 EXPORT_SYMBOL_GPL(nf_conntrack_count);
50
51 unsigned int nf_conntrack_htable_size __read_mostly;
52 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
53
54 int nf_conntrack_max __read_mostly;
55 EXPORT_SYMBOL_GPL(nf_conntrack_max);
56
57 struct hlist_head *nf_conntrack_hash __read_mostly;
58 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
59
60 struct nf_conn nf_conntrack_untracked __read_mostly;
61 EXPORT_SYMBOL_GPL(nf_conntrack_untracked);
62
63 unsigned int nf_ct_log_invalid __read_mostly;
64 HLIST_HEAD(unconfirmed);
65 static int nf_conntrack_vmalloc __read_mostly;
66 static struct kmem_cache *nf_conntrack_cachep __read_mostly;
67
68 DEFINE_PER_CPU(struct ip_conntrack_stat, nf_conntrack_stat);
69 EXPORT_PER_CPU_SYMBOL(nf_conntrack_stat);
70
71 static int nf_conntrack_hash_rnd_initted;
72 static unsigned int nf_conntrack_hash_rnd;
73
74 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
75 unsigned int size, unsigned int rnd)
76 {
77 unsigned int n;
78 u_int32_t h;
79
80 /* The direction must be ignored, so we hash everything up to the
81 * destination ports (which is a multiple of 4) and treat the last
82 * three bytes manually.
83 */
84 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
85 h = jhash2((u32 *)tuple, n,
86 rnd ^ (((__force __u16)tuple->dst.u.all << 16) |
87 tuple->dst.protonum));
88
89 return ((u64)h * size) >> 32;
90 }
91
92 static inline u_int32_t hash_conntrack(const struct nf_conntrack_tuple *tuple)
93 {
94 return __hash_conntrack(tuple, nf_conntrack_htable_size,
95 nf_conntrack_hash_rnd);
96 }
97
98 bool
99 nf_ct_get_tuple(const struct sk_buff *skb,
100 unsigned int nhoff,
101 unsigned int dataoff,
102 u_int16_t l3num,
103 u_int8_t protonum,
104 struct nf_conntrack_tuple *tuple,
105 const struct nf_conntrack_l3proto *l3proto,
106 const struct nf_conntrack_l4proto *l4proto)
107 {
108 memset(tuple, 0, sizeof(*tuple));
109
110 tuple->src.l3num = l3num;
111 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
112 return false;
113
114 tuple->dst.protonum = protonum;
115 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
116
117 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
118 }
119 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
120
121 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
122 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
123 {
124 struct nf_conntrack_l3proto *l3proto;
125 struct nf_conntrack_l4proto *l4proto;
126 unsigned int protoff;
127 u_int8_t protonum;
128 int ret;
129
130 rcu_read_lock();
131
132 l3proto = __nf_ct_l3proto_find(l3num);
133 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
134 if (ret != NF_ACCEPT) {
135 rcu_read_unlock();
136 return false;
137 }
138
139 l4proto = __nf_ct_l4proto_find(l3num, protonum);
140
141 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
142 l3proto, l4proto);
143
144 rcu_read_unlock();
145 return ret;
146 }
147 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
148
149 bool
150 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
151 const struct nf_conntrack_tuple *orig,
152 const struct nf_conntrack_l3proto *l3proto,
153 const struct nf_conntrack_l4proto *l4proto)
154 {
155 memset(inverse, 0, sizeof(*inverse));
156
157 inverse->src.l3num = orig->src.l3num;
158 if (l3proto->invert_tuple(inverse, orig) == 0)
159 return false;
160
161 inverse->dst.dir = !orig->dst.dir;
162
163 inverse->dst.protonum = orig->dst.protonum;
164 return l4proto->invert_tuple(inverse, orig);
165 }
166 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
167
168 static void
169 clean_from_lists(struct nf_conn *ct)
170 {
171 pr_debug("clean_from_lists(%p)\n", ct);
172 hlist_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode);
173 hlist_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnode);
174
175 /* Destroy all pending expectations */
176 nf_ct_remove_expectations(ct);
177 }
178
179 static void
180 destroy_conntrack(struct nf_conntrack *nfct)
181 {
182 struct nf_conn *ct = (struct nf_conn *)nfct;
183 struct nf_conntrack_l4proto *l4proto;
184
185 pr_debug("destroy_conntrack(%p)\n", ct);
186 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
187 NF_CT_ASSERT(!timer_pending(&ct->timeout));
188
189 nf_conntrack_event(IPCT_DESTROY, ct);
190 set_bit(IPS_DYING_BIT, &ct->status);
191
192 /* To make sure we don't get any weird locking issues here:
193 * destroy_conntrack() MUST NOT be called with a write lock
194 * to nf_conntrack_lock!!! -HW */
195 rcu_read_lock();
196 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
197 if (l4proto && l4proto->destroy)
198 l4proto->destroy(ct);
199
200 rcu_read_unlock();
201
202 spin_lock_bh(&nf_conntrack_lock);
203 /* Expectations will have been removed in clean_from_lists,
204 * except TFTP can create an expectation on the first packet,
205 * before connection is in the list, so we need to clean here,
206 * too. */
207 nf_ct_remove_expectations(ct);
208
209 /* We overload first tuple to link into unconfirmed list. */
210 if (!nf_ct_is_confirmed(ct)) {
211 BUG_ON(hlist_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode));
212 hlist_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode);
213 }
214
215 NF_CT_STAT_INC(delete);
216 spin_unlock_bh(&nf_conntrack_lock);
217
218 if (ct->master)
219 nf_ct_put(ct->master);
220
221 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
222 nf_conntrack_free(ct);
223 }
224
225 static void death_by_timeout(unsigned long ul_conntrack)
226 {
227 struct nf_conn *ct = (void *)ul_conntrack;
228 struct nf_conn_help *help = nfct_help(ct);
229 struct nf_conntrack_helper *helper;
230
231 if (help) {
232 rcu_read_lock();
233 helper = rcu_dereference(help->helper);
234 if (helper && helper->destroy)
235 helper->destroy(ct);
236 rcu_read_unlock();
237 }
238
239 spin_lock_bh(&nf_conntrack_lock);
240 /* Inside lock so preempt is disabled on module removal path.
241 * Otherwise we can get spurious warnings. */
242 NF_CT_STAT_INC(delete_list);
243 clean_from_lists(ct);
244 spin_unlock_bh(&nf_conntrack_lock);
245 nf_ct_put(ct);
246 }
247
248 struct nf_conntrack_tuple_hash *
249 __nf_conntrack_find(const struct nf_conntrack_tuple *tuple)
250 {
251 struct nf_conntrack_tuple_hash *h;
252 struct hlist_node *n;
253 unsigned int hash = hash_conntrack(tuple);
254
255 /* Disable BHs the entire time since we normally need to disable them
256 * at least once for the stats anyway.
257 */
258 local_bh_disable();
259 hlist_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash], hnode) {
260 if (nf_ct_tuple_equal(tuple, &h->tuple)) {
261 NF_CT_STAT_INC(found);
262 local_bh_enable();
263 return h;
264 }
265 NF_CT_STAT_INC(searched);
266 }
267 local_bh_enable();
268
269 return NULL;
270 }
271 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
272
273 /* Find a connection corresponding to a tuple. */
274 struct nf_conntrack_tuple_hash *
275 nf_conntrack_find_get(const struct nf_conntrack_tuple *tuple)
276 {
277 struct nf_conntrack_tuple_hash *h;
278 struct nf_conn *ct;
279
280 rcu_read_lock();
281 h = __nf_conntrack_find(tuple);
282 if (h) {
283 ct = nf_ct_tuplehash_to_ctrack(h);
284 if (unlikely(!atomic_inc_not_zero(&ct->ct_general.use)))
285 h = NULL;
286 }
287 rcu_read_unlock();
288
289 return h;
290 }
291 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
292
293 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
294 unsigned int hash,
295 unsigned int repl_hash)
296 {
297 hlist_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode,
298 &nf_conntrack_hash[hash]);
299 hlist_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnode,
300 &nf_conntrack_hash[repl_hash]);
301 }
302
303 void nf_conntrack_hash_insert(struct nf_conn *ct)
304 {
305 unsigned int hash, repl_hash;
306
307 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
308 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
309
310 spin_lock_bh(&nf_conntrack_lock);
311 __nf_conntrack_hash_insert(ct, hash, repl_hash);
312 spin_unlock_bh(&nf_conntrack_lock);
313 }
314 EXPORT_SYMBOL_GPL(nf_conntrack_hash_insert);
315
316 /* Confirm a connection given skb; places it in hash table */
317 int
318 __nf_conntrack_confirm(struct sk_buff *skb)
319 {
320 unsigned int hash, repl_hash;
321 struct nf_conntrack_tuple_hash *h;
322 struct nf_conn *ct;
323 struct nf_conn_help *help;
324 struct hlist_node *n;
325 enum ip_conntrack_info ctinfo;
326
327 ct = nf_ct_get(skb, &ctinfo);
328
329 /* ipt_REJECT uses nf_conntrack_attach to attach related
330 ICMP/TCP RST packets in other direction. Actual packet
331 which created connection will be IP_CT_NEW or for an
332 expected connection, IP_CT_RELATED. */
333 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
334 return NF_ACCEPT;
335
336 hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
337 repl_hash = hash_conntrack(&ct->tuplehash[IP_CT_DIR_REPLY].tuple);
338
339 /* We're not in hash table, and we refuse to set up related
340 connections for unconfirmed conns. But packet copies and
341 REJECT will give spurious warnings here. */
342 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
343
344 /* No external references means noone else could have
345 confirmed us. */
346 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
347 pr_debug("Confirming conntrack %p\n", ct);
348
349 spin_lock_bh(&nf_conntrack_lock);
350
351 /* See if there's one in the list already, including reverse:
352 NAT could have grabbed it without realizing, since we're
353 not in the hash. If there is, we lost race. */
354 hlist_for_each_entry(h, n, &nf_conntrack_hash[hash], hnode)
355 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
356 &h->tuple))
357 goto out;
358 hlist_for_each_entry(h, n, &nf_conntrack_hash[repl_hash], hnode)
359 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
360 &h->tuple))
361 goto out;
362
363 /* Remove from unconfirmed list */
364 hlist_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode);
365
366 __nf_conntrack_hash_insert(ct, hash, repl_hash);
367 /* Timer relative to confirmation time, not original
368 setting time, otherwise we'd get timer wrap in
369 weird delay cases. */
370 ct->timeout.expires += jiffies;
371 add_timer(&ct->timeout);
372 atomic_inc(&ct->ct_general.use);
373 set_bit(IPS_CONFIRMED_BIT, &ct->status);
374 NF_CT_STAT_INC(insert);
375 spin_unlock_bh(&nf_conntrack_lock);
376 help = nfct_help(ct);
377 if (help && help->helper)
378 nf_conntrack_event_cache(IPCT_HELPER, skb);
379 #ifdef CONFIG_NF_NAT_NEEDED
380 if (test_bit(IPS_SRC_NAT_DONE_BIT, &ct->status) ||
381 test_bit(IPS_DST_NAT_DONE_BIT, &ct->status))
382 nf_conntrack_event_cache(IPCT_NATINFO, skb);
383 #endif
384 nf_conntrack_event_cache(master_ct(ct) ?
385 IPCT_RELATED : IPCT_NEW, skb);
386 return NF_ACCEPT;
387
388 out:
389 NF_CT_STAT_INC(insert_failed);
390 spin_unlock_bh(&nf_conntrack_lock);
391 return NF_DROP;
392 }
393 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
394
395 /* Returns true if a connection correspondings to the tuple (required
396 for NAT). */
397 int
398 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
399 const struct nf_conn *ignored_conntrack)
400 {
401 struct nf_conntrack_tuple_hash *h;
402 struct hlist_node *n;
403 unsigned int hash = hash_conntrack(tuple);
404
405 /* Disable BHs the entire time since we need to disable them at
406 * least once for the stats anyway.
407 */
408 rcu_read_lock_bh();
409 hlist_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash], hnode) {
410 if (nf_ct_tuplehash_to_ctrack(h) != ignored_conntrack &&
411 nf_ct_tuple_equal(tuple, &h->tuple)) {
412 NF_CT_STAT_INC(found);
413 rcu_read_unlock_bh();
414 return 1;
415 }
416 NF_CT_STAT_INC(searched);
417 }
418 rcu_read_unlock_bh();
419
420 return 0;
421 }
422 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
423
424 #define NF_CT_EVICTION_RANGE 8
425
426 /* There's a small race here where we may free a just-assured
427 connection. Too bad: we're in trouble anyway. */
428 static noinline int early_drop(unsigned int hash)
429 {
430 /* Use oldest entry, which is roughly LRU */
431 struct nf_conntrack_tuple_hash *h;
432 struct nf_conn *ct = NULL, *tmp;
433 struct hlist_node *n;
434 unsigned int i, cnt = 0;
435 int dropped = 0;
436
437 rcu_read_lock();
438 for (i = 0; i < nf_conntrack_htable_size; i++) {
439 hlist_for_each_entry_rcu(h, n, &nf_conntrack_hash[hash],
440 hnode) {
441 tmp = nf_ct_tuplehash_to_ctrack(h);
442 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
443 ct = tmp;
444 cnt++;
445 }
446
447 if (ct && unlikely(!atomic_inc_not_zero(&ct->ct_general.use)))
448 ct = NULL;
449 if (ct || cnt >= NF_CT_EVICTION_RANGE)
450 break;
451 hash = (hash + 1) % nf_conntrack_htable_size;
452 }
453 rcu_read_unlock();
454
455 if (!ct)
456 return dropped;
457
458 if (del_timer(&ct->timeout)) {
459 death_by_timeout((unsigned long)ct);
460 dropped = 1;
461 NF_CT_STAT_INC_ATOMIC(early_drop);
462 }
463 nf_ct_put(ct);
464 return dropped;
465 }
466
467 struct nf_conn *nf_conntrack_alloc(const struct nf_conntrack_tuple *orig,
468 const struct nf_conntrack_tuple *repl,
469 gfp_t gfp)
470 {
471 struct nf_conn *ct = NULL;
472
473 if (unlikely(!nf_conntrack_hash_rnd_initted)) {
474 get_random_bytes(&nf_conntrack_hash_rnd, 4);
475 nf_conntrack_hash_rnd_initted = 1;
476 }
477
478 /* We don't want any race condition at early drop stage */
479 atomic_inc(&nf_conntrack_count);
480
481 if (nf_conntrack_max &&
482 unlikely(atomic_read(&nf_conntrack_count) > nf_conntrack_max)) {
483 unsigned int hash = hash_conntrack(orig);
484 if (!early_drop(hash)) {
485 atomic_dec(&nf_conntrack_count);
486 if (net_ratelimit())
487 printk(KERN_WARNING
488 "nf_conntrack: table full, dropping"
489 " packet.\n");
490 return ERR_PTR(-ENOMEM);
491 }
492 }
493
494 ct = kmem_cache_zalloc(nf_conntrack_cachep, gfp);
495 if (ct == NULL) {
496 pr_debug("nf_conntrack_alloc: Can't alloc conntrack.\n");
497 atomic_dec(&nf_conntrack_count);
498 return ERR_PTR(-ENOMEM);
499 }
500
501 atomic_set(&ct->ct_general.use, 1);
502 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
503 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
504 /* Don't set timer yet: wait for confirmation */
505 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
506 INIT_RCU_HEAD(&ct->rcu);
507
508 return ct;
509 }
510 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
511
512 static void nf_conntrack_free_rcu(struct rcu_head *head)
513 {
514 struct nf_conn *ct = container_of(head, struct nf_conn, rcu);
515
516 nf_ct_ext_free(ct);
517 kmem_cache_free(nf_conntrack_cachep, ct);
518 atomic_dec(&nf_conntrack_count);
519 }
520
521 void nf_conntrack_free(struct nf_conn *ct)
522 {
523 nf_ct_ext_destroy(ct);
524 call_rcu(&ct->rcu, nf_conntrack_free_rcu);
525 }
526 EXPORT_SYMBOL_GPL(nf_conntrack_free);
527
528 /* Allocate a new conntrack: we return -ENOMEM if classification
529 failed due to stress. Otherwise it really is unclassifiable. */
530 static struct nf_conntrack_tuple_hash *
531 init_conntrack(const struct nf_conntrack_tuple *tuple,
532 struct nf_conntrack_l3proto *l3proto,
533 struct nf_conntrack_l4proto *l4proto,
534 struct sk_buff *skb,
535 unsigned int dataoff)
536 {
537 struct nf_conn *ct;
538 struct nf_conn_help *help;
539 struct nf_conntrack_tuple repl_tuple;
540 struct nf_conntrack_expect *exp;
541
542 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
543 pr_debug("Can't invert tuple.\n");
544 return NULL;
545 }
546
547 ct = nf_conntrack_alloc(tuple, &repl_tuple, GFP_ATOMIC);
548 if (ct == NULL || IS_ERR(ct)) {
549 pr_debug("Can't allocate conntrack.\n");
550 return (struct nf_conntrack_tuple_hash *)ct;
551 }
552
553 if (!l4proto->new(ct, skb, dataoff)) {
554 nf_conntrack_free(ct);
555 pr_debug("init conntrack: can't track with proto module\n");
556 return NULL;
557 }
558
559 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
560
561 spin_lock_bh(&nf_conntrack_lock);
562 exp = nf_ct_find_expectation(tuple);
563 if (exp) {
564 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
565 ct, exp);
566 /* Welcome, Mr. Bond. We've been expecting you... */
567 __set_bit(IPS_EXPECTED_BIT, &ct->status);
568 ct->master = exp->master;
569 if (exp->helper) {
570 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
571 if (help)
572 rcu_assign_pointer(help->helper, exp->helper);
573 }
574
575 #ifdef CONFIG_NF_CONNTRACK_MARK
576 ct->mark = exp->master->mark;
577 #endif
578 #ifdef CONFIG_NF_CONNTRACK_SECMARK
579 ct->secmark = exp->master->secmark;
580 #endif
581 nf_conntrack_get(&ct->master->ct_general);
582 NF_CT_STAT_INC(expect_new);
583 } else {
584 struct nf_conntrack_helper *helper;
585
586 helper = __nf_ct_helper_find(&repl_tuple);
587 if (helper) {
588 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
589 if (help)
590 rcu_assign_pointer(help->helper, helper);
591 }
592 NF_CT_STAT_INC(new);
593 }
594
595 /* Overload tuple linked list to put us in unconfirmed list. */
596 hlist_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnode, &unconfirmed);
597
598 spin_unlock_bh(&nf_conntrack_lock);
599
600 if (exp) {
601 if (exp->expectfn)
602 exp->expectfn(ct, exp);
603 nf_ct_expect_put(exp);
604 }
605
606 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
607 }
608
609 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
610 static inline struct nf_conn *
611 resolve_normal_ct(struct sk_buff *skb,
612 unsigned int dataoff,
613 u_int16_t l3num,
614 u_int8_t protonum,
615 struct nf_conntrack_l3proto *l3proto,
616 struct nf_conntrack_l4proto *l4proto,
617 int *set_reply,
618 enum ip_conntrack_info *ctinfo)
619 {
620 struct nf_conntrack_tuple tuple;
621 struct nf_conntrack_tuple_hash *h;
622 struct nf_conn *ct;
623
624 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
625 dataoff, l3num, protonum, &tuple, l3proto,
626 l4proto)) {
627 pr_debug("resolve_normal_ct: Can't get tuple\n");
628 return NULL;
629 }
630
631 /* look for tuple match */
632 h = nf_conntrack_find_get(&tuple);
633 if (!h) {
634 h = init_conntrack(&tuple, l3proto, l4proto, skb, dataoff);
635 if (!h)
636 return NULL;
637 if (IS_ERR(h))
638 return (void *)h;
639 }
640 ct = nf_ct_tuplehash_to_ctrack(h);
641
642 /* It exists; we have (non-exclusive) reference. */
643 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
644 *ctinfo = IP_CT_ESTABLISHED + IP_CT_IS_REPLY;
645 /* Please set reply bit if this packet OK */
646 *set_reply = 1;
647 } else {
648 /* Once we've had two way comms, always ESTABLISHED. */
649 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
650 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
651 *ctinfo = IP_CT_ESTABLISHED;
652 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
653 pr_debug("nf_conntrack_in: related packet for %p\n",
654 ct);
655 *ctinfo = IP_CT_RELATED;
656 } else {
657 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
658 *ctinfo = IP_CT_NEW;
659 }
660 *set_reply = 0;
661 }
662 skb->nfct = &ct->ct_general;
663 skb->nfctinfo = *ctinfo;
664 return ct;
665 }
666
667 unsigned int
668 nf_conntrack_in(int pf, unsigned int hooknum, struct sk_buff *skb)
669 {
670 struct nf_conn *ct;
671 enum ip_conntrack_info ctinfo;
672 struct nf_conntrack_l3proto *l3proto;
673 struct nf_conntrack_l4proto *l4proto;
674 unsigned int dataoff;
675 u_int8_t protonum;
676 int set_reply = 0;
677 int ret;
678
679 /* Previously seen (loopback or untracked)? Ignore. */
680 if (skb->nfct) {
681 NF_CT_STAT_INC_ATOMIC(ignore);
682 return NF_ACCEPT;
683 }
684
685 /* rcu_read_lock()ed by nf_hook_slow */
686 l3proto = __nf_ct_l3proto_find((u_int16_t)pf);
687 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
688 &dataoff, &protonum);
689 if (ret <= 0) {
690 pr_debug("not prepared to track yet or error occured\n");
691 NF_CT_STAT_INC_ATOMIC(error);
692 NF_CT_STAT_INC_ATOMIC(invalid);
693 return -ret;
694 }
695
696 l4proto = __nf_ct_l4proto_find((u_int16_t)pf, protonum);
697
698 /* It may be an special packet, error, unclean...
699 * inverse of the return code tells to the netfilter
700 * core what to do with the packet. */
701 if (l4proto->error != NULL &&
702 (ret = l4proto->error(skb, dataoff, &ctinfo, pf, hooknum)) <= 0) {
703 NF_CT_STAT_INC_ATOMIC(error);
704 NF_CT_STAT_INC_ATOMIC(invalid);
705 return -ret;
706 }
707
708 ct = resolve_normal_ct(skb, dataoff, pf, protonum, l3proto, l4proto,
709 &set_reply, &ctinfo);
710 if (!ct) {
711 /* Not valid part of a connection */
712 NF_CT_STAT_INC_ATOMIC(invalid);
713 return NF_ACCEPT;
714 }
715
716 if (IS_ERR(ct)) {
717 /* Too stressed to deal. */
718 NF_CT_STAT_INC_ATOMIC(drop);
719 return NF_DROP;
720 }
721
722 NF_CT_ASSERT(skb->nfct);
723
724 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum);
725 if (ret < 0) {
726 /* Invalid: inverse of the return code tells
727 * the netfilter core what to do */
728 pr_debug("nf_conntrack_in: Can't track with proto module\n");
729 nf_conntrack_put(skb->nfct);
730 skb->nfct = NULL;
731 NF_CT_STAT_INC_ATOMIC(invalid);
732 return -ret;
733 }
734
735 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
736 nf_conntrack_event_cache(IPCT_STATUS, skb);
737
738 return ret;
739 }
740 EXPORT_SYMBOL_GPL(nf_conntrack_in);
741
742 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
743 const struct nf_conntrack_tuple *orig)
744 {
745 bool ret;
746
747 rcu_read_lock();
748 ret = nf_ct_invert_tuple(inverse, orig,
749 __nf_ct_l3proto_find(orig->src.l3num),
750 __nf_ct_l4proto_find(orig->src.l3num,
751 orig->dst.protonum));
752 rcu_read_unlock();
753 return ret;
754 }
755 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
756
757 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
758 implicitly racy: see __nf_conntrack_confirm */
759 void nf_conntrack_alter_reply(struct nf_conn *ct,
760 const struct nf_conntrack_tuple *newreply)
761 {
762 struct nf_conn_help *help = nfct_help(ct);
763 struct nf_conntrack_helper *helper;
764
765 /* Should be unconfirmed, so not in hash table yet */
766 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
767
768 pr_debug("Altering reply tuple of %p to ", ct);
769 nf_ct_dump_tuple(newreply);
770
771 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
772 if (ct->master || (help && !hlist_empty(&help->expectations)))
773 return;
774
775 rcu_read_lock();
776 helper = __nf_ct_helper_find(newreply);
777 if (helper == NULL) {
778 if (help)
779 rcu_assign_pointer(help->helper, NULL);
780 goto out;
781 }
782
783 if (help == NULL) {
784 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
785 if (help == NULL)
786 goto out;
787 } else {
788 memset(&help->help, 0, sizeof(help->help));
789 }
790
791 rcu_assign_pointer(help->helper, helper);
792 out:
793 rcu_read_unlock();
794 }
795 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
796
797 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
798 void __nf_ct_refresh_acct(struct nf_conn *ct,
799 enum ip_conntrack_info ctinfo,
800 const struct sk_buff *skb,
801 unsigned long extra_jiffies,
802 int do_acct)
803 {
804 int event = 0;
805
806 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
807 NF_CT_ASSERT(skb);
808
809 spin_lock_bh(&nf_conntrack_lock);
810
811 /* Only update if this is not a fixed timeout */
812 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
813 goto acct;
814
815 /* If not in hash table, timer will not be active yet */
816 if (!nf_ct_is_confirmed(ct)) {
817 ct->timeout.expires = extra_jiffies;
818 event = IPCT_REFRESH;
819 } else {
820 unsigned long newtime = jiffies + extra_jiffies;
821
822 /* Only update the timeout if the new timeout is at least
823 HZ jiffies from the old timeout. Need del_timer for race
824 avoidance (may already be dying). */
825 if (newtime - ct->timeout.expires >= HZ
826 && del_timer(&ct->timeout)) {
827 ct->timeout.expires = newtime;
828 add_timer(&ct->timeout);
829 event = IPCT_REFRESH;
830 }
831 }
832
833 acct:
834 if (do_acct) {
835 struct nf_conn_counter *acct;
836
837 acct = nf_conn_acct_find(ct);
838 if (acct) {
839 acct[CTINFO2DIR(ctinfo)].packets++;
840 acct[CTINFO2DIR(ctinfo)].bytes +=
841 skb->len - skb_network_offset(skb);
842 }
843 }
844
845 spin_unlock_bh(&nf_conntrack_lock);
846
847 /* must be unlocked when calling event cache */
848 if (event)
849 nf_conntrack_event_cache(event, skb);
850 }
851 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
852
853 bool __nf_ct_kill_acct(struct nf_conn *ct,
854 enum ip_conntrack_info ctinfo,
855 const struct sk_buff *skb,
856 int do_acct)
857 {
858 if (do_acct) {
859 struct nf_conn_counter *acct;
860
861 spin_lock_bh(&nf_conntrack_lock);
862 acct = nf_conn_acct_find(ct);
863 if (acct) {
864 acct[CTINFO2DIR(ctinfo)].packets++;
865 acct[CTINFO2DIR(ctinfo)].bytes +=
866 skb->len - skb_network_offset(skb);
867 }
868 spin_unlock_bh(&nf_conntrack_lock);
869 }
870
871 if (del_timer(&ct->timeout)) {
872 ct->timeout.function((unsigned long)ct);
873 return true;
874 }
875 return false;
876 }
877 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
878
879 #if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
880
881 #include <linux/netfilter/nfnetlink.h>
882 #include <linux/netfilter/nfnetlink_conntrack.h>
883 #include <linux/mutex.h>
884
885 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
886 * in ip_conntrack_core, since we don't want the protocols to autoload
887 * or depend on ctnetlink */
888 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
889 const struct nf_conntrack_tuple *tuple)
890 {
891 NLA_PUT_BE16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port);
892 NLA_PUT_BE16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port);
893 return 0;
894
895 nla_put_failure:
896 return -1;
897 }
898 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
899
900 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
901 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
902 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
903 };
904 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
905
906 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
907 struct nf_conntrack_tuple *t)
908 {
909 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
910 return -EINVAL;
911
912 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
913 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
914
915 return 0;
916 }
917 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
918 #endif
919
920 /* Used by ipt_REJECT and ip6t_REJECT. */
921 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
922 {
923 struct nf_conn *ct;
924 enum ip_conntrack_info ctinfo;
925
926 /* This ICMP is in reverse direction to the packet which caused it */
927 ct = nf_ct_get(skb, &ctinfo);
928 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
929 ctinfo = IP_CT_RELATED + IP_CT_IS_REPLY;
930 else
931 ctinfo = IP_CT_RELATED;
932
933 /* Attach to new skbuff, and increment count */
934 nskb->nfct = &ct->ct_general;
935 nskb->nfctinfo = ctinfo;
936 nf_conntrack_get(nskb->nfct);
937 }
938
939 /* Bring out ya dead! */
940 static struct nf_conn *
941 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
942 void *data, unsigned int *bucket)
943 {
944 struct nf_conntrack_tuple_hash *h;
945 struct nf_conn *ct;
946 struct hlist_node *n;
947
948 spin_lock_bh(&nf_conntrack_lock);
949 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
950 hlist_for_each_entry(h, n, &nf_conntrack_hash[*bucket], hnode) {
951 ct = nf_ct_tuplehash_to_ctrack(h);
952 if (iter(ct, data))
953 goto found;
954 }
955 }
956 hlist_for_each_entry(h, n, &unconfirmed, hnode) {
957 ct = nf_ct_tuplehash_to_ctrack(h);
958 if (iter(ct, data))
959 set_bit(IPS_DYING_BIT, &ct->status);
960 }
961 spin_unlock_bh(&nf_conntrack_lock);
962 return NULL;
963 found:
964 atomic_inc(&ct->ct_general.use);
965 spin_unlock_bh(&nf_conntrack_lock);
966 return ct;
967 }
968
969 void
970 nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data), void *data)
971 {
972 struct nf_conn *ct;
973 unsigned int bucket = 0;
974
975 while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
976 /* Time to push up daises... */
977 if (del_timer(&ct->timeout))
978 death_by_timeout((unsigned long)ct);
979 /* ... else the timer will get him soon. */
980
981 nf_ct_put(ct);
982 }
983 }
984 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
985
986 static int kill_all(struct nf_conn *i, void *data)
987 {
988 return 1;
989 }
990
991 void nf_ct_free_hashtable(struct hlist_head *hash, int vmalloced, unsigned int size)
992 {
993 if (vmalloced)
994 vfree(hash);
995 else
996 free_pages((unsigned long)hash,
997 get_order(sizeof(struct hlist_head) * size));
998 }
999 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1000
1001 void nf_conntrack_flush(void)
1002 {
1003 nf_ct_iterate_cleanup(kill_all, NULL);
1004 }
1005 EXPORT_SYMBOL_GPL(nf_conntrack_flush);
1006
1007 /* Mishearing the voices in his head, our hero wonders how he's
1008 supposed to kill the mall. */
1009 void nf_conntrack_cleanup(void)
1010 {
1011 rcu_assign_pointer(ip_ct_attach, NULL);
1012
1013 /* This makes sure all current packets have passed through
1014 netfilter framework. Roll on, two-stage module
1015 delete... */
1016 synchronize_net();
1017
1018 nf_ct_event_cache_flush();
1019 i_see_dead_people:
1020 nf_conntrack_flush();
1021 if (atomic_read(&nf_conntrack_count) != 0) {
1022 schedule();
1023 goto i_see_dead_people;
1024 }
1025 /* wait until all references to nf_conntrack_untracked are dropped */
1026 while (atomic_read(&nf_conntrack_untracked.ct_general.use) > 1)
1027 schedule();
1028
1029 rcu_assign_pointer(nf_ct_destroy, NULL);
1030
1031 kmem_cache_destroy(nf_conntrack_cachep);
1032 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_vmalloc,
1033 nf_conntrack_htable_size);
1034
1035 nf_conntrack_acct_fini();
1036 nf_conntrack_expect_fini();
1037 nf_conntrack_helper_fini();
1038 nf_conntrack_proto_fini();
1039 }
1040
1041 struct hlist_head *nf_ct_alloc_hashtable(unsigned int *sizep, int *vmalloced)
1042 {
1043 struct hlist_head *hash;
1044 unsigned int size, i;
1045
1046 *vmalloced = 0;
1047
1048 size = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_head));
1049 hash = (void*)__get_free_pages(GFP_KERNEL|__GFP_NOWARN,
1050 get_order(sizeof(struct hlist_head)
1051 * size));
1052 if (!hash) {
1053 *vmalloced = 1;
1054 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1055 hash = vmalloc(sizeof(struct hlist_head) * size);
1056 }
1057
1058 if (hash)
1059 for (i = 0; i < size; i++)
1060 INIT_HLIST_HEAD(&hash[i]);
1061
1062 return hash;
1063 }
1064 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1065
1066 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1067 {
1068 int i, bucket, vmalloced, old_vmalloced;
1069 unsigned int hashsize, old_size;
1070 int rnd;
1071 struct hlist_head *hash, *old_hash;
1072 struct nf_conntrack_tuple_hash *h;
1073
1074 /* On boot, we can set this without any fancy locking. */
1075 if (!nf_conntrack_htable_size)
1076 return param_set_uint(val, kp);
1077
1078 hashsize = simple_strtoul(val, NULL, 0);
1079 if (!hashsize)
1080 return -EINVAL;
1081
1082 hash = nf_ct_alloc_hashtable(&hashsize, &vmalloced);
1083 if (!hash)
1084 return -ENOMEM;
1085
1086 /* We have to rehahs for the new table anyway, so we also can
1087 * use a newrandom seed */
1088 get_random_bytes(&rnd, 4);
1089
1090 /* Lookups in the old hash might happen in parallel, which means we
1091 * might get false negatives during connection lookup. New connections
1092 * created because of a false negative won't make it into the hash
1093 * though since that required taking the lock.
1094 */
1095 spin_lock_bh(&nf_conntrack_lock);
1096 for (i = 0; i < nf_conntrack_htable_size; i++) {
1097 while (!hlist_empty(&nf_conntrack_hash[i])) {
1098 h = hlist_entry(nf_conntrack_hash[i].first,
1099 struct nf_conntrack_tuple_hash, hnode);
1100 hlist_del_rcu(&h->hnode);
1101 bucket = __hash_conntrack(&h->tuple, hashsize, rnd);
1102 hlist_add_head(&h->hnode, &hash[bucket]);
1103 }
1104 }
1105 old_size = nf_conntrack_htable_size;
1106 old_vmalloced = nf_conntrack_vmalloc;
1107 old_hash = nf_conntrack_hash;
1108
1109 nf_conntrack_htable_size = hashsize;
1110 nf_conntrack_vmalloc = vmalloced;
1111 nf_conntrack_hash = hash;
1112 nf_conntrack_hash_rnd = rnd;
1113 spin_unlock_bh(&nf_conntrack_lock);
1114
1115 nf_ct_free_hashtable(old_hash, old_vmalloced, old_size);
1116 return 0;
1117 }
1118 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1119
1120 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1121 &nf_conntrack_htable_size, 0600);
1122
1123 int __init nf_conntrack_init(void)
1124 {
1125 int max_factor = 8;
1126 int ret;
1127
1128 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1129 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1130 if (!nf_conntrack_htable_size) {
1131 nf_conntrack_htable_size
1132 = (((num_physpages << PAGE_SHIFT) / 16384)
1133 / sizeof(struct hlist_head));
1134 if (num_physpages > (1024 * 1024 * 1024 / PAGE_SIZE))
1135 nf_conntrack_htable_size = 16384;
1136 if (nf_conntrack_htable_size < 32)
1137 nf_conntrack_htable_size = 32;
1138
1139 /* Use a max. factor of four by default to get the same max as
1140 * with the old struct list_heads. When a table size is given
1141 * we use the old value of 8 to avoid reducing the max.
1142 * entries. */
1143 max_factor = 4;
1144 }
1145 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size,
1146 &nf_conntrack_vmalloc);
1147 if (!nf_conntrack_hash) {
1148 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1149 goto err_out;
1150 }
1151
1152 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1153
1154 printk("nf_conntrack version %s (%u buckets, %d max)\n",
1155 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1156 nf_conntrack_max);
1157
1158 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
1159 sizeof(struct nf_conn),
1160 0, 0, NULL);
1161 if (!nf_conntrack_cachep) {
1162 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1163 goto err_free_hash;
1164 }
1165
1166 ret = nf_conntrack_proto_init();
1167 if (ret < 0)
1168 goto err_free_conntrack_slab;
1169
1170 ret = nf_conntrack_expect_init();
1171 if (ret < 0)
1172 goto out_fini_proto;
1173
1174 ret = nf_conntrack_helper_init();
1175 if (ret < 0)
1176 goto out_fini_expect;
1177
1178 ret = nf_conntrack_acct_init();
1179 if (ret < 0)
1180 goto out_fini_helper;
1181
1182 /* For use by REJECT target */
1183 rcu_assign_pointer(ip_ct_attach, nf_conntrack_attach);
1184 rcu_assign_pointer(nf_ct_destroy, destroy_conntrack);
1185
1186 /* Set up fake conntrack:
1187 - to never be deleted, not in any hashes */
1188 atomic_set(&nf_conntrack_untracked.ct_general.use, 1);
1189 /* - and look it like as a confirmed connection */
1190 set_bit(IPS_CONFIRMED_BIT, &nf_conntrack_untracked.status);
1191
1192 return ret;
1193
1194 out_fini_helper:
1195 nf_conntrack_helper_fini();
1196 out_fini_expect:
1197 nf_conntrack_expect_fini();
1198 out_fini_proto:
1199 nf_conntrack_proto_fini();
1200 err_free_conntrack_slab:
1201 kmem_cache_destroy(nf_conntrack_cachep);
1202 err_free_hash:
1203 nf_ct_free_hashtable(nf_conntrack_hash, nf_conntrack_vmalloc,
1204 nf_conntrack_htable_size);
1205 err_out:
1206 return -ENOMEM;
1207 }