]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/x_tables.c
treewide: use kv[mz]alloc* rather than opencoded variants
[mirror_ubuntu-artful-kernel.git] / net / netfilter / x_tables.c
1 /*
2 * x_tables core - Backend for {ip,ip6,arp}_tables
3 *
4 * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5 * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on existing ip_tables code which is
8 * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9 * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41
42 #define SMP_ALIGN(x) (((x) + SMP_CACHE_BYTES-1) & ~(SMP_CACHE_BYTES-1))
43 #define XT_PCPU_BLOCK_SIZE 4096
44
45 struct compat_delta {
46 unsigned int offset; /* offset in kernel */
47 int delta; /* delta in 32bit user land */
48 };
49
50 struct xt_af {
51 struct mutex mutex;
52 struct list_head match;
53 struct list_head target;
54 #ifdef CONFIG_COMPAT
55 struct mutex compat_mutex;
56 struct compat_delta *compat_tab;
57 unsigned int number; /* number of slots in compat_tab[] */
58 unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61
62 static struct xt_af *xt;
63
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 [NFPROTO_UNSPEC] = "x",
66 [NFPROTO_IPV4] = "ip",
67 [NFPROTO_ARP] = "arp",
68 [NFPROTO_BRIDGE] = "eb",
69 [NFPROTO_IPV6] = "ip6",
70 };
71
72 /* Registration hooks for targets. */
73 int xt_register_target(struct xt_target *target)
74 {
75 u_int8_t af = target->family;
76
77 mutex_lock(&xt[af].mutex);
78 list_add(&target->list, &xt[af].target);
79 mutex_unlock(&xt[af].mutex);
80 return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83
84 void
85 xt_unregister_target(struct xt_target *target)
86 {
87 u_int8_t af = target->family;
88
89 mutex_lock(&xt[af].mutex);
90 list_del(&target->list);
91 mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94
95 int
96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 unsigned int i;
99 int err = 0;
100
101 for (i = 0; i < n; i++) {
102 err = xt_register_target(&target[i]);
103 if (err)
104 goto err;
105 }
106 return err;
107
108 err:
109 if (i > 0)
110 xt_unregister_targets(target, i);
111 return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114
115 void
116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 while (n-- > 0)
119 xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122
123 int xt_register_match(struct xt_match *match)
124 {
125 u_int8_t af = match->family;
126
127 mutex_lock(&xt[af].mutex);
128 list_add(&match->list, &xt[af].match);
129 mutex_unlock(&xt[af].mutex);
130 return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133
134 void
135 xt_unregister_match(struct xt_match *match)
136 {
137 u_int8_t af = match->family;
138
139 mutex_lock(&xt[af].mutex);
140 list_del(&match->list);
141 mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144
145 int
146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 unsigned int i;
149 int err = 0;
150
151 for (i = 0; i < n; i++) {
152 err = xt_register_match(&match[i]);
153 if (err)
154 goto err;
155 }
156 return err;
157
158 err:
159 if (i > 0)
160 xt_unregister_matches(match, i);
161 return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164
165 void
166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 while (n-- > 0)
169 xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172
173
174 /*
175 * These are weird, but module loading must not be done with mutex
176 * held (since they will register), and we have to have a single
177 * function to use.
178 */
179
180 /* Find match, grabs ref. Returns ERR_PTR() on error. */
181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 struct xt_match *m;
184 int err = -ENOENT;
185
186 mutex_lock(&xt[af].mutex);
187 list_for_each_entry(m, &xt[af].match, list) {
188 if (strcmp(m->name, name) == 0) {
189 if (m->revision == revision) {
190 if (try_module_get(m->me)) {
191 mutex_unlock(&xt[af].mutex);
192 return m;
193 }
194 } else
195 err = -EPROTOTYPE; /* Found something. */
196 }
197 }
198 mutex_unlock(&xt[af].mutex);
199
200 if (af != NFPROTO_UNSPEC)
201 /* Try searching again in the family-independent list */
202 return xt_find_match(NFPROTO_UNSPEC, name, revision);
203
204 return ERR_PTR(err);
205 }
206 EXPORT_SYMBOL(xt_find_match);
207
208 struct xt_match *
209 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
210 {
211 struct xt_match *match;
212
213 match = xt_find_match(nfproto, name, revision);
214 if (IS_ERR(match)) {
215 request_module("%st_%s", xt_prefix[nfproto], name);
216 match = xt_find_match(nfproto, name, revision);
217 }
218
219 return match;
220 }
221 EXPORT_SYMBOL_GPL(xt_request_find_match);
222
223 /* Find target, grabs ref. Returns ERR_PTR() on error. */
224 struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
225 {
226 struct xt_target *t;
227 int err = -ENOENT;
228
229 mutex_lock(&xt[af].mutex);
230 list_for_each_entry(t, &xt[af].target, list) {
231 if (strcmp(t->name, name) == 0) {
232 if (t->revision == revision) {
233 if (try_module_get(t->me)) {
234 mutex_unlock(&xt[af].mutex);
235 return t;
236 }
237 } else
238 err = -EPROTOTYPE; /* Found something. */
239 }
240 }
241 mutex_unlock(&xt[af].mutex);
242
243 if (af != NFPROTO_UNSPEC)
244 /* Try searching again in the family-independent list */
245 return xt_find_target(NFPROTO_UNSPEC, name, revision);
246
247 return ERR_PTR(err);
248 }
249 EXPORT_SYMBOL(xt_find_target);
250
251 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
252 {
253 struct xt_target *target;
254
255 target = xt_find_target(af, name, revision);
256 if (IS_ERR(target)) {
257 request_module("%st_%s", xt_prefix[af], name);
258 target = xt_find_target(af, name, revision);
259 }
260
261 return target;
262 }
263 EXPORT_SYMBOL_GPL(xt_request_find_target);
264
265
266 static int xt_obj_to_user(u16 __user *psize, u16 size,
267 void __user *pname, const char *name,
268 u8 __user *prev, u8 rev)
269 {
270 if (put_user(size, psize))
271 return -EFAULT;
272 if (copy_to_user(pname, name, strlen(name) + 1))
273 return -EFAULT;
274 if (put_user(rev, prev))
275 return -EFAULT;
276
277 return 0;
278 }
279
280 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \
281 xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \
282 U->u.user.name, K->u.kernel.TYPE->name, \
283 &U->u.user.revision, K->u.kernel.TYPE->revision)
284
285 int xt_data_to_user(void __user *dst, const void *src,
286 int usersize, int size)
287 {
288 usersize = usersize ? : size;
289 if (copy_to_user(dst, src, usersize))
290 return -EFAULT;
291 if (usersize != size && clear_user(dst + usersize, size - usersize))
292 return -EFAULT;
293
294 return 0;
295 }
296 EXPORT_SYMBOL_GPL(xt_data_to_user);
297
298 #define XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \
299 xt_data_to_user(U->data, K->data, \
300 K->u.kernel.TYPE->usersize, \
301 C_SIZE ? : K->u.kernel.TYPE->TYPE##size)
302
303 int xt_match_to_user(const struct xt_entry_match *m,
304 struct xt_entry_match __user *u)
305 {
306 return XT_OBJ_TO_USER(u, m, match, 0) ||
307 XT_DATA_TO_USER(u, m, match, 0);
308 }
309 EXPORT_SYMBOL_GPL(xt_match_to_user);
310
311 int xt_target_to_user(const struct xt_entry_target *t,
312 struct xt_entry_target __user *u)
313 {
314 return XT_OBJ_TO_USER(u, t, target, 0) ||
315 XT_DATA_TO_USER(u, t, target, 0);
316 }
317 EXPORT_SYMBOL_GPL(xt_target_to_user);
318
319 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
320 {
321 const struct xt_match *m;
322 int have_rev = 0;
323
324 list_for_each_entry(m, &xt[af].match, list) {
325 if (strcmp(m->name, name) == 0) {
326 if (m->revision > *bestp)
327 *bestp = m->revision;
328 if (m->revision == revision)
329 have_rev = 1;
330 }
331 }
332
333 if (af != NFPROTO_UNSPEC && !have_rev)
334 return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
335
336 return have_rev;
337 }
338
339 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
340 {
341 const struct xt_target *t;
342 int have_rev = 0;
343
344 list_for_each_entry(t, &xt[af].target, list) {
345 if (strcmp(t->name, name) == 0) {
346 if (t->revision > *bestp)
347 *bestp = t->revision;
348 if (t->revision == revision)
349 have_rev = 1;
350 }
351 }
352
353 if (af != NFPROTO_UNSPEC && !have_rev)
354 return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
355
356 return have_rev;
357 }
358
359 /* Returns true or false (if no such extension at all) */
360 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
361 int *err)
362 {
363 int have_rev, best = -1;
364
365 mutex_lock(&xt[af].mutex);
366 if (target == 1)
367 have_rev = target_revfn(af, name, revision, &best);
368 else
369 have_rev = match_revfn(af, name, revision, &best);
370 mutex_unlock(&xt[af].mutex);
371
372 /* Nothing at all? Return 0 to try loading module. */
373 if (best == -1) {
374 *err = -ENOENT;
375 return 0;
376 }
377
378 *err = best;
379 if (!have_rev)
380 *err = -EPROTONOSUPPORT;
381 return 1;
382 }
383 EXPORT_SYMBOL_GPL(xt_find_revision);
384
385 static char *
386 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
387 {
388 static const char *const inetbr_names[] = {
389 "PREROUTING", "INPUT", "FORWARD",
390 "OUTPUT", "POSTROUTING", "BROUTING",
391 };
392 static const char *const arp_names[] = {
393 "INPUT", "FORWARD", "OUTPUT",
394 };
395 const char *const *names;
396 unsigned int i, max;
397 char *p = buf;
398 bool np = false;
399 int res;
400
401 names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
402 max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
403 ARRAY_SIZE(inetbr_names);
404 *p = '\0';
405 for (i = 0; i < max; ++i) {
406 if (!(mask & (1 << i)))
407 continue;
408 res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
409 if (res > 0) {
410 size -= res;
411 p += res;
412 }
413 np = true;
414 }
415
416 return buf;
417 }
418
419 int xt_check_match(struct xt_mtchk_param *par,
420 unsigned int size, u_int8_t proto, bool inv_proto)
421 {
422 int ret;
423
424 if (XT_ALIGN(par->match->matchsize) != size &&
425 par->match->matchsize != -1) {
426 /*
427 * ebt_among is exempt from centralized matchsize checking
428 * because it uses a dynamic-size data set.
429 */
430 pr_err("%s_tables: %s.%u match: invalid size "
431 "%u (kernel) != (user) %u\n",
432 xt_prefix[par->family], par->match->name,
433 par->match->revision,
434 XT_ALIGN(par->match->matchsize), size);
435 return -EINVAL;
436 }
437 if (par->match->table != NULL &&
438 strcmp(par->match->table, par->table) != 0) {
439 pr_err("%s_tables: %s match: only valid in %s table, not %s\n",
440 xt_prefix[par->family], par->match->name,
441 par->match->table, par->table);
442 return -EINVAL;
443 }
444 if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
445 char used[64], allow[64];
446
447 pr_err("%s_tables: %s match: used from hooks %s, but only "
448 "valid from %s\n",
449 xt_prefix[par->family], par->match->name,
450 textify_hooks(used, sizeof(used), par->hook_mask,
451 par->family),
452 textify_hooks(allow, sizeof(allow), par->match->hooks,
453 par->family));
454 return -EINVAL;
455 }
456 if (par->match->proto && (par->match->proto != proto || inv_proto)) {
457 pr_err("%s_tables: %s match: only valid for protocol %u\n",
458 xt_prefix[par->family], par->match->name,
459 par->match->proto);
460 return -EINVAL;
461 }
462 if (par->match->checkentry != NULL) {
463 ret = par->match->checkentry(par);
464 if (ret < 0)
465 return ret;
466 else if (ret > 0)
467 /* Flag up potential errors. */
468 return -EIO;
469 }
470 return 0;
471 }
472 EXPORT_SYMBOL_GPL(xt_check_match);
473
474 /** xt_check_entry_match - check that matches end before start of target
475 *
476 * @match: beginning of xt_entry_match
477 * @target: beginning of this rules target (alleged end of matches)
478 * @alignment: alignment requirement of match structures
479 *
480 * Validates that all matches add up to the beginning of the target,
481 * and that each match covers at least the base structure size.
482 *
483 * Return: 0 on success, negative errno on failure.
484 */
485 static int xt_check_entry_match(const char *match, const char *target,
486 const size_t alignment)
487 {
488 const struct xt_entry_match *pos;
489 int length = target - match;
490
491 if (length == 0) /* no matches */
492 return 0;
493
494 pos = (struct xt_entry_match *)match;
495 do {
496 if ((unsigned long)pos % alignment)
497 return -EINVAL;
498
499 if (length < (int)sizeof(struct xt_entry_match))
500 return -EINVAL;
501
502 if (pos->u.match_size < sizeof(struct xt_entry_match))
503 return -EINVAL;
504
505 if (pos->u.match_size > length)
506 return -EINVAL;
507
508 length -= pos->u.match_size;
509 pos = ((void *)((char *)(pos) + (pos)->u.match_size));
510 } while (length > 0);
511
512 return 0;
513 }
514
515 #ifdef CONFIG_COMPAT
516 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
517 {
518 struct xt_af *xp = &xt[af];
519
520 if (!xp->compat_tab) {
521 if (!xp->number)
522 return -EINVAL;
523 xp->compat_tab = vmalloc(sizeof(struct compat_delta) * xp->number);
524 if (!xp->compat_tab)
525 return -ENOMEM;
526 xp->cur = 0;
527 }
528
529 if (xp->cur >= xp->number)
530 return -EINVAL;
531
532 if (xp->cur)
533 delta += xp->compat_tab[xp->cur - 1].delta;
534 xp->compat_tab[xp->cur].offset = offset;
535 xp->compat_tab[xp->cur].delta = delta;
536 xp->cur++;
537 return 0;
538 }
539 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
540
541 void xt_compat_flush_offsets(u_int8_t af)
542 {
543 if (xt[af].compat_tab) {
544 vfree(xt[af].compat_tab);
545 xt[af].compat_tab = NULL;
546 xt[af].number = 0;
547 xt[af].cur = 0;
548 }
549 }
550 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
551
552 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
553 {
554 struct compat_delta *tmp = xt[af].compat_tab;
555 int mid, left = 0, right = xt[af].cur - 1;
556
557 while (left <= right) {
558 mid = (left + right) >> 1;
559 if (offset > tmp[mid].offset)
560 left = mid + 1;
561 else if (offset < tmp[mid].offset)
562 right = mid - 1;
563 else
564 return mid ? tmp[mid - 1].delta : 0;
565 }
566 return left ? tmp[left - 1].delta : 0;
567 }
568 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
569
570 void xt_compat_init_offsets(u_int8_t af, unsigned int number)
571 {
572 xt[af].number = number;
573 xt[af].cur = 0;
574 }
575 EXPORT_SYMBOL(xt_compat_init_offsets);
576
577 int xt_compat_match_offset(const struct xt_match *match)
578 {
579 u_int16_t csize = match->compatsize ? : match->matchsize;
580 return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
581 }
582 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
583
584 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
585 unsigned int *size)
586 {
587 const struct xt_match *match = m->u.kernel.match;
588 struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
589 int pad, off = xt_compat_match_offset(match);
590 u_int16_t msize = cm->u.user.match_size;
591 char name[sizeof(m->u.user.name)];
592
593 m = *dstptr;
594 memcpy(m, cm, sizeof(*cm));
595 if (match->compat_from_user)
596 match->compat_from_user(m->data, cm->data);
597 else
598 memcpy(m->data, cm->data, msize - sizeof(*cm));
599 pad = XT_ALIGN(match->matchsize) - match->matchsize;
600 if (pad > 0)
601 memset(m->data + match->matchsize, 0, pad);
602
603 msize += off;
604 m->u.user.match_size = msize;
605 strlcpy(name, match->name, sizeof(name));
606 module_put(match->me);
607 strncpy(m->u.user.name, name, sizeof(m->u.user.name));
608
609 *size += off;
610 *dstptr += msize;
611 }
612 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
613
614 int xt_compat_match_to_user(const struct xt_entry_match *m,
615 void __user **dstptr, unsigned int *size)
616 {
617 const struct xt_match *match = m->u.kernel.match;
618 struct compat_xt_entry_match __user *cm = *dstptr;
619 int off = xt_compat_match_offset(match);
620 u_int16_t msize = m->u.user.match_size - off;
621
622 if (XT_OBJ_TO_USER(cm, m, match, msize))
623 return -EFAULT;
624
625 if (match->compat_to_user) {
626 if (match->compat_to_user((void __user *)cm->data, m->data))
627 return -EFAULT;
628 } else {
629 if (XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
630 return -EFAULT;
631 }
632
633 *size -= off;
634 *dstptr += msize;
635 return 0;
636 }
637 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
638
639 /* non-compat version may have padding after verdict */
640 struct compat_xt_standard_target {
641 struct compat_xt_entry_target t;
642 compat_uint_t verdict;
643 };
644
645 int xt_compat_check_entry_offsets(const void *base, const char *elems,
646 unsigned int target_offset,
647 unsigned int next_offset)
648 {
649 long size_of_base_struct = elems - (const char *)base;
650 const struct compat_xt_entry_target *t;
651 const char *e = base;
652
653 if (target_offset < size_of_base_struct)
654 return -EINVAL;
655
656 if (target_offset + sizeof(*t) > next_offset)
657 return -EINVAL;
658
659 t = (void *)(e + target_offset);
660 if (t->u.target_size < sizeof(*t))
661 return -EINVAL;
662
663 if (target_offset + t->u.target_size > next_offset)
664 return -EINVAL;
665
666 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
667 COMPAT_XT_ALIGN(target_offset + sizeof(struct compat_xt_standard_target)) != next_offset)
668 return -EINVAL;
669
670 /* compat_xt_entry match has less strict alignment requirements,
671 * otherwise they are identical. In case of padding differences
672 * we need to add compat version of xt_check_entry_match.
673 */
674 BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
675
676 return xt_check_entry_match(elems, base + target_offset,
677 __alignof__(struct compat_xt_entry_match));
678 }
679 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
680 #endif /* CONFIG_COMPAT */
681
682 /**
683 * xt_check_entry_offsets - validate arp/ip/ip6t_entry
684 *
685 * @base: pointer to arp/ip/ip6t_entry
686 * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
687 * @target_offset: the arp/ip/ip6_t->target_offset
688 * @next_offset: the arp/ip/ip6_t->next_offset
689 *
690 * validates that target_offset and next_offset are sane and that all
691 * match sizes (if any) align with the target offset.
692 *
693 * This function does not validate the targets or matches themselves, it
694 * only tests that all the offsets and sizes are correct, that all
695 * match structures are aligned, and that the last structure ends where
696 * the target structure begins.
697 *
698 * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
699 *
700 * The arp/ip/ip6t_entry structure @base must have passed following tests:
701 * - it must point to a valid memory location
702 * - base to base + next_offset must be accessible, i.e. not exceed allocated
703 * length.
704 *
705 * A well-formed entry looks like this:
706 *
707 * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry
708 * e->elems[]-----' | |
709 * matchsize | |
710 * matchsize | |
711 * | |
712 * target_offset---------------------------------' |
713 * next_offset---------------------------------------------------'
714 *
715 * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
716 * This is where matches (if any) and the target reside.
717 * target_offset: beginning of target.
718 * next_offset: start of the next rule; also: size of this rule.
719 * Since targets have a minimum size, target_offset + minlen <= next_offset.
720 *
721 * Every match stores its size, sum of sizes must not exceed target_offset.
722 *
723 * Return: 0 on success, negative errno on failure.
724 */
725 int xt_check_entry_offsets(const void *base,
726 const char *elems,
727 unsigned int target_offset,
728 unsigned int next_offset)
729 {
730 long size_of_base_struct = elems - (const char *)base;
731 const struct xt_entry_target *t;
732 const char *e = base;
733
734 /* target start is within the ip/ip6/arpt_entry struct */
735 if (target_offset < size_of_base_struct)
736 return -EINVAL;
737
738 if (target_offset + sizeof(*t) > next_offset)
739 return -EINVAL;
740
741 t = (void *)(e + target_offset);
742 if (t->u.target_size < sizeof(*t))
743 return -EINVAL;
744
745 if (target_offset + t->u.target_size > next_offset)
746 return -EINVAL;
747
748 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
749 XT_ALIGN(target_offset + sizeof(struct xt_standard_target)) != next_offset)
750 return -EINVAL;
751
752 return xt_check_entry_match(elems, base + target_offset,
753 __alignof__(struct xt_entry_match));
754 }
755 EXPORT_SYMBOL(xt_check_entry_offsets);
756
757 /**
758 * xt_alloc_entry_offsets - allocate array to store rule head offsets
759 *
760 * @size: number of entries
761 *
762 * Return: NULL or kmalloc'd or vmalloc'd array
763 */
764 unsigned int *xt_alloc_entry_offsets(unsigned int size)
765 {
766 return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
767
768 }
769 EXPORT_SYMBOL(xt_alloc_entry_offsets);
770
771 /**
772 * xt_find_jump_offset - check if target is a valid jump offset
773 *
774 * @offsets: array containing all valid rule start offsets of a rule blob
775 * @target: the jump target to search for
776 * @size: entries in @offset
777 */
778 bool xt_find_jump_offset(const unsigned int *offsets,
779 unsigned int target, unsigned int size)
780 {
781 int m, low = 0, hi = size;
782
783 while (hi > low) {
784 m = (low + hi) / 2u;
785
786 if (offsets[m] > target)
787 hi = m;
788 else if (offsets[m] < target)
789 low = m + 1;
790 else
791 return true;
792 }
793
794 return false;
795 }
796 EXPORT_SYMBOL(xt_find_jump_offset);
797
798 int xt_check_target(struct xt_tgchk_param *par,
799 unsigned int size, u_int8_t proto, bool inv_proto)
800 {
801 int ret;
802
803 if (XT_ALIGN(par->target->targetsize) != size) {
804 pr_err("%s_tables: %s.%u target: invalid size "
805 "%u (kernel) != (user) %u\n",
806 xt_prefix[par->family], par->target->name,
807 par->target->revision,
808 XT_ALIGN(par->target->targetsize), size);
809 return -EINVAL;
810 }
811 if (par->target->table != NULL &&
812 strcmp(par->target->table, par->table) != 0) {
813 pr_err("%s_tables: %s target: only valid in %s table, not %s\n",
814 xt_prefix[par->family], par->target->name,
815 par->target->table, par->table);
816 return -EINVAL;
817 }
818 if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
819 char used[64], allow[64];
820
821 pr_err("%s_tables: %s target: used from hooks %s, but only "
822 "usable from %s\n",
823 xt_prefix[par->family], par->target->name,
824 textify_hooks(used, sizeof(used), par->hook_mask,
825 par->family),
826 textify_hooks(allow, sizeof(allow), par->target->hooks,
827 par->family));
828 return -EINVAL;
829 }
830 if (par->target->proto && (par->target->proto != proto || inv_proto)) {
831 pr_err("%s_tables: %s target: only valid for protocol %u\n",
832 xt_prefix[par->family], par->target->name,
833 par->target->proto);
834 return -EINVAL;
835 }
836 if (par->target->checkentry != NULL) {
837 ret = par->target->checkentry(par);
838 if (ret < 0)
839 return ret;
840 else if (ret > 0)
841 /* Flag up potential errors. */
842 return -EIO;
843 }
844 return 0;
845 }
846 EXPORT_SYMBOL_GPL(xt_check_target);
847
848 /**
849 * xt_copy_counters_from_user - copy counters and metadata from userspace
850 *
851 * @user: src pointer to userspace memory
852 * @len: alleged size of userspace memory
853 * @info: where to store the xt_counters_info metadata
854 * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
855 *
856 * Copies counter meta data from @user and stores it in @info.
857 *
858 * vmallocs memory to hold the counters, then copies the counter data
859 * from @user to the new memory and returns a pointer to it.
860 *
861 * If @compat is true, @info gets converted automatically to the 64bit
862 * representation.
863 *
864 * The metadata associated with the counters is stored in @info.
865 *
866 * Return: returns pointer that caller has to test via IS_ERR().
867 * If IS_ERR is false, caller has to vfree the pointer.
868 */
869 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
870 struct xt_counters_info *info, bool compat)
871 {
872 void *mem;
873 u64 size;
874
875 #ifdef CONFIG_COMPAT
876 if (compat) {
877 /* structures only differ in size due to alignment */
878 struct compat_xt_counters_info compat_tmp;
879
880 if (len <= sizeof(compat_tmp))
881 return ERR_PTR(-EINVAL);
882
883 len -= sizeof(compat_tmp);
884 if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
885 return ERR_PTR(-EFAULT);
886
887 strlcpy(info->name, compat_tmp.name, sizeof(info->name));
888 info->num_counters = compat_tmp.num_counters;
889 user += sizeof(compat_tmp);
890 } else
891 #endif
892 {
893 if (len <= sizeof(*info))
894 return ERR_PTR(-EINVAL);
895
896 len -= sizeof(*info);
897 if (copy_from_user(info, user, sizeof(*info)) != 0)
898 return ERR_PTR(-EFAULT);
899
900 info->name[sizeof(info->name) - 1] = '\0';
901 user += sizeof(*info);
902 }
903
904 size = sizeof(struct xt_counters);
905 size *= info->num_counters;
906
907 if (size != (u64)len)
908 return ERR_PTR(-EINVAL);
909
910 mem = vmalloc(len);
911 if (!mem)
912 return ERR_PTR(-ENOMEM);
913
914 if (copy_from_user(mem, user, len) == 0)
915 return mem;
916
917 vfree(mem);
918 return ERR_PTR(-EFAULT);
919 }
920 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
921
922 #ifdef CONFIG_COMPAT
923 int xt_compat_target_offset(const struct xt_target *target)
924 {
925 u_int16_t csize = target->compatsize ? : target->targetsize;
926 return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
927 }
928 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
929
930 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
931 unsigned int *size)
932 {
933 const struct xt_target *target = t->u.kernel.target;
934 struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
935 int pad, off = xt_compat_target_offset(target);
936 u_int16_t tsize = ct->u.user.target_size;
937 char name[sizeof(t->u.user.name)];
938
939 t = *dstptr;
940 memcpy(t, ct, sizeof(*ct));
941 if (target->compat_from_user)
942 target->compat_from_user(t->data, ct->data);
943 else
944 memcpy(t->data, ct->data, tsize - sizeof(*ct));
945 pad = XT_ALIGN(target->targetsize) - target->targetsize;
946 if (pad > 0)
947 memset(t->data + target->targetsize, 0, pad);
948
949 tsize += off;
950 t->u.user.target_size = tsize;
951 strlcpy(name, target->name, sizeof(name));
952 module_put(target->me);
953 strncpy(t->u.user.name, name, sizeof(t->u.user.name));
954
955 *size += off;
956 *dstptr += tsize;
957 }
958 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
959
960 int xt_compat_target_to_user(const struct xt_entry_target *t,
961 void __user **dstptr, unsigned int *size)
962 {
963 const struct xt_target *target = t->u.kernel.target;
964 struct compat_xt_entry_target __user *ct = *dstptr;
965 int off = xt_compat_target_offset(target);
966 u_int16_t tsize = t->u.user.target_size - off;
967
968 if (XT_OBJ_TO_USER(ct, t, target, tsize))
969 return -EFAULT;
970
971 if (target->compat_to_user) {
972 if (target->compat_to_user((void __user *)ct->data, t->data))
973 return -EFAULT;
974 } else {
975 if (XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
976 return -EFAULT;
977 }
978
979 *size -= off;
980 *dstptr += tsize;
981 return 0;
982 }
983 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
984 #endif
985
986 struct xt_table_info *xt_alloc_table_info(unsigned int size)
987 {
988 struct xt_table_info *info = NULL;
989 size_t sz = sizeof(*info) + size;
990
991 if (sz < sizeof(*info))
992 return NULL;
993
994 /* Pedantry: prevent them from hitting BUG() in vmalloc.c --RR */
995 if ((SMP_ALIGN(size) >> PAGE_SHIFT) + 2 > totalram_pages)
996 return NULL;
997
998 if (sz <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER))
999 info = kmalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY);
1000 if (!info) {
1001 info = __vmalloc(sz, GFP_KERNEL | __GFP_NOWARN |
1002 __GFP_NORETRY | __GFP_HIGHMEM,
1003 PAGE_KERNEL);
1004 if (!info)
1005 return NULL;
1006 }
1007 memset(info, 0, sizeof(*info));
1008 info->size = size;
1009 return info;
1010 }
1011 EXPORT_SYMBOL(xt_alloc_table_info);
1012
1013 void xt_free_table_info(struct xt_table_info *info)
1014 {
1015 int cpu;
1016
1017 if (info->jumpstack != NULL) {
1018 for_each_possible_cpu(cpu)
1019 kvfree(info->jumpstack[cpu]);
1020 kvfree(info->jumpstack);
1021 }
1022
1023 kvfree(info);
1024 }
1025 EXPORT_SYMBOL(xt_free_table_info);
1026
1027 /* Find table by name, grabs mutex & ref. Returns NULL on error. */
1028 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1029 const char *name)
1030 {
1031 struct xt_table *t, *found = NULL;
1032
1033 mutex_lock(&xt[af].mutex);
1034 list_for_each_entry(t, &net->xt.tables[af], list)
1035 if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1036 return t;
1037
1038 if (net == &init_net)
1039 goto out;
1040
1041 /* Table doesn't exist in this netns, re-try init */
1042 list_for_each_entry(t, &init_net.xt.tables[af], list) {
1043 if (strcmp(t->name, name))
1044 continue;
1045 if (!try_module_get(t->me)) {
1046 mutex_unlock(&xt[af].mutex);
1047 return NULL;
1048 }
1049
1050 mutex_unlock(&xt[af].mutex);
1051 if (t->table_init(net) != 0) {
1052 module_put(t->me);
1053 return NULL;
1054 }
1055
1056 found = t;
1057
1058 mutex_lock(&xt[af].mutex);
1059 break;
1060 }
1061
1062 if (!found)
1063 goto out;
1064
1065 /* and once again: */
1066 list_for_each_entry(t, &net->xt.tables[af], list)
1067 if (strcmp(t->name, name) == 0)
1068 return t;
1069
1070 module_put(found->me);
1071 out:
1072 mutex_unlock(&xt[af].mutex);
1073 return NULL;
1074 }
1075 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1076
1077 void xt_table_unlock(struct xt_table *table)
1078 {
1079 mutex_unlock(&xt[table->af].mutex);
1080 }
1081 EXPORT_SYMBOL_GPL(xt_table_unlock);
1082
1083 #ifdef CONFIG_COMPAT
1084 void xt_compat_lock(u_int8_t af)
1085 {
1086 mutex_lock(&xt[af].compat_mutex);
1087 }
1088 EXPORT_SYMBOL_GPL(xt_compat_lock);
1089
1090 void xt_compat_unlock(u_int8_t af)
1091 {
1092 mutex_unlock(&xt[af].compat_mutex);
1093 }
1094 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1095 #endif
1096
1097 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1098 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1099
1100 struct static_key xt_tee_enabled __read_mostly;
1101 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1102
1103 static int xt_jumpstack_alloc(struct xt_table_info *i)
1104 {
1105 unsigned int size;
1106 int cpu;
1107
1108 size = sizeof(void **) * nr_cpu_ids;
1109 if (size > PAGE_SIZE)
1110 i->jumpstack = kvzalloc(size, GFP_KERNEL);
1111 else
1112 i->jumpstack = kzalloc(size, GFP_KERNEL);
1113 if (i->jumpstack == NULL)
1114 return -ENOMEM;
1115
1116 /* ruleset without jumps -- no stack needed */
1117 if (i->stacksize == 0)
1118 return 0;
1119
1120 /* Jumpstack needs to be able to record two full callchains, one
1121 * from the first rule set traversal, plus one table reentrancy
1122 * via -j TEE without clobbering the callchain that brought us to
1123 * TEE target.
1124 *
1125 * This is done by allocating two jumpstacks per cpu, on reentry
1126 * the upper half of the stack is used.
1127 *
1128 * see the jumpstack setup in ipt_do_table() for more details.
1129 */
1130 size = sizeof(void *) * i->stacksize * 2u;
1131 for_each_possible_cpu(cpu) {
1132 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1133 cpu_to_node(cpu));
1134 if (i->jumpstack[cpu] == NULL)
1135 /*
1136 * Freeing will be done later on by the callers. The
1137 * chain is: xt_replace_table -> __do_replace ->
1138 * do_replace -> xt_free_table_info.
1139 */
1140 return -ENOMEM;
1141 }
1142
1143 return 0;
1144 }
1145
1146 struct xt_table_info *
1147 xt_replace_table(struct xt_table *table,
1148 unsigned int num_counters,
1149 struct xt_table_info *newinfo,
1150 int *error)
1151 {
1152 struct xt_table_info *private;
1153 int ret;
1154
1155 ret = xt_jumpstack_alloc(newinfo);
1156 if (ret < 0) {
1157 *error = ret;
1158 return NULL;
1159 }
1160
1161 /* Do the substitution. */
1162 local_bh_disable();
1163 private = table->private;
1164
1165 /* Check inside lock: is the old number correct? */
1166 if (num_counters != private->number) {
1167 pr_debug("num_counters != table->private->number (%u/%u)\n",
1168 num_counters, private->number);
1169 local_bh_enable();
1170 *error = -EAGAIN;
1171 return NULL;
1172 }
1173
1174 newinfo->initial_entries = private->initial_entries;
1175 /*
1176 * Ensure contents of newinfo are visible before assigning to
1177 * private.
1178 */
1179 smp_wmb();
1180 table->private = newinfo;
1181
1182 /*
1183 * Even though table entries have now been swapped, other CPU's
1184 * may still be using the old entries. This is okay, because
1185 * resynchronization happens because of the locking done
1186 * during the get_counters() routine.
1187 */
1188 local_bh_enable();
1189
1190 #ifdef CONFIG_AUDIT
1191 if (audit_enabled) {
1192 struct audit_buffer *ab;
1193
1194 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1195 AUDIT_NETFILTER_CFG);
1196 if (ab) {
1197 audit_log_format(ab, "table=%s family=%u entries=%u",
1198 table->name, table->af,
1199 private->number);
1200 audit_log_end(ab);
1201 }
1202 }
1203 #endif
1204
1205 return private;
1206 }
1207 EXPORT_SYMBOL_GPL(xt_replace_table);
1208
1209 struct xt_table *xt_register_table(struct net *net,
1210 const struct xt_table *input_table,
1211 struct xt_table_info *bootstrap,
1212 struct xt_table_info *newinfo)
1213 {
1214 int ret;
1215 struct xt_table_info *private;
1216 struct xt_table *t, *table;
1217
1218 /* Don't add one object to multiple lists. */
1219 table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1220 if (!table) {
1221 ret = -ENOMEM;
1222 goto out;
1223 }
1224
1225 mutex_lock(&xt[table->af].mutex);
1226 /* Don't autoload: we'd eat our tail... */
1227 list_for_each_entry(t, &net->xt.tables[table->af], list) {
1228 if (strcmp(t->name, table->name) == 0) {
1229 ret = -EEXIST;
1230 goto unlock;
1231 }
1232 }
1233
1234 /* Simplifies replace_table code. */
1235 table->private = bootstrap;
1236
1237 if (!xt_replace_table(table, 0, newinfo, &ret))
1238 goto unlock;
1239
1240 private = table->private;
1241 pr_debug("table->private->number = %u\n", private->number);
1242
1243 /* save number of initial entries */
1244 private->initial_entries = private->number;
1245
1246 list_add(&table->list, &net->xt.tables[table->af]);
1247 mutex_unlock(&xt[table->af].mutex);
1248 return table;
1249
1250 unlock:
1251 mutex_unlock(&xt[table->af].mutex);
1252 kfree(table);
1253 out:
1254 return ERR_PTR(ret);
1255 }
1256 EXPORT_SYMBOL_GPL(xt_register_table);
1257
1258 void *xt_unregister_table(struct xt_table *table)
1259 {
1260 struct xt_table_info *private;
1261
1262 mutex_lock(&xt[table->af].mutex);
1263 private = table->private;
1264 list_del(&table->list);
1265 mutex_unlock(&xt[table->af].mutex);
1266 kfree(table);
1267
1268 return private;
1269 }
1270 EXPORT_SYMBOL_GPL(xt_unregister_table);
1271
1272 #ifdef CONFIG_PROC_FS
1273 struct xt_names_priv {
1274 struct seq_net_private p;
1275 u_int8_t af;
1276 };
1277 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1278 {
1279 struct xt_names_priv *priv = seq->private;
1280 struct net *net = seq_file_net(seq);
1281 u_int8_t af = priv->af;
1282
1283 mutex_lock(&xt[af].mutex);
1284 return seq_list_start(&net->xt.tables[af], *pos);
1285 }
1286
1287 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1288 {
1289 struct xt_names_priv *priv = seq->private;
1290 struct net *net = seq_file_net(seq);
1291 u_int8_t af = priv->af;
1292
1293 return seq_list_next(v, &net->xt.tables[af], pos);
1294 }
1295
1296 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1297 {
1298 struct xt_names_priv *priv = seq->private;
1299 u_int8_t af = priv->af;
1300
1301 mutex_unlock(&xt[af].mutex);
1302 }
1303
1304 static int xt_table_seq_show(struct seq_file *seq, void *v)
1305 {
1306 struct xt_table *table = list_entry(v, struct xt_table, list);
1307
1308 if (*table->name)
1309 seq_printf(seq, "%s\n", table->name);
1310 return 0;
1311 }
1312
1313 static const struct seq_operations xt_table_seq_ops = {
1314 .start = xt_table_seq_start,
1315 .next = xt_table_seq_next,
1316 .stop = xt_table_seq_stop,
1317 .show = xt_table_seq_show,
1318 };
1319
1320 static int xt_table_open(struct inode *inode, struct file *file)
1321 {
1322 int ret;
1323 struct xt_names_priv *priv;
1324
1325 ret = seq_open_net(inode, file, &xt_table_seq_ops,
1326 sizeof(struct xt_names_priv));
1327 if (!ret) {
1328 priv = ((struct seq_file *)file->private_data)->private;
1329 priv->af = (unsigned long)PDE_DATA(inode);
1330 }
1331 return ret;
1332 }
1333
1334 static const struct file_operations xt_table_ops = {
1335 .owner = THIS_MODULE,
1336 .open = xt_table_open,
1337 .read = seq_read,
1338 .llseek = seq_lseek,
1339 .release = seq_release_net,
1340 };
1341
1342 /*
1343 * Traverse state for ip{,6}_{tables,matches} for helping crossing
1344 * the multi-AF mutexes.
1345 */
1346 struct nf_mttg_trav {
1347 struct list_head *head, *curr;
1348 uint8_t class, nfproto;
1349 };
1350
1351 enum {
1352 MTTG_TRAV_INIT,
1353 MTTG_TRAV_NFP_UNSPEC,
1354 MTTG_TRAV_NFP_SPEC,
1355 MTTG_TRAV_DONE,
1356 };
1357
1358 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1359 bool is_target)
1360 {
1361 static const uint8_t next_class[] = {
1362 [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1363 [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE,
1364 };
1365 struct nf_mttg_trav *trav = seq->private;
1366
1367 switch (trav->class) {
1368 case MTTG_TRAV_INIT:
1369 trav->class = MTTG_TRAV_NFP_UNSPEC;
1370 mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1371 trav->head = trav->curr = is_target ?
1372 &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1373 break;
1374 case MTTG_TRAV_NFP_UNSPEC:
1375 trav->curr = trav->curr->next;
1376 if (trav->curr != trav->head)
1377 break;
1378 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1379 mutex_lock(&xt[trav->nfproto].mutex);
1380 trav->head = trav->curr = is_target ?
1381 &xt[trav->nfproto].target : &xt[trav->nfproto].match;
1382 trav->class = next_class[trav->class];
1383 break;
1384 case MTTG_TRAV_NFP_SPEC:
1385 trav->curr = trav->curr->next;
1386 if (trav->curr != trav->head)
1387 break;
1388 /* fallthru, _stop will unlock */
1389 default:
1390 return NULL;
1391 }
1392
1393 if (ppos != NULL)
1394 ++*ppos;
1395 return trav;
1396 }
1397
1398 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1399 bool is_target)
1400 {
1401 struct nf_mttg_trav *trav = seq->private;
1402 unsigned int j;
1403
1404 trav->class = MTTG_TRAV_INIT;
1405 for (j = 0; j < *pos; ++j)
1406 if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1407 return NULL;
1408 return trav;
1409 }
1410
1411 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1412 {
1413 struct nf_mttg_trav *trav = seq->private;
1414
1415 switch (trav->class) {
1416 case MTTG_TRAV_NFP_UNSPEC:
1417 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1418 break;
1419 case MTTG_TRAV_NFP_SPEC:
1420 mutex_unlock(&xt[trav->nfproto].mutex);
1421 break;
1422 }
1423 }
1424
1425 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1426 {
1427 return xt_mttg_seq_start(seq, pos, false);
1428 }
1429
1430 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1431 {
1432 return xt_mttg_seq_next(seq, v, ppos, false);
1433 }
1434
1435 static int xt_match_seq_show(struct seq_file *seq, void *v)
1436 {
1437 const struct nf_mttg_trav *trav = seq->private;
1438 const struct xt_match *match;
1439
1440 switch (trav->class) {
1441 case MTTG_TRAV_NFP_UNSPEC:
1442 case MTTG_TRAV_NFP_SPEC:
1443 if (trav->curr == trav->head)
1444 return 0;
1445 match = list_entry(trav->curr, struct xt_match, list);
1446 if (*match->name)
1447 seq_printf(seq, "%s\n", match->name);
1448 }
1449 return 0;
1450 }
1451
1452 static const struct seq_operations xt_match_seq_ops = {
1453 .start = xt_match_seq_start,
1454 .next = xt_match_seq_next,
1455 .stop = xt_mttg_seq_stop,
1456 .show = xt_match_seq_show,
1457 };
1458
1459 static int xt_match_open(struct inode *inode, struct file *file)
1460 {
1461 struct nf_mttg_trav *trav;
1462 trav = __seq_open_private(file, &xt_match_seq_ops, sizeof(*trav));
1463 if (!trav)
1464 return -ENOMEM;
1465
1466 trav->nfproto = (unsigned long)PDE_DATA(inode);
1467 return 0;
1468 }
1469
1470 static const struct file_operations xt_match_ops = {
1471 .owner = THIS_MODULE,
1472 .open = xt_match_open,
1473 .read = seq_read,
1474 .llseek = seq_lseek,
1475 .release = seq_release_private,
1476 };
1477
1478 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1479 {
1480 return xt_mttg_seq_start(seq, pos, true);
1481 }
1482
1483 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1484 {
1485 return xt_mttg_seq_next(seq, v, ppos, true);
1486 }
1487
1488 static int xt_target_seq_show(struct seq_file *seq, void *v)
1489 {
1490 const struct nf_mttg_trav *trav = seq->private;
1491 const struct xt_target *target;
1492
1493 switch (trav->class) {
1494 case MTTG_TRAV_NFP_UNSPEC:
1495 case MTTG_TRAV_NFP_SPEC:
1496 if (trav->curr == trav->head)
1497 return 0;
1498 target = list_entry(trav->curr, struct xt_target, list);
1499 if (*target->name)
1500 seq_printf(seq, "%s\n", target->name);
1501 }
1502 return 0;
1503 }
1504
1505 static const struct seq_operations xt_target_seq_ops = {
1506 .start = xt_target_seq_start,
1507 .next = xt_target_seq_next,
1508 .stop = xt_mttg_seq_stop,
1509 .show = xt_target_seq_show,
1510 };
1511
1512 static int xt_target_open(struct inode *inode, struct file *file)
1513 {
1514 struct nf_mttg_trav *trav;
1515 trav = __seq_open_private(file, &xt_target_seq_ops, sizeof(*trav));
1516 if (!trav)
1517 return -ENOMEM;
1518
1519 trav->nfproto = (unsigned long)PDE_DATA(inode);
1520 return 0;
1521 }
1522
1523 static const struct file_operations xt_target_ops = {
1524 .owner = THIS_MODULE,
1525 .open = xt_target_open,
1526 .read = seq_read,
1527 .llseek = seq_lseek,
1528 .release = seq_release_private,
1529 };
1530
1531 #define FORMAT_TABLES "_tables_names"
1532 #define FORMAT_MATCHES "_tables_matches"
1533 #define FORMAT_TARGETS "_tables_targets"
1534
1535 #endif /* CONFIG_PROC_FS */
1536
1537 /**
1538 * xt_hook_ops_alloc - set up hooks for a new table
1539 * @table: table with metadata needed to set up hooks
1540 * @fn: Hook function
1541 *
1542 * This function will create the nf_hook_ops that the x_table needs
1543 * to hand to xt_hook_link_net().
1544 */
1545 struct nf_hook_ops *
1546 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1547 {
1548 unsigned int hook_mask = table->valid_hooks;
1549 uint8_t i, num_hooks = hweight32(hook_mask);
1550 uint8_t hooknum;
1551 struct nf_hook_ops *ops;
1552
1553 if (!num_hooks)
1554 return ERR_PTR(-EINVAL);
1555
1556 ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1557 if (ops == NULL)
1558 return ERR_PTR(-ENOMEM);
1559
1560 for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1561 hook_mask >>= 1, ++hooknum) {
1562 if (!(hook_mask & 1))
1563 continue;
1564 ops[i].hook = fn;
1565 ops[i].pf = table->af;
1566 ops[i].hooknum = hooknum;
1567 ops[i].priority = table->priority;
1568 ++i;
1569 }
1570
1571 return ops;
1572 }
1573 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1574
1575 int xt_proto_init(struct net *net, u_int8_t af)
1576 {
1577 #ifdef CONFIG_PROC_FS
1578 char buf[XT_FUNCTION_MAXNAMELEN];
1579 struct proc_dir_entry *proc;
1580 kuid_t root_uid;
1581 kgid_t root_gid;
1582 #endif
1583
1584 if (af >= ARRAY_SIZE(xt_prefix))
1585 return -EINVAL;
1586
1587
1588 #ifdef CONFIG_PROC_FS
1589 root_uid = make_kuid(net->user_ns, 0);
1590 root_gid = make_kgid(net->user_ns, 0);
1591
1592 strlcpy(buf, xt_prefix[af], sizeof(buf));
1593 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1594 proc = proc_create_data(buf, 0440, net->proc_net, &xt_table_ops,
1595 (void *)(unsigned long)af);
1596 if (!proc)
1597 goto out;
1598 if (uid_valid(root_uid) && gid_valid(root_gid))
1599 proc_set_user(proc, root_uid, root_gid);
1600
1601 strlcpy(buf, xt_prefix[af], sizeof(buf));
1602 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1603 proc = proc_create_data(buf, 0440, net->proc_net, &xt_match_ops,
1604 (void *)(unsigned long)af);
1605 if (!proc)
1606 goto out_remove_tables;
1607 if (uid_valid(root_uid) && gid_valid(root_gid))
1608 proc_set_user(proc, root_uid, root_gid);
1609
1610 strlcpy(buf, xt_prefix[af], sizeof(buf));
1611 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1612 proc = proc_create_data(buf, 0440, net->proc_net, &xt_target_ops,
1613 (void *)(unsigned long)af);
1614 if (!proc)
1615 goto out_remove_matches;
1616 if (uid_valid(root_uid) && gid_valid(root_gid))
1617 proc_set_user(proc, root_uid, root_gid);
1618 #endif
1619
1620 return 0;
1621
1622 #ifdef CONFIG_PROC_FS
1623 out_remove_matches:
1624 strlcpy(buf, xt_prefix[af], sizeof(buf));
1625 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1626 remove_proc_entry(buf, net->proc_net);
1627
1628 out_remove_tables:
1629 strlcpy(buf, xt_prefix[af], sizeof(buf));
1630 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1631 remove_proc_entry(buf, net->proc_net);
1632 out:
1633 return -1;
1634 #endif
1635 }
1636 EXPORT_SYMBOL_GPL(xt_proto_init);
1637
1638 void xt_proto_fini(struct net *net, u_int8_t af)
1639 {
1640 #ifdef CONFIG_PROC_FS
1641 char buf[XT_FUNCTION_MAXNAMELEN];
1642
1643 strlcpy(buf, xt_prefix[af], sizeof(buf));
1644 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1645 remove_proc_entry(buf, net->proc_net);
1646
1647 strlcpy(buf, xt_prefix[af], sizeof(buf));
1648 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1649 remove_proc_entry(buf, net->proc_net);
1650
1651 strlcpy(buf, xt_prefix[af], sizeof(buf));
1652 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1653 remove_proc_entry(buf, net->proc_net);
1654 #endif /*CONFIG_PROC_FS*/
1655 }
1656 EXPORT_SYMBOL_GPL(xt_proto_fini);
1657
1658 /**
1659 * xt_percpu_counter_alloc - allocate x_tables rule counter
1660 *
1661 * @state: pointer to xt_percpu allocation state
1662 * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1663 *
1664 * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1665 * contain the address of the real (percpu) counter.
1666 *
1667 * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1668 * to fetch the real percpu counter.
1669 *
1670 * To speed up allocation and improve data locality, a 4kb block is
1671 * allocated.
1672 *
1673 * xt_percpu_counter_alloc_state contains the base address of the
1674 * allocated page and the current sub-offset.
1675 *
1676 * returns false on error.
1677 */
1678 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1679 struct xt_counters *counter)
1680 {
1681 BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1682
1683 if (nr_cpu_ids <= 1)
1684 return true;
1685
1686 if (!state->mem) {
1687 state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1688 XT_PCPU_BLOCK_SIZE);
1689 if (!state->mem)
1690 return false;
1691 }
1692 counter->pcnt = (__force unsigned long)(state->mem + state->off);
1693 state->off += sizeof(*counter);
1694 if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1695 state->mem = NULL;
1696 state->off = 0;
1697 }
1698 return true;
1699 }
1700 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1701
1702 void xt_percpu_counter_free(struct xt_counters *counters)
1703 {
1704 unsigned long pcnt = counters->pcnt;
1705
1706 if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1707 free_percpu((void __percpu *)pcnt);
1708 }
1709 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1710
1711 static int __net_init xt_net_init(struct net *net)
1712 {
1713 int i;
1714
1715 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1716 INIT_LIST_HEAD(&net->xt.tables[i]);
1717 return 0;
1718 }
1719
1720 static struct pernet_operations xt_net_ops = {
1721 .init = xt_net_init,
1722 };
1723
1724 static int __init xt_init(void)
1725 {
1726 unsigned int i;
1727 int rv;
1728
1729 for_each_possible_cpu(i) {
1730 seqcount_init(&per_cpu(xt_recseq, i));
1731 }
1732
1733 xt = kmalloc(sizeof(struct xt_af) * NFPROTO_NUMPROTO, GFP_KERNEL);
1734 if (!xt)
1735 return -ENOMEM;
1736
1737 for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1738 mutex_init(&xt[i].mutex);
1739 #ifdef CONFIG_COMPAT
1740 mutex_init(&xt[i].compat_mutex);
1741 xt[i].compat_tab = NULL;
1742 #endif
1743 INIT_LIST_HEAD(&xt[i].target);
1744 INIT_LIST_HEAD(&xt[i].match);
1745 }
1746 rv = register_pernet_subsys(&xt_net_ops);
1747 if (rv < 0)
1748 kfree(xt);
1749 return rv;
1750 }
1751
1752 static void __exit xt_fini(void)
1753 {
1754 unregister_pernet_subsys(&xt_net_ops);
1755 kfree(xt);
1756 }
1757
1758 module_init(xt_init);
1759 module_exit(xt_fini);
1760