]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/netfilter/nf_conntrack_core.c
Merge tag '5.19-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[mirror_ubuntu-kernels.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 u32 avg_timeout;
70 u32 start_time;
71 bool exiting;
72 bool early_drop;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* serialize hash resizes and nf_ct_iterate_cleanup */
80 static DEFINE_MUTEX(nf_conntrack_mutex);
81
82 #define GC_SCAN_INTERVAL_MAX (60ul * HZ)
83 #define GC_SCAN_INTERVAL_MIN (1ul * HZ)
84
85 /* clamp timeouts to this value (TCP unacked) */
86 #define GC_SCAN_INTERVAL_CLAMP (300ul * HZ)
87
88 /* large initial bias so that we don't scan often just because we have
89 * three entries with a 1s timeout.
90 */
91 #define GC_SCAN_INTERVAL_INIT INT_MAX
92
93 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
94 #define GC_SCAN_EXPIRED_MAX (64000u / HZ)
95
96 #define MIN_CHAINLEN 8u
97 #define MAX_CHAINLEN (32u - MIN_CHAINLEN)
98
99 static struct conntrack_gc_work conntrack_gc_work;
100
101 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
102 {
103 /* 1) Acquire the lock */
104 spin_lock(lock);
105
106 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
107 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
108 */
109 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
110 return;
111
112 /* fast path failed, unlock */
113 spin_unlock(lock);
114
115 /* Slow path 1) get global lock */
116 spin_lock(&nf_conntrack_locks_all_lock);
117
118 /* Slow path 2) get the lock we want */
119 spin_lock(lock);
120
121 /* Slow path 3) release the global lock */
122 spin_unlock(&nf_conntrack_locks_all_lock);
123 }
124 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
125
126 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
127 {
128 h1 %= CONNTRACK_LOCKS;
129 h2 %= CONNTRACK_LOCKS;
130 spin_unlock(&nf_conntrack_locks[h1]);
131 if (h1 != h2)
132 spin_unlock(&nf_conntrack_locks[h2]);
133 }
134
135 /* return true if we need to recompute hashes (in case hash table was resized) */
136 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
137 unsigned int h2, unsigned int sequence)
138 {
139 h1 %= CONNTRACK_LOCKS;
140 h2 %= CONNTRACK_LOCKS;
141 if (h1 <= h2) {
142 nf_conntrack_lock(&nf_conntrack_locks[h1]);
143 if (h1 != h2)
144 spin_lock_nested(&nf_conntrack_locks[h2],
145 SINGLE_DEPTH_NESTING);
146 } else {
147 nf_conntrack_lock(&nf_conntrack_locks[h2]);
148 spin_lock_nested(&nf_conntrack_locks[h1],
149 SINGLE_DEPTH_NESTING);
150 }
151 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
152 nf_conntrack_double_unlock(h1, h2);
153 return true;
154 }
155 return false;
156 }
157
158 static void nf_conntrack_all_lock(void)
159 __acquires(&nf_conntrack_locks_all_lock)
160 {
161 int i;
162
163 spin_lock(&nf_conntrack_locks_all_lock);
164
165 /* For nf_contrack_locks_all, only the latest time when another
166 * CPU will see an update is controlled, by the "release" of the
167 * spin_lock below.
168 * The earliest time is not controlled, an thus KCSAN could detect
169 * a race when nf_conntract_lock() reads the variable.
170 * WRITE_ONCE() is used to ensure the compiler will not
171 * optimize the write.
172 */
173 WRITE_ONCE(nf_conntrack_locks_all, true);
174
175 for (i = 0; i < CONNTRACK_LOCKS; i++) {
176 spin_lock(&nf_conntrack_locks[i]);
177
178 /* This spin_unlock provides the "release" to ensure that
179 * nf_conntrack_locks_all==true is visible to everyone that
180 * acquired spin_lock(&nf_conntrack_locks[]).
181 */
182 spin_unlock(&nf_conntrack_locks[i]);
183 }
184 }
185
186 static void nf_conntrack_all_unlock(void)
187 __releases(&nf_conntrack_locks_all_lock)
188 {
189 /* All prior stores must be complete before we clear
190 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
191 * might observe the false value but not the entire
192 * critical section.
193 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
194 */
195 smp_store_release(&nf_conntrack_locks_all, false);
196 spin_unlock(&nf_conntrack_locks_all_lock);
197 }
198
199 unsigned int nf_conntrack_htable_size __read_mostly;
200 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
201
202 unsigned int nf_conntrack_max __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_max);
204 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
205 static siphash_aligned_key_t nf_conntrack_hash_rnd;
206
207 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
208 unsigned int zoneid,
209 const struct net *net)
210 {
211 struct {
212 struct nf_conntrack_man src;
213 union nf_inet_addr dst_addr;
214 unsigned int zone;
215 u32 net_mix;
216 u16 dport;
217 u16 proto;
218 } __aligned(SIPHASH_ALIGNMENT) combined;
219
220 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
221
222 memset(&combined, 0, sizeof(combined));
223
224 /* The direction must be ignored, so handle usable members manually. */
225 combined.src = tuple->src;
226 combined.dst_addr = tuple->dst.u3;
227 combined.zone = zoneid;
228 combined.net_mix = net_hash_mix(net);
229 combined.dport = (__force __u16)tuple->dst.u.all;
230 combined.proto = tuple->dst.protonum;
231
232 return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
233 }
234
235 static u32 scale_hash(u32 hash)
236 {
237 return reciprocal_scale(hash, nf_conntrack_htable_size);
238 }
239
240 static u32 __hash_conntrack(const struct net *net,
241 const struct nf_conntrack_tuple *tuple,
242 unsigned int zoneid,
243 unsigned int size)
244 {
245 return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
246 }
247
248 static u32 hash_conntrack(const struct net *net,
249 const struct nf_conntrack_tuple *tuple,
250 unsigned int zoneid)
251 {
252 return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
253 }
254
255 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
256 unsigned int dataoff,
257 struct nf_conntrack_tuple *tuple)
258 { struct {
259 __be16 sport;
260 __be16 dport;
261 } _inet_hdr, *inet_hdr;
262
263 /* Actually only need first 4 bytes to get ports. */
264 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
265 if (!inet_hdr)
266 return false;
267
268 tuple->src.u.udp.port = inet_hdr->sport;
269 tuple->dst.u.udp.port = inet_hdr->dport;
270 return true;
271 }
272
273 static bool
274 nf_ct_get_tuple(const struct sk_buff *skb,
275 unsigned int nhoff,
276 unsigned int dataoff,
277 u_int16_t l3num,
278 u_int8_t protonum,
279 struct net *net,
280 struct nf_conntrack_tuple *tuple)
281 {
282 unsigned int size;
283 const __be32 *ap;
284 __be32 _addrs[8];
285
286 memset(tuple, 0, sizeof(*tuple));
287
288 tuple->src.l3num = l3num;
289 switch (l3num) {
290 case NFPROTO_IPV4:
291 nhoff += offsetof(struct iphdr, saddr);
292 size = 2 * sizeof(__be32);
293 break;
294 case NFPROTO_IPV6:
295 nhoff += offsetof(struct ipv6hdr, saddr);
296 size = sizeof(_addrs);
297 break;
298 default:
299 return true;
300 }
301
302 ap = skb_header_pointer(skb, nhoff, size, _addrs);
303 if (!ap)
304 return false;
305
306 switch (l3num) {
307 case NFPROTO_IPV4:
308 tuple->src.u3.ip = ap[0];
309 tuple->dst.u3.ip = ap[1];
310 break;
311 case NFPROTO_IPV6:
312 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
313 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
314 break;
315 }
316
317 tuple->dst.protonum = protonum;
318 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
319
320 switch (protonum) {
321 #if IS_ENABLED(CONFIG_IPV6)
322 case IPPROTO_ICMPV6:
323 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
324 #endif
325 case IPPROTO_ICMP:
326 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
327 #ifdef CONFIG_NF_CT_PROTO_GRE
328 case IPPROTO_GRE:
329 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
330 #endif
331 case IPPROTO_TCP:
332 case IPPROTO_UDP: /* fallthrough */
333 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
334 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
335 case IPPROTO_UDPLITE:
336 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_SCTP
339 case IPPROTO_SCTP:
340 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_DCCP
343 case IPPROTO_DCCP:
344 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
345 #endif
346 default:
347 break;
348 }
349
350 return true;
351 }
352
353 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
354 u_int8_t *protonum)
355 {
356 int dataoff = -1;
357 const struct iphdr *iph;
358 struct iphdr _iph;
359
360 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
361 if (!iph)
362 return -1;
363
364 /* Conntrack defragments packets, we might still see fragments
365 * inside ICMP packets though.
366 */
367 if (iph->frag_off & htons(IP_OFFSET))
368 return -1;
369
370 dataoff = nhoff + (iph->ihl << 2);
371 *protonum = iph->protocol;
372
373 /* Check bogus IP headers */
374 if (dataoff > skb->len) {
375 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
376 nhoff, iph->ihl << 2, skb->len);
377 return -1;
378 }
379 return dataoff;
380 }
381
382 #if IS_ENABLED(CONFIG_IPV6)
383 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
384 u8 *protonum)
385 {
386 int protoff = -1;
387 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
388 __be16 frag_off;
389 u8 nexthdr;
390
391 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
392 &nexthdr, sizeof(nexthdr)) != 0) {
393 pr_debug("can't get nexthdr\n");
394 return -1;
395 }
396 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
397 /*
398 * (protoff == skb->len) means the packet has not data, just
399 * IPv6 and possibly extensions headers, but it is tracked anyway
400 */
401 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
402 pr_debug("can't find proto in pkt\n");
403 return -1;
404 }
405
406 *protonum = nexthdr;
407 return protoff;
408 }
409 #endif
410
411 static int get_l4proto(const struct sk_buff *skb,
412 unsigned int nhoff, u8 pf, u8 *l4num)
413 {
414 switch (pf) {
415 case NFPROTO_IPV4:
416 return ipv4_get_l4proto(skb, nhoff, l4num);
417 #if IS_ENABLED(CONFIG_IPV6)
418 case NFPROTO_IPV6:
419 return ipv6_get_l4proto(skb, nhoff, l4num);
420 #endif
421 default:
422 *l4num = 0;
423 break;
424 }
425 return -1;
426 }
427
428 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
429 u_int16_t l3num,
430 struct net *net, struct nf_conntrack_tuple *tuple)
431 {
432 u8 protonum;
433 int protoff;
434
435 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
436 if (protoff <= 0)
437 return false;
438
439 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
440 }
441 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
442
443 bool
444 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
445 const struct nf_conntrack_tuple *orig)
446 {
447 memset(inverse, 0, sizeof(*inverse));
448
449 inverse->src.l3num = orig->src.l3num;
450
451 switch (orig->src.l3num) {
452 case NFPROTO_IPV4:
453 inverse->src.u3.ip = orig->dst.u3.ip;
454 inverse->dst.u3.ip = orig->src.u3.ip;
455 break;
456 case NFPROTO_IPV6:
457 inverse->src.u3.in6 = orig->dst.u3.in6;
458 inverse->dst.u3.in6 = orig->src.u3.in6;
459 break;
460 default:
461 break;
462 }
463
464 inverse->dst.dir = !orig->dst.dir;
465
466 inverse->dst.protonum = orig->dst.protonum;
467
468 switch (orig->dst.protonum) {
469 case IPPROTO_ICMP:
470 return nf_conntrack_invert_icmp_tuple(inverse, orig);
471 #if IS_ENABLED(CONFIG_IPV6)
472 case IPPROTO_ICMPV6:
473 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
474 #endif
475 }
476
477 inverse->src.u.all = orig->dst.u.all;
478 inverse->dst.u.all = orig->src.u.all;
479 return true;
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
482
483 /* Generate a almost-unique pseudo-id for a given conntrack.
484 *
485 * intentionally doesn't re-use any of the seeds used for hash
486 * table location, we assume id gets exposed to userspace.
487 *
488 * Following nf_conn items do not change throughout lifetime
489 * of the nf_conn:
490 *
491 * 1. nf_conn address
492 * 2. nf_conn->master address (normally NULL)
493 * 3. the associated net namespace
494 * 4. the original direction tuple
495 */
496 u32 nf_ct_get_id(const struct nf_conn *ct)
497 {
498 static siphash_aligned_key_t ct_id_seed;
499 unsigned long a, b, c, d;
500
501 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
502
503 a = (unsigned long)ct;
504 b = (unsigned long)ct->master;
505 c = (unsigned long)nf_ct_net(ct);
506 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
507 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
508 &ct_id_seed);
509 #ifdef CONFIG_64BIT
510 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
511 #else
512 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
513 #endif
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_get_id);
516
517 static void
518 clean_from_lists(struct nf_conn *ct)
519 {
520 pr_debug("clean_from_lists(%p)\n", ct);
521 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
522 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
523
524 /* Destroy all pending expectations */
525 nf_ct_remove_expectations(ct);
526 }
527
528 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
529
530 /* Released via nf_ct_destroy() */
531 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
532 const struct nf_conntrack_zone *zone,
533 gfp_t flags)
534 {
535 struct nf_conn *tmpl, *p;
536
537 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
538 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
539 if (!tmpl)
540 return NULL;
541
542 p = tmpl;
543 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
544 if (tmpl != p) {
545 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
546 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
547 }
548 } else {
549 tmpl = kzalloc(sizeof(*tmpl), flags);
550 if (!tmpl)
551 return NULL;
552 }
553
554 tmpl->status = IPS_TEMPLATE;
555 write_pnet(&tmpl->ct_net, net);
556 nf_ct_zone_add(tmpl, zone);
557 refcount_set(&tmpl->ct_general.use, 1);
558
559 return tmpl;
560 }
561 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
562
563 void nf_ct_tmpl_free(struct nf_conn *tmpl)
564 {
565 kfree(tmpl->ext);
566
567 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
568 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
569 else
570 kfree(tmpl);
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
573
574 static void destroy_gre_conntrack(struct nf_conn *ct)
575 {
576 #ifdef CONFIG_NF_CT_PROTO_GRE
577 struct nf_conn *master = ct->master;
578
579 if (master)
580 nf_ct_gre_keymap_destroy(master);
581 #endif
582 }
583
584 void nf_ct_destroy(struct nf_conntrack *nfct)
585 {
586 struct nf_conn *ct = (struct nf_conn *)nfct;
587
588 pr_debug("%s(%p)\n", __func__, ct);
589 WARN_ON(refcount_read(&nfct->use) != 0);
590
591 if (unlikely(nf_ct_is_template(ct))) {
592 nf_ct_tmpl_free(ct);
593 return;
594 }
595
596 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
597 destroy_gre_conntrack(ct);
598
599 /* Expectations will have been removed in clean_from_lists,
600 * except TFTP can create an expectation on the first packet,
601 * before connection is in the list, so we need to clean here,
602 * too.
603 */
604 nf_ct_remove_expectations(ct);
605
606 if (ct->master)
607 nf_ct_put(ct->master);
608
609 pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
610 nf_conntrack_free(ct);
611 }
612 EXPORT_SYMBOL(nf_ct_destroy);
613
614 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
615 {
616 struct net *net = nf_ct_net(ct);
617 unsigned int hash, reply_hash;
618 unsigned int sequence;
619
620 do {
621 sequence = read_seqcount_begin(&nf_conntrack_generation);
622 hash = hash_conntrack(net,
623 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
624 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
625 reply_hash = hash_conntrack(net,
626 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
627 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
628 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
629
630 clean_from_lists(ct);
631 nf_conntrack_double_unlock(hash, reply_hash);
632 }
633
634 static void nf_ct_delete_from_lists(struct nf_conn *ct)
635 {
636 nf_ct_helper_destroy(ct);
637 local_bh_disable();
638
639 __nf_ct_delete_from_lists(ct);
640
641 local_bh_enable();
642 }
643
644 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
645 {
646 #ifdef CONFIG_NF_CONNTRACK_EVENTS
647 struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
648
649 spin_lock(&cnet->ecache.dying_lock);
650 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
651 &cnet->ecache.dying_list);
652 spin_unlock(&cnet->ecache.dying_lock);
653 #endif
654 }
655
656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 struct nf_conn_tstamp *tstamp;
659 struct net *net;
660
661 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
662 return false;
663
664 tstamp = nf_conn_tstamp_find(ct);
665 if (tstamp) {
666 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
667
668 tstamp->stop = ktime_get_real_ns();
669 if (timeout < 0)
670 tstamp->stop -= jiffies_to_nsecs(-timeout);
671 }
672
673 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
674 portid, report) < 0) {
675 /* destroy event was not delivered. nf_ct_put will
676 * be done by event cache worker on redelivery.
677 */
678 nf_ct_helper_destroy(ct);
679 local_bh_disable();
680 __nf_ct_delete_from_lists(ct);
681 nf_ct_add_to_ecache_list(ct);
682 local_bh_enable();
683
684 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
685 return false;
686 }
687
688 net = nf_ct_net(ct);
689 if (nf_conntrack_ecache_dwork_pending(net))
690 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
691 nf_ct_delete_from_lists(ct);
692 nf_ct_put(ct);
693 return true;
694 }
695 EXPORT_SYMBOL_GPL(nf_ct_delete);
696
697 static inline bool
698 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
699 const struct nf_conntrack_tuple *tuple,
700 const struct nf_conntrack_zone *zone,
701 const struct net *net)
702 {
703 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
704
705 /* A conntrack can be recreated with the equal tuple,
706 * so we need to check that the conntrack is confirmed
707 */
708 return nf_ct_tuple_equal(tuple, &h->tuple) &&
709 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
710 nf_ct_is_confirmed(ct) &&
711 net_eq(net, nf_ct_net(ct));
712 }
713
714 static inline bool
715 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
716 {
717 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
718 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
719 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
720 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
721 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
722 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
723 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
724 }
725
726 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
727 static void nf_ct_gc_expired(struct nf_conn *ct)
728 {
729 if (!refcount_inc_not_zero(&ct->ct_general.use))
730 return;
731
732 if (nf_ct_should_gc(ct))
733 nf_ct_kill(ct);
734
735 nf_ct_put(ct);
736 }
737
738 /*
739 * Warning :
740 * - Caller must take a reference on returned object
741 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
742 */
743 static struct nf_conntrack_tuple_hash *
744 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
745 const struct nf_conntrack_tuple *tuple, u32 hash)
746 {
747 struct nf_conntrack_tuple_hash *h;
748 struct hlist_nulls_head *ct_hash;
749 struct hlist_nulls_node *n;
750 unsigned int bucket, hsize;
751
752 begin:
753 nf_conntrack_get_ht(&ct_hash, &hsize);
754 bucket = reciprocal_scale(hash, hsize);
755
756 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
757 struct nf_conn *ct;
758
759 ct = nf_ct_tuplehash_to_ctrack(h);
760 if (nf_ct_is_expired(ct)) {
761 nf_ct_gc_expired(ct);
762 continue;
763 }
764
765 if (nf_ct_key_equal(h, tuple, zone, net))
766 return h;
767 }
768 /*
769 * if the nulls value we got at the end of this lookup is
770 * not the expected one, we must restart lookup.
771 * We probably met an item that was moved to another chain.
772 */
773 if (get_nulls_value(n) != bucket) {
774 NF_CT_STAT_INC_ATOMIC(net, search_restart);
775 goto begin;
776 }
777
778 return NULL;
779 }
780
781 /* Find a connection corresponding to a tuple. */
782 static struct nf_conntrack_tuple_hash *
783 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
784 const struct nf_conntrack_tuple *tuple, u32 hash)
785 {
786 struct nf_conntrack_tuple_hash *h;
787 struct nf_conn *ct;
788
789 rcu_read_lock();
790
791 h = ____nf_conntrack_find(net, zone, tuple, hash);
792 if (h) {
793 /* We have a candidate that matches the tuple we're interested
794 * in, try to obtain a reference and re-check tuple
795 */
796 ct = nf_ct_tuplehash_to_ctrack(h);
797 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
798 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
799 goto found;
800
801 /* TYPESAFE_BY_RCU recycled the candidate */
802 nf_ct_put(ct);
803 }
804
805 h = NULL;
806 }
807 found:
808 rcu_read_unlock();
809
810 return h;
811 }
812
813 struct nf_conntrack_tuple_hash *
814 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
815 const struct nf_conntrack_tuple *tuple)
816 {
817 unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
818 struct nf_conntrack_tuple_hash *thash;
819
820 thash = __nf_conntrack_find_get(net, zone, tuple,
821 hash_conntrack_raw(tuple, zone_id, net));
822
823 if (thash)
824 return thash;
825
826 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
827 if (rid != zone_id)
828 return __nf_conntrack_find_get(net, zone, tuple,
829 hash_conntrack_raw(tuple, rid, net));
830 return thash;
831 }
832 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
833
834 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
835 unsigned int hash,
836 unsigned int reply_hash)
837 {
838 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
839 &nf_conntrack_hash[hash]);
840 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
841 &nf_conntrack_hash[reply_hash]);
842 }
843
844 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
845 {
846 /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
847 * may contain stale pointers to e.g. helper that has been removed.
848 *
849 * The helper can't clear this because the nf_conn object isn't in
850 * any hash and synchronize_rcu() isn't enough because associated skb
851 * might sit in a queue.
852 */
853 return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
854 }
855
856 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
857 {
858 if (!ext)
859 return true;
860
861 if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
862 return false;
863
864 /* inserted into conntrack table, nf_ct_iterate_cleanup()
865 * will find it. Disable nf_ct_ext_find() id check.
866 */
867 WRITE_ONCE(ext->gen_id, 0);
868 return true;
869 }
870
871 int
872 nf_conntrack_hash_check_insert(struct nf_conn *ct)
873 {
874 const struct nf_conntrack_zone *zone;
875 struct net *net = nf_ct_net(ct);
876 unsigned int hash, reply_hash;
877 struct nf_conntrack_tuple_hash *h;
878 struct hlist_nulls_node *n;
879 unsigned int max_chainlen;
880 unsigned int chainlen = 0;
881 unsigned int sequence;
882 int err = -EEXIST;
883
884 zone = nf_ct_zone(ct);
885
886 if (!nf_ct_ext_valid_pre(ct->ext)) {
887 NF_CT_STAT_INC(net, insert_failed);
888 return -ETIMEDOUT;
889 }
890
891 local_bh_disable();
892 do {
893 sequence = read_seqcount_begin(&nf_conntrack_generation);
894 hash = hash_conntrack(net,
895 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
896 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
897 reply_hash = hash_conntrack(net,
898 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
899 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
900 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
901
902 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
903
904 /* See if there's one in the list already, including reverse */
905 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
906 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
907 zone, net))
908 goto out;
909
910 if (chainlen++ > max_chainlen)
911 goto chaintoolong;
912 }
913
914 chainlen = 0;
915
916 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
917 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
918 zone, net))
919 goto out;
920 if (chainlen++ > max_chainlen)
921 goto chaintoolong;
922 }
923
924 smp_wmb();
925 /* The caller holds a reference to this object */
926 refcount_set(&ct->ct_general.use, 2);
927 __nf_conntrack_hash_insert(ct, hash, reply_hash);
928 nf_conntrack_double_unlock(hash, reply_hash);
929 NF_CT_STAT_INC(net, insert);
930 local_bh_enable();
931
932 if (!nf_ct_ext_valid_post(ct->ext)) {
933 nf_ct_kill(ct);
934 NF_CT_STAT_INC(net, drop);
935 return -ETIMEDOUT;
936 }
937
938 return 0;
939 chaintoolong:
940 NF_CT_STAT_INC(net, chaintoolong);
941 err = -ENOSPC;
942 out:
943 nf_conntrack_double_unlock(hash, reply_hash);
944 local_bh_enable();
945 return err;
946 }
947 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
948
949 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
950 unsigned int bytes)
951 {
952 struct nf_conn_acct *acct;
953
954 acct = nf_conn_acct_find(ct);
955 if (acct) {
956 struct nf_conn_counter *counter = acct->counter;
957
958 atomic64_add(packets, &counter[dir].packets);
959 atomic64_add(bytes, &counter[dir].bytes);
960 }
961 }
962 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
963
964 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
965 const struct nf_conn *loser_ct)
966 {
967 struct nf_conn_acct *acct;
968
969 acct = nf_conn_acct_find(loser_ct);
970 if (acct) {
971 struct nf_conn_counter *counter = acct->counter;
972 unsigned int bytes;
973
974 /* u32 should be fine since we must have seen one packet. */
975 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
976 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
977 }
978 }
979
980 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
981 {
982 struct nf_conn_tstamp *tstamp;
983
984 refcount_inc(&ct->ct_general.use);
985
986 /* set conntrack timestamp, if enabled. */
987 tstamp = nf_conn_tstamp_find(ct);
988 if (tstamp)
989 tstamp->start = ktime_get_real_ns();
990 }
991
992 /* caller must hold locks to prevent concurrent changes */
993 static int __nf_ct_resolve_clash(struct sk_buff *skb,
994 struct nf_conntrack_tuple_hash *h)
995 {
996 /* This is the conntrack entry already in hashes that won race. */
997 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
998 enum ip_conntrack_info ctinfo;
999 struct nf_conn *loser_ct;
1000
1001 loser_ct = nf_ct_get(skb, &ctinfo);
1002
1003 if (nf_ct_is_dying(ct))
1004 return NF_DROP;
1005
1006 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1007 nf_ct_match(ct, loser_ct)) {
1008 struct net *net = nf_ct_net(ct);
1009
1010 nf_conntrack_get(&ct->ct_general);
1011
1012 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1013 nf_ct_put(loser_ct);
1014 nf_ct_set(skb, ct, ctinfo);
1015
1016 NF_CT_STAT_INC(net, clash_resolve);
1017 return NF_ACCEPT;
1018 }
1019
1020 return NF_DROP;
1021 }
1022
1023 /**
1024 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1025 *
1026 * @skb: skb that causes the collision
1027 * @repl_idx: hash slot for reply direction
1028 *
1029 * Called when origin or reply direction had a clash.
1030 * The skb can be handled without packet drop provided the reply direction
1031 * is unique or there the existing entry has the identical tuple in both
1032 * directions.
1033 *
1034 * Caller must hold conntrack table locks to prevent concurrent updates.
1035 *
1036 * Returns NF_DROP if the clash could not be handled.
1037 */
1038 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1039 {
1040 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1041 const struct nf_conntrack_zone *zone;
1042 struct nf_conntrack_tuple_hash *h;
1043 struct hlist_nulls_node *n;
1044 struct net *net;
1045
1046 zone = nf_ct_zone(loser_ct);
1047 net = nf_ct_net(loser_ct);
1048
1049 /* Reply direction must never result in a clash, unless both origin
1050 * and reply tuples are identical.
1051 */
1052 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1053 if (nf_ct_key_equal(h,
1054 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1055 zone, net))
1056 return __nf_ct_resolve_clash(skb, h);
1057 }
1058
1059 /* We want the clashing entry to go away real soon: 1 second timeout. */
1060 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1061
1062 /* IPS_NAT_CLASH removes the entry automatically on the first
1063 * reply. Also prevents UDP tracker from moving the entry to
1064 * ASSURED state, i.e. the entry can always be evicted under
1065 * pressure.
1066 */
1067 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1068
1069 __nf_conntrack_insert_prepare(loser_ct);
1070
1071 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1072 * already in the table. This also hides the clashing entry from
1073 * ctnetlink iteration, i.e. conntrack -L won't show them.
1074 */
1075 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1076
1077 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1078 &nf_conntrack_hash[repl_idx]);
1079
1080 NF_CT_STAT_INC(net, clash_resolve);
1081 return NF_ACCEPT;
1082 }
1083
1084 /**
1085 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1086 *
1087 * @skb: skb that causes the clash
1088 * @h: tuplehash of the clashing entry already in table
1089 * @reply_hash: hash slot for reply direction
1090 *
1091 * A conntrack entry can be inserted to the connection tracking table
1092 * if there is no existing entry with an identical tuple.
1093 *
1094 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1095 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1096 * will find the already-existing entry.
1097 *
1098 * The major problem with such packet drop is the extra delay added by
1099 * the packet loss -- it will take some time for a retransmit to occur
1100 * (or the sender to time out when waiting for a reply).
1101 *
1102 * This function attempts to handle the situation without packet drop.
1103 *
1104 * If @skb has no NAT transformation or if the colliding entries are
1105 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1106 * and @skb is associated with the conntrack entry already in the table.
1107 *
1108 * Failing that, the new, unconfirmed conntrack is still added to the table
1109 * provided that the collision only occurs in the ORIGINAL direction.
1110 * The new entry will be added only in the non-clashing REPLY direction,
1111 * so packets in the ORIGINAL direction will continue to match the existing
1112 * entry. The new entry will also have a fixed timeout so it expires --
1113 * due to the collision, it will only see reply traffic.
1114 *
1115 * Returns NF_DROP if the clash could not be resolved.
1116 */
1117 static __cold noinline int
1118 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1119 u32 reply_hash)
1120 {
1121 /* This is the conntrack entry already in hashes that won race. */
1122 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1123 const struct nf_conntrack_l4proto *l4proto;
1124 enum ip_conntrack_info ctinfo;
1125 struct nf_conn *loser_ct;
1126 struct net *net;
1127 int ret;
1128
1129 loser_ct = nf_ct_get(skb, &ctinfo);
1130 net = nf_ct_net(loser_ct);
1131
1132 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1133 if (!l4proto->allow_clash)
1134 goto drop;
1135
1136 ret = __nf_ct_resolve_clash(skb, h);
1137 if (ret == NF_ACCEPT)
1138 return ret;
1139
1140 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1141 if (ret == NF_ACCEPT)
1142 return ret;
1143
1144 drop:
1145 NF_CT_STAT_INC(net, drop);
1146 NF_CT_STAT_INC(net, insert_failed);
1147 return NF_DROP;
1148 }
1149
1150 /* Confirm a connection given skb; places it in hash table */
1151 int
1152 __nf_conntrack_confirm(struct sk_buff *skb)
1153 {
1154 unsigned int chainlen = 0, sequence, max_chainlen;
1155 const struct nf_conntrack_zone *zone;
1156 unsigned int hash, reply_hash;
1157 struct nf_conntrack_tuple_hash *h;
1158 struct nf_conn *ct;
1159 struct nf_conn_help *help;
1160 struct hlist_nulls_node *n;
1161 enum ip_conntrack_info ctinfo;
1162 struct net *net;
1163 int ret = NF_DROP;
1164
1165 ct = nf_ct_get(skb, &ctinfo);
1166 net = nf_ct_net(ct);
1167
1168 /* ipt_REJECT uses nf_conntrack_attach to attach related
1169 ICMP/TCP RST packets in other direction. Actual packet
1170 which created connection will be IP_CT_NEW or for an
1171 expected connection, IP_CT_RELATED. */
1172 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1173 return NF_ACCEPT;
1174
1175 zone = nf_ct_zone(ct);
1176 local_bh_disable();
1177
1178 do {
1179 sequence = read_seqcount_begin(&nf_conntrack_generation);
1180 /* reuse the hash saved before */
1181 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1182 hash = scale_hash(hash);
1183 reply_hash = hash_conntrack(net,
1184 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1185 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1186 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1187
1188 /* We're not in hash table, and we refuse to set up related
1189 * connections for unconfirmed conns. But packet copies and
1190 * REJECT will give spurious warnings here.
1191 */
1192
1193 /* Another skb with the same unconfirmed conntrack may
1194 * win the race. This may happen for bridge(br_flood)
1195 * or broadcast/multicast packets do skb_clone with
1196 * unconfirmed conntrack.
1197 */
1198 if (unlikely(nf_ct_is_confirmed(ct))) {
1199 WARN_ON_ONCE(1);
1200 nf_conntrack_double_unlock(hash, reply_hash);
1201 local_bh_enable();
1202 return NF_DROP;
1203 }
1204
1205 if (!nf_ct_ext_valid_pre(ct->ext)) {
1206 NF_CT_STAT_INC(net, insert_failed);
1207 goto dying;
1208 }
1209
1210 pr_debug("Confirming conntrack %p\n", ct);
1211 /* We have to check the DYING flag after unlink to prevent
1212 * a race against nf_ct_get_next_corpse() possibly called from
1213 * user context, else we insert an already 'dead' hash, blocking
1214 * further use of that particular connection -JM.
1215 */
1216 ct->status |= IPS_CONFIRMED;
1217
1218 if (unlikely(nf_ct_is_dying(ct))) {
1219 NF_CT_STAT_INC(net, insert_failed);
1220 goto dying;
1221 }
1222
1223 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1224 /* See if there's one in the list already, including reverse:
1225 NAT could have grabbed it without realizing, since we're
1226 not in the hash. If there is, we lost race. */
1227 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1228 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1229 zone, net))
1230 goto out;
1231 if (chainlen++ > max_chainlen)
1232 goto chaintoolong;
1233 }
1234
1235 chainlen = 0;
1236 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1237 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1238 zone, net))
1239 goto out;
1240 if (chainlen++ > max_chainlen) {
1241 chaintoolong:
1242 NF_CT_STAT_INC(net, chaintoolong);
1243 NF_CT_STAT_INC(net, insert_failed);
1244 ret = NF_DROP;
1245 goto dying;
1246 }
1247 }
1248
1249 /* Timer relative to confirmation time, not original
1250 setting time, otherwise we'd get timer wrap in
1251 weird delay cases. */
1252 ct->timeout += nfct_time_stamp;
1253
1254 __nf_conntrack_insert_prepare(ct);
1255
1256 /* Since the lookup is lockless, hash insertion must be done after
1257 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1258 * guarantee that no other CPU can find the conntrack before the above
1259 * stores are visible.
1260 */
1261 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1262 nf_conntrack_double_unlock(hash, reply_hash);
1263 local_bh_enable();
1264
1265 /* ext area is still valid (rcu read lock is held,
1266 * but will go out of scope soon, we need to remove
1267 * this conntrack again.
1268 */
1269 if (!nf_ct_ext_valid_post(ct->ext)) {
1270 nf_ct_kill(ct);
1271 NF_CT_STAT_INC(net, drop);
1272 return NF_DROP;
1273 }
1274
1275 help = nfct_help(ct);
1276 if (help && help->helper)
1277 nf_conntrack_event_cache(IPCT_HELPER, ct);
1278
1279 nf_conntrack_event_cache(master_ct(ct) ?
1280 IPCT_RELATED : IPCT_NEW, ct);
1281 return NF_ACCEPT;
1282
1283 out:
1284 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1285 dying:
1286 nf_conntrack_double_unlock(hash, reply_hash);
1287 local_bh_enable();
1288 return ret;
1289 }
1290 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1291
1292 /* Returns true if a connection correspondings to the tuple (required
1293 for NAT). */
1294 int
1295 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1296 const struct nf_conn *ignored_conntrack)
1297 {
1298 struct net *net = nf_ct_net(ignored_conntrack);
1299 const struct nf_conntrack_zone *zone;
1300 struct nf_conntrack_tuple_hash *h;
1301 struct hlist_nulls_head *ct_hash;
1302 unsigned int hash, hsize;
1303 struct hlist_nulls_node *n;
1304 struct nf_conn *ct;
1305
1306 zone = nf_ct_zone(ignored_conntrack);
1307
1308 rcu_read_lock();
1309 begin:
1310 nf_conntrack_get_ht(&ct_hash, &hsize);
1311 hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1312
1313 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1314 ct = nf_ct_tuplehash_to_ctrack(h);
1315
1316 if (ct == ignored_conntrack)
1317 continue;
1318
1319 if (nf_ct_is_expired(ct)) {
1320 nf_ct_gc_expired(ct);
1321 continue;
1322 }
1323
1324 if (nf_ct_key_equal(h, tuple, zone, net)) {
1325 /* Tuple is taken already, so caller will need to find
1326 * a new source port to use.
1327 *
1328 * Only exception:
1329 * If the *original tuples* are identical, then both
1330 * conntracks refer to the same flow.
1331 * This is a rare situation, it can occur e.g. when
1332 * more than one UDP packet is sent from same socket
1333 * in different threads.
1334 *
1335 * Let nf_ct_resolve_clash() deal with this later.
1336 */
1337 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1338 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1339 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1340 continue;
1341
1342 NF_CT_STAT_INC_ATOMIC(net, found);
1343 rcu_read_unlock();
1344 return 1;
1345 }
1346 }
1347
1348 if (get_nulls_value(n) != hash) {
1349 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1350 goto begin;
1351 }
1352
1353 rcu_read_unlock();
1354
1355 return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1358
1359 #define NF_CT_EVICTION_RANGE 8
1360
1361 /* There's a small race here where we may free a just-assured
1362 connection. Too bad: we're in trouble anyway. */
1363 static unsigned int early_drop_list(struct net *net,
1364 struct hlist_nulls_head *head)
1365 {
1366 struct nf_conntrack_tuple_hash *h;
1367 struct hlist_nulls_node *n;
1368 unsigned int drops = 0;
1369 struct nf_conn *tmp;
1370
1371 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1372 tmp = nf_ct_tuplehash_to_ctrack(h);
1373
1374 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1375 continue;
1376
1377 if (nf_ct_is_expired(tmp)) {
1378 nf_ct_gc_expired(tmp);
1379 continue;
1380 }
1381
1382 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1383 !net_eq(nf_ct_net(tmp), net) ||
1384 nf_ct_is_dying(tmp))
1385 continue;
1386
1387 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1388 continue;
1389
1390 /* kill only if still in same netns -- might have moved due to
1391 * SLAB_TYPESAFE_BY_RCU rules.
1392 *
1393 * We steal the timer reference. If that fails timer has
1394 * already fired or someone else deleted it. Just drop ref
1395 * and move to next entry.
1396 */
1397 if (net_eq(nf_ct_net(tmp), net) &&
1398 nf_ct_is_confirmed(tmp) &&
1399 nf_ct_delete(tmp, 0, 0))
1400 drops++;
1401
1402 nf_ct_put(tmp);
1403 }
1404
1405 return drops;
1406 }
1407
1408 static noinline int early_drop(struct net *net, unsigned int hash)
1409 {
1410 unsigned int i, bucket;
1411
1412 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1413 struct hlist_nulls_head *ct_hash;
1414 unsigned int hsize, drops;
1415
1416 rcu_read_lock();
1417 nf_conntrack_get_ht(&ct_hash, &hsize);
1418 if (!i)
1419 bucket = reciprocal_scale(hash, hsize);
1420 else
1421 bucket = (bucket + 1) % hsize;
1422
1423 drops = early_drop_list(net, &ct_hash[bucket]);
1424 rcu_read_unlock();
1425
1426 if (drops) {
1427 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1428 return true;
1429 }
1430 }
1431
1432 return false;
1433 }
1434
1435 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1436 {
1437 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1438 }
1439
1440 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1441 {
1442 const struct nf_conntrack_l4proto *l4proto;
1443
1444 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1445 return true;
1446
1447 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1448 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1449 return true;
1450
1451 return false;
1452 }
1453
1454 static void gc_worker(struct work_struct *work)
1455 {
1456 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1457 u32 end_time, start_time = nfct_time_stamp;
1458 struct conntrack_gc_work *gc_work;
1459 unsigned int expired_count = 0;
1460 unsigned long next_run;
1461 s32 delta_time;
1462
1463 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1464
1465 i = gc_work->next_bucket;
1466 if (gc_work->early_drop)
1467 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1468
1469 if (i == 0) {
1470 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1471 gc_work->start_time = start_time;
1472 }
1473
1474 next_run = gc_work->avg_timeout;
1475
1476 end_time = start_time + GC_SCAN_MAX_DURATION;
1477
1478 do {
1479 struct nf_conntrack_tuple_hash *h;
1480 struct hlist_nulls_head *ct_hash;
1481 struct hlist_nulls_node *n;
1482 struct nf_conn *tmp;
1483
1484 rcu_read_lock();
1485
1486 nf_conntrack_get_ht(&ct_hash, &hashsz);
1487 if (i >= hashsz) {
1488 rcu_read_unlock();
1489 break;
1490 }
1491
1492 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1493 struct nf_conntrack_net *cnet;
1494 unsigned long expires;
1495 struct net *net;
1496
1497 tmp = nf_ct_tuplehash_to_ctrack(h);
1498
1499 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1500 nf_ct_offload_timeout(tmp);
1501 continue;
1502 }
1503
1504 if (expired_count > GC_SCAN_EXPIRED_MAX) {
1505 rcu_read_unlock();
1506
1507 gc_work->next_bucket = i;
1508 gc_work->avg_timeout = next_run;
1509
1510 delta_time = nfct_time_stamp - gc_work->start_time;
1511
1512 /* re-sched immediately if total cycle time is exceeded */
1513 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1514 goto early_exit;
1515 }
1516
1517 if (nf_ct_is_expired(tmp)) {
1518 nf_ct_gc_expired(tmp);
1519 expired_count++;
1520 continue;
1521 }
1522
1523 expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1524 next_run += expires;
1525 next_run /= 2u;
1526
1527 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1528 continue;
1529
1530 net = nf_ct_net(tmp);
1531 cnet = nf_ct_pernet(net);
1532 if (atomic_read(&cnet->count) < nf_conntrack_max95)
1533 continue;
1534
1535 /* need to take reference to avoid possible races */
1536 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1537 continue;
1538
1539 if (gc_worker_skip_ct(tmp)) {
1540 nf_ct_put(tmp);
1541 continue;
1542 }
1543
1544 if (gc_worker_can_early_drop(tmp)) {
1545 nf_ct_kill(tmp);
1546 expired_count++;
1547 }
1548
1549 nf_ct_put(tmp);
1550 }
1551
1552 /* could check get_nulls_value() here and restart if ct
1553 * was moved to another chain. But given gc is best-effort
1554 * we will just continue with next hash slot.
1555 */
1556 rcu_read_unlock();
1557 cond_resched();
1558 i++;
1559
1560 delta_time = nfct_time_stamp - end_time;
1561 if (delta_time > 0 && i < hashsz) {
1562 gc_work->avg_timeout = next_run;
1563 gc_work->next_bucket = i;
1564 next_run = 0;
1565 goto early_exit;
1566 }
1567 } while (i < hashsz);
1568
1569 gc_work->next_bucket = 0;
1570
1571 next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1572
1573 delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1574 if (next_run > (unsigned long)delta_time)
1575 next_run -= delta_time;
1576 else
1577 next_run = 1;
1578
1579 early_exit:
1580 if (gc_work->exiting)
1581 return;
1582
1583 if (next_run)
1584 gc_work->early_drop = false;
1585
1586 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1587 }
1588
1589 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1590 {
1591 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1592 gc_work->exiting = false;
1593 }
1594
1595 static struct nf_conn *
1596 __nf_conntrack_alloc(struct net *net,
1597 const struct nf_conntrack_zone *zone,
1598 const struct nf_conntrack_tuple *orig,
1599 const struct nf_conntrack_tuple *repl,
1600 gfp_t gfp, u32 hash)
1601 {
1602 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1603 unsigned int ct_count;
1604 struct nf_conn *ct;
1605
1606 /* We don't want any race condition at early drop stage */
1607 ct_count = atomic_inc_return(&cnet->count);
1608
1609 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1610 if (!early_drop(net, hash)) {
1611 if (!conntrack_gc_work.early_drop)
1612 conntrack_gc_work.early_drop = true;
1613 atomic_dec(&cnet->count);
1614 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1615 return ERR_PTR(-ENOMEM);
1616 }
1617 }
1618
1619 /*
1620 * Do not use kmem_cache_zalloc(), as this cache uses
1621 * SLAB_TYPESAFE_BY_RCU.
1622 */
1623 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1624 if (ct == NULL)
1625 goto out;
1626
1627 spin_lock_init(&ct->lock);
1628 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1629 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1630 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1631 /* save hash for reusing when confirming */
1632 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1633 ct->status = 0;
1634 WRITE_ONCE(ct->timeout, 0);
1635 write_pnet(&ct->ct_net, net);
1636 memset_after(ct, 0, __nfct_init_offset);
1637
1638 nf_ct_zone_add(ct, zone);
1639
1640 /* Because we use RCU lookups, we set ct_general.use to zero before
1641 * this is inserted in any list.
1642 */
1643 refcount_set(&ct->ct_general.use, 0);
1644 return ct;
1645 out:
1646 atomic_dec(&cnet->count);
1647 return ERR_PTR(-ENOMEM);
1648 }
1649
1650 struct nf_conn *nf_conntrack_alloc(struct net *net,
1651 const struct nf_conntrack_zone *zone,
1652 const struct nf_conntrack_tuple *orig,
1653 const struct nf_conntrack_tuple *repl,
1654 gfp_t gfp)
1655 {
1656 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1657 }
1658 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1659
1660 void nf_conntrack_free(struct nf_conn *ct)
1661 {
1662 struct net *net = nf_ct_net(ct);
1663 struct nf_conntrack_net *cnet;
1664
1665 /* A freed object has refcnt == 0, that's
1666 * the golden rule for SLAB_TYPESAFE_BY_RCU
1667 */
1668 WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1669
1670 if (ct->status & IPS_SRC_NAT_DONE) {
1671 const struct nf_nat_hook *nat_hook;
1672
1673 rcu_read_lock();
1674 nat_hook = rcu_dereference(nf_nat_hook);
1675 if (nat_hook)
1676 nat_hook->remove_nat_bysrc(ct);
1677 rcu_read_unlock();
1678 }
1679
1680 kfree(ct->ext);
1681 kmem_cache_free(nf_conntrack_cachep, ct);
1682 cnet = nf_ct_pernet(net);
1683
1684 smp_mb__before_atomic();
1685 atomic_dec(&cnet->count);
1686 }
1687 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1688
1689
1690 /* Allocate a new conntrack: we return -ENOMEM if classification
1691 failed due to stress. Otherwise it really is unclassifiable. */
1692 static noinline struct nf_conntrack_tuple_hash *
1693 init_conntrack(struct net *net, struct nf_conn *tmpl,
1694 const struct nf_conntrack_tuple *tuple,
1695 struct sk_buff *skb,
1696 unsigned int dataoff, u32 hash)
1697 {
1698 struct nf_conn *ct;
1699 struct nf_conn_help *help;
1700 struct nf_conntrack_tuple repl_tuple;
1701 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1702 struct nf_conntrack_ecache *ecache;
1703 #endif
1704 struct nf_conntrack_expect *exp = NULL;
1705 const struct nf_conntrack_zone *zone;
1706 struct nf_conn_timeout *timeout_ext;
1707 struct nf_conntrack_zone tmp;
1708 struct nf_conntrack_net *cnet;
1709
1710 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1711 pr_debug("Can't invert tuple.\n");
1712 return NULL;
1713 }
1714
1715 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1716 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1717 hash);
1718 if (IS_ERR(ct))
1719 return (struct nf_conntrack_tuple_hash *)ct;
1720
1721 if (!nf_ct_add_synproxy(ct, tmpl)) {
1722 nf_conntrack_free(ct);
1723 return ERR_PTR(-ENOMEM);
1724 }
1725
1726 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1727
1728 if (timeout_ext)
1729 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1730 GFP_ATOMIC);
1731
1732 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1733 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1734 nf_ct_labels_ext_add(ct);
1735
1736 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1737 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1738
1739 if ((ecache || net->ct.sysctl_events) &&
1740 !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1741 ecache ? ecache->expmask : 0,
1742 GFP_ATOMIC)) {
1743 nf_conntrack_free(ct);
1744 return ERR_PTR(-ENOMEM);
1745 }
1746 #endif
1747
1748 cnet = nf_ct_pernet(net);
1749 if (cnet->expect_count) {
1750 spin_lock_bh(&nf_conntrack_expect_lock);
1751 exp = nf_ct_find_expectation(net, zone, tuple);
1752 if (exp) {
1753 pr_debug("expectation arrives ct=%p exp=%p\n",
1754 ct, exp);
1755 /* Welcome, Mr. Bond. We've been expecting you... */
1756 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1757 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1758 ct->master = exp->master;
1759 if (exp->helper) {
1760 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1761 if (help)
1762 rcu_assign_pointer(help->helper, exp->helper);
1763 }
1764
1765 #ifdef CONFIG_NF_CONNTRACK_MARK
1766 ct->mark = exp->master->mark;
1767 #endif
1768 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1769 ct->secmark = exp->master->secmark;
1770 #endif
1771 NF_CT_STAT_INC(net, expect_new);
1772 }
1773 spin_unlock_bh(&nf_conntrack_expect_lock);
1774 }
1775 if (!exp)
1776 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1777
1778 /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1779 refcount_set(&ct->ct_general.use, 1);
1780
1781 if (exp) {
1782 if (exp->expectfn)
1783 exp->expectfn(ct, exp);
1784 nf_ct_expect_put(exp);
1785 }
1786
1787 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1788 }
1789
1790 /* On success, returns 0, sets skb->_nfct | ctinfo */
1791 static int
1792 resolve_normal_ct(struct nf_conn *tmpl,
1793 struct sk_buff *skb,
1794 unsigned int dataoff,
1795 u_int8_t protonum,
1796 const struct nf_hook_state *state)
1797 {
1798 const struct nf_conntrack_zone *zone;
1799 struct nf_conntrack_tuple tuple;
1800 struct nf_conntrack_tuple_hash *h;
1801 enum ip_conntrack_info ctinfo;
1802 struct nf_conntrack_zone tmp;
1803 u32 hash, zone_id, rid;
1804 struct nf_conn *ct;
1805
1806 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1807 dataoff, state->pf, protonum, state->net,
1808 &tuple)) {
1809 pr_debug("Can't get tuple\n");
1810 return 0;
1811 }
1812
1813 /* look for tuple match */
1814 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1815
1816 zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1817 hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1818 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1819
1820 if (!h) {
1821 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1822 if (zone_id != rid) {
1823 u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1824
1825 h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1826 }
1827 }
1828
1829 if (!h) {
1830 h = init_conntrack(state->net, tmpl, &tuple,
1831 skb, dataoff, hash);
1832 if (!h)
1833 return 0;
1834 if (IS_ERR(h))
1835 return PTR_ERR(h);
1836 }
1837 ct = nf_ct_tuplehash_to_ctrack(h);
1838
1839 /* It exists; we have (non-exclusive) reference. */
1840 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1841 ctinfo = IP_CT_ESTABLISHED_REPLY;
1842 } else {
1843 /* Once we've had two way comms, always ESTABLISHED. */
1844 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1845 pr_debug("normal packet for %p\n", ct);
1846 ctinfo = IP_CT_ESTABLISHED;
1847 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1848 pr_debug("related packet for %p\n", ct);
1849 ctinfo = IP_CT_RELATED;
1850 } else {
1851 pr_debug("new packet for %p\n", ct);
1852 ctinfo = IP_CT_NEW;
1853 }
1854 }
1855 nf_ct_set(skb, ct, ctinfo);
1856 return 0;
1857 }
1858
1859 /*
1860 * icmp packets need special treatment to handle error messages that are
1861 * related to a connection.
1862 *
1863 * Callers need to check if skb has a conntrack assigned when this
1864 * helper returns; in such case skb belongs to an already known connection.
1865 */
1866 static unsigned int __cold
1867 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1868 struct sk_buff *skb,
1869 unsigned int dataoff,
1870 u8 protonum,
1871 const struct nf_hook_state *state)
1872 {
1873 int ret;
1874
1875 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1876 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1877 #if IS_ENABLED(CONFIG_IPV6)
1878 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1879 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1880 #endif
1881 else
1882 return NF_ACCEPT;
1883
1884 if (ret <= 0)
1885 NF_CT_STAT_INC_ATOMIC(state->net, error);
1886
1887 return ret;
1888 }
1889
1890 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1891 enum ip_conntrack_info ctinfo)
1892 {
1893 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1894
1895 if (!timeout)
1896 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1897
1898 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1899 return NF_ACCEPT;
1900 }
1901
1902 /* Returns verdict for packet, or -1 for invalid. */
1903 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1904 struct sk_buff *skb,
1905 unsigned int dataoff,
1906 enum ip_conntrack_info ctinfo,
1907 const struct nf_hook_state *state)
1908 {
1909 switch (nf_ct_protonum(ct)) {
1910 case IPPROTO_TCP:
1911 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1912 ctinfo, state);
1913 case IPPROTO_UDP:
1914 return nf_conntrack_udp_packet(ct, skb, dataoff,
1915 ctinfo, state);
1916 case IPPROTO_ICMP:
1917 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1918 #if IS_ENABLED(CONFIG_IPV6)
1919 case IPPROTO_ICMPV6:
1920 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1921 #endif
1922 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1923 case IPPROTO_UDPLITE:
1924 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1925 ctinfo, state);
1926 #endif
1927 #ifdef CONFIG_NF_CT_PROTO_SCTP
1928 case IPPROTO_SCTP:
1929 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1930 ctinfo, state);
1931 #endif
1932 #ifdef CONFIG_NF_CT_PROTO_DCCP
1933 case IPPROTO_DCCP:
1934 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1935 ctinfo, state);
1936 #endif
1937 #ifdef CONFIG_NF_CT_PROTO_GRE
1938 case IPPROTO_GRE:
1939 return nf_conntrack_gre_packet(ct, skb, dataoff,
1940 ctinfo, state);
1941 #endif
1942 }
1943
1944 return generic_packet(ct, skb, ctinfo);
1945 }
1946
1947 unsigned int
1948 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1949 {
1950 enum ip_conntrack_info ctinfo;
1951 struct nf_conn *ct, *tmpl;
1952 u_int8_t protonum;
1953 int dataoff, ret;
1954
1955 tmpl = nf_ct_get(skb, &ctinfo);
1956 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1957 /* Previously seen (loopback or untracked)? Ignore. */
1958 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1959 ctinfo == IP_CT_UNTRACKED)
1960 return NF_ACCEPT;
1961 skb->_nfct = 0;
1962 }
1963
1964 /* rcu_read_lock()ed by nf_hook_thresh */
1965 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1966 if (dataoff <= 0) {
1967 pr_debug("not prepared to track yet or error occurred\n");
1968 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1969 ret = NF_ACCEPT;
1970 goto out;
1971 }
1972
1973 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1974 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1975 protonum, state);
1976 if (ret <= 0) {
1977 ret = -ret;
1978 goto out;
1979 }
1980 /* ICMP[v6] protocol trackers may assign one conntrack. */
1981 if (skb->_nfct)
1982 goto out;
1983 }
1984 repeat:
1985 ret = resolve_normal_ct(tmpl, skb, dataoff,
1986 protonum, state);
1987 if (ret < 0) {
1988 /* Too stressed to deal. */
1989 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1990 ret = NF_DROP;
1991 goto out;
1992 }
1993
1994 ct = nf_ct_get(skb, &ctinfo);
1995 if (!ct) {
1996 /* Not valid part of a connection */
1997 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1998 ret = NF_ACCEPT;
1999 goto out;
2000 }
2001
2002 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2003 if (ret <= 0) {
2004 /* Invalid: inverse of the return code tells
2005 * the netfilter core what to do */
2006 pr_debug("nf_conntrack_in: Can't track with proto module\n");
2007 nf_ct_put(ct);
2008 skb->_nfct = 0;
2009 /* Special case: TCP tracker reports an attempt to reopen a
2010 * closed/aborted connection. We have to go back and create a
2011 * fresh conntrack.
2012 */
2013 if (ret == -NF_REPEAT)
2014 goto repeat;
2015
2016 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2017 if (ret == -NF_DROP)
2018 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2019
2020 ret = -ret;
2021 goto out;
2022 }
2023
2024 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2025 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2026 nf_conntrack_event_cache(IPCT_REPLY, ct);
2027 out:
2028 if (tmpl)
2029 nf_ct_put(tmpl);
2030
2031 return ret;
2032 }
2033 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2034
2035 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
2036 implicitly racy: see __nf_conntrack_confirm */
2037 void nf_conntrack_alter_reply(struct nf_conn *ct,
2038 const struct nf_conntrack_tuple *newreply)
2039 {
2040 struct nf_conn_help *help = nfct_help(ct);
2041
2042 /* Should be unconfirmed, so not in hash table yet */
2043 WARN_ON(nf_ct_is_confirmed(ct));
2044
2045 pr_debug("Altering reply tuple of %p to ", ct);
2046 nf_ct_dump_tuple(newreply);
2047
2048 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2049 if (ct->master || (help && !hlist_empty(&help->expectations)))
2050 return;
2051
2052 rcu_read_lock();
2053 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
2054 rcu_read_unlock();
2055 }
2056 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2057
2058 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
2059 void __nf_ct_refresh_acct(struct nf_conn *ct,
2060 enum ip_conntrack_info ctinfo,
2061 const struct sk_buff *skb,
2062 u32 extra_jiffies,
2063 bool do_acct)
2064 {
2065 /* Only update if this is not a fixed timeout */
2066 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2067 goto acct;
2068
2069 /* If not in hash table, timer will not be active yet */
2070 if (nf_ct_is_confirmed(ct))
2071 extra_jiffies += nfct_time_stamp;
2072
2073 if (READ_ONCE(ct->timeout) != extra_jiffies)
2074 WRITE_ONCE(ct->timeout, extra_jiffies);
2075 acct:
2076 if (do_acct)
2077 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2078 }
2079 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2080
2081 bool nf_ct_kill_acct(struct nf_conn *ct,
2082 enum ip_conntrack_info ctinfo,
2083 const struct sk_buff *skb)
2084 {
2085 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2086
2087 return nf_ct_delete(ct, 0, 0);
2088 }
2089 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2090
2091 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2092
2093 #include <linux/netfilter/nfnetlink.h>
2094 #include <linux/netfilter/nfnetlink_conntrack.h>
2095 #include <linux/mutex.h>
2096
2097 /* Generic function for tcp/udp/sctp/dccp and alike. */
2098 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2099 const struct nf_conntrack_tuple *tuple)
2100 {
2101 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2102 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2103 goto nla_put_failure;
2104 return 0;
2105
2106 nla_put_failure:
2107 return -1;
2108 }
2109 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2110
2111 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2112 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2113 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2114 };
2115 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2116
2117 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2118 struct nf_conntrack_tuple *t,
2119 u_int32_t flags)
2120 {
2121 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2122 if (!tb[CTA_PROTO_SRC_PORT])
2123 return -EINVAL;
2124
2125 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2126 }
2127
2128 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2129 if (!tb[CTA_PROTO_DST_PORT])
2130 return -EINVAL;
2131
2132 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2133 }
2134
2135 return 0;
2136 }
2137 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2138
2139 unsigned int nf_ct_port_nlattr_tuple_size(void)
2140 {
2141 static unsigned int size __read_mostly;
2142
2143 if (!size)
2144 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2145
2146 return size;
2147 }
2148 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2149 #endif
2150
2151 /* Used by ipt_REJECT and ip6t_REJECT. */
2152 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2153 {
2154 struct nf_conn *ct;
2155 enum ip_conntrack_info ctinfo;
2156
2157 /* This ICMP is in reverse direction to the packet which caused it */
2158 ct = nf_ct_get(skb, &ctinfo);
2159 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2160 ctinfo = IP_CT_RELATED_REPLY;
2161 else
2162 ctinfo = IP_CT_RELATED;
2163
2164 /* Attach to new skbuff, and increment count */
2165 nf_ct_set(nskb, ct, ctinfo);
2166 nf_conntrack_get(skb_nfct(nskb));
2167 }
2168
2169 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2170 struct nf_conn *ct,
2171 enum ip_conntrack_info ctinfo)
2172 {
2173 const struct nf_nat_hook *nat_hook;
2174 struct nf_conntrack_tuple_hash *h;
2175 struct nf_conntrack_tuple tuple;
2176 unsigned int status;
2177 int dataoff;
2178 u16 l3num;
2179 u8 l4num;
2180
2181 l3num = nf_ct_l3num(ct);
2182
2183 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2184 if (dataoff <= 0)
2185 return -1;
2186
2187 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2188 l4num, net, &tuple))
2189 return -1;
2190
2191 if (ct->status & IPS_SRC_NAT) {
2192 memcpy(tuple.src.u3.all,
2193 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2194 sizeof(tuple.src.u3.all));
2195 tuple.src.u.all =
2196 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2197 }
2198
2199 if (ct->status & IPS_DST_NAT) {
2200 memcpy(tuple.dst.u3.all,
2201 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2202 sizeof(tuple.dst.u3.all));
2203 tuple.dst.u.all =
2204 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2205 }
2206
2207 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2208 if (!h)
2209 return 0;
2210
2211 /* Store status bits of the conntrack that is clashing to re-do NAT
2212 * mangling according to what it has been done already to this packet.
2213 */
2214 status = ct->status;
2215
2216 nf_ct_put(ct);
2217 ct = nf_ct_tuplehash_to_ctrack(h);
2218 nf_ct_set(skb, ct, ctinfo);
2219
2220 nat_hook = rcu_dereference(nf_nat_hook);
2221 if (!nat_hook)
2222 return 0;
2223
2224 if (status & IPS_SRC_NAT &&
2225 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2226 IP_CT_DIR_ORIGINAL) == NF_DROP)
2227 return -1;
2228
2229 if (status & IPS_DST_NAT &&
2230 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2231 IP_CT_DIR_ORIGINAL) == NF_DROP)
2232 return -1;
2233
2234 return 0;
2235 }
2236
2237 /* This packet is coming from userspace via nf_queue, complete the packet
2238 * processing after the helper invocation in nf_confirm().
2239 */
2240 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2241 enum ip_conntrack_info ctinfo)
2242 {
2243 const struct nf_conntrack_helper *helper;
2244 const struct nf_conn_help *help;
2245 int protoff;
2246
2247 help = nfct_help(ct);
2248 if (!help)
2249 return 0;
2250
2251 helper = rcu_dereference(help->helper);
2252 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2253 return 0;
2254
2255 switch (nf_ct_l3num(ct)) {
2256 case NFPROTO_IPV4:
2257 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2258 break;
2259 #if IS_ENABLED(CONFIG_IPV6)
2260 case NFPROTO_IPV6: {
2261 __be16 frag_off;
2262 u8 pnum;
2263
2264 pnum = ipv6_hdr(skb)->nexthdr;
2265 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2266 &frag_off);
2267 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2268 return 0;
2269 break;
2270 }
2271 #endif
2272 default:
2273 return 0;
2274 }
2275
2276 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2277 !nf_is_loopback_packet(skb)) {
2278 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2279 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2280 return -1;
2281 }
2282 }
2283
2284 /* We've seen it coming out the other side: confirm it */
2285 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2286 }
2287
2288 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2289 {
2290 enum ip_conntrack_info ctinfo;
2291 struct nf_conn *ct;
2292 int err;
2293
2294 ct = nf_ct_get(skb, &ctinfo);
2295 if (!ct)
2296 return 0;
2297
2298 if (!nf_ct_is_confirmed(ct)) {
2299 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2300 if (err < 0)
2301 return err;
2302
2303 ct = nf_ct_get(skb, &ctinfo);
2304 }
2305
2306 return nf_confirm_cthelper(skb, ct, ctinfo);
2307 }
2308
2309 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2310 const struct sk_buff *skb)
2311 {
2312 const struct nf_conntrack_tuple *src_tuple;
2313 const struct nf_conntrack_tuple_hash *hash;
2314 struct nf_conntrack_tuple srctuple;
2315 enum ip_conntrack_info ctinfo;
2316 struct nf_conn *ct;
2317
2318 ct = nf_ct_get(skb, &ctinfo);
2319 if (ct) {
2320 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2321 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2322 return true;
2323 }
2324
2325 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2326 NFPROTO_IPV4, dev_net(skb->dev),
2327 &srctuple))
2328 return false;
2329
2330 hash = nf_conntrack_find_get(dev_net(skb->dev),
2331 &nf_ct_zone_dflt,
2332 &srctuple);
2333 if (!hash)
2334 return false;
2335
2336 ct = nf_ct_tuplehash_to_ctrack(hash);
2337 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2338 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2339 nf_ct_put(ct);
2340
2341 return true;
2342 }
2343
2344 /* Bring out ya dead! */
2345 static struct nf_conn *
2346 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2347 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2348 {
2349 struct nf_conntrack_tuple_hash *h;
2350 struct nf_conn *ct;
2351 struct hlist_nulls_node *n;
2352 spinlock_t *lockp;
2353
2354 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2355 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2356
2357 if (hlist_nulls_empty(hslot))
2358 continue;
2359
2360 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2361 local_bh_disable();
2362 nf_conntrack_lock(lockp);
2363 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2364 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2365 continue;
2366 /* All nf_conn objects are added to hash table twice, one
2367 * for original direction tuple, once for the reply tuple.
2368 *
2369 * Exception: In the IPS_NAT_CLASH case, only the reply
2370 * tuple is added (the original tuple already existed for
2371 * a different object).
2372 *
2373 * We only need to call the iterator once for each
2374 * conntrack, so we just use the 'reply' direction
2375 * tuple while iterating.
2376 */
2377 ct = nf_ct_tuplehash_to_ctrack(h);
2378
2379 if (iter_data->net &&
2380 !net_eq(iter_data->net, nf_ct_net(ct)))
2381 continue;
2382
2383 if (iter(ct, iter_data->data))
2384 goto found;
2385 }
2386 spin_unlock(lockp);
2387 local_bh_enable();
2388 cond_resched();
2389 }
2390
2391 return NULL;
2392 found:
2393 refcount_inc(&ct->ct_general.use);
2394 spin_unlock(lockp);
2395 local_bh_enable();
2396 return ct;
2397 }
2398
2399 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2400 const struct nf_ct_iter_data *iter_data)
2401 {
2402 unsigned int bucket = 0;
2403 struct nf_conn *ct;
2404
2405 might_sleep();
2406
2407 mutex_lock(&nf_conntrack_mutex);
2408 while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2409 /* Time to push up daises... */
2410
2411 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2412 nf_ct_put(ct);
2413 cond_resched();
2414 }
2415 mutex_unlock(&nf_conntrack_mutex);
2416 }
2417
2418 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2419 const struct nf_ct_iter_data *iter_data)
2420 {
2421 struct net *net = iter_data->net;
2422 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2423
2424 might_sleep();
2425
2426 if (atomic_read(&cnet->count) == 0)
2427 return;
2428
2429 nf_ct_iterate_cleanup(iter, iter_data);
2430 }
2431 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2432
2433 /**
2434 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2435 * @iter: callback to invoke for each conntrack
2436 * @data: data to pass to @iter
2437 *
2438 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2439 * unconfirmed list as dying (so they will not be inserted into
2440 * main table).
2441 *
2442 * Can only be called in module exit path.
2443 */
2444 void
2445 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2446 {
2447 struct nf_ct_iter_data iter_data = {};
2448 struct net *net;
2449
2450 down_read(&net_rwsem);
2451 for_each_net(net) {
2452 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2453
2454 if (atomic_read(&cnet->count) == 0)
2455 continue;
2456 nf_queue_nf_hook_drop(net);
2457 }
2458 up_read(&net_rwsem);
2459
2460 /* Need to wait for netns cleanup worker to finish, if its
2461 * running -- it might have deleted a net namespace from
2462 * the global list, so hook drop above might not have
2463 * affected all namespaces.
2464 */
2465 net_ns_barrier();
2466
2467 /* a skb w. unconfirmed conntrack could have been reinjected just
2468 * before we called nf_queue_nf_hook_drop().
2469 *
2470 * This makes sure its inserted into conntrack table.
2471 */
2472 synchronize_net();
2473
2474 nf_ct_ext_bump_genid();
2475 iter_data.data = data;
2476 nf_ct_iterate_cleanup(iter, &iter_data);
2477
2478 /* Another cpu might be in a rcu read section with
2479 * rcu protected pointer cleared in iter callback
2480 * or hidden via nf_ct_ext_bump_genid() above.
2481 *
2482 * Wait until those are done.
2483 */
2484 synchronize_rcu();
2485 }
2486 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2487
2488 static int kill_all(struct nf_conn *i, void *data)
2489 {
2490 return 1;
2491 }
2492
2493 void nf_conntrack_cleanup_start(void)
2494 {
2495 conntrack_gc_work.exiting = true;
2496 }
2497
2498 void nf_conntrack_cleanup_end(void)
2499 {
2500 RCU_INIT_POINTER(nf_ct_hook, NULL);
2501 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2502 kvfree(nf_conntrack_hash);
2503
2504 nf_conntrack_proto_fini();
2505 nf_conntrack_helper_fini();
2506 nf_conntrack_expect_fini();
2507
2508 kmem_cache_destroy(nf_conntrack_cachep);
2509 }
2510
2511 /*
2512 * Mishearing the voices in his head, our hero wonders how he's
2513 * supposed to kill the mall.
2514 */
2515 void nf_conntrack_cleanup_net(struct net *net)
2516 {
2517 LIST_HEAD(single);
2518
2519 list_add(&net->exit_list, &single);
2520 nf_conntrack_cleanup_net_list(&single);
2521 }
2522
2523 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2524 {
2525 struct nf_ct_iter_data iter_data = {};
2526 struct net *net;
2527 int busy;
2528
2529 /*
2530 * This makes sure all current packets have passed through
2531 * netfilter framework. Roll on, two-stage module
2532 * delete...
2533 */
2534 synchronize_net();
2535 i_see_dead_people:
2536 busy = 0;
2537 list_for_each_entry(net, net_exit_list, exit_list) {
2538 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2539
2540 iter_data.net = net;
2541 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2542 if (atomic_read(&cnet->count) != 0)
2543 busy = 1;
2544 }
2545 if (busy) {
2546 schedule();
2547 goto i_see_dead_people;
2548 }
2549
2550 list_for_each_entry(net, net_exit_list, exit_list) {
2551 nf_conntrack_ecache_pernet_fini(net);
2552 nf_conntrack_expect_pernet_fini(net);
2553 free_percpu(net->ct.stat);
2554 }
2555 }
2556
2557 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2558 {
2559 struct hlist_nulls_head *hash;
2560 unsigned int nr_slots, i;
2561
2562 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2563 return NULL;
2564
2565 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2566 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2567
2568 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2569
2570 if (hash && nulls)
2571 for (i = 0; i < nr_slots; i++)
2572 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2573
2574 return hash;
2575 }
2576 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2577
2578 int nf_conntrack_hash_resize(unsigned int hashsize)
2579 {
2580 int i, bucket;
2581 unsigned int old_size;
2582 struct hlist_nulls_head *hash, *old_hash;
2583 struct nf_conntrack_tuple_hash *h;
2584 struct nf_conn *ct;
2585
2586 if (!hashsize)
2587 return -EINVAL;
2588
2589 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2590 if (!hash)
2591 return -ENOMEM;
2592
2593 mutex_lock(&nf_conntrack_mutex);
2594 old_size = nf_conntrack_htable_size;
2595 if (old_size == hashsize) {
2596 mutex_unlock(&nf_conntrack_mutex);
2597 kvfree(hash);
2598 return 0;
2599 }
2600
2601 local_bh_disable();
2602 nf_conntrack_all_lock();
2603 write_seqcount_begin(&nf_conntrack_generation);
2604
2605 /* Lookups in the old hash might happen in parallel, which means we
2606 * might get false negatives during connection lookup. New connections
2607 * created because of a false negative won't make it into the hash
2608 * though since that required taking the locks.
2609 */
2610
2611 for (i = 0; i < nf_conntrack_htable_size; i++) {
2612 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2613 unsigned int zone_id;
2614
2615 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2616 struct nf_conntrack_tuple_hash, hnnode);
2617 ct = nf_ct_tuplehash_to_ctrack(h);
2618 hlist_nulls_del_rcu(&h->hnnode);
2619
2620 zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2621 bucket = __hash_conntrack(nf_ct_net(ct),
2622 &h->tuple, zone_id, hashsize);
2623 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2624 }
2625 }
2626 old_hash = nf_conntrack_hash;
2627
2628 nf_conntrack_hash = hash;
2629 nf_conntrack_htable_size = hashsize;
2630
2631 write_seqcount_end(&nf_conntrack_generation);
2632 nf_conntrack_all_unlock();
2633 local_bh_enable();
2634
2635 mutex_unlock(&nf_conntrack_mutex);
2636
2637 synchronize_net();
2638 kvfree(old_hash);
2639 return 0;
2640 }
2641
2642 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2643 {
2644 unsigned int hashsize;
2645 int rc;
2646
2647 if (current->nsproxy->net_ns != &init_net)
2648 return -EOPNOTSUPP;
2649
2650 /* On boot, we can set this without any fancy locking. */
2651 if (!nf_conntrack_hash)
2652 return param_set_uint(val, kp);
2653
2654 rc = kstrtouint(val, 0, &hashsize);
2655 if (rc)
2656 return rc;
2657
2658 return nf_conntrack_hash_resize(hashsize);
2659 }
2660
2661 int nf_conntrack_init_start(void)
2662 {
2663 unsigned long nr_pages = totalram_pages();
2664 int max_factor = 8;
2665 int ret = -ENOMEM;
2666 int i;
2667
2668 seqcount_spinlock_init(&nf_conntrack_generation,
2669 &nf_conntrack_locks_all_lock);
2670
2671 for (i = 0; i < CONNTRACK_LOCKS; i++)
2672 spin_lock_init(&nf_conntrack_locks[i]);
2673
2674 if (!nf_conntrack_htable_size) {
2675 nf_conntrack_htable_size
2676 = (((nr_pages << PAGE_SHIFT) / 16384)
2677 / sizeof(struct hlist_head));
2678 if (BITS_PER_LONG >= 64 &&
2679 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2680 nf_conntrack_htable_size = 262144;
2681 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2682 nf_conntrack_htable_size = 65536;
2683
2684 if (nf_conntrack_htable_size < 1024)
2685 nf_conntrack_htable_size = 1024;
2686 /* Use a max. factor of one by default to keep the average
2687 * hash chain length at 2 entries. Each entry has to be added
2688 * twice (once for original direction, once for reply).
2689 * When a table size is given we use the old value of 8 to
2690 * avoid implicit reduction of the max entries setting.
2691 */
2692 max_factor = 1;
2693 }
2694
2695 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2696 if (!nf_conntrack_hash)
2697 return -ENOMEM;
2698
2699 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2700
2701 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2702 sizeof(struct nf_conn),
2703 NFCT_INFOMASK + 1,
2704 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2705 if (!nf_conntrack_cachep)
2706 goto err_cachep;
2707
2708 ret = nf_conntrack_expect_init();
2709 if (ret < 0)
2710 goto err_expect;
2711
2712 ret = nf_conntrack_helper_init();
2713 if (ret < 0)
2714 goto err_helper;
2715
2716 ret = nf_conntrack_proto_init();
2717 if (ret < 0)
2718 goto err_proto;
2719
2720 conntrack_gc_work_init(&conntrack_gc_work);
2721 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2722
2723 ret = register_nf_conntrack_bpf();
2724 if (ret < 0)
2725 goto err_kfunc;
2726
2727 return 0;
2728
2729 err_kfunc:
2730 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2731 nf_conntrack_proto_fini();
2732 err_proto:
2733 nf_conntrack_helper_fini();
2734 err_helper:
2735 nf_conntrack_expect_fini();
2736 err_expect:
2737 kmem_cache_destroy(nf_conntrack_cachep);
2738 err_cachep:
2739 kvfree(nf_conntrack_hash);
2740 return ret;
2741 }
2742
2743 static const struct nf_ct_hook nf_conntrack_hook = {
2744 .update = nf_conntrack_update,
2745 .destroy = nf_ct_destroy,
2746 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2747 .attach = nf_conntrack_attach,
2748 };
2749
2750 void nf_conntrack_init_end(void)
2751 {
2752 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2753 }
2754
2755 /*
2756 * We need to use special "null" values, not used in hash table
2757 */
2758 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2759
2760 int nf_conntrack_init_net(struct net *net)
2761 {
2762 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2763 int ret = -ENOMEM;
2764
2765 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2766 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2767 atomic_set(&cnet->count, 0);
2768
2769 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2770 if (!net->ct.stat)
2771 return ret;
2772
2773 ret = nf_conntrack_expect_pernet_init(net);
2774 if (ret < 0)
2775 goto err_expect;
2776
2777 nf_conntrack_acct_pernet_init(net);
2778 nf_conntrack_tstamp_pernet_init(net);
2779 nf_conntrack_ecache_pernet_init(net);
2780 nf_conntrack_helper_pernet_init(net);
2781 nf_conntrack_proto_pernet_init(net);
2782
2783 return 0;
2784
2785 err_expect:
2786 free_percpu(net->ct.stat);
2787 return ret;
2788 }