]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/netfilter/x_tables.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / net / netfilter / x_tables.c
1 /*
2 * x_tables core - Backend for {ip,ip6,arp}_tables
3 *
4 * Copyright (C) 2006-2006 Harald Welte <laforge@netfilter.org>
5 * Copyright (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6 *
7 * Based on existing ip_tables code which is
8 * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling
9 * Copyright (C) 2000-2005 Netfilter Core Team <coreteam@netfilter.org>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/socket.h>
20 #include <linux/net.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/string.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mutex.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/audit.h>
29 #include <linux/user_namespace.h>
30 #include <net/net_namespace.h>
31
32 #include <linux/netfilter/x_tables.h>
33 #include <linux/netfilter_arp.h>
34 #include <linux/netfilter_ipv4/ip_tables.h>
35 #include <linux/netfilter_ipv6/ip6_tables.h>
36 #include <linux/netfilter_arp/arp_tables.h>
37
38 MODULE_LICENSE("GPL");
39 MODULE_AUTHOR("Harald Welte <laforge@netfilter.org>");
40 MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module");
41
42 #define XT_PCPU_BLOCK_SIZE 4096
43 #define XT_MAX_TABLE_SIZE (512 * 1024 * 1024)
44
45 struct compat_delta {
46 unsigned int offset; /* offset in kernel */
47 int delta; /* delta in 32bit user land */
48 };
49
50 struct xt_af {
51 struct mutex mutex;
52 struct list_head match;
53 struct list_head target;
54 #ifdef CONFIG_COMPAT
55 struct mutex compat_mutex;
56 struct compat_delta *compat_tab;
57 unsigned int number; /* number of slots in compat_tab[] */
58 unsigned int cur; /* number of used slots in compat_tab[] */
59 #endif
60 };
61
62 static struct xt_af *xt;
63
64 static const char *const xt_prefix[NFPROTO_NUMPROTO] = {
65 [NFPROTO_UNSPEC] = "x",
66 [NFPROTO_IPV4] = "ip",
67 [NFPROTO_ARP] = "arp",
68 [NFPROTO_BRIDGE] = "eb",
69 [NFPROTO_IPV6] = "ip6",
70 };
71
72 /* Registration hooks for targets. */
73 int xt_register_target(struct xt_target *target)
74 {
75 u_int8_t af = target->family;
76
77 mutex_lock(&xt[af].mutex);
78 list_add(&target->list, &xt[af].target);
79 mutex_unlock(&xt[af].mutex);
80 return 0;
81 }
82 EXPORT_SYMBOL(xt_register_target);
83
84 void
85 xt_unregister_target(struct xt_target *target)
86 {
87 u_int8_t af = target->family;
88
89 mutex_lock(&xt[af].mutex);
90 list_del(&target->list);
91 mutex_unlock(&xt[af].mutex);
92 }
93 EXPORT_SYMBOL(xt_unregister_target);
94
95 int
96 xt_register_targets(struct xt_target *target, unsigned int n)
97 {
98 unsigned int i;
99 int err = 0;
100
101 for (i = 0; i < n; i++) {
102 err = xt_register_target(&target[i]);
103 if (err)
104 goto err;
105 }
106 return err;
107
108 err:
109 if (i > 0)
110 xt_unregister_targets(target, i);
111 return err;
112 }
113 EXPORT_SYMBOL(xt_register_targets);
114
115 void
116 xt_unregister_targets(struct xt_target *target, unsigned int n)
117 {
118 while (n-- > 0)
119 xt_unregister_target(&target[n]);
120 }
121 EXPORT_SYMBOL(xt_unregister_targets);
122
123 int xt_register_match(struct xt_match *match)
124 {
125 u_int8_t af = match->family;
126
127 mutex_lock(&xt[af].mutex);
128 list_add(&match->list, &xt[af].match);
129 mutex_unlock(&xt[af].mutex);
130 return 0;
131 }
132 EXPORT_SYMBOL(xt_register_match);
133
134 void
135 xt_unregister_match(struct xt_match *match)
136 {
137 u_int8_t af = match->family;
138
139 mutex_lock(&xt[af].mutex);
140 list_del(&match->list);
141 mutex_unlock(&xt[af].mutex);
142 }
143 EXPORT_SYMBOL(xt_unregister_match);
144
145 int
146 xt_register_matches(struct xt_match *match, unsigned int n)
147 {
148 unsigned int i;
149 int err = 0;
150
151 for (i = 0; i < n; i++) {
152 err = xt_register_match(&match[i]);
153 if (err)
154 goto err;
155 }
156 return err;
157
158 err:
159 if (i > 0)
160 xt_unregister_matches(match, i);
161 return err;
162 }
163 EXPORT_SYMBOL(xt_register_matches);
164
165 void
166 xt_unregister_matches(struct xt_match *match, unsigned int n)
167 {
168 while (n-- > 0)
169 xt_unregister_match(&match[n]);
170 }
171 EXPORT_SYMBOL(xt_unregister_matches);
172
173
174 /*
175 * These are weird, but module loading must not be done with mutex
176 * held (since they will register), and we have to have a single
177 * function to use.
178 */
179
180 /* Find match, grabs ref. Returns ERR_PTR() on error. */
181 struct xt_match *xt_find_match(u8 af, const char *name, u8 revision)
182 {
183 struct xt_match *m;
184 int err = -ENOENT;
185
186 mutex_lock(&xt[af].mutex);
187 list_for_each_entry(m, &xt[af].match, list) {
188 if (strcmp(m->name, name) == 0) {
189 if (m->revision == revision) {
190 if (try_module_get(m->me)) {
191 mutex_unlock(&xt[af].mutex);
192 return m;
193 }
194 } else
195 err = -EPROTOTYPE; /* Found something. */
196 }
197 }
198 mutex_unlock(&xt[af].mutex);
199
200 if (af != NFPROTO_UNSPEC)
201 /* Try searching again in the family-independent list */
202 return xt_find_match(NFPROTO_UNSPEC, name, revision);
203
204 return ERR_PTR(err);
205 }
206 EXPORT_SYMBOL(xt_find_match);
207
208 struct xt_match *
209 xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision)
210 {
211 struct xt_match *match;
212
213 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
214 return ERR_PTR(-EINVAL);
215
216 match = xt_find_match(nfproto, name, revision);
217 if (IS_ERR(match)) {
218 request_module("%st_%s", xt_prefix[nfproto], name);
219 match = xt_find_match(nfproto, name, revision);
220 }
221
222 return match;
223 }
224 EXPORT_SYMBOL_GPL(xt_request_find_match);
225
226 /* Find target, grabs ref. Returns ERR_PTR() on error. */
227 struct xt_target *xt_find_target(u8 af, const char *name, u8 revision)
228 {
229 struct xt_target *t;
230 int err = -ENOENT;
231
232 mutex_lock(&xt[af].mutex);
233 list_for_each_entry(t, &xt[af].target, list) {
234 if (strcmp(t->name, name) == 0) {
235 if (t->revision == revision) {
236 if (try_module_get(t->me)) {
237 mutex_unlock(&xt[af].mutex);
238 return t;
239 }
240 } else
241 err = -EPROTOTYPE; /* Found something. */
242 }
243 }
244 mutex_unlock(&xt[af].mutex);
245
246 if (af != NFPROTO_UNSPEC)
247 /* Try searching again in the family-independent list */
248 return xt_find_target(NFPROTO_UNSPEC, name, revision);
249
250 return ERR_PTR(err);
251 }
252 EXPORT_SYMBOL(xt_find_target);
253
254 struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision)
255 {
256 struct xt_target *target;
257
258 if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN)
259 return ERR_PTR(-EINVAL);
260
261 target = xt_find_target(af, name, revision);
262 if (IS_ERR(target)) {
263 request_module("%st_%s", xt_prefix[af], name);
264 target = xt_find_target(af, name, revision);
265 }
266
267 return target;
268 }
269 EXPORT_SYMBOL_GPL(xt_request_find_target);
270
271
272 static int xt_obj_to_user(u16 __user *psize, u16 size,
273 void __user *pname, const char *name,
274 u8 __user *prev, u8 rev)
275 {
276 if (put_user(size, psize))
277 return -EFAULT;
278 if (copy_to_user(pname, name, strlen(name) + 1))
279 return -EFAULT;
280 if (put_user(rev, prev))
281 return -EFAULT;
282
283 return 0;
284 }
285
286 #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \
287 xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \
288 U->u.user.name, K->u.kernel.TYPE->name, \
289 &U->u.user.revision, K->u.kernel.TYPE->revision)
290
291 int xt_data_to_user(void __user *dst, const void *src,
292 int usersize, int size, int aligned_size)
293 {
294 usersize = usersize ? : size;
295 if (copy_to_user(dst, src, usersize))
296 return -EFAULT;
297 if (usersize != aligned_size &&
298 clear_user(dst + usersize, aligned_size - usersize))
299 return -EFAULT;
300
301 return 0;
302 }
303 EXPORT_SYMBOL_GPL(xt_data_to_user);
304
305 #define XT_DATA_TO_USER(U, K, TYPE) \
306 xt_data_to_user(U->data, K->data, \
307 K->u.kernel.TYPE->usersize, \
308 K->u.kernel.TYPE->TYPE##size, \
309 XT_ALIGN(K->u.kernel.TYPE->TYPE##size))
310
311 int xt_match_to_user(const struct xt_entry_match *m,
312 struct xt_entry_match __user *u)
313 {
314 return XT_OBJ_TO_USER(u, m, match, 0) ||
315 XT_DATA_TO_USER(u, m, match);
316 }
317 EXPORT_SYMBOL_GPL(xt_match_to_user);
318
319 int xt_target_to_user(const struct xt_entry_target *t,
320 struct xt_entry_target __user *u)
321 {
322 return XT_OBJ_TO_USER(u, t, target, 0) ||
323 XT_DATA_TO_USER(u, t, target);
324 }
325 EXPORT_SYMBOL_GPL(xt_target_to_user);
326
327 static int match_revfn(u8 af, const char *name, u8 revision, int *bestp)
328 {
329 const struct xt_match *m;
330 int have_rev = 0;
331
332 list_for_each_entry(m, &xt[af].match, list) {
333 if (strcmp(m->name, name) == 0) {
334 if (m->revision > *bestp)
335 *bestp = m->revision;
336 if (m->revision == revision)
337 have_rev = 1;
338 }
339 }
340
341 if (af != NFPROTO_UNSPEC && !have_rev)
342 return match_revfn(NFPROTO_UNSPEC, name, revision, bestp);
343
344 return have_rev;
345 }
346
347 static int target_revfn(u8 af, const char *name, u8 revision, int *bestp)
348 {
349 const struct xt_target *t;
350 int have_rev = 0;
351
352 list_for_each_entry(t, &xt[af].target, list) {
353 if (strcmp(t->name, name) == 0) {
354 if (t->revision > *bestp)
355 *bestp = t->revision;
356 if (t->revision == revision)
357 have_rev = 1;
358 }
359 }
360
361 if (af != NFPROTO_UNSPEC && !have_rev)
362 return target_revfn(NFPROTO_UNSPEC, name, revision, bestp);
363
364 return have_rev;
365 }
366
367 /* Returns true or false (if no such extension at all) */
368 int xt_find_revision(u8 af, const char *name, u8 revision, int target,
369 int *err)
370 {
371 int have_rev, best = -1;
372
373 mutex_lock(&xt[af].mutex);
374 if (target == 1)
375 have_rev = target_revfn(af, name, revision, &best);
376 else
377 have_rev = match_revfn(af, name, revision, &best);
378 mutex_unlock(&xt[af].mutex);
379
380 /* Nothing at all? Return 0 to try loading module. */
381 if (best == -1) {
382 *err = -ENOENT;
383 return 0;
384 }
385
386 *err = best;
387 if (!have_rev)
388 *err = -EPROTONOSUPPORT;
389 return 1;
390 }
391 EXPORT_SYMBOL_GPL(xt_find_revision);
392
393 static char *
394 textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto)
395 {
396 static const char *const inetbr_names[] = {
397 "PREROUTING", "INPUT", "FORWARD",
398 "OUTPUT", "POSTROUTING", "BROUTING",
399 };
400 static const char *const arp_names[] = {
401 "INPUT", "FORWARD", "OUTPUT",
402 };
403 const char *const *names;
404 unsigned int i, max;
405 char *p = buf;
406 bool np = false;
407 int res;
408
409 names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names;
410 max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) :
411 ARRAY_SIZE(inetbr_names);
412 *p = '\0';
413 for (i = 0; i < max; ++i) {
414 if (!(mask & (1 << i)))
415 continue;
416 res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]);
417 if (res > 0) {
418 size -= res;
419 p += res;
420 }
421 np = true;
422 }
423
424 return buf;
425 }
426
427 /**
428 * xt_check_proc_name - check that name is suitable for /proc file creation
429 *
430 * @name: file name candidate
431 * @size: length of buffer
432 *
433 * some x_tables modules wish to create a file in /proc.
434 * This function makes sure that the name is suitable for this
435 * purpose, it checks that name is NUL terminated and isn't a 'special'
436 * name, like "..".
437 *
438 * returns negative number on error or 0 if name is useable.
439 */
440 int xt_check_proc_name(const char *name, unsigned int size)
441 {
442 if (name[0] == '\0')
443 return -EINVAL;
444
445 if (strnlen(name, size) == size)
446 return -ENAMETOOLONG;
447
448 if (strcmp(name, ".") == 0 ||
449 strcmp(name, "..") == 0 ||
450 strchr(name, '/'))
451 return -EINVAL;
452
453 return 0;
454 }
455 EXPORT_SYMBOL(xt_check_proc_name);
456
457 int xt_check_match(struct xt_mtchk_param *par,
458 unsigned int size, u_int8_t proto, bool inv_proto)
459 {
460 int ret;
461
462 if (XT_ALIGN(par->match->matchsize) != size &&
463 par->match->matchsize != -1) {
464 /*
465 * ebt_among is exempt from centralized matchsize checking
466 * because it uses a dynamic-size data set.
467 */
468 pr_err("%s_tables: %s.%u match: invalid size "
469 "%u (kernel) != (user) %u\n",
470 xt_prefix[par->family], par->match->name,
471 par->match->revision,
472 XT_ALIGN(par->match->matchsize), size);
473 return -EINVAL;
474 }
475 if (par->match->table != NULL &&
476 strcmp(par->match->table, par->table) != 0) {
477 pr_err("%s_tables: %s match: only valid in %s table, not %s\n",
478 xt_prefix[par->family], par->match->name,
479 par->match->table, par->table);
480 return -EINVAL;
481 }
482 if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) {
483 char used[64], allow[64];
484
485 pr_err("%s_tables: %s match: used from hooks %s, but only "
486 "valid from %s\n",
487 xt_prefix[par->family], par->match->name,
488 textify_hooks(used, sizeof(used), par->hook_mask,
489 par->family),
490 textify_hooks(allow, sizeof(allow), par->match->hooks,
491 par->family));
492 return -EINVAL;
493 }
494 if (par->match->proto && (par->match->proto != proto || inv_proto)) {
495 pr_err("%s_tables: %s match: only valid for protocol %u\n",
496 xt_prefix[par->family], par->match->name,
497 par->match->proto);
498 return -EINVAL;
499 }
500 if (par->match->checkentry != NULL) {
501 ret = par->match->checkentry(par);
502 if (ret < 0)
503 return ret;
504 else if (ret > 0)
505 /* Flag up potential errors. */
506 return -EIO;
507 }
508 return 0;
509 }
510 EXPORT_SYMBOL_GPL(xt_check_match);
511
512 /** xt_check_entry_match - check that matches end before start of target
513 *
514 * @match: beginning of xt_entry_match
515 * @target: beginning of this rules target (alleged end of matches)
516 * @alignment: alignment requirement of match structures
517 *
518 * Validates that all matches add up to the beginning of the target,
519 * and that each match covers at least the base structure size.
520 *
521 * Return: 0 on success, negative errno on failure.
522 */
523 static int xt_check_entry_match(const char *match, const char *target,
524 const size_t alignment)
525 {
526 const struct xt_entry_match *pos;
527 int length = target - match;
528
529 if (length == 0) /* no matches */
530 return 0;
531
532 pos = (struct xt_entry_match *)match;
533 do {
534 if ((unsigned long)pos % alignment)
535 return -EINVAL;
536
537 if (length < (int)sizeof(struct xt_entry_match))
538 return -EINVAL;
539
540 if (pos->u.match_size < sizeof(struct xt_entry_match))
541 return -EINVAL;
542
543 if (pos->u.match_size > length)
544 return -EINVAL;
545
546 length -= pos->u.match_size;
547 pos = ((void *)((char *)(pos) + (pos)->u.match_size));
548 } while (length > 0);
549
550 return 0;
551 }
552
553 #ifdef CONFIG_COMPAT
554 int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta)
555 {
556 struct xt_af *xp = &xt[af];
557
558 if (WARN_ON(!xp->compat_tab))
559 return -ENOMEM;
560
561 if (xp->cur >= xp->number)
562 return -EINVAL;
563
564 if (xp->cur)
565 delta += xp->compat_tab[xp->cur - 1].delta;
566 xp->compat_tab[xp->cur].offset = offset;
567 xp->compat_tab[xp->cur].delta = delta;
568 xp->cur++;
569 return 0;
570 }
571 EXPORT_SYMBOL_GPL(xt_compat_add_offset);
572
573 void xt_compat_flush_offsets(u_int8_t af)
574 {
575 if (xt[af].compat_tab) {
576 vfree(xt[af].compat_tab);
577 xt[af].compat_tab = NULL;
578 xt[af].number = 0;
579 xt[af].cur = 0;
580 }
581 }
582 EXPORT_SYMBOL_GPL(xt_compat_flush_offsets);
583
584 int xt_compat_calc_jump(u_int8_t af, unsigned int offset)
585 {
586 struct compat_delta *tmp = xt[af].compat_tab;
587 int mid, left = 0, right = xt[af].cur - 1;
588
589 while (left <= right) {
590 mid = (left + right) >> 1;
591 if (offset > tmp[mid].offset)
592 left = mid + 1;
593 else if (offset < tmp[mid].offset)
594 right = mid - 1;
595 else
596 return mid ? tmp[mid - 1].delta : 0;
597 }
598 return left ? tmp[left - 1].delta : 0;
599 }
600 EXPORT_SYMBOL_GPL(xt_compat_calc_jump);
601
602 int xt_compat_init_offsets(u8 af, unsigned int number)
603 {
604 size_t mem;
605
606 if (!number || number > (INT_MAX / sizeof(struct compat_delta)))
607 return -EINVAL;
608
609 if (WARN_ON(xt[af].compat_tab))
610 return -EINVAL;
611
612 mem = sizeof(struct compat_delta) * number;
613 if (mem > XT_MAX_TABLE_SIZE)
614 return -ENOMEM;
615
616 xt[af].compat_tab = vmalloc(mem);
617 if (!xt[af].compat_tab)
618 return -ENOMEM;
619
620 xt[af].number = number;
621 xt[af].cur = 0;
622
623 return 0;
624 }
625 EXPORT_SYMBOL(xt_compat_init_offsets);
626
627 int xt_compat_match_offset(const struct xt_match *match)
628 {
629 u_int16_t csize = match->compatsize ? : match->matchsize;
630 return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize);
631 }
632 EXPORT_SYMBOL_GPL(xt_compat_match_offset);
633
634 void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr,
635 unsigned int *size)
636 {
637 const struct xt_match *match = m->u.kernel.match;
638 struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m;
639 int pad, off = xt_compat_match_offset(match);
640 u_int16_t msize = cm->u.user.match_size;
641 char name[sizeof(m->u.user.name)];
642
643 m = *dstptr;
644 memcpy(m, cm, sizeof(*cm));
645 if (match->compat_from_user)
646 match->compat_from_user(m->data, cm->data);
647 else
648 memcpy(m->data, cm->data, msize - sizeof(*cm));
649 pad = XT_ALIGN(match->matchsize) - match->matchsize;
650 if (pad > 0)
651 memset(m->data + match->matchsize, 0, pad);
652
653 msize += off;
654 m->u.user.match_size = msize;
655 strlcpy(name, match->name, sizeof(name));
656 module_put(match->me);
657 strncpy(m->u.user.name, name, sizeof(m->u.user.name));
658
659 *size += off;
660 *dstptr += msize;
661 }
662 EXPORT_SYMBOL_GPL(xt_compat_match_from_user);
663
664 #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \
665 xt_data_to_user(U->data, K->data, \
666 K->u.kernel.TYPE->usersize, \
667 C_SIZE, \
668 COMPAT_XT_ALIGN(C_SIZE))
669
670 int xt_compat_match_to_user(const struct xt_entry_match *m,
671 void __user **dstptr, unsigned int *size)
672 {
673 const struct xt_match *match = m->u.kernel.match;
674 struct compat_xt_entry_match __user *cm = *dstptr;
675 int off = xt_compat_match_offset(match);
676 u_int16_t msize = m->u.user.match_size - off;
677
678 if (XT_OBJ_TO_USER(cm, m, match, msize))
679 return -EFAULT;
680
681 if (match->compat_to_user) {
682 if (match->compat_to_user((void __user *)cm->data, m->data))
683 return -EFAULT;
684 } else {
685 if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm)))
686 return -EFAULT;
687 }
688
689 *size -= off;
690 *dstptr += msize;
691 return 0;
692 }
693 EXPORT_SYMBOL_GPL(xt_compat_match_to_user);
694
695 /* non-compat version may have padding after verdict */
696 struct compat_xt_standard_target {
697 struct compat_xt_entry_target t;
698 compat_uint_t verdict;
699 };
700
701 int xt_compat_check_entry_offsets(const void *base, const char *elems,
702 unsigned int target_offset,
703 unsigned int next_offset)
704 {
705 long size_of_base_struct = elems - (const char *)base;
706 const struct compat_xt_entry_target *t;
707 const char *e = base;
708
709 if (target_offset < size_of_base_struct)
710 return -EINVAL;
711
712 if (target_offset + sizeof(*t) > next_offset)
713 return -EINVAL;
714
715 t = (void *)(e + target_offset);
716 if (t->u.target_size < sizeof(*t))
717 return -EINVAL;
718
719 if (target_offset + t->u.target_size > next_offset)
720 return -EINVAL;
721
722 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
723 COMPAT_XT_ALIGN(target_offset + sizeof(struct compat_xt_standard_target)) != next_offset)
724 return -EINVAL;
725
726 /* compat_xt_entry match has less strict alignment requirements,
727 * otherwise they are identical. In case of padding differences
728 * we need to add compat version of xt_check_entry_match.
729 */
730 BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match));
731
732 return xt_check_entry_match(elems, base + target_offset,
733 __alignof__(struct compat_xt_entry_match));
734 }
735 EXPORT_SYMBOL(xt_compat_check_entry_offsets);
736 #endif /* CONFIG_COMPAT */
737
738 /**
739 * xt_check_entry_offsets - validate arp/ip/ip6t_entry
740 *
741 * @base: pointer to arp/ip/ip6t_entry
742 * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems
743 * @target_offset: the arp/ip/ip6_t->target_offset
744 * @next_offset: the arp/ip/ip6_t->next_offset
745 *
746 * validates that target_offset and next_offset are sane and that all
747 * match sizes (if any) align with the target offset.
748 *
749 * This function does not validate the targets or matches themselves, it
750 * only tests that all the offsets and sizes are correct, that all
751 * match structures are aligned, and that the last structure ends where
752 * the target structure begins.
753 *
754 * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version.
755 *
756 * The arp/ip/ip6t_entry structure @base must have passed following tests:
757 * - it must point to a valid memory location
758 * - base to base + next_offset must be accessible, i.e. not exceed allocated
759 * length.
760 *
761 * A well-formed entry looks like this:
762 *
763 * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry
764 * e->elems[]-----' | |
765 * matchsize | |
766 * matchsize | |
767 * | |
768 * target_offset---------------------------------' |
769 * next_offset---------------------------------------------------'
770 *
771 * elems[]: flexible array member at end of ip(6)/arpt_entry struct.
772 * This is where matches (if any) and the target reside.
773 * target_offset: beginning of target.
774 * next_offset: start of the next rule; also: size of this rule.
775 * Since targets have a minimum size, target_offset + minlen <= next_offset.
776 *
777 * Every match stores its size, sum of sizes must not exceed target_offset.
778 *
779 * Return: 0 on success, negative errno on failure.
780 */
781 int xt_check_entry_offsets(const void *base,
782 const char *elems,
783 unsigned int target_offset,
784 unsigned int next_offset)
785 {
786 long size_of_base_struct = elems - (const char *)base;
787 const struct xt_entry_target *t;
788 const char *e = base;
789
790 /* target start is within the ip/ip6/arpt_entry struct */
791 if (target_offset < size_of_base_struct)
792 return -EINVAL;
793
794 if (target_offset + sizeof(*t) > next_offset)
795 return -EINVAL;
796
797 t = (void *)(e + target_offset);
798 if (t->u.target_size < sizeof(*t))
799 return -EINVAL;
800
801 if (target_offset + t->u.target_size > next_offset)
802 return -EINVAL;
803
804 if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0 &&
805 XT_ALIGN(target_offset + sizeof(struct xt_standard_target)) != next_offset)
806 return -EINVAL;
807
808 return xt_check_entry_match(elems, base + target_offset,
809 __alignof__(struct xt_entry_match));
810 }
811 EXPORT_SYMBOL(xt_check_entry_offsets);
812
813 /**
814 * xt_alloc_entry_offsets - allocate array to store rule head offsets
815 *
816 * @size: number of entries
817 *
818 * Return: NULL or kmalloc'd or vmalloc'd array
819 */
820 unsigned int *xt_alloc_entry_offsets(unsigned int size)
821 {
822 if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int))
823 return NULL;
824
825 return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO);
826
827 }
828 EXPORT_SYMBOL(xt_alloc_entry_offsets);
829
830 /**
831 * xt_find_jump_offset - check if target is a valid jump offset
832 *
833 * @offsets: array containing all valid rule start offsets of a rule blob
834 * @target: the jump target to search for
835 * @size: entries in @offset
836 */
837 bool xt_find_jump_offset(const unsigned int *offsets,
838 unsigned int target, unsigned int size)
839 {
840 int m, low = 0, hi = size;
841
842 while (hi > low) {
843 m = (low + hi) / 2u;
844
845 if (offsets[m] > target)
846 hi = m;
847 else if (offsets[m] < target)
848 low = m + 1;
849 else
850 return true;
851 }
852
853 return false;
854 }
855 EXPORT_SYMBOL(xt_find_jump_offset);
856
857 int xt_check_target(struct xt_tgchk_param *par,
858 unsigned int size, u_int8_t proto, bool inv_proto)
859 {
860 int ret;
861
862 if (XT_ALIGN(par->target->targetsize) != size) {
863 pr_err("%s_tables: %s.%u target: invalid size "
864 "%u (kernel) != (user) %u\n",
865 xt_prefix[par->family], par->target->name,
866 par->target->revision,
867 XT_ALIGN(par->target->targetsize), size);
868 return -EINVAL;
869 }
870 if (par->target->table != NULL &&
871 strcmp(par->target->table, par->table) != 0) {
872 pr_err("%s_tables: %s target: only valid in %s table, not %s\n",
873 xt_prefix[par->family], par->target->name,
874 par->target->table, par->table);
875 return -EINVAL;
876 }
877 if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) {
878 char used[64], allow[64];
879
880 pr_err("%s_tables: %s target: used from hooks %s, but only "
881 "usable from %s\n",
882 xt_prefix[par->family], par->target->name,
883 textify_hooks(used, sizeof(used), par->hook_mask,
884 par->family),
885 textify_hooks(allow, sizeof(allow), par->target->hooks,
886 par->family));
887 return -EINVAL;
888 }
889 if (par->target->proto && (par->target->proto != proto || inv_proto)) {
890 pr_err("%s_tables: %s target: only valid for protocol %u\n",
891 xt_prefix[par->family], par->target->name,
892 par->target->proto);
893 return -EINVAL;
894 }
895 if (par->target->checkentry != NULL) {
896 ret = par->target->checkentry(par);
897 if (ret < 0)
898 return ret;
899 else if (ret > 0)
900 /* Flag up potential errors. */
901 return -EIO;
902 }
903 return 0;
904 }
905 EXPORT_SYMBOL_GPL(xt_check_target);
906
907 /**
908 * xt_copy_counters_from_user - copy counters and metadata from userspace
909 *
910 * @user: src pointer to userspace memory
911 * @len: alleged size of userspace memory
912 * @info: where to store the xt_counters_info metadata
913 * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel
914 *
915 * Copies counter meta data from @user and stores it in @info.
916 *
917 * vmallocs memory to hold the counters, then copies the counter data
918 * from @user to the new memory and returns a pointer to it.
919 *
920 * If @compat is true, @info gets converted automatically to the 64bit
921 * representation.
922 *
923 * The metadata associated with the counters is stored in @info.
924 *
925 * Return: returns pointer that caller has to test via IS_ERR().
926 * If IS_ERR is false, caller has to vfree the pointer.
927 */
928 void *xt_copy_counters_from_user(const void __user *user, unsigned int len,
929 struct xt_counters_info *info, bool compat)
930 {
931 void *mem;
932 u64 size;
933
934 #ifdef CONFIG_COMPAT
935 if (compat) {
936 /* structures only differ in size due to alignment */
937 struct compat_xt_counters_info compat_tmp;
938
939 if (len <= sizeof(compat_tmp))
940 return ERR_PTR(-EINVAL);
941
942 len -= sizeof(compat_tmp);
943 if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0)
944 return ERR_PTR(-EFAULT);
945
946 memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1);
947 info->num_counters = compat_tmp.num_counters;
948 user += sizeof(compat_tmp);
949 } else
950 #endif
951 {
952 if (len <= sizeof(*info))
953 return ERR_PTR(-EINVAL);
954
955 len -= sizeof(*info);
956 if (copy_from_user(info, user, sizeof(*info)) != 0)
957 return ERR_PTR(-EFAULT);
958
959 user += sizeof(*info);
960 }
961 info->name[sizeof(info->name) - 1] = '\0';
962
963 size = sizeof(struct xt_counters);
964 size *= info->num_counters;
965
966 if (size != (u64)len)
967 return ERR_PTR(-EINVAL);
968
969 mem = vmalloc(len);
970 if (!mem)
971 return ERR_PTR(-ENOMEM);
972
973 if (copy_from_user(mem, user, len) == 0)
974 return mem;
975
976 vfree(mem);
977 return ERR_PTR(-EFAULT);
978 }
979 EXPORT_SYMBOL_GPL(xt_copy_counters_from_user);
980
981 #ifdef CONFIG_COMPAT
982 int xt_compat_target_offset(const struct xt_target *target)
983 {
984 u_int16_t csize = target->compatsize ? : target->targetsize;
985 return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize);
986 }
987 EXPORT_SYMBOL_GPL(xt_compat_target_offset);
988
989 void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr,
990 unsigned int *size)
991 {
992 const struct xt_target *target = t->u.kernel.target;
993 struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t;
994 int pad, off = xt_compat_target_offset(target);
995 u_int16_t tsize = ct->u.user.target_size;
996 char name[sizeof(t->u.user.name)];
997
998 t = *dstptr;
999 memcpy(t, ct, sizeof(*ct));
1000 if (target->compat_from_user)
1001 target->compat_from_user(t->data, ct->data);
1002 else
1003 memcpy(t->data, ct->data, tsize - sizeof(*ct));
1004 pad = XT_ALIGN(target->targetsize) - target->targetsize;
1005 if (pad > 0)
1006 memset(t->data + target->targetsize, 0, pad);
1007
1008 tsize += off;
1009 t->u.user.target_size = tsize;
1010 strlcpy(name, target->name, sizeof(name));
1011 module_put(target->me);
1012 strncpy(t->u.user.name, name, sizeof(t->u.user.name));
1013
1014 *size += off;
1015 *dstptr += tsize;
1016 }
1017 EXPORT_SYMBOL_GPL(xt_compat_target_from_user);
1018
1019 int xt_compat_target_to_user(const struct xt_entry_target *t,
1020 void __user **dstptr, unsigned int *size)
1021 {
1022 const struct xt_target *target = t->u.kernel.target;
1023 struct compat_xt_entry_target __user *ct = *dstptr;
1024 int off = xt_compat_target_offset(target);
1025 u_int16_t tsize = t->u.user.target_size - off;
1026
1027 if (XT_OBJ_TO_USER(ct, t, target, tsize))
1028 return -EFAULT;
1029
1030 if (target->compat_to_user) {
1031 if (target->compat_to_user((void __user *)ct->data, t->data))
1032 return -EFAULT;
1033 } else {
1034 if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct)))
1035 return -EFAULT;
1036 }
1037
1038 *size -= off;
1039 *dstptr += tsize;
1040 return 0;
1041 }
1042 EXPORT_SYMBOL_GPL(xt_compat_target_to_user);
1043 #endif
1044
1045 struct xt_table_info *xt_alloc_table_info(unsigned int size)
1046 {
1047 struct xt_table_info *info = NULL;
1048 size_t sz = sizeof(*info) + size;
1049
1050 if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE)
1051 return NULL;
1052
1053 /* Pedantry: prevent them from hitting BUG() in vmalloc.c --RR */
1054 if ((size >> PAGE_SHIFT) + 2 > totalram_pages)
1055 return NULL;
1056
1057 /* __GFP_NORETRY is not fully supported by kvmalloc but it should
1058 * work reasonably well if sz is too large and bail out rather
1059 * than shoot all processes down before realizing there is nothing
1060 * more to reclaim.
1061 */
1062 info = kvmalloc(sz, GFP_KERNEL | __GFP_NORETRY);
1063 if (!info)
1064 return NULL;
1065
1066 memset(info, 0, sizeof(*info));
1067 info->size = size;
1068 return info;
1069 }
1070 EXPORT_SYMBOL(xt_alloc_table_info);
1071
1072 void xt_free_table_info(struct xt_table_info *info)
1073 {
1074 int cpu;
1075
1076 if (info->jumpstack != NULL) {
1077 for_each_possible_cpu(cpu)
1078 kvfree(info->jumpstack[cpu]);
1079 kvfree(info->jumpstack);
1080 }
1081
1082 kvfree(info);
1083 }
1084 EXPORT_SYMBOL(xt_free_table_info);
1085
1086 /* Find table by name, grabs mutex & ref. Returns NULL on error. */
1087 struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af,
1088 const char *name)
1089 {
1090 struct xt_table *t, *found = NULL;
1091
1092 mutex_lock(&xt[af].mutex);
1093 list_for_each_entry(t, &net->xt.tables[af], list)
1094 if (strcmp(t->name, name) == 0 && try_module_get(t->me))
1095 return t;
1096
1097 if (net == &init_net)
1098 goto out;
1099
1100 /* Table doesn't exist in this netns, re-try init */
1101 list_for_each_entry(t, &init_net.xt.tables[af], list) {
1102 if (strcmp(t->name, name))
1103 continue;
1104 if (!try_module_get(t->me)) {
1105 mutex_unlock(&xt[af].mutex);
1106 return NULL;
1107 }
1108
1109 mutex_unlock(&xt[af].mutex);
1110 if (t->table_init(net) != 0) {
1111 module_put(t->me);
1112 return NULL;
1113 }
1114
1115 found = t;
1116
1117 mutex_lock(&xt[af].mutex);
1118 break;
1119 }
1120
1121 if (!found)
1122 goto out;
1123
1124 /* and once again: */
1125 list_for_each_entry(t, &net->xt.tables[af], list)
1126 if (strcmp(t->name, name) == 0)
1127 return t;
1128
1129 module_put(found->me);
1130 out:
1131 mutex_unlock(&xt[af].mutex);
1132 return NULL;
1133 }
1134 EXPORT_SYMBOL_GPL(xt_find_table_lock);
1135
1136 void xt_table_unlock(struct xt_table *table)
1137 {
1138 mutex_unlock(&xt[table->af].mutex);
1139 }
1140 EXPORT_SYMBOL_GPL(xt_table_unlock);
1141
1142 #ifdef CONFIG_COMPAT
1143 void xt_compat_lock(u_int8_t af)
1144 {
1145 mutex_lock(&xt[af].compat_mutex);
1146 }
1147 EXPORT_SYMBOL_GPL(xt_compat_lock);
1148
1149 void xt_compat_unlock(u_int8_t af)
1150 {
1151 mutex_unlock(&xt[af].compat_mutex);
1152 }
1153 EXPORT_SYMBOL_GPL(xt_compat_unlock);
1154 #endif
1155
1156 DEFINE_PER_CPU(seqcount_t, xt_recseq);
1157 EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq);
1158
1159 struct static_key xt_tee_enabled __read_mostly;
1160 EXPORT_SYMBOL_GPL(xt_tee_enabled);
1161
1162 static int xt_jumpstack_alloc(struct xt_table_info *i)
1163 {
1164 unsigned int size;
1165 int cpu;
1166
1167 size = sizeof(void **) * nr_cpu_ids;
1168 if (size > PAGE_SIZE)
1169 i->jumpstack = kvzalloc(size, GFP_KERNEL);
1170 else
1171 i->jumpstack = kzalloc(size, GFP_KERNEL);
1172 if (i->jumpstack == NULL)
1173 return -ENOMEM;
1174
1175 /* ruleset without jumps -- no stack needed */
1176 if (i->stacksize == 0)
1177 return 0;
1178
1179 /* Jumpstack needs to be able to record two full callchains, one
1180 * from the first rule set traversal, plus one table reentrancy
1181 * via -j TEE without clobbering the callchain that brought us to
1182 * TEE target.
1183 *
1184 * This is done by allocating two jumpstacks per cpu, on reentry
1185 * the upper half of the stack is used.
1186 *
1187 * see the jumpstack setup in ipt_do_table() for more details.
1188 */
1189 size = sizeof(void *) * i->stacksize * 2u;
1190 for_each_possible_cpu(cpu) {
1191 i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL,
1192 cpu_to_node(cpu));
1193 if (i->jumpstack[cpu] == NULL)
1194 /*
1195 * Freeing will be done later on by the callers. The
1196 * chain is: xt_replace_table -> __do_replace ->
1197 * do_replace -> xt_free_table_info.
1198 */
1199 return -ENOMEM;
1200 }
1201
1202 return 0;
1203 }
1204
1205 struct xt_counters *xt_counters_alloc(unsigned int counters)
1206 {
1207 struct xt_counters *mem;
1208
1209 if (counters == 0 || counters > INT_MAX / sizeof(*mem))
1210 return NULL;
1211
1212 counters *= sizeof(*mem);
1213 if (counters > XT_MAX_TABLE_SIZE)
1214 return NULL;
1215
1216 return vzalloc(counters);
1217 }
1218 EXPORT_SYMBOL(xt_counters_alloc);
1219
1220 struct xt_table_info *
1221 xt_replace_table(struct xt_table *table,
1222 unsigned int num_counters,
1223 struct xt_table_info *newinfo,
1224 int *error)
1225 {
1226 struct xt_table_info *private;
1227 unsigned int cpu;
1228 int ret;
1229
1230 ret = xt_jumpstack_alloc(newinfo);
1231 if (ret < 0) {
1232 *error = ret;
1233 return NULL;
1234 }
1235
1236 /* Do the substitution. */
1237 local_bh_disable();
1238 private = table->private;
1239
1240 /* Check inside lock: is the old number correct? */
1241 if (num_counters != private->number) {
1242 pr_debug("num_counters != table->private->number (%u/%u)\n",
1243 num_counters, private->number);
1244 local_bh_enable();
1245 *error = -EAGAIN;
1246 return NULL;
1247 }
1248
1249 newinfo->initial_entries = private->initial_entries;
1250 /*
1251 * Ensure contents of newinfo are visible before assigning to
1252 * private.
1253 */
1254 smp_wmb();
1255 table->private = newinfo;
1256
1257 /* make sure all cpus see new ->private value */
1258 smp_wmb();
1259
1260 /*
1261 * Even though table entries have now been swapped, other CPU's
1262 * may still be using the old entries...
1263 */
1264 local_bh_enable();
1265
1266 /* ... so wait for even xt_recseq on all cpus */
1267 for_each_possible_cpu(cpu) {
1268 seqcount_t *s = &per_cpu(xt_recseq, cpu);
1269 u32 seq = raw_read_seqcount(s);
1270
1271 if (seq & 1) {
1272 do {
1273 cond_resched();
1274 cpu_relax();
1275 } while (seq == raw_read_seqcount(s));
1276 }
1277 }
1278
1279 #ifdef CONFIG_AUDIT
1280 if (audit_enabled) {
1281 audit_log(current->audit_context, GFP_KERNEL,
1282 AUDIT_NETFILTER_CFG,
1283 "table=%s family=%u entries=%u",
1284 table->name, table->af, private->number);
1285 }
1286 #endif
1287
1288 return private;
1289 }
1290 EXPORT_SYMBOL_GPL(xt_replace_table);
1291
1292 struct xt_table *xt_register_table(struct net *net,
1293 const struct xt_table *input_table,
1294 struct xt_table_info *bootstrap,
1295 struct xt_table_info *newinfo)
1296 {
1297 int ret;
1298 struct xt_table_info *private;
1299 struct xt_table *t, *table;
1300
1301 /* Don't add one object to multiple lists. */
1302 table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL);
1303 if (!table) {
1304 ret = -ENOMEM;
1305 goto out;
1306 }
1307
1308 mutex_lock(&xt[table->af].mutex);
1309 /* Don't autoload: we'd eat our tail... */
1310 list_for_each_entry(t, &net->xt.tables[table->af], list) {
1311 if (strcmp(t->name, table->name) == 0) {
1312 ret = -EEXIST;
1313 goto unlock;
1314 }
1315 }
1316
1317 /* Simplifies replace_table code. */
1318 table->private = bootstrap;
1319
1320 if (!xt_replace_table(table, 0, newinfo, &ret))
1321 goto unlock;
1322
1323 private = table->private;
1324 pr_debug("table->private->number = %u\n", private->number);
1325
1326 /* save number of initial entries */
1327 private->initial_entries = private->number;
1328
1329 list_add(&table->list, &net->xt.tables[table->af]);
1330 mutex_unlock(&xt[table->af].mutex);
1331 return table;
1332
1333 unlock:
1334 mutex_unlock(&xt[table->af].mutex);
1335 kfree(table);
1336 out:
1337 return ERR_PTR(ret);
1338 }
1339 EXPORT_SYMBOL_GPL(xt_register_table);
1340
1341 void *xt_unregister_table(struct xt_table *table)
1342 {
1343 struct xt_table_info *private;
1344
1345 mutex_lock(&xt[table->af].mutex);
1346 private = table->private;
1347 list_del(&table->list);
1348 mutex_unlock(&xt[table->af].mutex);
1349 kfree(table);
1350
1351 return private;
1352 }
1353 EXPORT_SYMBOL_GPL(xt_unregister_table);
1354
1355 #ifdef CONFIG_PROC_FS
1356 struct xt_names_priv {
1357 struct seq_net_private p;
1358 u_int8_t af;
1359 };
1360 static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos)
1361 {
1362 struct xt_names_priv *priv = seq->private;
1363 struct net *net = seq_file_net(seq);
1364 u_int8_t af = priv->af;
1365
1366 mutex_lock(&xt[af].mutex);
1367 return seq_list_start(&net->xt.tables[af], *pos);
1368 }
1369
1370 static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1371 {
1372 struct xt_names_priv *priv = seq->private;
1373 struct net *net = seq_file_net(seq);
1374 u_int8_t af = priv->af;
1375
1376 return seq_list_next(v, &net->xt.tables[af], pos);
1377 }
1378
1379 static void xt_table_seq_stop(struct seq_file *seq, void *v)
1380 {
1381 struct xt_names_priv *priv = seq->private;
1382 u_int8_t af = priv->af;
1383
1384 mutex_unlock(&xt[af].mutex);
1385 }
1386
1387 static int xt_table_seq_show(struct seq_file *seq, void *v)
1388 {
1389 struct xt_table *table = list_entry(v, struct xt_table, list);
1390
1391 if (*table->name)
1392 seq_printf(seq, "%s\n", table->name);
1393 return 0;
1394 }
1395
1396 static const struct seq_operations xt_table_seq_ops = {
1397 .start = xt_table_seq_start,
1398 .next = xt_table_seq_next,
1399 .stop = xt_table_seq_stop,
1400 .show = xt_table_seq_show,
1401 };
1402
1403 static int xt_table_open(struct inode *inode, struct file *file)
1404 {
1405 int ret;
1406 struct xt_names_priv *priv;
1407
1408 ret = seq_open_net(inode, file, &xt_table_seq_ops,
1409 sizeof(struct xt_names_priv));
1410 if (!ret) {
1411 priv = ((struct seq_file *)file->private_data)->private;
1412 priv->af = (unsigned long)PDE_DATA(inode);
1413 }
1414 return ret;
1415 }
1416
1417 static const struct file_operations xt_table_ops = {
1418 .owner = THIS_MODULE,
1419 .open = xt_table_open,
1420 .read = seq_read,
1421 .llseek = seq_lseek,
1422 .release = seq_release_net,
1423 };
1424
1425 /*
1426 * Traverse state for ip{,6}_{tables,matches} for helping crossing
1427 * the multi-AF mutexes.
1428 */
1429 struct nf_mttg_trav {
1430 struct list_head *head, *curr;
1431 uint8_t class, nfproto;
1432 };
1433
1434 enum {
1435 MTTG_TRAV_INIT,
1436 MTTG_TRAV_NFP_UNSPEC,
1437 MTTG_TRAV_NFP_SPEC,
1438 MTTG_TRAV_DONE,
1439 };
1440
1441 static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos,
1442 bool is_target)
1443 {
1444 static const uint8_t next_class[] = {
1445 [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC,
1446 [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE,
1447 };
1448 struct nf_mttg_trav *trav = seq->private;
1449
1450 switch (trav->class) {
1451 case MTTG_TRAV_INIT:
1452 trav->class = MTTG_TRAV_NFP_UNSPEC;
1453 mutex_lock(&xt[NFPROTO_UNSPEC].mutex);
1454 trav->head = trav->curr = is_target ?
1455 &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match;
1456 break;
1457 case MTTG_TRAV_NFP_UNSPEC:
1458 trav->curr = trav->curr->next;
1459 if (trav->curr != trav->head)
1460 break;
1461 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1462 mutex_lock(&xt[trav->nfproto].mutex);
1463 trav->head = trav->curr = is_target ?
1464 &xt[trav->nfproto].target : &xt[trav->nfproto].match;
1465 trav->class = next_class[trav->class];
1466 break;
1467 case MTTG_TRAV_NFP_SPEC:
1468 trav->curr = trav->curr->next;
1469 if (trav->curr != trav->head)
1470 break;
1471 /* fallthru, _stop will unlock */
1472 default:
1473 return NULL;
1474 }
1475
1476 if (ppos != NULL)
1477 ++*ppos;
1478 return trav;
1479 }
1480
1481 static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos,
1482 bool is_target)
1483 {
1484 struct nf_mttg_trav *trav = seq->private;
1485 unsigned int j;
1486
1487 trav->class = MTTG_TRAV_INIT;
1488 for (j = 0; j < *pos; ++j)
1489 if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL)
1490 return NULL;
1491 return trav;
1492 }
1493
1494 static void xt_mttg_seq_stop(struct seq_file *seq, void *v)
1495 {
1496 struct nf_mttg_trav *trav = seq->private;
1497
1498 switch (trav->class) {
1499 case MTTG_TRAV_NFP_UNSPEC:
1500 mutex_unlock(&xt[NFPROTO_UNSPEC].mutex);
1501 break;
1502 case MTTG_TRAV_NFP_SPEC:
1503 mutex_unlock(&xt[trav->nfproto].mutex);
1504 break;
1505 }
1506 }
1507
1508 static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos)
1509 {
1510 return xt_mttg_seq_start(seq, pos, false);
1511 }
1512
1513 static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1514 {
1515 return xt_mttg_seq_next(seq, v, ppos, false);
1516 }
1517
1518 static int xt_match_seq_show(struct seq_file *seq, void *v)
1519 {
1520 const struct nf_mttg_trav *trav = seq->private;
1521 const struct xt_match *match;
1522
1523 switch (trav->class) {
1524 case MTTG_TRAV_NFP_UNSPEC:
1525 case MTTG_TRAV_NFP_SPEC:
1526 if (trav->curr == trav->head)
1527 return 0;
1528 match = list_entry(trav->curr, struct xt_match, list);
1529 if (*match->name)
1530 seq_printf(seq, "%s\n", match->name);
1531 }
1532 return 0;
1533 }
1534
1535 static const struct seq_operations xt_match_seq_ops = {
1536 .start = xt_match_seq_start,
1537 .next = xt_match_seq_next,
1538 .stop = xt_mttg_seq_stop,
1539 .show = xt_match_seq_show,
1540 };
1541
1542 static int xt_match_open(struct inode *inode, struct file *file)
1543 {
1544 struct nf_mttg_trav *trav;
1545 trav = __seq_open_private(file, &xt_match_seq_ops, sizeof(*trav));
1546 if (!trav)
1547 return -ENOMEM;
1548
1549 trav->nfproto = (unsigned long)PDE_DATA(inode);
1550 return 0;
1551 }
1552
1553 static const struct file_operations xt_match_ops = {
1554 .owner = THIS_MODULE,
1555 .open = xt_match_open,
1556 .read = seq_read,
1557 .llseek = seq_lseek,
1558 .release = seq_release_private,
1559 };
1560
1561 static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos)
1562 {
1563 return xt_mttg_seq_start(seq, pos, true);
1564 }
1565
1566 static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos)
1567 {
1568 return xt_mttg_seq_next(seq, v, ppos, true);
1569 }
1570
1571 static int xt_target_seq_show(struct seq_file *seq, void *v)
1572 {
1573 const struct nf_mttg_trav *trav = seq->private;
1574 const struct xt_target *target;
1575
1576 switch (trav->class) {
1577 case MTTG_TRAV_NFP_UNSPEC:
1578 case MTTG_TRAV_NFP_SPEC:
1579 if (trav->curr == trav->head)
1580 return 0;
1581 target = list_entry(trav->curr, struct xt_target, list);
1582 if (*target->name)
1583 seq_printf(seq, "%s\n", target->name);
1584 }
1585 return 0;
1586 }
1587
1588 static const struct seq_operations xt_target_seq_ops = {
1589 .start = xt_target_seq_start,
1590 .next = xt_target_seq_next,
1591 .stop = xt_mttg_seq_stop,
1592 .show = xt_target_seq_show,
1593 };
1594
1595 static int xt_target_open(struct inode *inode, struct file *file)
1596 {
1597 struct nf_mttg_trav *trav;
1598 trav = __seq_open_private(file, &xt_target_seq_ops, sizeof(*trav));
1599 if (!trav)
1600 return -ENOMEM;
1601
1602 trav->nfproto = (unsigned long)PDE_DATA(inode);
1603 return 0;
1604 }
1605
1606 static const struct file_operations xt_target_ops = {
1607 .owner = THIS_MODULE,
1608 .open = xt_target_open,
1609 .read = seq_read,
1610 .llseek = seq_lseek,
1611 .release = seq_release_private,
1612 };
1613
1614 #define FORMAT_TABLES "_tables_names"
1615 #define FORMAT_MATCHES "_tables_matches"
1616 #define FORMAT_TARGETS "_tables_targets"
1617
1618 #endif /* CONFIG_PROC_FS */
1619
1620 /**
1621 * xt_hook_ops_alloc - set up hooks for a new table
1622 * @table: table with metadata needed to set up hooks
1623 * @fn: Hook function
1624 *
1625 * This function will create the nf_hook_ops that the x_table needs
1626 * to hand to xt_hook_link_net().
1627 */
1628 struct nf_hook_ops *
1629 xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn)
1630 {
1631 unsigned int hook_mask = table->valid_hooks;
1632 uint8_t i, num_hooks = hweight32(hook_mask);
1633 uint8_t hooknum;
1634 struct nf_hook_ops *ops;
1635
1636 if (!num_hooks)
1637 return ERR_PTR(-EINVAL);
1638
1639 ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL);
1640 if (ops == NULL)
1641 return ERR_PTR(-ENOMEM);
1642
1643 for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0;
1644 hook_mask >>= 1, ++hooknum) {
1645 if (!(hook_mask & 1))
1646 continue;
1647 ops[i].hook = fn;
1648 ops[i].pf = table->af;
1649 ops[i].hooknum = hooknum;
1650 ops[i].priority = table->priority;
1651 ++i;
1652 }
1653
1654 return ops;
1655 }
1656 EXPORT_SYMBOL_GPL(xt_hook_ops_alloc);
1657
1658 int xt_proto_init(struct net *net, u_int8_t af)
1659 {
1660 #ifdef CONFIG_PROC_FS
1661 char buf[XT_FUNCTION_MAXNAMELEN];
1662 struct proc_dir_entry *proc;
1663 kuid_t root_uid;
1664 kgid_t root_gid;
1665 #endif
1666
1667 if (af >= ARRAY_SIZE(xt_prefix))
1668 return -EINVAL;
1669
1670
1671 #ifdef CONFIG_PROC_FS
1672 root_uid = make_kuid(net->user_ns, 0);
1673 root_gid = make_kgid(net->user_ns, 0);
1674
1675 strlcpy(buf, xt_prefix[af], sizeof(buf));
1676 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1677 proc = proc_create_data(buf, 0440, net->proc_net, &xt_table_ops,
1678 (void *)(unsigned long)af);
1679 if (!proc)
1680 goto out;
1681 if (uid_valid(root_uid) && gid_valid(root_gid))
1682 proc_set_user(proc, root_uid, root_gid);
1683
1684 strlcpy(buf, xt_prefix[af], sizeof(buf));
1685 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1686 proc = proc_create_data(buf, 0440, net->proc_net, &xt_match_ops,
1687 (void *)(unsigned long)af);
1688 if (!proc)
1689 goto out_remove_tables;
1690 if (uid_valid(root_uid) && gid_valid(root_gid))
1691 proc_set_user(proc, root_uid, root_gid);
1692
1693 strlcpy(buf, xt_prefix[af], sizeof(buf));
1694 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1695 proc = proc_create_data(buf, 0440, net->proc_net, &xt_target_ops,
1696 (void *)(unsigned long)af);
1697 if (!proc)
1698 goto out_remove_matches;
1699 if (uid_valid(root_uid) && gid_valid(root_gid))
1700 proc_set_user(proc, root_uid, root_gid);
1701 #endif
1702
1703 return 0;
1704
1705 #ifdef CONFIG_PROC_FS
1706 out_remove_matches:
1707 strlcpy(buf, xt_prefix[af], sizeof(buf));
1708 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1709 remove_proc_entry(buf, net->proc_net);
1710
1711 out_remove_tables:
1712 strlcpy(buf, xt_prefix[af], sizeof(buf));
1713 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1714 remove_proc_entry(buf, net->proc_net);
1715 out:
1716 return -1;
1717 #endif
1718 }
1719 EXPORT_SYMBOL_GPL(xt_proto_init);
1720
1721 void xt_proto_fini(struct net *net, u_int8_t af)
1722 {
1723 #ifdef CONFIG_PROC_FS
1724 char buf[XT_FUNCTION_MAXNAMELEN];
1725
1726 strlcpy(buf, xt_prefix[af], sizeof(buf));
1727 strlcat(buf, FORMAT_TABLES, sizeof(buf));
1728 remove_proc_entry(buf, net->proc_net);
1729
1730 strlcpy(buf, xt_prefix[af], sizeof(buf));
1731 strlcat(buf, FORMAT_TARGETS, sizeof(buf));
1732 remove_proc_entry(buf, net->proc_net);
1733
1734 strlcpy(buf, xt_prefix[af], sizeof(buf));
1735 strlcat(buf, FORMAT_MATCHES, sizeof(buf));
1736 remove_proc_entry(buf, net->proc_net);
1737 #endif /*CONFIG_PROC_FS*/
1738 }
1739 EXPORT_SYMBOL_GPL(xt_proto_fini);
1740
1741 /**
1742 * xt_percpu_counter_alloc - allocate x_tables rule counter
1743 *
1744 * @state: pointer to xt_percpu allocation state
1745 * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct
1746 *
1747 * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then
1748 * contain the address of the real (percpu) counter.
1749 *
1750 * Rule evaluation needs to use xt_get_this_cpu_counter() helper
1751 * to fetch the real percpu counter.
1752 *
1753 * To speed up allocation and improve data locality, a 4kb block is
1754 * allocated.
1755 *
1756 * xt_percpu_counter_alloc_state contains the base address of the
1757 * allocated page and the current sub-offset.
1758 *
1759 * returns false on error.
1760 */
1761 bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state,
1762 struct xt_counters *counter)
1763 {
1764 BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2));
1765
1766 if (nr_cpu_ids <= 1)
1767 return true;
1768
1769 if (!state->mem) {
1770 state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE,
1771 XT_PCPU_BLOCK_SIZE);
1772 if (!state->mem)
1773 return false;
1774 }
1775 counter->pcnt = (__force unsigned long)(state->mem + state->off);
1776 state->off += sizeof(*counter);
1777 if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) {
1778 state->mem = NULL;
1779 state->off = 0;
1780 }
1781 return true;
1782 }
1783 EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc);
1784
1785 void xt_percpu_counter_free(struct xt_counters *counters)
1786 {
1787 unsigned long pcnt = counters->pcnt;
1788
1789 if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0)
1790 free_percpu((void __percpu *)pcnt);
1791 }
1792 EXPORT_SYMBOL_GPL(xt_percpu_counter_free);
1793
1794 static int __net_init xt_net_init(struct net *net)
1795 {
1796 int i;
1797
1798 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1799 INIT_LIST_HEAD(&net->xt.tables[i]);
1800 return 0;
1801 }
1802
1803 static void __net_exit xt_net_exit(struct net *net)
1804 {
1805 int i;
1806
1807 for (i = 0; i < NFPROTO_NUMPROTO; i++)
1808 WARN_ON_ONCE(!list_empty(&net->xt.tables[i]));
1809 }
1810
1811 static struct pernet_operations xt_net_ops = {
1812 .init = xt_net_init,
1813 .exit = xt_net_exit,
1814 };
1815
1816 static int __init xt_init(void)
1817 {
1818 unsigned int i;
1819 int rv;
1820
1821 for_each_possible_cpu(i) {
1822 seqcount_init(&per_cpu(xt_recseq, i));
1823 }
1824
1825 xt = kmalloc(sizeof(struct xt_af) * NFPROTO_NUMPROTO, GFP_KERNEL);
1826 if (!xt)
1827 return -ENOMEM;
1828
1829 for (i = 0; i < NFPROTO_NUMPROTO; i++) {
1830 mutex_init(&xt[i].mutex);
1831 #ifdef CONFIG_COMPAT
1832 mutex_init(&xt[i].compat_mutex);
1833 xt[i].compat_tab = NULL;
1834 #endif
1835 INIT_LIST_HEAD(&xt[i].target);
1836 INIT_LIST_HEAD(&xt[i].match);
1837 }
1838 rv = register_pernet_subsys(&xt_net_ops);
1839 if (rv < 0)
1840 kfree(xt);
1841 return rv;
1842 }
1843
1844 static void __exit xt_fini(void)
1845 {
1846 unregister_pernet_subsys(&xt_net_ops);
1847 kfree(xt);
1848 }
1849
1850 module_init(xt_init);
1851 module_exit(xt_fini);
1852