]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/netfilter/nf_nat_core.c
ipvs: Fix use-after-free in ip_vs_in
[mirror_ubuntu-jammy-kernel.git] / net / netfilter / nf_nat_core.c
1 /*
2 * (C) 1999-2001 Paul `Rusty' Russell
3 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
4 * (C) 2011 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/module.h>
14 #include <linux/types.h>
15 #include <linux/timer.h>
16 #include <linux/skbuff.h>
17 #include <linux/gfp.h>
18 #include <net/xfrm.h>
19 #include <linux/jhash.h>
20 #include <linux/rtnetlink.h>
21
22 #include <net/netfilter/nf_conntrack.h>
23 #include <net/netfilter/nf_conntrack_core.h>
24 #include <net/netfilter/nf_nat.h>
25 #include <net/netfilter/nf_nat_helper.h>
26 #include <net/netfilter/nf_conntrack_helper.h>
27 #include <net/netfilter/nf_conntrack_seqadj.h>
28 #include <net/netfilter/nf_conntrack_zones.h>
29 #include <linux/netfilter/nf_nat.h>
30
31 #include "nf_internals.h"
32
33 static spinlock_t nf_nat_locks[CONNTRACK_LOCKS];
34
35 static DEFINE_MUTEX(nf_nat_proto_mutex);
36 static unsigned int nat_net_id __read_mostly;
37
38 static struct hlist_head *nf_nat_bysource __read_mostly;
39 static unsigned int nf_nat_htable_size __read_mostly;
40 static unsigned int nf_nat_hash_rnd __read_mostly;
41
42 struct nf_nat_lookup_hook_priv {
43 struct nf_hook_entries __rcu *entries;
44
45 struct rcu_head rcu_head;
46 };
47
48 struct nf_nat_hooks_net {
49 struct nf_hook_ops *nat_hook_ops;
50 unsigned int users;
51 };
52
53 struct nat_net {
54 struct nf_nat_hooks_net nat_proto_net[NFPROTO_NUMPROTO];
55 };
56
57 #ifdef CONFIG_XFRM
58 static void nf_nat_ipv4_decode_session(struct sk_buff *skb,
59 const struct nf_conn *ct,
60 enum ip_conntrack_dir dir,
61 unsigned long statusbit,
62 struct flowi *fl)
63 {
64 const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
65 struct flowi4 *fl4 = &fl->u.ip4;
66
67 if (ct->status & statusbit) {
68 fl4->daddr = t->dst.u3.ip;
69 if (t->dst.protonum == IPPROTO_TCP ||
70 t->dst.protonum == IPPROTO_UDP ||
71 t->dst.protonum == IPPROTO_UDPLITE ||
72 t->dst.protonum == IPPROTO_DCCP ||
73 t->dst.protonum == IPPROTO_SCTP)
74 fl4->fl4_dport = t->dst.u.all;
75 }
76
77 statusbit ^= IPS_NAT_MASK;
78
79 if (ct->status & statusbit) {
80 fl4->saddr = t->src.u3.ip;
81 if (t->dst.protonum == IPPROTO_TCP ||
82 t->dst.protonum == IPPROTO_UDP ||
83 t->dst.protonum == IPPROTO_UDPLITE ||
84 t->dst.protonum == IPPROTO_DCCP ||
85 t->dst.protonum == IPPROTO_SCTP)
86 fl4->fl4_sport = t->src.u.all;
87 }
88 }
89
90 static void nf_nat_ipv6_decode_session(struct sk_buff *skb,
91 const struct nf_conn *ct,
92 enum ip_conntrack_dir dir,
93 unsigned long statusbit,
94 struct flowi *fl)
95 {
96 #if IS_ENABLED(CONFIG_IPV6)
97 const struct nf_conntrack_tuple *t = &ct->tuplehash[dir].tuple;
98 struct flowi6 *fl6 = &fl->u.ip6;
99
100 if (ct->status & statusbit) {
101 fl6->daddr = t->dst.u3.in6;
102 if (t->dst.protonum == IPPROTO_TCP ||
103 t->dst.protonum == IPPROTO_UDP ||
104 t->dst.protonum == IPPROTO_UDPLITE ||
105 t->dst.protonum == IPPROTO_DCCP ||
106 t->dst.protonum == IPPROTO_SCTP)
107 fl6->fl6_dport = t->dst.u.all;
108 }
109
110 statusbit ^= IPS_NAT_MASK;
111
112 if (ct->status & statusbit) {
113 fl6->saddr = t->src.u3.in6;
114 if (t->dst.protonum == IPPROTO_TCP ||
115 t->dst.protonum == IPPROTO_UDP ||
116 t->dst.protonum == IPPROTO_UDPLITE ||
117 t->dst.protonum == IPPROTO_DCCP ||
118 t->dst.protonum == IPPROTO_SCTP)
119 fl6->fl6_sport = t->src.u.all;
120 }
121 #endif
122 }
123
124 static void __nf_nat_decode_session(struct sk_buff *skb, struct flowi *fl)
125 {
126 const struct nf_conn *ct;
127 enum ip_conntrack_info ctinfo;
128 enum ip_conntrack_dir dir;
129 unsigned long statusbit;
130 u8 family;
131
132 ct = nf_ct_get(skb, &ctinfo);
133 if (ct == NULL)
134 return;
135
136 family = nf_ct_l3num(ct);
137 dir = CTINFO2DIR(ctinfo);
138 if (dir == IP_CT_DIR_ORIGINAL)
139 statusbit = IPS_DST_NAT;
140 else
141 statusbit = IPS_SRC_NAT;
142
143 switch (family) {
144 case NFPROTO_IPV4:
145 nf_nat_ipv4_decode_session(skb, ct, dir, statusbit, fl);
146 return;
147 case NFPROTO_IPV6:
148 nf_nat_ipv6_decode_session(skb, ct, dir, statusbit, fl);
149 return;
150 }
151 }
152
153 int nf_xfrm_me_harder(struct net *net, struct sk_buff *skb, unsigned int family)
154 {
155 struct flowi fl;
156 unsigned int hh_len;
157 struct dst_entry *dst;
158 struct sock *sk = skb->sk;
159 int err;
160
161 err = xfrm_decode_session(skb, &fl, family);
162 if (err < 0)
163 return err;
164
165 dst = skb_dst(skb);
166 if (dst->xfrm)
167 dst = ((struct xfrm_dst *)dst)->route;
168 if (!dst_hold_safe(dst))
169 return -EHOSTUNREACH;
170
171 if (sk && !net_eq(net, sock_net(sk)))
172 sk = NULL;
173
174 dst = xfrm_lookup(net, dst, &fl, sk, 0);
175 if (IS_ERR(dst))
176 return PTR_ERR(dst);
177
178 skb_dst_drop(skb);
179 skb_dst_set(skb, dst);
180
181 /* Change in oif may mean change in hh_len. */
182 hh_len = skb_dst(skb)->dev->hard_header_len;
183 if (skb_headroom(skb) < hh_len &&
184 pskb_expand_head(skb, hh_len - skb_headroom(skb), 0, GFP_ATOMIC))
185 return -ENOMEM;
186 return 0;
187 }
188 EXPORT_SYMBOL(nf_xfrm_me_harder);
189 #endif /* CONFIG_XFRM */
190
191 /* We keep an extra hash for each conntrack, for fast searching. */
192 static unsigned int
193 hash_by_src(const struct net *n, const struct nf_conntrack_tuple *tuple)
194 {
195 unsigned int hash;
196
197 get_random_once(&nf_nat_hash_rnd, sizeof(nf_nat_hash_rnd));
198
199 /* Original src, to ensure we map it consistently if poss. */
200 hash = jhash2((u32 *)&tuple->src, sizeof(tuple->src) / sizeof(u32),
201 tuple->dst.protonum ^ nf_nat_hash_rnd ^ net_hash_mix(n));
202
203 return reciprocal_scale(hash, nf_nat_htable_size);
204 }
205
206 /* Is this tuple already taken? (not by us) */
207 static int
208 nf_nat_used_tuple(const struct nf_conntrack_tuple *tuple,
209 const struct nf_conn *ignored_conntrack)
210 {
211 /* Conntrack tracking doesn't keep track of outgoing tuples; only
212 * incoming ones. NAT means they don't have a fixed mapping,
213 * so we invert the tuple and look for the incoming reply.
214 *
215 * We could keep a separate hash if this proves too slow.
216 */
217 struct nf_conntrack_tuple reply;
218
219 nf_ct_invert_tuple(&reply, tuple);
220 return nf_conntrack_tuple_taken(&reply, ignored_conntrack);
221 }
222
223 static bool nf_nat_inet_in_range(const struct nf_conntrack_tuple *t,
224 const struct nf_nat_range2 *range)
225 {
226 if (t->src.l3num == NFPROTO_IPV4)
227 return ntohl(t->src.u3.ip) >= ntohl(range->min_addr.ip) &&
228 ntohl(t->src.u3.ip) <= ntohl(range->max_addr.ip);
229
230 return ipv6_addr_cmp(&t->src.u3.in6, &range->min_addr.in6) >= 0 &&
231 ipv6_addr_cmp(&t->src.u3.in6, &range->max_addr.in6) <= 0;
232 }
233
234 /* Is the manipable part of the tuple between min and max incl? */
235 static bool l4proto_in_range(const struct nf_conntrack_tuple *tuple,
236 enum nf_nat_manip_type maniptype,
237 const union nf_conntrack_man_proto *min,
238 const union nf_conntrack_man_proto *max)
239 {
240 __be16 port;
241
242 switch (tuple->dst.protonum) {
243 case IPPROTO_ICMP:
244 case IPPROTO_ICMPV6:
245 return ntohs(tuple->src.u.icmp.id) >= ntohs(min->icmp.id) &&
246 ntohs(tuple->src.u.icmp.id) <= ntohs(max->icmp.id);
247 case IPPROTO_GRE: /* all fall though */
248 case IPPROTO_TCP:
249 case IPPROTO_UDP:
250 case IPPROTO_UDPLITE:
251 case IPPROTO_DCCP:
252 case IPPROTO_SCTP:
253 if (maniptype == NF_NAT_MANIP_SRC)
254 port = tuple->src.u.all;
255 else
256 port = tuple->dst.u.all;
257
258 return ntohs(port) >= ntohs(min->all) &&
259 ntohs(port) <= ntohs(max->all);
260 default:
261 return true;
262 }
263 }
264
265 /* If we source map this tuple so reply looks like reply_tuple, will
266 * that meet the constraints of range.
267 */
268 static int in_range(const struct nf_conntrack_tuple *tuple,
269 const struct nf_nat_range2 *range)
270 {
271 /* If we are supposed to map IPs, then we must be in the
272 * range specified, otherwise let this drag us onto a new src IP.
273 */
274 if (range->flags & NF_NAT_RANGE_MAP_IPS &&
275 !nf_nat_inet_in_range(tuple, range))
276 return 0;
277
278 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED))
279 return 1;
280
281 return l4proto_in_range(tuple, NF_NAT_MANIP_SRC,
282 &range->min_proto, &range->max_proto);
283 }
284
285 static inline int
286 same_src(const struct nf_conn *ct,
287 const struct nf_conntrack_tuple *tuple)
288 {
289 const struct nf_conntrack_tuple *t;
290
291 t = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
292 return (t->dst.protonum == tuple->dst.protonum &&
293 nf_inet_addr_cmp(&t->src.u3, &tuple->src.u3) &&
294 t->src.u.all == tuple->src.u.all);
295 }
296
297 /* Only called for SRC manip */
298 static int
299 find_appropriate_src(struct net *net,
300 const struct nf_conntrack_zone *zone,
301 const struct nf_conntrack_tuple *tuple,
302 struct nf_conntrack_tuple *result,
303 const struct nf_nat_range2 *range)
304 {
305 unsigned int h = hash_by_src(net, tuple);
306 const struct nf_conn *ct;
307
308 hlist_for_each_entry_rcu(ct, &nf_nat_bysource[h], nat_bysource) {
309 if (same_src(ct, tuple) &&
310 net_eq(net, nf_ct_net(ct)) &&
311 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL)) {
312 /* Copy source part from reply tuple. */
313 nf_ct_invert_tuple(result,
314 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
315 result->dst = tuple->dst;
316
317 if (in_range(result, range))
318 return 1;
319 }
320 }
321 return 0;
322 }
323
324 /* For [FUTURE] fragmentation handling, we want the least-used
325 * src-ip/dst-ip/proto triple. Fairness doesn't come into it. Thus
326 * if the range specifies 1.2.3.4 ports 10000-10005 and 1.2.3.5 ports
327 * 1-65535, we don't do pro-rata allocation based on ports; we choose
328 * the ip with the lowest src-ip/dst-ip/proto usage.
329 */
330 static void
331 find_best_ips_proto(const struct nf_conntrack_zone *zone,
332 struct nf_conntrack_tuple *tuple,
333 const struct nf_nat_range2 *range,
334 const struct nf_conn *ct,
335 enum nf_nat_manip_type maniptype)
336 {
337 union nf_inet_addr *var_ipp;
338 unsigned int i, max;
339 /* Host order */
340 u32 minip, maxip, j, dist;
341 bool full_range;
342
343 /* No IP mapping? Do nothing. */
344 if (!(range->flags & NF_NAT_RANGE_MAP_IPS))
345 return;
346
347 if (maniptype == NF_NAT_MANIP_SRC)
348 var_ipp = &tuple->src.u3;
349 else
350 var_ipp = &tuple->dst.u3;
351
352 /* Fast path: only one choice. */
353 if (nf_inet_addr_cmp(&range->min_addr, &range->max_addr)) {
354 *var_ipp = range->min_addr;
355 return;
356 }
357
358 if (nf_ct_l3num(ct) == NFPROTO_IPV4)
359 max = sizeof(var_ipp->ip) / sizeof(u32) - 1;
360 else
361 max = sizeof(var_ipp->ip6) / sizeof(u32) - 1;
362
363 /* Hashing source and destination IPs gives a fairly even
364 * spread in practice (if there are a small number of IPs
365 * involved, there usually aren't that many connections
366 * anyway). The consistency means that servers see the same
367 * client coming from the same IP (some Internet Banking sites
368 * like this), even across reboots.
369 */
370 j = jhash2((u32 *)&tuple->src.u3, sizeof(tuple->src.u3) / sizeof(u32),
371 range->flags & NF_NAT_RANGE_PERSISTENT ?
372 0 : (__force u32)tuple->dst.u3.all[max] ^ zone->id);
373
374 full_range = false;
375 for (i = 0; i <= max; i++) {
376 /* If first bytes of the address are at the maximum, use the
377 * distance. Otherwise use the full range.
378 */
379 if (!full_range) {
380 minip = ntohl((__force __be32)range->min_addr.all[i]);
381 maxip = ntohl((__force __be32)range->max_addr.all[i]);
382 dist = maxip - minip + 1;
383 } else {
384 minip = 0;
385 dist = ~0;
386 }
387
388 var_ipp->all[i] = (__force __u32)
389 htonl(minip + reciprocal_scale(j, dist));
390 if (var_ipp->all[i] != range->max_addr.all[i])
391 full_range = true;
392
393 if (!(range->flags & NF_NAT_RANGE_PERSISTENT))
394 j ^= (__force u32)tuple->dst.u3.all[i];
395 }
396 }
397
398 /* Alter the per-proto part of the tuple (depending on maniptype), to
399 * give a unique tuple in the given range if possible.
400 *
401 * Per-protocol part of tuple is initialized to the incoming packet.
402 */
403 static void nf_nat_l4proto_unique_tuple(struct nf_conntrack_tuple *tuple,
404 const struct nf_nat_range2 *range,
405 enum nf_nat_manip_type maniptype,
406 const struct nf_conn *ct)
407 {
408 unsigned int range_size, min, max, i, attempts;
409 __be16 *keyptr;
410 u16 off;
411 static const unsigned int max_attempts = 128;
412
413 switch (tuple->dst.protonum) {
414 case IPPROTO_ICMP: /* fallthrough */
415 case IPPROTO_ICMPV6:
416 /* id is same for either direction... */
417 keyptr = &tuple->src.u.icmp.id;
418 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
419 min = 0;
420 range_size = 65536;
421 } else {
422 min = ntohs(range->min_proto.icmp.id);
423 range_size = ntohs(range->max_proto.icmp.id) -
424 ntohs(range->min_proto.icmp.id) + 1;
425 }
426 goto find_free_id;
427 #if IS_ENABLED(CONFIG_NF_CT_PROTO_GRE)
428 case IPPROTO_GRE:
429 /* If there is no master conntrack we are not PPTP,
430 do not change tuples */
431 if (!ct->master)
432 return;
433
434 if (maniptype == NF_NAT_MANIP_SRC)
435 keyptr = &tuple->src.u.gre.key;
436 else
437 keyptr = &tuple->dst.u.gre.key;
438
439 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
440 min = 1;
441 range_size = 65535;
442 } else {
443 min = ntohs(range->min_proto.gre.key);
444 range_size = ntohs(range->max_proto.gre.key) - min + 1;
445 }
446 goto find_free_id;
447 #endif
448 case IPPROTO_UDP: /* fallthrough */
449 case IPPROTO_UDPLITE: /* fallthrough */
450 case IPPROTO_TCP: /* fallthrough */
451 case IPPROTO_SCTP: /* fallthrough */
452 case IPPROTO_DCCP: /* fallthrough */
453 if (maniptype == NF_NAT_MANIP_SRC)
454 keyptr = &tuple->src.u.all;
455 else
456 keyptr = &tuple->dst.u.all;
457
458 break;
459 default:
460 return;
461 }
462
463 /* If no range specified... */
464 if (!(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
465 /* If it's dst rewrite, can't change port */
466 if (maniptype == NF_NAT_MANIP_DST)
467 return;
468
469 if (ntohs(*keyptr) < 1024) {
470 /* Loose convention: >> 512 is credential passing */
471 if (ntohs(*keyptr) < 512) {
472 min = 1;
473 range_size = 511 - min + 1;
474 } else {
475 min = 600;
476 range_size = 1023 - min + 1;
477 }
478 } else {
479 min = 1024;
480 range_size = 65535 - 1024 + 1;
481 }
482 } else {
483 min = ntohs(range->min_proto.all);
484 max = ntohs(range->max_proto.all);
485 if (unlikely(max < min))
486 swap(max, min);
487 range_size = max - min + 1;
488 }
489
490 find_free_id:
491 if (range->flags & NF_NAT_RANGE_PROTO_OFFSET)
492 off = (ntohs(*keyptr) - ntohs(range->base_proto.all));
493 else
494 off = prandom_u32();
495
496 attempts = range_size;
497 if (attempts > max_attempts)
498 attempts = max_attempts;
499
500 /* We are in softirq; doing a search of the entire range risks
501 * soft lockup when all tuples are already used.
502 *
503 * If we can't find any free port from first offset, pick a new
504 * one and try again, with ever smaller search window.
505 */
506 another_round:
507 for (i = 0; i < attempts; i++, off++) {
508 *keyptr = htons(min + off % range_size);
509 if (!nf_nat_used_tuple(tuple, ct))
510 return;
511 }
512
513 if (attempts >= range_size || attempts < 16)
514 return;
515 attempts /= 2;
516 off = prandom_u32();
517 goto another_round;
518 }
519
520 /* Manipulate the tuple into the range given. For NF_INET_POST_ROUTING,
521 * we change the source to map into the range. For NF_INET_PRE_ROUTING
522 * and NF_INET_LOCAL_OUT, we change the destination to map into the
523 * range. It might not be possible to get a unique tuple, but we try.
524 * At worst (or if we race), we will end up with a final duplicate in
525 * __ip_conntrack_confirm and drop the packet. */
526 static void
527 get_unique_tuple(struct nf_conntrack_tuple *tuple,
528 const struct nf_conntrack_tuple *orig_tuple,
529 const struct nf_nat_range2 *range,
530 struct nf_conn *ct,
531 enum nf_nat_manip_type maniptype)
532 {
533 const struct nf_conntrack_zone *zone;
534 struct net *net = nf_ct_net(ct);
535
536 zone = nf_ct_zone(ct);
537
538 /* 1) If this srcip/proto/src-proto-part is currently mapped,
539 * and that same mapping gives a unique tuple within the given
540 * range, use that.
541 *
542 * This is only required for source (ie. NAT/masq) mappings.
543 * So far, we don't do local source mappings, so multiple
544 * manips not an issue.
545 */
546 if (maniptype == NF_NAT_MANIP_SRC &&
547 !(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
548 /* try the original tuple first */
549 if (in_range(orig_tuple, range)) {
550 if (!nf_nat_used_tuple(orig_tuple, ct)) {
551 *tuple = *orig_tuple;
552 return;
553 }
554 } else if (find_appropriate_src(net, zone,
555 orig_tuple, tuple, range)) {
556 pr_debug("get_unique_tuple: Found current src map\n");
557 if (!nf_nat_used_tuple(tuple, ct))
558 return;
559 }
560 }
561
562 /* 2) Select the least-used IP/proto combination in the given range */
563 *tuple = *orig_tuple;
564 find_best_ips_proto(zone, tuple, range, ct, maniptype);
565
566 /* 3) The per-protocol part of the manip is made to map into
567 * the range to make a unique tuple.
568 */
569
570 /* Only bother mapping if it's not already in range and unique */
571 if (!(range->flags & NF_NAT_RANGE_PROTO_RANDOM_ALL)) {
572 if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
573 if (!(range->flags & NF_NAT_RANGE_PROTO_OFFSET) &&
574 l4proto_in_range(tuple, maniptype,
575 &range->min_proto,
576 &range->max_proto) &&
577 (range->min_proto.all == range->max_proto.all ||
578 !nf_nat_used_tuple(tuple, ct)))
579 return;
580 } else if (!nf_nat_used_tuple(tuple, ct)) {
581 return;
582 }
583 }
584
585 /* Last chance: get protocol to try to obtain unique tuple. */
586 nf_nat_l4proto_unique_tuple(tuple, range, maniptype, ct);
587 }
588
589 struct nf_conn_nat *nf_ct_nat_ext_add(struct nf_conn *ct)
590 {
591 struct nf_conn_nat *nat = nfct_nat(ct);
592 if (nat)
593 return nat;
594
595 if (!nf_ct_is_confirmed(ct))
596 nat = nf_ct_ext_add(ct, NF_CT_EXT_NAT, GFP_ATOMIC);
597
598 return nat;
599 }
600 EXPORT_SYMBOL_GPL(nf_ct_nat_ext_add);
601
602 unsigned int
603 nf_nat_setup_info(struct nf_conn *ct,
604 const struct nf_nat_range2 *range,
605 enum nf_nat_manip_type maniptype)
606 {
607 struct net *net = nf_ct_net(ct);
608 struct nf_conntrack_tuple curr_tuple, new_tuple;
609
610 /* Can't setup nat info for confirmed ct. */
611 if (nf_ct_is_confirmed(ct))
612 return NF_ACCEPT;
613
614 WARN_ON(maniptype != NF_NAT_MANIP_SRC &&
615 maniptype != NF_NAT_MANIP_DST);
616
617 if (WARN_ON(nf_nat_initialized(ct, maniptype)))
618 return NF_DROP;
619
620 /* What we've got will look like inverse of reply. Normally
621 * this is what is in the conntrack, except for prior
622 * manipulations (future optimization: if num_manips == 0,
623 * orig_tp = ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple)
624 */
625 nf_ct_invert_tuple(&curr_tuple,
626 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
627
628 get_unique_tuple(&new_tuple, &curr_tuple, range, ct, maniptype);
629
630 if (!nf_ct_tuple_equal(&new_tuple, &curr_tuple)) {
631 struct nf_conntrack_tuple reply;
632
633 /* Alter conntrack table so will recognize replies. */
634 nf_ct_invert_tuple(&reply, &new_tuple);
635 nf_conntrack_alter_reply(ct, &reply);
636
637 /* Non-atomic: we own this at the moment. */
638 if (maniptype == NF_NAT_MANIP_SRC)
639 ct->status |= IPS_SRC_NAT;
640 else
641 ct->status |= IPS_DST_NAT;
642
643 if (nfct_help(ct) && !nfct_seqadj(ct))
644 if (!nfct_seqadj_ext_add(ct))
645 return NF_DROP;
646 }
647
648 if (maniptype == NF_NAT_MANIP_SRC) {
649 unsigned int srchash;
650 spinlock_t *lock;
651
652 srchash = hash_by_src(net,
653 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
654 lock = &nf_nat_locks[srchash % CONNTRACK_LOCKS];
655 spin_lock_bh(lock);
656 hlist_add_head_rcu(&ct->nat_bysource,
657 &nf_nat_bysource[srchash]);
658 spin_unlock_bh(lock);
659 }
660
661 /* It's done. */
662 if (maniptype == NF_NAT_MANIP_DST)
663 ct->status |= IPS_DST_NAT_DONE;
664 else
665 ct->status |= IPS_SRC_NAT_DONE;
666
667 return NF_ACCEPT;
668 }
669 EXPORT_SYMBOL(nf_nat_setup_info);
670
671 static unsigned int
672 __nf_nat_alloc_null_binding(struct nf_conn *ct, enum nf_nat_manip_type manip)
673 {
674 /* Force range to this IP; let proto decide mapping for
675 * per-proto parts (hence not IP_NAT_RANGE_PROTO_SPECIFIED).
676 * Use reply in case it's already been mangled (eg local packet).
677 */
678 union nf_inet_addr ip =
679 (manip == NF_NAT_MANIP_SRC ?
680 ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u3 :
681 ct->tuplehash[IP_CT_DIR_REPLY].tuple.src.u3);
682 struct nf_nat_range2 range = {
683 .flags = NF_NAT_RANGE_MAP_IPS,
684 .min_addr = ip,
685 .max_addr = ip,
686 };
687 return nf_nat_setup_info(ct, &range, manip);
688 }
689
690 unsigned int
691 nf_nat_alloc_null_binding(struct nf_conn *ct, unsigned int hooknum)
692 {
693 return __nf_nat_alloc_null_binding(ct, HOOK2MANIP(hooknum));
694 }
695 EXPORT_SYMBOL_GPL(nf_nat_alloc_null_binding);
696
697 /* Do packet manipulations according to nf_nat_setup_info. */
698 unsigned int nf_nat_packet(struct nf_conn *ct,
699 enum ip_conntrack_info ctinfo,
700 unsigned int hooknum,
701 struct sk_buff *skb)
702 {
703 enum nf_nat_manip_type mtype = HOOK2MANIP(hooknum);
704 enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo);
705 unsigned int verdict = NF_ACCEPT;
706 unsigned long statusbit;
707
708 if (mtype == NF_NAT_MANIP_SRC)
709 statusbit = IPS_SRC_NAT;
710 else
711 statusbit = IPS_DST_NAT;
712
713 /* Invert if this is reply dir. */
714 if (dir == IP_CT_DIR_REPLY)
715 statusbit ^= IPS_NAT_MASK;
716
717 /* Non-atomic: these bits don't change. */
718 if (ct->status & statusbit)
719 verdict = nf_nat_manip_pkt(skb, ct, mtype, dir);
720
721 return verdict;
722 }
723 EXPORT_SYMBOL_GPL(nf_nat_packet);
724
725 unsigned int
726 nf_nat_inet_fn(void *priv, struct sk_buff *skb,
727 const struct nf_hook_state *state)
728 {
729 struct nf_conn *ct;
730 enum ip_conntrack_info ctinfo;
731 struct nf_conn_nat *nat;
732 /* maniptype == SRC for postrouting. */
733 enum nf_nat_manip_type maniptype = HOOK2MANIP(state->hook);
734
735 ct = nf_ct_get(skb, &ctinfo);
736 /* Can't track? It's not due to stress, or conntrack would
737 * have dropped it. Hence it's the user's responsibilty to
738 * packet filter it out, or implement conntrack/NAT for that
739 * protocol. 8) --RR
740 */
741 if (!ct)
742 return NF_ACCEPT;
743
744 nat = nfct_nat(ct);
745
746 switch (ctinfo) {
747 case IP_CT_RELATED:
748 case IP_CT_RELATED_REPLY:
749 /* Only ICMPs can be IP_CT_IS_REPLY. Fallthrough */
750 case IP_CT_NEW:
751 /* Seen it before? This can happen for loopback, retrans,
752 * or local packets.
753 */
754 if (!nf_nat_initialized(ct, maniptype)) {
755 struct nf_nat_lookup_hook_priv *lpriv = priv;
756 struct nf_hook_entries *e = rcu_dereference(lpriv->entries);
757 unsigned int ret;
758 int i;
759
760 if (!e)
761 goto null_bind;
762
763 for (i = 0; i < e->num_hook_entries; i++) {
764 ret = e->hooks[i].hook(e->hooks[i].priv, skb,
765 state);
766 if (ret != NF_ACCEPT)
767 return ret;
768 if (nf_nat_initialized(ct, maniptype))
769 goto do_nat;
770 }
771 null_bind:
772 ret = nf_nat_alloc_null_binding(ct, state->hook);
773 if (ret != NF_ACCEPT)
774 return ret;
775 } else {
776 pr_debug("Already setup manip %s for ct %p (status bits 0x%lx)\n",
777 maniptype == NF_NAT_MANIP_SRC ? "SRC" : "DST",
778 ct, ct->status);
779 if (nf_nat_oif_changed(state->hook, ctinfo, nat,
780 state->out))
781 goto oif_changed;
782 }
783 break;
784 default:
785 /* ESTABLISHED */
786 WARN_ON(ctinfo != IP_CT_ESTABLISHED &&
787 ctinfo != IP_CT_ESTABLISHED_REPLY);
788 if (nf_nat_oif_changed(state->hook, ctinfo, nat, state->out))
789 goto oif_changed;
790 }
791 do_nat:
792 return nf_nat_packet(ct, ctinfo, state->hook, skb);
793
794 oif_changed:
795 nf_ct_kill_acct(ct, ctinfo, skb);
796 return NF_DROP;
797 }
798 EXPORT_SYMBOL_GPL(nf_nat_inet_fn);
799
800 struct nf_nat_proto_clean {
801 u8 l3proto;
802 u8 l4proto;
803 };
804
805 /* kill conntracks with affected NAT section */
806 static int nf_nat_proto_remove(struct nf_conn *i, void *data)
807 {
808 const struct nf_nat_proto_clean *clean = data;
809
810 if ((clean->l3proto && nf_ct_l3num(i) != clean->l3proto) ||
811 (clean->l4proto && nf_ct_protonum(i) != clean->l4proto))
812 return 0;
813
814 return i->status & IPS_NAT_MASK ? 1 : 0;
815 }
816
817 static void __nf_nat_cleanup_conntrack(struct nf_conn *ct)
818 {
819 unsigned int h;
820
821 h = hash_by_src(nf_ct_net(ct), &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
822 spin_lock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
823 hlist_del_rcu(&ct->nat_bysource);
824 spin_unlock_bh(&nf_nat_locks[h % CONNTRACK_LOCKS]);
825 }
826
827 static int nf_nat_proto_clean(struct nf_conn *ct, void *data)
828 {
829 if (nf_nat_proto_remove(ct, data))
830 return 1;
831
832 /* This module is being removed and conntrack has nat null binding.
833 * Remove it from bysource hash, as the table will be freed soon.
834 *
835 * Else, when the conntrack is destoyed, nf_nat_cleanup_conntrack()
836 * will delete entry from already-freed table.
837 */
838 if (test_and_clear_bit(IPS_SRC_NAT_DONE_BIT, &ct->status))
839 __nf_nat_cleanup_conntrack(ct);
840
841 /* don't delete conntrack. Although that would make things a lot
842 * simpler, we'd end up flushing all conntracks on nat rmmod.
843 */
844 return 0;
845 }
846
847 /* No one using conntrack by the time this called. */
848 static void nf_nat_cleanup_conntrack(struct nf_conn *ct)
849 {
850 if (ct->status & IPS_SRC_NAT_DONE)
851 __nf_nat_cleanup_conntrack(ct);
852 }
853
854 static struct nf_ct_ext_type nat_extend __read_mostly = {
855 .len = sizeof(struct nf_conn_nat),
856 .align = __alignof__(struct nf_conn_nat),
857 .destroy = nf_nat_cleanup_conntrack,
858 .id = NF_CT_EXT_NAT,
859 };
860
861 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
862
863 #include <linux/netfilter/nfnetlink.h>
864 #include <linux/netfilter/nfnetlink_conntrack.h>
865
866 static const struct nla_policy protonat_nla_policy[CTA_PROTONAT_MAX+1] = {
867 [CTA_PROTONAT_PORT_MIN] = { .type = NLA_U16 },
868 [CTA_PROTONAT_PORT_MAX] = { .type = NLA_U16 },
869 };
870
871 static int nf_nat_l4proto_nlattr_to_range(struct nlattr *tb[],
872 struct nf_nat_range2 *range)
873 {
874 if (tb[CTA_PROTONAT_PORT_MIN]) {
875 range->min_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MIN]);
876 range->max_proto.all = range->min_proto.all;
877 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
878 }
879 if (tb[CTA_PROTONAT_PORT_MAX]) {
880 range->max_proto.all = nla_get_be16(tb[CTA_PROTONAT_PORT_MAX]);
881 range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
882 }
883 return 0;
884 }
885
886 static int nfnetlink_parse_nat_proto(struct nlattr *attr,
887 const struct nf_conn *ct,
888 struct nf_nat_range2 *range)
889 {
890 struct nlattr *tb[CTA_PROTONAT_MAX+1];
891 int err;
892
893 err = nla_parse_nested_deprecated(tb, CTA_PROTONAT_MAX, attr,
894 protonat_nla_policy, NULL);
895 if (err < 0)
896 return err;
897
898 return nf_nat_l4proto_nlattr_to_range(tb, range);
899 }
900
901 static const struct nla_policy nat_nla_policy[CTA_NAT_MAX+1] = {
902 [CTA_NAT_V4_MINIP] = { .type = NLA_U32 },
903 [CTA_NAT_V4_MAXIP] = { .type = NLA_U32 },
904 [CTA_NAT_V6_MINIP] = { .len = sizeof(struct in6_addr) },
905 [CTA_NAT_V6_MAXIP] = { .len = sizeof(struct in6_addr) },
906 [CTA_NAT_PROTO] = { .type = NLA_NESTED },
907 };
908
909 static int nf_nat_ipv4_nlattr_to_range(struct nlattr *tb[],
910 struct nf_nat_range2 *range)
911 {
912 if (tb[CTA_NAT_V4_MINIP]) {
913 range->min_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MINIP]);
914 range->flags |= NF_NAT_RANGE_MAP_IPS;
915 }
916
917 if (tb[CTA_NAT_V4_MAXIP])
918 range->max_addr.ip = nla_get_be32(tb[CTA_NAT_V4_MAXIP]);
919 else
920 range->max_addr.ip = range->min_addr.ip;
921
922 return 0;
923 }
924
925 static int nf_nat_ipv6_nlattr_to_range(struct nlattr *tb[],
926 struct nf_nat_range2 *range)
927 {
928 if (tb[CTA_NAT_V6_MINIP]) {
929 nla_memcpy(&range->min_addr.ip6, tb[CTA_NAT_V6_MINIP],
930 sizeof(struct in6_addr));
931 range->flags |= NF_NAT_RANGE_MAP_IPS;
932 }
933
934 if (tb[CTA_NAT_V6_MAXIP])
935 nla_memcpy(&range->max_addr.ip6, tb[CTA_NAT_V6_MAXIP],
936 sizeof(struct in6_addr));
937 else
938 range->max_addr = range->min_addr;
939
940 return 0;
941 }
942
943 static int
944 nfnetlink_parse_nat(const struct nlattr *nat,
945 const struct nf_conn *ct, struct nf_nat_range2 *range)
946 {
947 struct nlattr *tb[CTA_NAT_MAX+1];
948 int err;
949
950 memset(range, 0, sizeof(*range));
951
952 err = nla_parse_nested_deprecated(tb, CTA_NAT_MAX, nat,
953 nat_nla_policy, NULL);
954 if (err < 0)
955 return err;
956
957 switch (nf_ct_l3num(ct)) {
958 case NFPROTO_IPV4:
959 err = nf_nat_ipv4_nlattr_to_range(tb, range);
960 break;
961 case NFPROTO_IPV6:
962 err = nf_nat_ipv6_nlattr_to_range(tb, range);
963 break;
964 default:
965 err = -EPROTONOSUPPORT;
966 break;
967 }
968
969 if (err)
970 return err;
971
972 if (!tb[CTA_NAT_PROTO])
973 return 0;
974
975 return nfnetlink_parse_nat_proto(tb[CTA_NAT_PROTO], ct, range);
976 }
977
978 /* This function is called under rcu_read_lock() */
979 static int
980 nfnetlink_parse_nat_setup(struct nf_conn *ct,
981 enum nf_nat_manip_type manip,
982 const struct nlattr *attr)
983 {
984 struct nf_nat_range2 range;
985 int err;
986
987 /* Should not happen, restricted to creating new conntracks
988 * via ctnetlink.
989 */
990 if (WARN_ON_ONCE(nf_nat_initialized(ct, manip)))
991 return -EEXIST;
992
993 /* No NAT information has been passed, allocate the null-binding */
994 if (attr == NULL)
995 return __nf_nat_alloc_null_binding(ct, manip) == NF_DROP ? -ENOMEM : 0;
996
997 err = nfnetlink_parse_nat(attr, ct, &range);
998 if (err < 0)
999 return err;
1000
1001 return nf_nat_setup_info(ct, &range, manip) == NF_DROP ? -ENOMEM : 0;
1002 }
1003 #else
1004 static int
1005 nfnetlink_parse_nat_setup(struct nf_conn *ct,
1006 enum nf_nat_manip_type manip,
1007 const struct nlattr *attr)
1008 {
1009 return -EOPNOTSUPP;
1010 }
1011 #endif
1012
1013 static struct nf_ct_helper_expectfn follow_master_nat = {
1014 .name = "nat-follow-master",
1015 .expectfn = nf_nat_follow_master,
1016 };
1017
1018 int nf_nat_register_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1019 const struct nf_hook_ops *orig_nat_ops, unsigned int ops_count)
1020 {
1021 struct nat_net *nat_net = net_generic(net, nat_net_id);
1022 struct nf_nat_hooks_net *nat_proto_net;
1023 struct nf_nat_lookup_hook_priv *priv;
1024 unsigned int hooknum = ops->hooknum;
1025 struct nf_hook_ops *nat_ops;
1026 int i, ret;
1027
1028 if (WARN_ON_ONCE(pf >= ARRAY_SIZE(nat_net->nat_proto_net)))
1029 return -EINVAL;
1030
1031 nat_proto_net = &nat_net->nat_proto_net[pf];
1032
1033 for (i = 0; i < ops_count; i++) {
1034 if (orig_nat_ops[i].hooknum == hooknum) {
1035 hooknum = i;
1036 break;
1037 }
1038 }
1039
1040 if (WARN_ON_ONCE(i == ops_count))
1041 return -EINVAL;
1042
1043 mutex_lock(&nf_nat_proto_mutex);
1044 if (!nat_proto_net->nat_hook_ops) {
1045 WARN_ON(nat_proto_net->users != 0);
1046
1047 nat_ops = kmemdup(orig_nat_ops, sizeof(*orig_nat_ops) * ops_count, GFP_KERNEL);
1048 if (!nat_ops) {
1049 mutex_unlock(&nf_nat_proto_mutex);
1050 return -ENOMEM;
1051 }
1052
1053 for (i = 0; i < ops_count; i++) {
1054 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1055 if (priv) {
1056 nat_ops[i].priv = priv;
1057 continue;
1058 }
1059 mutex_unlock(&nf_nat_proto_mutex);
1060 while (i)
1061 kfree(nat_ops[--i].priv);
1062 kfree(nat_ops);
1063 return -ENOMEM;
1064 }
1065
1066 ret = nf_register_net_hooks(net, nat_ops, ops_count);
1067 if (ret < 0) {
1068 mutex_unlock(&nf_nat_proto_mutex);
1069 for (i = 0; i < ops_count; i++)
1070 kfree(nat_ops[i].priv);
1071 kfree(nat_ops);
1072 return ret;
1073 }
1074
1075 nat_proto_net->nat_hook_ops = nat_ops;
1076 }
1077
1078 nat_ops = nat_proto_net->nat_hook_ops;
1079 priv = nat_ops[hooknum].priv;
1080 if (WARN_ON_ONCE(!priv)) {
1081 mutex_unlock(&nf_nat_proto_mutex);
1082 return -EOPNOTSUPP;
1083 }
1084
1085 ret = nf_hook_entries_insert_raw(&priv->entries, ops);
1086 if (ret == 0)
1087 nat_proto_net->users++;
1088
1089 mutex_unlock(&nf_nat_proto_mutex);
1090 return ret;
1091 }
1092
1093 void nf_nat_unregister_fn(struct net *net, u8 pf, const struct nf_hook_ops *ops,
1094 unsigned int ops_count)
1095 {
1096 struct nat_net *nat_net = net_generic(net, nat_net_id);
1097 struct nf_nat_hooks_net *nat_proto_net;
1098 struct nf_nat_lookup_hook_priv *priv;
1099 struct nf_hook_ops *nat_ops;
1100 int hooknum = ops->hooknum;
1101 int i;
1102
1103 if (pf >= ARRAY_SIZE(nat_net->nat_proto_net))
1104 return;
1105
1106 nat_proto_net = &nat_net->nat_proto_net[pf];
1107
1108 mutex_lock(&nf_nat_proto_mutex);
1109 if (WARN_ON(nat_proto_net->users == 0))
1110 goto unlock;
1111
1112 nat_proto_net->users--;
1113
1114 nat_ops = nat_proto_net->nat_hook_ops;
1115 for (i = 0; i < ops_count; i++) {
1116 if (nat_ops[i].hooknum == hooknum) {
1117 hooknum = i;
1118 break;
1119 }
1120 }
1121 if (WARN_ON_ONCE(i == ops_count))
1122 goto unlock;
1123 priv = nat_ops[hooknum].priv;
1124 nf_hook_entries_delete_raw(&priv->entries, ops);
1125
1126 if (nat_proto_net->users == 0) {
1127 nf_unregister_net_hooks(net, nat_ops, ops_count);
1128
1129 for (i = 0; i < ops_count; i++) {
1130 priv = nat_ops[i].priv;
1131 kfree_rcu(priv, rcu_head);
1132 }
1133
1134 nat_proto_net->nat_hook_ops = NULL;
1135 kfree(nat_ops);
1136 }
1137 unlock:
1138 mutex_unlock(&nf_nat_proto_mutex);
1139 }
1140
1141 static struct pernet_operations nat_net_ops = {
1142 .id = &nat_net_id,
1143 .size = sizeof(struct nat_net),
1144 };
1145
1146 static struct nf_nat_hook nat_hook = {
1147 .parse_nat_setup = nfnetlink_parse_nat_setup,
1148 #ifdef CONFIG_XFRM
1149 .decode_session = __nf_nat_decode_session,
1150 #endif
1151 .manip_pkt = nf_nat_manip_pkt,
1152 };
1153
1154 static int __init nf_nat_init(void)
1155 {
1156 int ret, i;
1157
1158 /* Leave them the same for the moment. */
1159 nf_nat_htable_size = nf_conntrack_htable_size;
1160 if (nf_nat_htable_size < CONNTRACK_LOCKS)
1161 nf_nat_htable_size = CONNTRACK_LOCKS;
1162
1163 nf_nat_bysource = nf_ct_alloc_hashtable(&nf_nat_htable_size, 0);
1164 if (!nf_nat_bysource)
1165 return -ENOMEM;
1166
1167 ret = nf_ct_extend_register(&nat_extend);
1168 if (ret < 0) {
1169 kvfree(nf_nat_bysource);
1170 pr_err("Unable to register extension\n");
1171 return ret;
1172 }
1173
1174 for (i = 0; i < CONNTRACK_LOCKS; i++)
1175 spin_lock_init(&nf_nat_locks[i]);
1176
1177 ret = register_pernet_subsys(&nat_net_ops);
1178 if (ret < 0) {
1179 nf_ct_extend_unregister(&nat_extend);
1180 return ret;
1181 }
1182
1183 nf_ct_helper_expectfn_register(&follow_master_nat);
1184
1185 WARN_ON(nf_nat_hook != NULL);
1186 RCU_INIT_POINTER(nf_nat_hook, &nat_hook);
1187
1188 return 0;
1189 }
1190
1191 static void __exit nf_nat_cleanup(void)
1192 {
1193 struct nf_nat_proto_clean clean = {};
1194
1195 nf_ct_iterate_destroy(nf_nat_proto_clean, &clean);
1196
1197 nf_ct_extend_unregister(&nat_extend);
1198 nf_ct_helper_expectfn_unregister(&follow_master_nat);
1199 RCU_INIT_POINTER(nf_nat_hook, NULL);
1200
1201 synchronize_net();
1202 kvfree(nf_nat_bysource);
1203 unregister_pernet_subsys(&nat_net_ops);
1204 }
1205
1206 MODULE_LICENSE("GPL");
1207
1208 module_init(nf_nat_init);
1209 module_exit(nf_nat_cleanup);