]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/netfilter/x_tables.c
Merge tag 'vfio-ccw-20170724' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms39...
[mirror_ubuntu-artful-kernel.git] / net / netfilter / x_tables.c
1 /*
2 * x_tables core - Backend for {ip,ip6,arp}_tables
3 *
4 * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5 * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on existing ip_tables code which is
8 * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9 * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41
42 #define SMP_ALIGN(x) (((x) + SMP_CACHE_BYTES-1) & ~(SMP_CACHE_BYTES-1))
43 #define XT_PCPU_BLOCK_SIZE 4096
44
45 struct compat_delta {
46 unsigned int offset; /* offset in kernel */
47 int delta; /* delta in 32bit user land */
48 };
49
50 struct xt_af {
51 struct mutex mutex;
52 struct list_head match;
53 struct list_head target;
54 #ifdef CONFIG_COMPAT
55 struct mutex compat_mutex;
56 struct compat_delta *compat_tab;
57 unsigned int number; /* number of slots in compat_tab[] */
58 unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61
62 static struct xt_af *xt;
63
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 [NFPROTO_UNSPEC] = "x",
66 [NFPROTO_IPV4] = "ip",
67 [NFPROTO_ARP] = "arp",
68 [NFPROTO_BRIDGE] = "eb",
69 [NFPROTO_IPV6] = "ip6",
70 };
71
72 /* Registration hooks for targets. */
73 int xt_register_target(struct xt_target *target)
74 {
75 u_int8_t af = target->family;
76
77 mutex_lock(&xt[af].mutex);
78 list_add(&target->list, &xt[af].target);
79 mutex_unlock(&xt[af].mutex);
80 return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83
84 void
85 xt_unregister_target(struct xt_target *target)
86 {
87 u_int8_t af = target->family;
88
89 mutex_lock(&xt[af].mutex);
90 list_del(&target->list);
91 mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94
95 int
96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 unsigned int i;
99 int err = 0;
100
101 for (i = 0; i < n; i++) {
102 err = xt_register_target(&target[i]);
103 if (err)
104 goto err;
105 }
106 return err;
107
108 err:
109 if (i > 0)
110 xt_unregister_targets(target, i);
111 return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114
115 void
116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 while (n-- > 0)
119 xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122
123 int xt_register_match(struct xt_match *match)
124 {
125 u_int8_t af = match->family;
126
127 mutex_lock(&xt[af].mutex);
128 list_add(&match->list, &xt[af].match);
129 mutex_unlock(&xt[af].mutex);
130 return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133
134 void
135 xt_unregister_match(struct xt_match *match)
136 {
137 u_int8_t af = match->family;
138
139 mutex_lock(&xt[af].mutex);
140 list_del(&match->list);
141 mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144
145 int
146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 unsigned int i;
149 int err = 0;
150
151 for (i = 0; i < n; i++) {
152 err = xt_register_match(&match[i]);
153 if (err)
154 goto err;
155 }
156 return err;
157
158 err:
159 if (i > 0)
160 xt_unregister_matches(match, i);
161 return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164
165 void
166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 while (n-- > 0)
169 xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172
173
174 /*
175 * These are weird, but module loading must not be done with mutex
176 * held (since they will register), and we have to have a single
177 * function to use.
178 */
179
180 /* Find match, grabs ref. Returns ERR_PTR() on error. */
181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 struct xt_match *m;
184 int err = -ENOENT;
185
186 mutex_lock(&xt[af].mutex);
187 list_for_each_entry(m, &xt[af].match, list) {
188 if (strcmp(m->name, name) == 0) {
189 if (m->revision == revision) {
190 if (try_module_get(m->me)) {
191 mutex_unlock(&xt[af].mutex);
192 return m;
193 }
194 } else
195 err = -EPROTOTYPE; /* Found something. */
196 }
197 }
198 mutex_unlock(&xt[af].mutex);
199
200 if (af != NFPROTO_UNSPEC)
201 /* Try searching again in the family-independent list */
202 return xt_find_match(NFPROTO_UNSPEC, name, revision);
203
204 return ERR_PTR(err);
205 }
206 EXPORT_SYMBOL(xt_find_match);
207
208 struct xt_match *
209 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
210 {
211 struct xt_match *match;
212
213 match = xt_find_match(nfproto, name, revision);
214 if (IS_ERR(match)) {
215 request_module("%st_%s", xt_prefix[nfproto], name);
216 match = xt_find_match(nfproto, name, revision);
217 }
218
219 return match;
220 }
221 EXPORT_SYMBOL_GPL(xt_request_find_match);
222
223 /* Find target, grabs ref. Returns ERR_PTR() on error. */
224 struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
225 {
226 struct xt_target *t;
227 int err = -ENOENT;
228
229 mutex_lock(&xt[af].mutex);
230 list_for_each_entry(t, &xt[af].target, list) {
231 if (strcmp(t->name, name) == 0) {
232 if (t->revision == revision) {
233 if (try_module_get(t->me)) {
234 mutex_unlock(&xt[af].mutex);
235 return t;
236 }
237 } else
238 err = -EPROTOTYPE; /* Found something. */
239 }
240 }
241 mutex_unlock(&xt[af].mutex);
242
243 if (af != NFPROTO_UNSPEC)
244 /* Try searching again in the family-independent list */
245 return xt_find_target(NFPROTO_UNSPEC, name, revision);
246
247 return ERR_PTR(err);
248 }
249 EXPORT_SYMBOL(xt_find_target);
250
251 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
252 {
253 struct xt_target *target;
254
255 target = xt_find_target(af, name, revision);
256 if (IS_ERR(target)) {
257 request_module("%st_%s", xt_prefix[af], name);
258 target = xt_find_target(af, name, revision);
259 }
260
261 return target;
262 }
263 EXPORT_SYMBOL_GPL(xt_request_find_target);
264
265
266 static int xt_obj_to_user(u16 __user *psize, u16 size,
267 void __user *pname, const char *name,
268 u8 __user *prev, u8 rev)
269 {
270 if (put_user(size, psize))
271 return -EFAULT;
272 if (copy_to_user(pname, name, strlen(name) + 1))
273 return -EFAULT;
274 if (put_user(rev, prev))
275 return -EFAULT;
276
277 return 0;
278 }
279
280 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \
281 xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \
282 U->u.user.name, K->u.kernel.TYPE->name, \
283 &U->u.user.revision, K->u.kernel.TYPE->revision)
284
285 int xt_data_to_user(void __user *dst, const void *src,
286 int usersize, int size, int aligned_size)
287 {
288 usersize = usersize ? : size;
289 if (copy_to_user(dst, src, usersize))
290 return -EFAULT;
291 if (usersize != aligned_size &&
292 clear_user(dst + usersize, aligned_size - usersize))
293 return -EFAULT;
294
295 return 0;
296 }
297 EXPORT_SYMBOL_GPL(xt_data_to_user);
298
299 #define XT_DATA_TO_USER(U, K, TYPE) \
300 xt_data_to_user(U->data, K->data, \
301 K->u.kernel.TYPE->usersize, \
302 K->u.kernel.TYPE->TYPE##size, \
303 XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
304
305 int xt_match_to_user(const struct xt_entry_match *m,
306 struct xt_entry_match __user *u)
307 {
308 return XT_OBJ_TO_USER(u, m, match, 0) ||
309 XT_DATA_TO_USER(u, m, match);
310 }
311 EXPORT_SYMBOL_GPL(xt_match_to_user);
312
313 int xt_target_to_user(const struct xt_entry_target *t,
314 struct xt_entry_target __user *u)
315 {
316 return XT_OBJ_TO_USER(u, t, target, 0) ||
317 XT_DATA_TO_USER(u, t, target);
318 }
319 EXPORT_SYMBOL_GPL(xt_target_to_user);
320
321 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
322 {
323 const struct xt_match *m;
324 int have_rev = 0;
325
326 list_for_each_entry(m, &xt[af].match, list) {
327 if (strcmp(m->name, name) == 0) {
328 if (m->revision > *bestp)
329 *bestp = m->revision;
330 if (m->revision == revision)
331 have_rev = 1;
332 }
333 }
334
335 if (af != NFPROTO_UNSPEC && !have_rev)
336 return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
337
338 return have_rev;
339 }
340
341 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
342 {
343 const struct xt_target *t;
344 int have_rev = 0;
345
346 list_for_each_entry(t, &xt[af].target, list) {
347 if (strcmp(t->name, name) == 0) {
348 if (t->revision > *bestp)
349 *bestp = t->revision;
350 if (t->revision == revision)
351 have_rev = 1;
352 }
353 }
354
355 if (af != NFPROTO_UNSPEC && !have_rev)
356 return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
357
358 return have_rev;
359 }
360
361 /* Returns true or false (if no such extension at all) */
362 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
363 int *err)
364 {
365 int have_rev, best = -1;
366
367 mutex_lock(&xt[af].mutex);
368 if (target == 1)
369 have_rev = target_revfn(af, name, revision, &best);
370 else
371 have_rev = match_revfn(af, name, revision, &best);
372 mutex_unlock(&xt[af].mutex);
373
374 /* Nothing at all? Return 0 to try loading module. */
375 if (best == -1) {
376 *err = -ENOENT;
377 return 0;
378 }
379
380 *err = best;
381 if (!have_rev)
382 *err = -EPROTONOSUPPORT;
383 return 1;
384 }
385 EXPORT_SYMBOL_GPL(xt_find_revision);
386
387 static char *
388 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
389 {
390 static const char *const inetbr_names[] = {
391 "PREROUTING", "INPUT", "FORWARD",
392 "OUTPUT", "POSTROUTING", "BROUTING",
393 };
394 static const char *const arp_names[] = {
395 "INPUT", "FORWARD", "OUTPUT",
396 };
397 const char *const *names;
398 unsigned int i, max;
399 char *p = buf;
400 bool np = false;
401 int res;
402
403 names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
404 max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
405 ARRAY_SIZE(inetbr_names);
406 *p = '\0';
407 for (i = 0; i < max; ++i) {
408 if (!(mask & (1 << i)))
409 continue;
410 res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
411 if (res > 0) {
412 size -= res;
413 p += res;
414 }
415 np = true;
416 }
417
418 return buf;
419 }
420
421 int xt_check_match(struct xt_mtchk_param *par,
422 unsigned int size, u_int8_t proto, bool inv_proto)
423 {
424 int ret;
425
426 if (XT_ALIGN(par->match->matchsize) != size &&
427 par->match->matchsize != -1) {
428 /*
429 * ebt_among is exempt from centralized matchsize checking
430 * because it uses a dynamic-size data set.
431 */
432 pr_err("%s_tables: %s.%u match: invalid size "
433 "%u (kernel) != (user) %u\n",
434 xt_prefix[par->family], par->match->name,
435 par->match->revision,
436 XT_ALIGN(par->match->matchsize), size);
437 return -EINVAL;
438 }
439 if (par->match->table != NULL &&
440 strcmp(par->match->table, par->table) != 0) {
441 pr_err("%s_tables: %s match: only valid in %s table, not %s\n",
442 xt_prefix[par->family], par->match->name,
443 par->match->table, par->table);
444 return -EINVAL;
445 }
446 if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
447 char used[64], allow[64];
448
449 pr_err("%s_tables: %s match: used from hooks %s, but only "
450 "valid from %s\n",
451 xt_prefix[par->family], par->match->name,
452 textify_hooks(used, sizeof(used), par->hook_mask,
453 par->family),
454 textify_hooks(allow, sizeof(allow), par->match->hooks,
455 par->family));
456 return -EINVAL;
457 }
458 if (par->match->proto && (par->match->proto != proto || inv_proto)) {
459 pr_err("%s_tables: %s match: only valid for protocol %u\n",
460 xt_prefix[par->family], par->match->name,
461 par->match->proto);
462 return -EINVAL;
463 }
464 if (par->match->checkentry != NULL) {
465 ret = par->match->checkentry(par);
466 if (ret < 0)
467 return ret;
468 else if (ret > 0)
469 /* Flag up potential errors. */
470 return -EIO;
471 }
472 return 0;
473 }
474 EXPORT_SYMBOL_GPL(xt_check_match);
475
476 /** xt_check_entry_match - check that matches end before start of target
477 *
478 * @match: beginning of xt_entry_match
479 * @target: beginning of this rules target (alleged end of matches)
480 * @alignment: alignment requirement of match structures
481 *
482 * Validates that all matches add up to the beginning of the target,
483 * and that each match covers at least the base structure size.
484 *
485 * Return: 0 on success, negative errno on failure.
486 */
487 static int xt_check_entry_match(const char *match, const char *target,
488 const size_t alignment)
489 {
490 const struct xt_entry_match *pos;
491 int length = target - match;
492
493 if (length == 0) /* no matches */
494 return 0;
495
496 pos = (struct xt_entry_match *)match;
497 do {
498 if ((unsigned long)pos % alignment)
499 return -EINVAL;
500
501 if (length < (int)sizeof(struct xt_entry_match))
502 return -EINVAL;
503
504 if (pos->u.match_size < sizeof(struct xt_entry_match))
505 return -EINVAL;
506
507 if (pos->u.match_size > length)
508 return -EINVAL;
509
510 length -= pos->u.match_size;
511 pos = ((void *)((char *)(pos) + (pos)->u.match_size));
512 } while (length > 0);
513
514 return 0;
515 }
516
517 #ifdef CONFIG_COMPAT
518 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
519 {
520 struct xt_af *xp = &xt[af];
521
522 if (!xp->compat_tab) {
523 if (!xp->number)
524 return -EINVAL;
525 xp->compat_tab = vmalloc(sizeof(struct compat_delta) * xp->number);
526 if (!xp->compat_tab)
527 return -ENOMEM;
528 xp->cur = 0;
529 }
530
531 if (xp->cur >= xp->number)
532 return -EINVAL;
533
534 if (xp->cur)
535 delta += xp->compat_tab[xp->cur - 1].delta;
536 xp->compat_tab[xp->cur].offset = offset;
537 xp->compat_tab[xp->cur].delta = delta;
538 xp->cur++;
539 return 0;
540 }
541 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
542
543 void xt_compat_flush_offsets(u_int8_t af)
544 {
545 if (xt[af].compat_tab) {
546 vfree(xt[af].compat_tab);
547 xt[af].compat_tab = NULL;
548 xt[af].number = 0;
549 xt[af].cur = 0;
550 }
551 }
552 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
553
554 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
555 {
556 struct compat_delta *tmp = xt[af].compat_tab;
557 int mid, left = 0, right = xt[af].cur - 1;
558
559 while (left <= right) {
560 mid = (left + right) >> 1;
561 if (offset > tmp[mid].offset)
562 left = mid + 1;
563 else if (offset < tmp[mid].offset)
564 right = mid - 1;
565 else
566 return mid ? tmp[mid - 1].delta : 0;
567 }
568 return left ? tmp[left - 1].delta : 0;
569 }
570 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
571
572 void xt_compat_init_offsets(u_int8_t af, unsigned int number)
573 {
574 xt[af].number = number;
575 xt[af].cur = 0;
576 }
577 EXPORT_SYMBOL(xt_compat_init_offsets);
578
579 int xt_compat_match_offset(const struct xt_match *match)
580 {
581 u_int16_t csize = match->compatsize ? : match->matchsize;
582 return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
583 }
584 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
585
586 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
587 unsigned int *size)
588 {
589 const struct xt_match *match = m->u.kernel.match;
590 struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
591 int pad, off = xt_compat_match_offset(match);
592 u_int16_t msize = cm->u.user.match_size;
593 char name[sizeof(m->u.user.name)];
594
595 m = *dstptr;
596 memcpy(m, cm, sizeof(*cm));
597 if (match->compat_from_user)
598 match->compat_from_user(m->data, cm->data);
599 else
600 memcpy(m->data, cm->data, msize - sizeof(*cm));
601 pad = XT_ALIGN(match->matchsize) - match->matchsize;
602 if (pad > 0)
603 memset(m->data + match->matchsize, 0, pad);
604
605 msize += off;
606 m->u.user.match_size = msize;
607 strlcpy(name, match->name, sizeof(name));
608 module_put(match->me);
609 strncpy(m->u.user.name, name, sizeof(m->u.user.name));
610
611 *size += off;
612 *dstptr += msize;
613 }
614 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
615
616 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \
617 xt_data_to_user(U->data, K->data, \
618 K->u.kernel.TYPE->usersize, \
619 C_SIZE, \
620 COMPAT_XT_ALIGN(C_SIZE))
621
622 int xt_compat_match_to_user(const struct xt_entry_match *m,
623 void __user **dstptr, unsigned int *size)
624 {
625 const struct xt_match *match = m->u.kernel.match;
626 struct compat_xt_entry_match __user *cm = *dstptr;
627 int off = xt_compat_match_offset(match);
628 u_int16_t msize = m->u.user.match_size - off;
629
630 if (XT_OBJ_TO_USER(cm, m, match, msize))
631 return -EFAULT;
632
633 if (match->compat_to_user) {
634 if (match->compat_to_user((void __user *)cm->data, m->data))
635 return -EFAULT;
636 } else {
637 if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
638 return -EFAULT;
639 }
640
641 *size -= off;
642 *dstptr += msize;
643 return 0;
644 }
645 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
646
647 /* non-compat version may have padding after verdict */
648 struct compat_xt_standard_target {
649 struct compat_xt_entry_target t;
650 compat_uint_t verdict;
651 };
652
653 int xt_compat_check_entry_offsets(const void *base, const char *elems,
654 unsigned int target_offset,
655 unsigned int next_offset)
656 {
657 long size_of_base_struct = elems - (const char *)base;
658 const struct compat_xt_entry_target *t;
659 const char *e = base;
660
661 if (target_offset < size_of_base_struct)
662 return -EINVAL;
663
664 if (target_offset + sizeof(*t) > next_offset)
665 return -EINVAL;
666
667 t = (void *)(e + target_offset);
668 if (t->u.target_size < sizeof(*t))
669 return -EINVAL;
670
671 if (target_offset + t->u.target_size > next_offset)
672 return -EINVAL;
673
674 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
675 COMPAT_XT_ALIGN(target_offset + sizeof(struct compat_xt_standard_target)) != next_offset)
676 return -EINVAL;
677
678 /* compat_xt_entry match has less strict alignment requirements,
679 * otherwise they are identical. In case of padding differences
680 * we need to add compat version of xt_check_entry_match.
681 */
682 BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
683
684 return xt_check_entry_match(elems, base + target_offset,
685 __alignof__(struct compat_xt_entry_match));
686 }
687 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
688 #endif /* CONFIG_COMPAT */
689
690 /**
691 * xt_check_entry_offsets - validate arp/ip/ip6t_entry
692 *
693 * @base: pointer to arp/ip/ip6t_entry
694 * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
695 * @target_offset: the arp/ip/ip6_t->target_offset
696 * @next_offset: the arp/ip/ip6_t->next_offset
697 *
698 * validates that target_offset and next_offset are sane and that all
699 * match sizes (if any) align with the target offset.
700 *
701 * This function does not validate the targets or matches themselves, it
702 * only tests that all the offsets and sizes are correct, that all
703 * match structures are aligned, and that the last structure ends where
704 * the target structure begins.
705 *
706 * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
707 *
708 * The arp/ip/ip6t_entry structure @base must have passed following tests:
709 * - it must point to a valid memory location
710 * - base to base + next_offset must be accessible, i.e. not exceed allocated
711 * length.
712 *
713 * A well-formed entry looks like this:
714 *
715 * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry
716 * e->elems[]-----' | |
717 * matchsize | |
718 * matchsize | |
719 * | |
720 * target_offset---------------------------------' |
721 * next_offset---------------------------------------------------'
722 *
723 * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
724 * This is where matches (if any) and the target reside.
725 * target_offset: beginning of target.
726 * next_offset: start of the next rule; also: size of this rule.
727 * Since targets have a minimum size, target_offset + minlen <= next_offset.
728 *
729 * Every match stores its size, sum of sizes must not exceed target_offset.
730 *
731 * Return: 0 on success, negative errno on failure.
732 */
733 int xt_check_entry_offsets(const void *base,
734 const char *elems,
735 unsigned int target_offset,
736 unsigned int next_offset)
737 {
738 long size_of_base_struct = elems - (const char *)base;
739 const struct xt_entry_target *t;
740 const char *e = base;
741
742 /* target start is within the ip/ip6/arpt_entry struct */
743 if (target_offset < size_of_base_struct)
744 return -EINVAL;
745
746 if (target_offset + sizeof(*t) > next_offset)
747 return -EINVAL;
748
749 t = (void *)(e + target_offset);
750 if (t->u.target_size < sizeof(*t))
751 return -EINVAL;
752
753 if (target_offset + t->u.target_size > next_offset)
754 return -EINVAL;
755
756 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
757 XT_ALIGN(target_offset + sizeof(struct xt_standard_target)) != next_offset)
758 return -EINVAL;
759
760 return xt_check_entry_match(elems, base + target_offset,
761 __alignof__(struct xt_entry_match));
762 }
763 EXPORT_SYMBOL(xt_check_entry_offsets);
764
765 /**
766 * xt_alloc_entry_offsets - allocate array to store rule head offsets
767 *
768 * @size: number of entries
769 *
770 * Return: NULL or kmalloc'd or vmalloc'd array
771 */
772 unsigned int *xt_alloc_entry_offsets(unsigned int size)
773 {
774 return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
775
776 }
777 EXPORT_SYMBOL(xt_alloc_entry_offsets);
778
779 /**
780 * xt_find_jump_offset - check if target is a valid jump offset
781 *
782 * @offsets: array containing all valid rule start offsets of a rule blob
783 * @target: the jump target to search for
784 * @size: entries in @offset
785 */
786 bool xt_find_jump_offset(const unsigned int *offsets,
787 unsigned int target, unsigned int size)
788 {
789 int m, low = 0, hi = size;
790
791 while (hi > low) {
792 m = (low + hi) / 2u;
793
794 if (offsets[m] > target)
795 hi = m;
796 else if (offsets[m] < target)
797 low = m + 1;
798 else
799 return true;
800 }
801
802 return false;
803 }
804 EXPORT_SYMBOL(xt_find_jump_offset);
805
806 int xt_check_target(struct xt_tgchk_param *par,
807 unsigned int size, u_int8_t proto, bool inv_proto)
808 {
809 int ret;
810
811 if (XT_ALIGN(par->target->targetsize) != size) {
812 pr_err("%s_tables: %s.%u target: invalid size "
813 "%u (kernel) != (user) %u\n",
814 xt_prefix[par->family], par->target->name,
815 par->target->revision,
816 XT_ALIGN(par->target->targetsize), size);
817 return -EINVAL;
818 }
819 if (par->target->table != NULL &&
820 strcmp(par->target->table, par->table) != 0) {
821 pr_err("%s_tables: %s target: only valid in %s table, not %s\n",
822 xt_prefix[par->family], par->target->name,
823 par->target->table, par->table);
824 return -EINVAL;
825 }
826 if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
827 char used[64], allow[64];
828
829 pr_err("%s_tables: %s target: used from hooks %s, but only "
830 "usable from %s\n",
831 xt_prefix[par->family], par->target->name,
832 textify_hooks(used, sizeof(used), par->hook_mask,
833 par->family),
834 textify_hooks(allow, sizeof(allow), par->target->hooks,
835 par->family));
836 return -EINVAL;
837 }
838 if (par->target->proto && (par->target->proto != proto || inv_proto)) {
839 pr_err("%s_tables: %s target: only valid for protocol %u\n",
840 xt_prefix[par->family], par->target->name,
841 par->target->proto);
842 return -EINVAL;
843 }
844 if (par->target->checkentry != NULL) {
845 ret = par->target->checkentry(par);
846 if (ret < 0)
847 return ret;
848 else if (ret > 0)
849 /* Flag up potential errors. */
850 return -EIO;
851 }
852 return 0;
853 }
854 EXPORT_SYMBOL_GPL(xt_check_target);
855
856 /**
857 * xt_copy_counters_from_user - copy counters and metadata from userspace
858 *
859 * @user: src pointer to userspace memory
860 * @len: alleged size of userspace memory
861 * @info: where to store the xt_counters_info metadata
862 * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
863 *
864 * Copies counter meta data from @user and stores it in @info.
865 *
866 * vmallocs memory to hold the counters, then copies the counter data
867 * from @user to the new memory and returns a pointer to it.
868 *
869 * If @compat is true, @info gets converted automatically to the 64bit
870 * representation.
871 *
872 * The metadata associated with the counters is stored in @info.
873 *
874 * Return: returns pointer that caller has to test via IS_ERR().
875 * If IS_ERR is false, caller has to vfree the pointer.
876 */
877 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
878 struct xt_counters_info *info, bool compat)
879 {
880 void *mem;
881 u64 size;
882
883 #ifdef CONFIG_COMPAT
884 if (compat) {
885 /* structures only differ in size due to alignment */
886 struct compat_xt_counters_info compat_tmp;
887
888 if (len <= sizeof(compat_tmp))
889 return ERR_PTR(-EINVAL);
890
891 len -= sizeof(compat_tmp);
892 if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
893 return ERR_PTR(-EFAULT);
894
895 strlcpy(info->name, compat_tmp.name, sizeof(info->name));
896 info->num_counters = compat_tmp.num_counters;
897 user += sizeof(compat_tmp);
898 } else
899 #endif
900 {
901 if (len <= sizeof(*info))
902 return ERR_PTR(-EINVAL);
903
904 len -= sizeof(*info);
905 if (copy_from_user(info, user, sizeof(*info)) != 0)
906 return ERR_PTR(-EFAULT);
907
908 info->name[sizeof(info->name) - 1] = '\0';
909 user += sizeof(*info);
910 }
911
912 size = sizeof(struct xt_counters);
913 size *= info->num_counters;
914
915 if (size != (u64)len)
916 return ERR_PTR(-EINVAL);
917
918 mem = vmalloc(len);
919 if (!mem)
920 return ERR_PTR(-ENOMEM);
921
922 if (copy_from_user(mem, user, len) == 0)
923 return mem;
924
925 vfree(mem);
926 return ERR_PTR(-EFAULT);
927 }
928 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
929
930 #ifdef CONFIG_COMPAT
931 int xt_compat_target_offset(const struct xt_target *target)
932 {
933 u_int16_t csize = target->compatsize ? : target->targetsize;
934 return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
935 }
936 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
937
938 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
939 unsigned int *size)
940 {
941 const struct xt_target *target = t->u.kernel.target;
942 struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
943 int pad, off = xt_compat_target_offset(target);
944 u_int16_t tsize = ct->u.user.target_size;
945 char name[sizeof(t->u.user.name)];
946
947 t = *dstptr;
948 memcpy(t, ct, sizeof(*ct));
949 if (target->compat_from_user)
950 target->compat_from_user(t->data, ct->data);
951 else
952 memcpy(t->data, ct->data, tsize - sizeof(*ct));
953 pad = XT_ALIGN(target->targetsize) - target->targetsize;
954 if (pad > 0)
955 memset(t->data + target->targetsize, 0, pad);
956
957 tsize += off;
958 t->u.user.target_size = tsize;
959 strlcpy(name, target->name, sizeof(name));
960 module_put(target->me);
961 strncpy(t->u.user.name, name, sizeof(t->u.user.name));
962
963 *size += off;
964 *dstptr += tsize;
965 }
966 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
967
968 int xt_compat_target_to_user(const struct xt_entry_target *t,
969 void __user **dstptr, unsigned int *size)
970 {
971 const struct xt_target *target = t->u.kernel.target;
972 struct compat_xt_entry_target __user *ct = *dstptr;
973 int off = xt_compat_target_offset(target);
974 u_int16_t tsize = t->u.user.target_size - off;
975
976 if (XT_OBJ_TO_USER(ct, t, target, tsize))
977 return -EFAULT;
978
979 if (target->compat_to_user) {
980 if (target->compat_to_user((void __user *)ct->data, t->data))
981 return -EFAULT;
982 } else {
983 if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
984 return -EFAULT;
985 }
986
987 *size -= off;
988 *dstptr += tsize;
989 return 0;
990 }
991 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
992 #endif
993
994 struct xt_table_info *xt_alloc_table_info(unsigned int size)
995 {
996 struct xt_table_info *info = NULL;
997 size_t sz = sizeof(*info) + size;
998
999 if (sz < sizeof(*info))
1000 return NULL;
1001
1002 /* Pedantry: prevent them from hitting BUG() in vmalloc.c --RR */
1003 if ((SMP_ALIGN(size) >> PAGE_SHIFT) + 2 > totalram_pages)
1004 return NULL;
1005
1006 info = kvmalloc(sz, GFP_KERNEL);
1007 if (!info)
1008 return NULL;
1009
1010 memset(info, 0, sizeof(*info));
1011 info->size = size;
1012 return info;
1013 }
1014 EXPORT_SYMBOL(xt_alloc_table_info);
1015
1016 void xt_free_table_info(struct xt_table_info *info)
1017 {
1018 int cpu;
1019
1020 if (info->jumpstack != NULL) {
1021 for_each_possible_cpu(cpu)
1022 kvfree(info->jumpstack[cpu]);
1023 kvfree(info->jumpstack);
1024 }
1025
1026 kvfree(info);
1027 }
1028 EXPORT_SYMBOL(xt_free_table_info);
1029
1030 /* Find table by name, grabs mutex & ref. Returns NULL on error. */
1031 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1032 const char *name)
1033 {
1034 struct xt_table *t, *found = NULL;
1035
1036 mutex_lock(&xt[af].mutex);
1037 list_for_each_entry(t, &net->xt.tables[af], list)
1038 if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1039 return t;
1040
1041 if (net == &init_net)
1042 goto out;
1043
1044 /* Table doesn't exist in this netns, re-try init */
1045 list_for_each_entry(t, &init_net.xt.tables[af], list) {
1046 if (strcmp(t->name, name))
1047 continue;
1048 if (!try_module_get(t->me)) {
1049 mutex_unlock(&xt[af].mutex);
1050 return NULL;
1051 }
1052
1053 mutex_unlock(&xt[af].mutex);
1054 if (t->table_init(net) != 0) {
1055 module_put(t->me);
1056 return NULL;
1057 }
1058
1059 found = t;
1060
1061 mutex_lock(&xt[af].mutex);
1062 break;
1063 }
1064
1065 if (!found)
1066 goto out;
1067
1068 /* and once again: */
1069 list_for_each_entry(t, &net->xt.tables[af], list)
1070 if (strcmp(t->name, name) == 0)
1071 return t;
1072
1073 module_put(found->me);
1074 out:
1075 mutex_unlock(&xt[af].mutex);
1076 return NULL;
1077 }
1078 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1079
1080 void xt_table_unlock(struct xt_table *table)
1081 {
1082 mutex_unlock(&xt[table->af].mutex);
1083 }
1084 EXPORT_SYMBOL_GPL(xt_table_unlock);
1085
1086 #ifdef CONFIG_COMPAT
1087 void xt_compat_lock(u_int8_t af)
1088 {
1089 mutex_lock(&xt[af].compat_mutex);
1090 }
1091 EXPORT_SYMBOL_GPL(xt_compat_lock);
1092
1093 void xt_compat_unlock(u_int8_t af)
1094 {
1095 mutex_unlock(&xt[af].compat_mutex);
1096 }
1097 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1098 #endif
1099
1100 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1101 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1102
1103 struct static_key xt_tee_enabled __read_mostly;
1104 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1105
1106 static int xt_jumpstack_alloc(struct xt_table_info *i)
1107 {
1108 unsigned int size;
1109 int cpu;
1110
1111 size = sizeof(void **) * nr_cpu_ids;
1112 if (size > PAGE_SIZE)
1113 i->jumpstack = kvzalloc(size, GFP_KERNEL);
1114 else
1115 i->jumpstack = kzalloc(size, GFP_KERNEL);
1116 if (i->jumpstack == NULL)
1117 return -ENOMEM;
1118
1119 /* ruleset without jumps -- no stack needed */
1120 if (i->stacksize == 0)
1121 return 0;
1122
1123 /* Jumpstack needs to be able to record two full callchains, one
1124 * from the first rule set traversal, plus one table reentrancy
1125 * via -j TEE without clobbering the callchain that brought us to
1126 * TEE target.
1127 *
1128 * This is done by allocating two jumpstacks per cpu, on reentry
1129 * the upper half of the stack is used.
1130 *
1131 * see the jumpstack setup in ipt_do_table() for more details.
1132 */
1133 size = sizeof(void *) * i->stacksize * 2u;
1134 for_each_possible_cpu(cpu) {
1135 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1136 cpu_to_node(cpu));
1137 if (i->jumpstack[cpu] == NULL)
1138 /*
1139 * Freeing will be done later on by the callers. The
1140 * chain is: xt_replace_table -> __do_replace ->
1141 * do_replace -> xt_free_table_info.
1142 */
1143 return -ENOMEM;
1144 }
1145
1146 return 0;
1147 }
1148
1149 struct xt_table_info *
1150 xt_replace_table(struct xt_table *table,
1151 unsigned int num_counters,
1152 struct xt_table_info *newinfo,
1153 int *error)
1154 {
1155 struct xt_table_info *private;
1156 int ret;
1157
1158 ret = xt_jumpstack_alloc(newinfo);
1159 if (ret < 0) {
1160 *error = ret;
1161 return NULL;
1162 }
1163
1164 /* Do the substitution. */
1165 local_bh_disable();
1166 private = table->private;
1167
1168 /* Check inside lock: is the old number correct? */
1169 if (num_counters != private->number) {
1170 pr_debug("num_counters != table->private->number (%u/%u)\n",
1171 num_counters, private->number);
1172 local_bh_enable();
1173 *error = -EAGAIN;
1174 return NULL;
1175 }
1176
1177 newinfo->initial_entries = private->initial_entries;
1178 /*
1179 * Ensure contents of newinfo are visible before assigning to
1180 * private.
1181 */
1182 smp_wmb();
1183 table->private = newinfo;
1184
1185 /*
1186 * Even though table entries have now been swapped, other CPU's
1187 * may still be using the old entries. This is okay, because
1188 * resynchronization happens because of the locking done
1189 * during the get_counters() routine.
1190 */
1191 local_bh_enable();
1192
1193 #ifdef CONFIG_AUDIT
1194 if (audit_enabled) {
1195 struct audit_buffer *ab;
1196
1197 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1198 AUDIT_NETFILTER_CFG);
1199 if (ab) {
1200 audit_log_format(ab, "table=%s family=%u entries=%u",
1201 table->name, table->af,
1202 private->number);
1203 audit_log_end(ab);
1204 }
1205 }
1206 #endif
1207
1208 return private;
1209 }
1210 EXPORT_SYMBOL_GPL(xt_replace_table);
1211
1212 struct xt_table *xt_register_table(struct net *net,
1213 const struct xt_table *input_table,
1214 struct xt_table_info *bootstrap,
1215 struct xt_table_info *newinfo)
1216 {
1217 int ret;
1218 struct xt_table_info *private;
1219 struct xt_table *t, *table;
1220
1221 /* Don't add one object to multiple lists. */
1222 table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1223 if (!table) {
1224 ret = -ENOMEM;
1225 goto out;
1226 }
1227
1228 mutex_lock(&xt[table->af].mutex);
1229 /* Don't autoload: we'd eat our tail... */
1230 list_for_each_entry(t, &net->xt.tables[table->af], list) {
1231 if (strcmp(t->name, table->name) == 0) {
1232 ret = -EEXIST;
1233 goto unlock;
1234 }
1235 }
1236
1237 /* Simplifies replace_table code. */
1238 table->private = bootstrap;
1239
1240 if (!xt_replace_table(table, 0, newinfo, &ret))
1241 goto unlock;
1242
1243 private = table->private;
1244 pr_debug("table->private->number = %u\n", private->number);
1245
1246 /* save number of initial entries */
1247 private->initial_entries = private->number;
1248
1249 list_add(&table->list, &net->xt.tables[table->af]);
1250 mutex_unlock(&xt[table->af].mutex);
1251 return table;
1252
1253 unlock:
1254 mutex_unlock(&xt[table->af].mutex);
1255 kfree(table);
1256 out:
1257 return ERR_PTR(ret);
1258 }
1259 EXPORT_SYMBOL_GPL(xt_register_table);
1260
1261 void *xt_unregister_table(struct xt_table *table)
1262 {
1263 struct xt_table_info *private;
1264
1265 mutex_lock(&xt[table->af].mutex);
1266 private = table->private;
1267 list_del(&table->list);
1268 mutex_unlock(&xt[table->af].mutex);
1269 kfree(table);
1270
1271 return private;
1272 }
1273 EXPORT_SYMBOL_GPL(xt_unregister_table);
1274
1275 #ifdef CONFIG_PROC_FS
1276 struct xt_names_priv {
1277 struct seq_net_private p;
1278 u_int8_t af;
1279 };
1280 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1281 {
1282 struct xt_names_priv *priv = seq->private;
1283 struct net *net = seq_file_net(seq);
1284 u_int8_t af = priv->af;
1285
1286 mutex_lock(&xt[af].mutex);
1287 return seq_list_start(&net->xt.tables[af], *pos);
1288 }
1289
1290 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1291 {
1292 struct xt_names_priv *priv = seq->private;
1293 struct net *net = seq_file_net(seq);
1294 u_int8_t af = priv->af;
1295
1296 return seq_list_next(v, &net->xt.tables[af], pos);
1297 }
1298
1299 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1300 {
1301 struct xt_names_priv *priv = seq->private;
1302 u_int8_t af = priv->af;
1303
1304 mutex_unlock(&xt[af].mutex);
1305 }
1306
1307 static int xt_table_seq_show(struct seq_file *seq, void *v)
1308 {
1309 struct xt_table *table = list_entry(v, struct xt_table, list);
1310
1311 if (*table->name)
1312 seq_printf(seq, "%s\n", table->name);
1313 return 0;
1314 }
1315
1316 static const struct seq_operations xt_table_seq_ops = {
1317 .start = xt_table_seq_start,
1318 .next = xt_table_seq_next,
1319 .stop = xt_table_seq_stop,
1320 .show = xt_table_seq_show,
1321 };
1322
1323 static int xt_table_open(struct inode *inode, struct file *file)
1324 {
1325 int ret;
1326 struct xt_names_priv *priv;
1327
1328 ret = seq_open_net(inode, file, &xt_table_seq_ops,
1329 sizeof(struct xt_names_priv));
1330 if (!ret) {
1331 priv = ((struct seq_file *)file->private_data)->private;
1332 priv->af = (unsigned long)PDE_DATA(inode);
1333 }
1334 return ret;
1335 }
1336
1337 static const struct file_operations xt_table_ops = {
1338 .owner = THIS_MODULE,
1339 .open = xt_table_open,
1340 .read = seq_read,
1341 .llseek = seq_lseek,
1342 .release = seq_release_net,
1343 };
1344
1345 /*
1346 * Traverse state for ip{,6}_{tables,matches} for helping crossing
1347 * the multi-AF mutexes.
1348 */
1349 struct nf_mttg_trav {
1350 struct list_head *head, *curr;
1351 uint8_t class, nfproto;
1352 };
1353
1354 enum {
1355 MTTG_TRAV_INIT,
1356 MTTG_TRAV_NFP_UNSPEC,
1357 MTTG_TRAV_NFP_SPEC,
1358 MTTG_TRAV_DONE,
1359 };
1360
1361 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1362 bool is_target)
1363 {
1364 static const uint8_t next_class[] = {
1365 [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1366 [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE,
1367 };
1368 struct nf_mttg_trav *trav = seq->private;
1369
1370 switch (trav->class) {
1371 case MTTG_TRAV_INIT:
1372 trav->class = MTTG_TRAV_NFP_UNSPEC;
1373 mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1374 trav->head = trav->curr = is_target ?
1375 &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1376 break;
1377 case MTTG_TRAV_NFP_UNSPEC:
1378 trav->curr = trav->curr->next;
1379 if (trav->curr != trav->head)
1380 break;
1381 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1382 mutex_lock(&xt[trav->nfproto].mutex);
1383 trav->head = trav->curr = is_target ?
1384 &xt[trav->nfproto].target : &xt[trav->nfproto].match;
1385 trav->class = next_class[trav->class];
1386 break;
1387 case MTTG_TRAV_NFP_SPEC:
1388 trav->curr = trav->curr->next;
1389 if (trav->curr != trav->head)
1390 break;
1391 /* fallthru, _stop will unlock */
1392 default:
1393 return NULL;
1394 }
1395
1396 if (ppos != NULL)
1397 ++*ppos;
1398 return trav;
1399 }
1400
1401 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1402 bool is_target)
1403 {
1404 struct nf_mttg_trav *trav = seq->private;
1405 unsigned int j;
1406
1407 trav->class = MTTG_TRAV_INIT;
1408 for (j = 0; j < *pos; ++j)
1409 if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1410 return NULL;
1411 return trav;
1412 }
1413
1414 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1415 {
1416 struct nf_mttg_trav *trav = seq->private;
1417
1418 switch (trav->class) {
1419 case MTTG_TRAV_NFP_UNSPEC:
1420 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1421 break;
1422 case MTTG_TRAV_NFP_SPEC:
1423 mutex_unlock(&xt[trav->nfproto].mutex);
1424 break;
1425 }
1426 }
1427
1428 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1429 {
1430 return xt_mttg_seq_start(seq, pos, false);
1431 }
1432
1433 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1434 {
1435 return xt_mttg_seq_next(seq, v, ppos, false);
1436 }
1437
1438 static int xt_match_seq_show(struct seq_file *seq, void *v)
1439 {
1440 const struct nf_mttg_trav *trav = seq->private;
1441 const struct xt_match *match;
1442
1443 switch (trav->class) {
1444 case MTTG_TRAV_NFP_UNSPEC:
1445 case MTTG_TRAV_NFP_SPEC:
1446 if (trav->curr == trav->head)
1447 return 0;
1448 match = list_entry(trav->curr, struct xt_match, list);
1449 if (*match->name)
1450 seq_printf(seq, "%s\n", match->name);
1451 }
1452 return 0;
1453 }
1454
1455 static const struct seq_operations xt_match_seq_ops = {
1456 .start = xt_match_seq_start,
1457 .next = xt_match_seq_next,
1458 .stop = xt_mttg_seq_stop,
1459 .show = xt_match_seq_show,
1460 };
1461
1462 static int xt_match_open(struct inode *inode, struct file *file)
1463 {
1464 struct nf_mttg_trav *trav;
1465 trav = __seq_open_private(file, &xt_match_seq_ops, sizeof(*trav));
1466 if (!trav)
1467 return -ENOMEM;
1468
1469 trav->nfproto = (unsigned long)PDE_DATA(inode);
1470 return 0;
1471 }
1472
1473 static const struct file_operations xt_match_ops = {
1474 .owner = THIS_MODULE,
1475 .open = xt_match_open,
1476 .read = seq_read,
1477 .llseek = seq_lseek,
1478 .release = seq_release_private,
1479 };
1480
1481 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1482 {
1483 return xt_mttg_seq_start(seq, pos, true);
1484 }
1485
1486 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1487 {
1488 return xt_mttg_seq_next(seq, v, ppos, true);
1489 }
1490
1491 static int xt_target_seq_show(struct seq_file *seq, void *v)
1492 {
1493 const struct nf_mttg_trav *trav = seq->private;
1494 const struct xt_target *target;
1495
1496 switch (trav->class) {
1497 case MTTG_TRAV_NFP_UNSPEC:
1498 case MTTG_TRAV_NFP_SPEC:
1499 if (trav->curr == trav->head)
1500 return 0;
1501 target = list_entry(trav->curr, struct xt_target, list);
1502 if (*target->name)
1503 seq_printf(seq, "%s\n", target->name);
1504 }
1505 return 0;
1506 }
1507
1508 static const struct seq_operations xt_target_seq_ops = {
1509 .start = xt_target_seq_start,
1510 .next = xt_target_seq_next,
1511 .stop = xt_mttg_seq_stop,
1512 .show = xt_target_seq_show,
1513 };
1514
1515 static int xt_target_open(struct inode *inode, struct file *file)
1516 {
1517 struct nf_mttg_trav *trav;
1518 trav = __seq_open_private(file, &xt_target_seq_ops, sizeof(*trav));
1519 if (!trav)
1520 return -ENOMEM;
1521
1522 trav->nfproto = (unsigned long)PDE_DATA(inode);
1523 return 0;
1524 }
1525
1526 static const struct file_operations xt_target_ops = {
1527 .owner = THIS_MODULE,
1528 .open = xt_target_open,
1529 .read = seq_read,
1530 .llseek = seq_lseek,
1531 .release = seq_release_private,
1532 };
1533
1534 #define FORMAT_TABLES "_tables_names"
1535 #define FORMAT_MATCHES "_tables_matches"
1536 #define FORMAT_TARGETS "_tables_targets"
1537
1538 #endif /* CONFIG_PROC_FS */
1539
1540 /**
1541 * xt_hook_ops_alloc - set up hooks for a new table
1542 * @table: table with metadata needed to set up hooks
1543 * @fn: Hook function
1544 *
1545 * This function will create the nf_hook_ops that the x_table needs
1546 * to hand to xt_hook_link_net().
1547 */
1548 struct nf_hook_ops *
1549 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1550 {
1551 unsigned int hook_mask = table->valid_hooks;
1552 uint8_t i, num_hooks = hweight32(hook_mask);
1553 uint8_t hooknum;
1554 struct nf_hook_ops *ops;
1555
1556 if (!num_hooks)
1557 return ERR_PTR(-EINVAL);
1558
1559 ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1560 if (ops == NULL)
1561 return ERR_PTR(-ENOMEM);
1562
1563 for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1564 hook_mask >>= 1, ++hooknum) {
1565 if (!(hook_mask & 1))
1566 continue;
1567 ops[i].hook = fn;
1568 ops[i].pf = table->af;
1569 ops[i].hooknum = hooknum;
1570 ops[i].priority = table->priority;
1571 ++i;
1572 }
1573
1574 return ops;
1575 }
1576 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1577
1578 int xt_proto_init(struct net *net, u_int8_t af)
1579 {
1580 #ifdef CONFIG_PROC_FS
1581 char buf[XT_FUNCTION_MAXNAMELEN];
1582 struct proc_dir_entry *proc;
1583 kuid_t root_uid;
1584 kgid_t root_gid;
1585 #endif
1586
1587 if (af >= ARRAY_SIZE(xt_prefix))
1588 return -EINVAL;
1589
1590
1591 #ifdef CONFIG_PROC_FS
1592 root_uid = make_kuid(net->user_ns, 0);
1593 root_gid = make_kgid(net->user_ns, 0);
1594
1595 strlcpy(buf, xt_prefix[af], sizeof(buf));
1596 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1597 proc = proc_create_data(buf, 0440, net->proc_net, &xt_table_ops,
1598 (void *)(unsigned long)af);
1599 if (!proc)
1600 goto out;
1601 if (uid_valid(root_uid) && gid_valid(root_gid))
1602 proc_set_user(proc, root_uid, root_gid);
1603
1604 strlcpy(buf, xt_prefix[af], sizeof(buf));
1605 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1606 proc = proc_create_data(buf, 0440, net->proc_net, &xt_match_ops,
1607 (void *)(unsigned long)af);
1608 if (!proc)
1609 goto out_remove_tables;
1610 if (uid_valid(root_uid) && gid_valid(root_gid))
1611 proc_set_user(proc, root_uid, root_gid);
1612
1613 strlcpy(buf, xt_prefix[af], sizeof(buf));
1614 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1615 proc = proc_create_data(buf, 0440, net->proc_net, &xt_target_ops,
1616 (void *)(unsigned long)af);
1617 if (!proc)
1618 goto out_remove_matches;
1619 if (uid_valid(root_uid) && gid_valid(root_gid))
1620 proc_set_user(proc, root_uid, root_gid);
1621 #endif
1622
1623 return 0;
1624
1625 #ifdef CONFIG_PROC_FS
1626 out_remove_matches:
1627 strlcpy(buf, xt_prefix[af], sizeof(buf));
1628 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1629 remove_proc_entry(buf, net->proc_net);
1630
1631 out_remove_tables:
1632 strlcpy(buf, xt_prefix[af], sizeof(buf));
1633 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1634 remove_proc_entry(buf, net->proc_net);
1635 out:
1636 return -1;
1637 #endif
1638 }
1639 EXPORT_SYMBOL_GPL(xt_proto_init);
1640
1641 void xt_proto_fini(struct net *net, u_int8_t af)
1642 {
1643 #ifdef CONFIG_PROC_FS
1644 char buf[XT_FUNCTION_MAXNAMELEN];
1645
1646 strlcpy(buf, xt_prefix[af], sizeof(buf));
1647 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1648 remove_proc_entry(buf, net->proc_net);
1649
1650 strlcpy(buf, xt_prefix[af], sizeof(buf));
1651 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1652 remove_proc_entry(buf, net->proc_net);
1653
1654 strlcpy(buf, xt_prefix[af], sizeof(buf));
1655 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1656 remove_proc_entry(buf, net->proc_net);
1657 #endif /*CONFIG_PROC_FS*/
1658 }
1659 EXPORT_SYMBOL_GPL(xt_proto_fini);
1660
1661 /**
1662 * xt_percpu_counter_alloc - allocate x_tables rule counter
1663 *
1664 * @state: pointer to xt_percpu allocation state
1665 * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1666 *
1667 * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1668 * contain the address of the real (percpu) counter.
1669 *
1670 * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1671 * to fetch the real percpu counter.
1672 *
1673 * To speed up allocation and improve data locality, a 4kb block is
1674 * allocated.
1675 *
1676 * xt_percpu_counter_alloc_state contains the base address of the
1677 * allocated page and the current sub-offset.
1678 *
1679 * returns false on error.
1680 */
1681 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1682 struct xt_counters *counter)
1683 {
1684 BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1685
1686 if (nr_cpu_ids <= 1)
1687 return true;
1688
1689 if (!state->mem) {
1690 state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1691 XT_PCPU_BLOCK_SIZE);
1692 if (!state->mem)
1693 return false;
1694 }
1695 counter->pcnt = (__force unsigned long)(state->mem + state->off);
1696 state->off += sizeof(*counter);
1697 if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1698 state->mem = NULL;
1699 state->off = 0;
1700 }
1701 return true;
1702 }
1703 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1704
1705 void xt_percpu_counter_free(struct xt_counters *counters)
1706 {
1707 unsigned long pcnt = counters->pcnt;
1708
1709 if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1710 free_percpu((void __percpu *)pcnt);
1711 }
1712 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1713
1714 static int __net_init xt_net_init(struct net *net)
1715 {
1716 int i;
1717
1718 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1719 INIT_LIST_HEAD(&net->xt.tables[i]);
1720 return 0;
1721 }
1722
1723 static struct pernet_operations xt_net_ops = {
1724 .init = xt_net_init,
1725 };
1726
1727 static int __init xt_init(void)
1728 {
1729 unsigned int i;
1730 int rv;
1731
1732 for_each_possible_cpu(i) {
1733 seqcount_init(&per_cpu(xt_recseq, i));
1734 }
1735
1736 xt = kmalloc(sizeof(struct xt_af) * NFPROTO_NUMPROTO, GFP_KERNEL);
1737 if (!xt)
1738 return -ENOMEM;
1739
1740 for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1741 mutex_init(&xt[i].mutex);
1742 #ifdef CONFIG_COMPAT
1743 mutex_init(&xt[i].compat_mutex);
1744 xt[i].compat_tab = NULL;
1745 #endif
1746 INIT_LIST_HEAD(&xt[i].target);
1747 INIT_LIST_HEAD(&xt[i].match);
1748 }
1749 rv = register_pernet_subsys(&xt_net_ops);
1750 if (rv < 0)
1751 kfree(xt);
1752 return rv;
1753 }
1754
1755 static void __exit xt_fini(void)
1756 {
1757 unregister_pernet_subsys(&xt_net_ops);
1758 kfree(xt);
1759 }
1760
1761 module_init(xt_init);
1762 module_exit(xt_fini);
1763