]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - net/netlink/af_netlink.c
Merge tag 'for-4.2' of git://git.infradead.org/battery-2.6
[mirror_ubuntu-focal-kernel.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_KERNEL_SOCKET 0x1
83 #define NETLINK_RECV_PKTINFO 0x2
84 #define NETLINK_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_RECV_NO_ENOBUFS 0x8
86
87 static inline int netlink_is_kernel(struct sock *sk)
88 {
89 return nlk_sk(sk)->flags & NETLINK_KERNEL_SOCKET;
90 }
91
92 struct netlink_table *nl_table __read_mostly;
93 EXPORT_SYMBOL_GPL(nl_table);
94
95 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
96
97 static int netlink_dump(struct sock *sk);
98 static void netlink_skb_destructor(struct sk_buff *skb);
99
100 /* nl_table locking explained:
101 * Lookup and traversal are protected with an RCU read-side lock. Insertion
102 * and removal are protected with per bucket lock while using RCU list
103 * modification primitives and may run in parallel to RCU protected lookups.
104 * Destruction of the Netlink socket may only occur *after* nl_table_lock has
105 * been acquired * either during or after the socket has been removed from
106 * the list and after an RCU grace period.
107 */
108 DEFINE_RWLOCK(nl_table_lock);
109 EXPORT_SYMBOL_GPL(nl_table_lock);
110 static atomic_t nl_table_users = ATOMIC_INIT(0);
111
112 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
113
114 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
115
116 static DEFINE_SPINLOCK(netlink_tap_lock);
117 static struct list_head netlink_tap_all __read_mostly;
118
119 static const struct rhashtable_params netlink_rhashtable_params;
120
121 static inline u32 netlink_group_mask(u32 group)
122 {
123 return group ? 1 << (group - 1) : 0;
124 }
125
126 int netlink_add_tap(struct netlink_tap *nt)
127 {
128 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
129 return -EINVAL;
130
131 spin_lock(&netlink_tap_lock);
132 list_add_rcu(&nt->list, &netlink_tap_all);
133 spin_unlock(&netlink_tap_lock);
134
135 __module_get(nt->module);
136
137 return 0;
138 }
139 EXPORT_SYMBOL_GPL(netlink_add_tap);
140
141 static int __netlink_remove_tap(struct netlink_tap *nt)
142 {
143 bool found = false;
144 struct netlink_tap *tmp;
145
146 spin_lock(&netlink_tap_lock);
147
148 list_for_each_entry(tmp, &netlink_tap_all, list) {
149 if (nt == tmp) {
150 list_del_rcu(&nt->list);
151 found = true;
152 goto out;
153 }
154 }
155
156 pr_warn("__netlink_remove_tap: %p not found\n", nt);
157 out:
158 spin_unlock(&netlink_tap_lock);
159
160 if (found && nt->module)
161 module_put(nt->module);
162
163 return found ? 0 : -ENODEV;
164 }
165
166 int netlink_remove_tap(struct netlink_tap *nt)
167 {
168 int ret;
169
170 ret = __netlink_remove_tap(nt);
171 synchronize_net();
172
173 return ret;
174 }
175 EXPORT_SYMBOL_GPL(netlink_remove_tap);
176
177 static bool netlink_filter_tap(const struct sk_buff *skb)
178 {
179 struct sock *sk = skb->sk;
180
181 /* We take the more conservative approach and
182 * whitelist socket protocols that may pass.
183 */
184 switch (sk->sk_protocol) {
185 case NETLINK_ROUTE:
186 case NETLINK_USERSOCK:
187 case NETLINK_SOCK_DIAG:
188 case NETLINK_NFLOG:
189 case NETLINK_XFRM:
190 case NETLINK_FIB_LOOKUP:
191 case NETLINK_NETFILTER:
192 case NETLINK_GENERIC:
193 return true;
194 }
195
196 return false;
197 }
198
199 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
200 struct net_device *dev)
201 {
202 struct sk_buff *nskb;
203 struct sock *sk = skb->sk;
204 int ret = -ENOMEM;
205
206 dev_hold(dev);
207 nskb = skb_clone(skb, GFP_ATOMIC);
208 if (nskb) {
209 nskb->dev = dev;
210 nskb->protocol = htons((u16) sk->sk_protocol);
211 nskb->pkt_type = netlink_is_kernel(sk) ?
212 PACKET_KERNEL : PACKET_USER;
213 skb_reset_network_header(nskb);
214 ret = dev_queue_xmit(nskb);
215 if (unlikely(ret > 0))
216 ret = net_xmit_errno(ret);
217 }
218
219 dev_put(dev);
220 return ret;
221 }
222
223 static void __netlink_deliver_tap(struct sk_buff *skb)
224 {
225 int ret;
226 struct netlink_tap *tmp;
227
228 if (!netlink_filter_tap(skb))
229 return;
230
231 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
232 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
233 if (unlikely(ret))
234 break;
235 }
236 }
237
238 static void netlink_deliver_tap(struct sk_buff *skb)
239 {
240 rcu_read_lock();
241
242 if (unlikely(!list_empty(&netlink_tap_all)))
243 __netlink_deliver_tap(skb);
244
245 rcu_read_unlock();
246 }
247
248 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
249 struct sk_buff *skb)
250 {
251 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
252 netlink_deliver_tap(skb);
253 }
254
255 static void netlink_overrun(struct sock *sk)
256 {
257 struct netlink_sock *nlk = nlk_sk(sk);
258
259 if (!(nlk->flags & NETLINK_RECV_NO_ENOBUFS)) {
260 if (!test_and_set_bit(NETLINK_CONGESTED, &nlk_sk(sk)->state)) {
261 sk->sk_err = ENOBUFS;
262 sk->sk_error_report(sk);
263 }
264 }
265 atomic_inc(&sk->sk_drops);
266 }
267
268 static void netlink_rcv_wake(struct sock *sk)
269 {
270 struct netlink_sock *nlk = nlk_sk(sk);
271
272 if (skb_queue_empty(&sk->sk_receive_queue))
273 clear_bit(NETLINK_CONGESTED, &nlk->state);
274 if (!test_bit(NETLINK_CONGESTED, &nlk->state))
275 wake_up_interruptible(&nlk->wait);
276 }
277
278 #ifdef CONFIG_NETLINK_MMAP
279 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
280 {
281 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
282 }
283
284 static bool netlink_rx_is_mmaped(struct sock *sk)
285 {
286 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
287 }
288
289 static bool netlink_tx_is_mmaped(struct sock *sk)
290 {
291 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
292 }
293
294 static __pure struct page *pgvec_to_page(const void *addr)
295 {
296 if (is_vmalloc_addr(addr))
297 return vmalloc_to_page(addr);
298 else
299 return virt_to_page(addr);
300 }
301
302 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
303 {
304 unsigned int i;
305
306 for (i = 0; i < len; i++) {
307 if (pg_vec[i] != NULL) {
308 if (is_vmalloc_addr(pg_vec[i]))
309 vfree(pg_vec[i]);
310 else
311 free_pages((unsigned long)pg_vec[i], order);
312 }
313 }
314 kfree(pg_vec);
315 }
316
317 static void *alloc_one_pg_vec_page(unsigned long order)
318 {
319 void *buffer;
320 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
321 __GFP_NOWARN | __GFP_NORETRY;
322
323 buffer = (void *)__get_free_pages(gfp_flags, order);
324 if (buffer != NULL)
325 return buffer;
326
327 buffer = vzalloc((1 << order) * PAGE_SIZE);
328 if (buffer != NULL)
329 return buffer;
330
331 gfp_flags &= ~__GFP_NORETRY;
332 return (void *)__get_free_pages(gfp_flags, order);
333 }
334
335 static void **alloc_pg_vec(struct netlink_sock *nlk,
336 struct nl_mmap_req *req, unsigned int order)
337 {
338 unsigned int block_nr = req->nm_block_nr;
339 unsigned int i;
340 void **pg_vec;
341
342 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
343 if (pg_vec == NULL)
344 return NULL;
345
346 for (i = 0; i < block_nr; i++) {
347 pg_vec[i] = alloc_one_pg_vec_page(order);
348 if (pg_vec[i] == NULL)
349 goto err1;
350 }
351
352 return pg_vec;
353 err1:
354 free_pg_vec(pg_vec, order, block_nr);
355 return NULL;
356 }
357
358 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
359 bool closing, bool tx_ring)
360 {
361 struct netlink_sock *nlk = nlk_sk(sk);
362 struct netlink_ring *ring;
363 struct sk_buff_head *queue;
364 void **pg_vec = NULL;
365 unsigned int order = 0;
366 int err;
367
368 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
369 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
370
371 if (!closing) {
372 if (atomic_read(&nlk->mapped))
373 return -EBUSY;
374 if (atomic_read(&ring->pending))
375 return -EBUSY;
376 }
377
378 if (req->nm_block_nr) {
379 if (ring->pg_vec != NULL)
380 return -EBUSY;
381
382 if ((int)req->nm_block_size <= 0)
383 return -EINVAL;
384 if (!PAGE_ALIGNED(req->nm_block_size))
385 return -EINVAL;
386 if (req->nm_frame_size < NL_MMAP_HDRLEN)
387 return -EINVAL;
388 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
389 return -EINVAL;
390
391 ring->frames_per_block = req->nm_block_size /
392 req->nm_frame_size;
393 if (ring->frames_per_block == 0)
394 return -EINVAL;
395 if (ring->frames_per_block * req->nm_block_nr !=
396 req->nm_frame_nr)
397 return -EINVAL;
398
399 order = get_order(req->nm_block_size);
400 pg_vec = alloc_pg_vec(nlk, req, order);
401 if (pg_vec == NULL)
402 return -ENOMEM;
403 } else {
404 if (req->nm_frame_nr)
405 return -EINVAL;
406 }
407
408 err = -EBUSY;
409 mutex_lock(&nlk->pg_vec_lock);
410 if (closing || atomic_read(&nlk->mapped) == 0) {
411 err = 0;
412 spin_lock_bh(&queue->lock);
413
414 ring->frame_max = req->nm_frame_nr - 1;
415 ring->head = 0;
416 ring->frame_size = req->nm_frame_size;
417 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
418
419 swap(ring->pg_vec_len, req->nm_block_nr);
420 swap(ring->pg_vec_order, order);
421 swap(ring->pg_vec, pg_vec);
422
423 __skb_queue_purge(queue);
424 spin_unlock_bh(&queue->lock);
425
426 WARN_ON(atomic_read(&nlk->mapped));
427 }
428 mutex_unlock(&nlk->pg_vec_lock);
429
430 if (pg_vec)
431 free_pg_vec(pg_vec, order, req->nm_block_nr);
432 return err;
433 }
434
435 static void netlink_mm_open(struct vm_area_struct *vma)
436 {
437 struct file *file = vma->vm_file;
438 struct socket *sock = file->private_data;
439 struct sock *sk = sock->sk;
440
441 if (sk)
442 atomic_inc(&nlk_sk(sk)->mapped);
443 }
444
445 static void netlink_mm_close(struct vm_area_struct *vma)
446 {
447 struct file *file = vma->vm_file;
448 struct socket *sock = file->private_data;
449 struct sock *sk = sock->sk;
450
451 if (sk)
452 atomic_dec(&nlk_sk(sk)->mapped);
453 }
454
455 static const struct vm_operations_struct netlink_mmap_ops = {
456 .open = netlink_mm_open,
457 .close = netlink_mm_close,
458 };
459
460 static int netlink_mmap(struct file *file, struct socket *sock,
461 struct vm_area_struct *vma)
462 {
463 struct sock *sk = sock->sk;
464 struct netlink_sock *nlk = nlk_sk(sk);
465 struct netlink_ring *ring;
466 unsigned long start, size, expected;
467 unsigned int i;
468 int err = -EINVAL;
469
470 if (vma->vm_pgoff)
471 return -EINVAL;
472
473 mutex_lock(&nlk->pg_vec_lock);
474
475 expected = 0;
476 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
477 if (ring->pg_vec == NULL)
478 continue;
479 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
480 }
481
482 if (expected == 0)
483 goto out;
484
485 size = vma->vm_end - vma->vm_start;
486 if (size != expected)
487 goto out;
488
489 start = vma->vm_start;
490 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
491 if (ring->pg_vec == NULL)
492 continue;
493
494 for (i = 0; i < ring->pg_vec_len; i++) {
495 struct page *page;
496 void *kaddr = ring->pg_vec[i];
497 unsigned int pg_num;
498
499 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
500 page = pgvec_to_page(kaddr);
501 err = vm_insert_page(vma, start, page);
502 if (err < 0)
503 goto out;
504 start += PAGE_SIZE;
505 kaddr += PAGE_SIZE;
506 }
507 }
508 }
509
510 atomic_inc(&nlk->mapped);
511 vma->vm_ops = &netlink_mmap_ops;
512 err = 0;
513 out:
514 mutex_unlock(&nlk->pg_vec_lock);
515 return err;
516 }
517
518 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
519 {
520 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
521 struct page *p_start, *p_end;
522
523 /* First page is flushed through netlink_{get,set}_status */
524 p_start = pgvec_to_page(hdr + PAGE_SIZE);
525 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
526 while (p_start <= p_end) {
527 flush_dcache_page(p_start);
528 p_start++;
529 }
530 #endif
531 }
532
533 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
534 {
535 smp_rmb();
536 flush_dcache_page(pgvec_to_page(hdr));
537 return hdr->nm_status;
538 }
539
540 static void netlink_set_status(struct nl_mmap_hdr *hdr,
541 enum nl_mmap_status status)
542 {
543 smp_mb();
544 hdr->nm_status = status;
545 flush_dcache_page(pgvec_to_page(hdr));
546 }
547
548 static struct nl_mmap_hdr *
549 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
550 {
551 unsigned int pg_vec_pos, frame_off;
552
553 pg_vec_pos = pos / ring->frames_per_block;
554 frame_off = pos % ring->frames_per_block;
555
556 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
557 }
558
559 static struct nl_mmap_hdr *
560 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
561 enum nl_mmap_status status)
562 {
563 struct nl_mmap_hdr *hdr;
564
565 hdr = __netlink_lookup_frame(ring, pos);
566 if (netlink_get_status(hdr) != status)
567 return NULL;
568
569 return hdr;
570 }
571
572 static struct nl_mmap_hdr *
573 netlink_current_frame(const struct netlink_ring *ring,
574 enum nl_mmap_status status)
575 {
576 return netlink_lookup_frame(ring, ring->head, status);
577 }
578
579 static struct nl_mmap_hdr *
580 netlink_previous_frame(const struct netlink_ring *ring,
581 enum nl_mmap_status status)
582 {
583 unsigned int prev;
584
585 prev = ring->head ? ring->head - 1 : ring->frame_max;
586 return netlink_lookup_frame(ring, prev, status);
587 }
588
589 static void netlink_increment_head(struct netlink_ring *ring)
590 {
591 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
592 }
593
594 static void netlink_forward_ring(struct netlink_ring *ring)
595 {
596 unsigned int head = ring->head, pos = head;
597 const struct nl_mmap_hdr *hdr;
598
599 do {
600 hdr = __netlink_lookup_frame(ring, pos);
601 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
602 break;
603 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
604 break;
605 netlink_increment_head(ring);
606 } while (ring->head != head);
607 }
608
609 static bool netlink_dump_space(struct netlink_sock *nlk)
610 {
611 struct netlink_ring *ring = &nlk->rx_ring;
612 struct nl_mmap_hdr *hdr;
613 unsigned int n;
614
615 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
616 if (hdr == NULL)
617 return false;
618
619 n = ring->head + ring->frame_max / 2;
620 if (n > ring->frame_max)
621 n -= ring->frame_max;
622
623 hdr = __netlink_lookup_frame(ring, n);
624
625 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
626 }
627
628 static unsigned int netlink_poll(struct file *file, struct socket *sock,
629 poll_table *wait)
630 {
631 struct sock *sk = sock->sk;
632 struct netlink_sock *nlk = nlk_sk(sk);
633 unsigned int mask;
634 int err;
635
636 if (nlk->rx_ring.pg_vec != NULL) {
637 /* Memory mapped sockets don't call recvmsg(), so flow control
638 * for dumps is performed here. A dump is allowed to continue
639 * if at least half the ring is unused.
640 */
641 while (nlk->cb_running && netlink_dump_space(nlk)) {
642 err = netlink_dump(sk);
643 if (err < 0) {
644 sk->sk_err = -err;
645 sk->sk_error_report(sk);
646 break;
647 }
648 }
649 netlink_rcv_wake(sk);
650 }
651
652 mask = datagram_poll(file, sock, wait);
653
654 spin_lock_bh(&sk->sk_receive_queue.lock);
655 if (nlk->rx_ring.pg_vec) {
656 netlink_forward_ring(&nlk->rx_ring);
657 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
658 mask |= POLLIN | POLLRDNORM;
659 }
660 spin_unlock_bh(&sk->sk_receive_queue.lock);
661
662 spin_lock_bh(&sk->sk_write_queue.lock);
663 if (nlk->tx_ring.pg_vec) {
664 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
665 mask |= POLLOUT | POLLWRNORM;
666 }
667 spin_unlock_bh(&sk->sk_write_queue.lock);
668
669 return mask;
670 }
671
672 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
673 {
674 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
675 }
676
677 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
678 struct netlink_ring *ring,
679 struct nl_mmap_hdr *hdr)
680 {
681 unsigned int size;
682 void *data;
683
684 size = ring->frame_size - NL_MMAP_HDRLEN;
685 data = (void *)hdr + NL_MMAP_HDRLEN;
686
687 skb->head = data;
688 skb->data = data;
689 skb_reset_tail_pointer(skb);
690 skb->end = skb->tail + size;
691 skb->len = 0;
692
693 skb->destructor = netlink_skb_destructor;
694 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
695 NETLINK_CB(skb).sk = sk;
696 }
697
698 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
699 u32 dst_portid, u32 dst_group,
700 struct scm_cookie *scm)
701 {
702 struct netlink_sock *nlk = nlk_sk(sk);
703 struct netlink_ring *ring;
704 struct nl_mmap_hdr *hdr;
705 struct sk_buff *skb;
706 unsigned int maxlen;
707 int err = 0, len = 0;
708
709 mutex_lock(&nlk->pg_vec_lock);
710
711 ring = &nlk->tx_ring;
712 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
713
714 do {
715 unsigned int nm_len;
716
717 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
718 if (hdr == NULL) {
719 if (!(msg->msg_flags & MSG_DONTWAIT) &&
720 atomic_read(&nlk->tx_ring.pending))
721 schedule();
722 continue;
723 }
724
725 nm_len = ACCESS_ONCE(hdr->nm_len);
726 if (nm_len > maxlen) {
727 err = -EINVAL;
728 goto out;
729 }
730
731 netlink_frame_flush_dcache(hdr, nm_len);
732
733 skb = alloc_skb(nm_len, GFP_KERNEL);
734 if (skb == NULL) {
735 err = -ENOBUFS;
736 goto out;
737 }
738 __skb_put(skb, nm_len);
739 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
740 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
741
742 netlink_increment_head(ring);
743
744 NETLINK_CB(skb).portid = nlk->portid;
745 NETLINK_CB(skb).dst_group = dst_group;
746 NETLINK_CB(skb).creds = scm->creds;
747
748 err = security_netlink_send(sk, skb);
749 if (err) {
750 kfree_skb(skb);
751 goto out;
752 }
753
754 if (unlikely(dst_group)) {
755 atomic_inc(&skb->users);
756 netlink_broadcast(sk, skb, dst_portid, dst_group,
757 GFP_KERNEL);
758 }
759 err = netlink_unicast(sk, skb, dst_portid,
760 msg->msg_flags & MSG_DONTWAIT);
761 if (err < 0)
762 goto out;
763 len += err;
764
765 } while (hdr != NULL ||
766 (!(msg->msg_flags & MSG_DONTWAIT) &&
767 atomic_read(&nlk->tx_ring.pending)));
768
769 if (len > 0)
770 err = len;
771 out:
772 mutex_unlock(&nlk->pg_vec_lock);
773 return err;
774 }
775
776 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
777 {
778 struct nl_mmap_hdr *hdr;
779
780 hdr = netlink_mmap_hdr(skb);
781 hdr->nm_len = skb->len;
782 hdr->nm_group = NETLINK_CB(skb).dst_group;
783 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
784 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
785 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
786 netlink_frame_flush_dcache(hdr, hdr->nm_len);
787 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
788
789 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
790 kfree_skb(skb);
791 }
792
793 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
794 {
795 struct netlink_sock *nlk = nlk_sk(sk);
796 struct netlink_ring *ring = &nlk->rx_ring;
797 struct nl_mmap_hdr *hdr;
798
799 spin_lock_bh(&sk->sk_receive_queue.lock);
800 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
801 if (hdr == NULL) {
802 spin_unlock_bh(&sk->sk_receive_queue.lock);
803 kfree_skb(skb);
804 netlink_overrun(sk);
805 return;
806 }
807 netlink_increment_head(ring);
808 __skb_queue_tail(&sk->sk_receive_queue, skb);
809 spin_unlock_bh(&sk->sk_receive_queue.lock);
810
811 hdr->nm_len = skb->len;
812 hdr->nm_group = NETLINK_CB(skb).dst_group;
813 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
814 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
815 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
816 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
817 }
818
819 #else /* CONFIG_NETLINK_MMAP */
820 #define netlink_skb_is_mmaped(skb) false
821 #define netlink_rx_is_mmaped(sk) false
822 #define netlink_tx_is_mmaped(sk) false
823 #define netlink_mmap sock_no_mmap
824 #define netlink_poll datagram_poll
825 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0
826 #endif /* CONFIG_NETLINK_MMAP */
827
828 static void netlink_skb_destructor(struct sk_buff *skb)
829 {
830 #ifdef CONFIG_NETLINK_MMAP
831 struct nl_mmap_hdr *hdr;
832 struct netlink_ring *ring;
833 struct sock *sk;
834
835 /* If a packet from the kernel to userspace was freed because of an
836 * error without being delivered to userspace, the kernel must reset
837 * the status. In the direction userspace to kernel, the status is
838 * always reset here after the packet was processed and freed.
839 */
840 if (netlink_skb_is_mmaped(skb)) {
841 hdr = netlink_mmap_hdr(skb);
842 sk = NETLINK_CB(skb).sk;
843
844 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
845 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
846 ring = &nlk_sk(sk)->tx_ring;
847 } else {
848 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
849 hdr->nm_len = 0;
850 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
851 }
852 ring = &nlk_sk(sk)->rx_ring;
853 }
854
855 WARN_ON(atomic_read(&ring->pending) == 0);
856 atomic_dec(&ring->pending);
857 sock_put(sk);
858
859 skb->head = NULL;
860 }
861 #endif
862 if (is_vmalloc_addr(skb->head)) {
863 if (!skb->cloned ||
864 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
865 vfree(skb->head);
866
867 skb->head = NULL;
868 }
869 if (skb->sk != NULL)
870 sock_rfree(skb);
871 }
872
873 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
874 {
875 WARN_ON(skb->sk != NULL);
876 skb->sk = sk;
877 skb->destructor = netlink_skb_destructor;
878 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
879 sk_mem_charge(sk, skb->truesize);
880 }
881
882 static void netlink_sock_destruct(struct sock *sk)
883 {
884 struct netlink_sock *nlk = nlk_sk(sk);
885
886 if (nlk->cb_running) {
887 if (nlk->cb.done)
888 nlk->cb.done(&nlk->cb);
889
890 module_put(nlk->cb.module);
891 kfree_skb(nlk->cb.skb);
892 }
893
894 skb_queue_purge(&sk->sk_receive_queue);
895 #ifdef CONFIG_NETLINK_MMAP
896 if (1) {
897 struct nl_mmap_req req;
898
899 memset(&req, 0, sizeof(req));
900 if (nlk->rx_ring.pg_vec)
901 netlink_set_ring(sk, &req, true, false);
902 memset(&req, 0, sizeof(req));
903 if (nlk->tx_ring.pg_vec)
904 netlink_set_ring(sk, &req, true, true);
905 }
906 #endif /* CONFIG_NETLINK_MMAP */
907
908 if (!sock_flag(sk, SOCK_DEAD)) {
909 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
910 return;
911 }
912
913 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
914 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
915 WARN_ON(nlk_sk(sk)->groups);
916 }
917
918 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
919 * SMP. Look, when several writers sleep and reader wakes them up, all but one
920 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
921 * this, _but_ remember, it adds useless work on UP machines.
922 */
923
924 void netlink_table_grab(void)
925 __acquires(nl_table_lock)
926 {
927 might_sleep();
928
929 write_lock_irq(&nl_table_lock);
930
931 if (atomic_read(&nl_table_users)) {
932 DECLARE_WAITQUEUE(wait, current);
933
934 add_wait_queue_exclusive(&nl_table_wait, &wait);
935 for (;;) {
936 set_current_state(TASK_UNINTERRUPTIBLE);
937 if (atomic_read(&nl_table_users) == 0)
938 break;
939 write_unlock_irq(&nl_table_lock);
940 schedule();
941 write_lock_irq(&nl_table_lock);
942 }
943
944 __set_current_state(TASK_RUNNING);
945 remove_wait_queue(&nl_table_wait, &wait);
946 }
947 }
948
949 void netlink_table_ungrab(void)
950 __releases(nl_table_lock)
951 {
952 write_unlock_irq(&nl_table_lock);
953 wake_up(&nl_table_wait);
954 }
955
956 static inline void
957 netlink_lock_table(void)
958 {
959 /* read_lock() synchronizes us to netlink_table_grab */
960
961 read_lock(&nl_table_lock);
962 atomic_inc(&nl_table_users);
963 read_unlock(&nl_table_lock);
964 }
965
966 static inline void
967 netlink_unlock_table(void)
968 {
969 if (atomic_dec_and_test(&nl_table_users))
970 wake_up(&nl_table_wait);
971 }
972
973 struct netlink_compare_arg
974 {
975 possible_net_t pnet;
976 u32 portid;
977 };
978
979 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
980 #define netlink_compare_arg_len \
981 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
982
983 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
984 const void *ptr)
985 {
986 const struct netlink_compare_arg *x = arg->key;
987 const struct netlink_sock *nlk = ptr;
988
989 return nlk->portid != x->portid ||
990 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
991 }
992
993 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
994 struct net *net, u32 portid)
995 {
996 memset(arg, 0, sizeof(*arg));
997 write_pnet(&arg->pnet, net);
998 arg->portid = portid;
999 }
1000
1001 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1002 struct net *net)
1003 {
1004 struct netlink_compare_arg arg;
1005
1006 netlink_compare_arg_init(&arg, net, portid);
1007 return rhashtable_lookup_fast(&table->hash, &arg,
1008 netlink_rhashtable_params);
1009 }
1010
1011 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1012 {
1013 struct netlink_compare_arg arg;
1014
1015 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1016 return rhashtable_lookup_insert_key(&table->hash, &arg,
1017 &nlk_sk(sk)->node,
1018 netlink_rhashtable_params);
1019 }
1020
1021 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1022 {
1023 struct netlink_table *table = &nl_table[protocol];
1024 struct sock *sk;
1025
1026 rcu_read_lock();
1027 sk = __netlink_lookup(table, portid, net);
1028 if (sk)
1029 sock_hold(sk);
1030 rcu_read_unlock();
1031
1032 return sk;
1033 }
1034
1035 static const struct proto_ops netlink_ops;
1036
1037 static void
1038 netlink_update_listeners(struct sock *sk)
1039 {
1040 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1041 unsigned long mask;
1042 unsigned int i;
1043 struct listeners *listeners;
1044
1045 listeners = nl_deref_protected(tbl->listeners);
1046 if (!listeners)
1047 return;
1048
1049 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1050 mask = 0;
1051 sk_for_each_bound(sk, &tbl->mc_list) {
1052 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1053 mask |= nlk_sk(sk)->groups[i];
1054 }
1055 listeners->masks[i] = mask;
1056 }
1057 /* this function is only called with the netlink table "grabbed", which
1058 * makes sure updates are visible before bind or setsockopt return. */
1059 }
1060
1061 static int netlink_insert(struct sock *sk, u32 portid)
1062 {
1063 struct netlink_table *table = &nl_table[sk->sk_protocol];
1064 int err;
1065
1066 lock_sock(sk);
1067
1068 err = -EBUSY;
1069 if (nlk_sk(sk)->portid)
1070 goto err;
1071
1072 err = -ENOMEM;
1073 if (BITS_PER_LONG > 32 &&
1074 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1075 goto err;
1076
1077 nlk_sk(sk)->portid = portid;
1078 sock_hold(sk);
1079
1080 err = __netlink_insert(table, sk);
1081 if (err) {
1082 if (err == -EEXIST)
1083 err = -EADDRINUSE;
1084 nlk_sk(sk)->portid = 0;
1085 sock_put(sk);
1086 }
1087
1088 err:
1089 release_sock(sk);
1090 return err;
1091 }
1092
1093 static void netlink_remove(struct sock *sk)
1094 {
1095 struct netlink_table *table;
1096
1097 table = &nl_table[sk->sk_protocol];
1098 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1099 netlink_rhashtable_params)) {
1100 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1101 __sock_put(sk);
1102 }
1103
1104 netlink_table_grab();
1105 if (nlk_sk(sk)->subscriptions) {
1106 __sk_del_bind_node(sk);
1107 netlink_update_listeners(sk);
1108 }
1109 if (sk->sk_protocol == NETLINK_GENERIC)
1110 atomic_inc(&genl_sk_destructing_cnt);
1111 netlink_table_ungrab();
1112 }
1113
1114 static struct proto netlink_proto = {
1115 .name = "NETLINK",
1116 .owner = THIS_MODULE,
1117 .obj_size = sizeof(struct netlink_sock),
1118 };
1119
1120 static int __netlink_create(struct net *net, struct socket *sock,
1121 struct mutex *cb_mutex, int protocol)
1122 {
1123 struct sock *sk;
1124 struct netlink_sock *nlk;
1125
1126 sock->ops = &netlink_ops;
1127
1128 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto);
1129 if (!sk)
1130 return -ENOMEM;
1131
1132 sock_init_data(sock, sk);
1133
1134 nlk = nlk_sk(sk);
1135 if (cb_mutex) {
1136 nlk->cb_mutex = cb_mutex;
1137 } else {
1138 nlk->cb_mutex = &nlk->cb_def_mutex;
1139 mutex_init(nlk->cb_mutex);
1140 }
1141 init_waitqueue_head(&nlk->wait);
1142 #ifdef CONFIG_NETLINK_MMAP
1143 mutex_init(&nlk->pg_vec_lock);
1144 #endif
1145
1146 sk->sk_destruct = netlink_sock_destruct;
1147 sk->sk_protocol = protocol;
1148 return 0;
1149 }
1150
1151 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1152 int kern)
1153 {
1154 struct module *module = NULL;
1155 struct mutex *cb_mutex;
1156 struct netlink_sock *nlk;
1157 int (*bind)(struct net *net, int group);
1158 void (*unbind)(struct net *net, int group);
1159 int err = 0;
1160
1161 sock->state = SS_UNCONNECTED;
1162
1163 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1164 return -ESOCKTNOSUPPORT;
1165
1166 if (protocol < 0 || protocol >= MAX_LINKS)
1167 return -EPROTONOSUPPORT;
1168
1169 netlink_lock_table();
1170 #ifdef CONFIG_MODULES
1171 if (!nl_table[protocol].registered) {
1172 netlink_unlock_table();
1173 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1174 netlink_lock_table();
1175 }
1176 #endif
1177 if (nl_table[protocol].registered &&
1178 try_module_get(nl_table[protocol].module))
1179 module = nl_table[protocol].module;
1180 else
1181 err = -EPROTONOSUPPORT;
1182 cb_mutex = nl_table[protocol].cb_mutex;
1183 bind = nl_table[protocol].bind;
1184 unbind = nl_table[protocol].unbind;
1185 netlink_unlock_table();
1186
1187 if (err < 0)
1188 goto out;
1189
1190 err = __netlink_create(net, sock, cb_mutex, protocol);
1191 if (err < 0)
1192 goto out_module;
1193
1194 local_bh_disable();
1195 sock_prot_inuse_add(net, &netlink_proto, 1);
1196 local_bh_enable();
1197
1198 nlk = nlk_sk(sock->sk);
1199 nlk->module = module;
1200 nlk->netlink_bind = bind;
1201 nlk->netlink_unbind = unbind;
1202 out:
1203 return err;
1204
1205 out_module:
1206 module_put(module);
1207 goto out;
1208 }
1209
1210 static void deferred_put_nlk_sk(struct rcu_head *head)
1211 {
1212 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1213
1214 sock_put(&nlk->sk);
1215 }
1216
1217 static int netlink_release(struct socket *sock)
1218 {
1219 struct sock *sk = sock->sk;
1220 struct netlink_sock *nlk;
1221
1222 if (!sk)
1223 return 0;
1224
1225 netlink_remove(sk);
1226 sock_orphan(sk);
1227 nlk = nlk_sk(sk);
1228
1229 /*
1230 * OK. Socket is unlinked, any packets that arrive now
1231 * will be purged.
1232 */
1233
1234 /* must not acquire netlink_table_lock in any way again before unbind
1235 * and notifying genetlink is done as otherwise it might deadlock
1236 */
1237 if (nlk->netlink_unbind) {
1238 int i;
1239
1240 for (i = 0; i < nlk->ngroups; i++)
1241 if (test_bit(i, nlk->groups))
1242 nlk->netlink_unbind(sock_net(sk), i + 1);
1243 }
1244 if (sk->sk_protocol == NETLINK_GENERIC &&
1245 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1246 wake_up(&genl_sk_destructing_waitq);
1247
1248 sock->sk = NULL;
1249 wake_up_interruptible_all(&nlk->wait);
1250
1251 skb_queue_purge(&sk->sk_write_queue);
1252
1253 if (nlk->portid) {
1254 struct netlink_notify n = {
1255 .net = sock_net(sk),
1256 .protocol = sk->sk_protocol,
1257 .portid = nlk->portid,
1258 };
1259 atomic_notifier_call_chain(&netlink_chain,
1260 NETLINK_URELEASE, &n);
1261 }
1262
1263 module_put(nlk->module);
1264
1265 if (netlink_is_kernel(sk)) {
1266 netlink_table_grab();
1267 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1268 if (--nl_table[sk->sk_protocol].registered == 0) {
1269 struct listeners *old;
1270
1271 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1272 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1273 kfree_rcu(old, rcu);
1274 nl_table[sk->sk_protocol].module = NULL;
1275 nl_table[sk->sk_protocol].bind = NULL;
1276 nl_table[sk->sk_protocol].unbind = NULL;
1277 nl_table[sk->sk_protocol].flags = 0;
1278 nl_table[sk->sk_protocol].registered = 0;
1279 }
1280 netlink_table_ungrab();
1281 }
1282
1283 kfree(nlk->groups);
1284 nlk->groups = NULL;
1285
1286 local_bh_disable();
1287 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1288 local_bh_enable();
1289 call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1290 return 0;
1291 }
1292
1293 static int netlink_autobind(struct socket *sock)
1294 {
1295 struct sock *sk = sock->sk;
1296 struct net *net = sock_net(sk);
1297 struct netlink_table *table = &nl_table[sk->sk_protocol];
1298 s32 portid = task_tgid_vnr(current);
1299 int err;
1300 static s32 rover = -4097;
1301
1302 retry:
1303 cond_resched();
1304 rcu_read_lock();
1305 if (__netlink_lookup(table, portid, net)) {
1306 /* Bind collision, search negative portid values. */
1307 portid = rover--;
1308 if (rover > -4097)
1309 rover = -4097;
1310 rcu_read_unlock();
1311 goto retry;
1312 }
1313 rcu_read_unlock();
1314
1315 err = netlink_insert(sk, portid);
1316 if (err == -EADDRINUSE)
1317 goto retry;
1318
1319 /* If 2 threads race to autobind, that is fine. */
1320 if (err == -EBUSY)
1321 err = 0;
1322
1323 return err;
1324 }
1325
1326 /**
1327 * __netlink_ns_capable - General netlink message capability test
1328 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1329 * @user_ns: The user namespace of the capability to use
1330 * @cap: The capability to use
1331 *
1332 * Test to see if the opener of the socket we received the message
1333 * from had when the netlink socket was created and the sender of the
1334 * message has has the capability @cap in the user namespace @user_ns.
1335 */
1336 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1337 struct user_namespace *user_ns, int cap)
1338 {
1339 return ((nsp->flags & NETLINK_SKB_DST) ||
1340 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1341 ns_capable(user_ns, cap);
1342 }
1343 EXPORT_SYMBOL(__netlink_ns_capable);
1344
1345 /**
1346 * netlink_ns_capable - General netlink message capability test
1347 * @skb: socket buffer holding a netlink command from userspace
1348 * @user_ns: The user namespace of the capability to use
1349 * @cap: The capability to use
1350 *
1351 * Test to see if the opener of the socket we received the message
1352 * from had when the netlink socket was created and the sender of the
1353 * message has has the capability @cap in the user namespace @user_ns.
1354 */
1355 bool netlink_ns_capable(const struct sk_buff *skb,
1356 struct user_namespace *user_ns, int cap)
1357 {
1358 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1359 }
1360 EXPORT_SYMBOL(netlink_ns_capable);
1361
1362 /**
1363 * netlink_capable - Netlink global message capability test
1364 * @skb: socket buffer holding a netlink command from userspace
1365 * @cap: The capability to use
1366 *
1367 * Test to see if the opener of the socket we received the message
1368 * from had when the netlink socket was created and the sender of the
1369 * message has has the capability @cap in all user namespaces.
1370 */
1371 bool netlink_capable(const struct sk_buff *skb, int cap)
1372 {
1373 return netlink_ns_capable(skb, &init_user_ns, cap);
1374 }
1375 EXPORT_SYMBOL(netlink_capable);
1376
1377 /**
1378 * netlink_net_capable - Netlink network namespace message capability test
1379 * @skb: socket buffer holding a netlink command from userspace
1380 * @cap: The capability to use
1381 *
1382 * Test to see if the opener of the socket we received the message
1383 * from had when the netlink socket was created and the sender of the
1384 * message has has the capability @cap over the network namespace of
1385 * the socket we received the message from.
1386 */
1387 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1388 {
1389 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1390 }
1391 EXPORT_SYMBOL(netlink_net_capable);
1392
1393 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1394 {
1395 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1396 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1397 }
1398
1399 static void
1400 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1401 {
1402 struct netlink_sock *nlk = nlk_sk(sk);
1403
1404 if (nlk->subscriptions && !subscriptions)
1405 __sk_del_bind_node(sk);
1406 else if (!nlk->subscriptions && subscriptions)
1407 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1408 nlk->subscriptions = subscriptions;
1409 }
1410
1411 static int netlink_realloc_groups(struct sock *sk)
1412 {
1413 struct netlink_sock *nlk = nlk_sk(sk);
1414 unsigned int groups;
1415 unsigned long *new_groups;
1416 int err = 0;
1417
1418 netlink_table_grab();
1419
1420 groups = nl_table[sk->sk_protocol].groups;
1421 if (!nl_table[sk->sk_protocol].registered) {
1422 err = -ENOENT;
1423 goto out_unlock;
1424 }
1425
1426 if (nlk->ngroups >= groups)
1427 goto out_unlock;
1428
1429 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1430 if (new_groups == NULL) {
1431 err = -ENOMEM;
1432 goto out_unlock;
1433 }
1434 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1435 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1436
1437 nlk->groups = new_groups;
1438 nlk->ngroups = groups;
1439 out_unlock:
1440 netlink_table_ungrab();
1441 return err;
1442 }
1443
1444 static void netlink_undo_bind(int group, long unsigned int groups,
1445 struct sock *sk)
1446 {
1447 struct netlink_sock *nlk = nlk_sk(sk);
1448 int undo;
1449
1450 if (!nlk->netlink_unbind)
1451 return;
1452
1453 for (undo = 0; undo < group; undo++)
1454 if (test_bit(undo, &groups))
1455 nlk->netlink_unbind(sock_net(sk), undo + 1);
1456 }
1457
1458 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1459 int addr_len)
1460 {
1461 struct sock *sk = sock->sk;
1462 struct net *net = sock_net(sk);
1463 struct netlink_sock *nlk = nlk_sk(sk);
1464 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1465 int err;
1466 long unsigned int groups = nladdr->nl_groups;
1467
1468 if (addr_len < sizeof(struct sockaddr_nl))
1469 return -EINVAL;
1470
1471 if (nladdr->nl_family != AF_NETLINK)
1472 return -EINVAL;
1473
1474 /* Only superuser is allowed to listen multicasts */
1475 if (groups) {
1476 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1477 return -EPERM;
1478 err = netlink_realloc_groups(sk);
1479 if (err)
1480 return err;
1481 }
1482
1483 if (nlk->portid)
1484 if (nladdr->nl_pid != nlk->portid)
1485 return -EINVAL;
1486
1487 if (nlk->netlink_bind && groups) {
1488 int group;
1489
1490 for (group = 0; group < nlk->ngroups; group++) {
1491 if (!test_bit(group, &groups))
1492 continue;
1493 err = nlk->netlink_bind(net, group + 1);
1494 if (!err)
1495 continue;
1496 netlink_undo_bind(group, groups, sk);
1497 return err;
1498 }
1499 }
1500
1501 if (!nlk->portid) {
1502 err = nladdr->nl_pid ?
1503 netlink_insert(sk, nladdr->nl_pid) :
1504 netlink_autobind(sock);
1505 if (err) {
1506 netlink_undo_bind(nlk->ngroups, groups, sk);
1507 return err;
1508 }
1509 }
1510
1511 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1512 return 0;
1513
1514 netlink_table_grab();
1515 netlink_update_subscriptions(sk, nlk->subscriptions +
1516 hweight32(groups) -
1517 hweight32(nlk->groups[0]));
1518 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1519 netlink_update_listeners(sk);
1520 netlink_table_ungrab();
1521
1522 return 0;
1523 }
1524
1525 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1526 int alen, int flags)
1527 {
1528 int err = 0;
1529 struct sock *sk = sock->sk;
1530 struct netlink_sock *nlk = nlk_sk(sk);
1531 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1532
1533 if (alen < sizeof(addr->sa_family))
1534 return -EINVAL;
1535
1536 if (addr->sa_family == AF_UNSPEC) {
1537 sk->sk_state = NETLINK_UNCONNECTED;
1538 nlk->dst_portid = 0;
1539 nlk->dst_group = 0;
1540 return 0;
1541 }
1542 if (addr->sa_family != AF_NETLINK)
1543 return -EINVAL;
1544
1545 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1546 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1547 return -EPERM;
1548
1549 if (!nlk->portid)
1550 err = netlink_autobind(sock);
1551
1552 if (err == 0) {
1553 sk->sk_state = NETLINK_CONNECTED;
1554 nlk->dst_portid = nladdr->nl_pid;
1555 nlk->dst_group = ffs(nladdr->nl_groups);
1556 }
1557
1558 return err;
1559 }
1560
1561 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1562 int *addr_len, int peer)
1563 {
1564 struct sock *sk = sock->sk;
1565 struct netlink_sock *nlk = nlk_sk(sk);
1566 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1567
1568 nladdr->nl_family = AF_NETLINK;
1569 nladdr->nl_pad = 0;
1570 *addr_len = sizeof(*nladdr);
1571
1572 if (peer) {
1573 nladdr->nl_pid = nlk->dst_portid;
1574 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1575 } else {
1576 nladdr->nl_pid = nlk->portid;
1577 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1578 }
1579 return 0;
1580 }
1581
1582 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1583 {
1584 struct sock *sock;
1585 struct netlink_sock *nlk;
1586
1587 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1588 if (!sock)
1589 return ERR_PTR(-ECONNREFUSED);
1590
1591 /* Don't bother queuing skb if kernel socket has no input function */
1592 nlk = nlk_sk(sock);
1593 if (sock->sk_state == NETLINK_CONNECTED &&
1594 nlk->dst_portid != nlk_sk(ssk)->portid) {
1595 sock_put(sock);
1596 return ERR_PTR(-ECONNREFUSED);
1597 }
1598 return sock;
1599 }
1600
1601 struct sock *netlink_getsockbyfilp(struct file *filp)
1602 {
1603 struct inode *inode = file_inode(filp);
1604 struct sock *sock;
1605
1606 if (!S_ISSOCK(inode->i_mode))
1607 return ERR_PTR(-ENOTSOCK);
1608
1609 sock = SOCKET_I(inode)->sk;
1610 if (sock->sk_family != AF_NETLINK)
1611 return ERR_PTR(-EINVAL);
1612
1613 sock_hold(sock);
1614 return sock;
1615 }
1616
1617 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1618 int broadcast)
1619 {
1620 struct sk_buff *skb;
1621 void *data;
1622
1623 if (size <= NLMSG_GOODSIZE || broadcast)
1624 return alloc_skb(size, GFP_KERNEL);
1625
1626 size = SKB_DATA_ALIGN(size) +
1627 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1628
1629 data = vmalloc(size);
1630 if (data == NULL)
1631 return NULL;
1632
1633 skb = __build_skb(data, size);
1634 if (skb == NULL)
1635 vfree(data);
1636 else
1637 skb->destructor = netlink_skb_destructor;
1638
1639 return skb;
1640 }
1641
1642 /*
1643 * Attach a skb to a netlink socket.
1644 * The caller must hold a reference to the destination socket. On error, the
1645 * reference is dropped. The skb is not send to the destination, just all
1646 * all error checks are performed and memory in the queue is reserved.
1647 * Return values:
1648 * < 0: error. skb freed, reference to sock dropped.
1649 * 0: continue
1650 * 1: repeat lookup - reference dropped while waiting for socket memory.
1651 */
1652 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1653 long *timeo, struct sock *ssk)
1654 {
1655 struct netlink_sock *nlk;
1656
1657 nlk = nlk_sk(sk);
1658
1659 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1660 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1661 !netlink_skb_is_mmaped(skb)) {
1662 DECLARE_WAITQUEUE(wait, current);
1663 if (!*timeo) {
1664 if (!ssk || netlink_is_kernel(ssk))
1665 netlink_overrun(sk);
1666 sock_put(sk);
1667 kfree_skb(skb);
1668 return -EAGAIN;
1669 }
1670
1671 __set_current_state(TASK_INTERRUPTIBLE);
1672 add_wait_queue(&nlk->wait, &wait);
1673
1674 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1675 test_bit(NETLINK_CONGESTED, &nlk->state)) &&
1676 !sock_flag(sk, SOCK_DEAD))
1677 *timeo = schedule_timeout(*timeo);
1678
1679 __set_current_state(TASK_RUNNING);
1680 remove_wait_queue(&nlk->wait, &wait);
1681 sock_put(sk);
1682
1683 if (signal_pending(current)) {
1684 kfree_skb(skb);
1685 return sock_intr_errno(*timeo);
1686 }
1687 return 1;
1688 }
1689 netlink_skb_set_owner_r(skb, sk);
1690 return 0;
1691 }
1692
1693 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1694 {
1695 int len = skb->len;
1696
1697 netlink_deliver_tap(skb);
1698
1699 #ifdef CONFIG_NETLINK_MMAP
1700 if (netlink_skb_is_mmaped(skb))
1701 netlink_queue_mmaped_skb(sk, skb);
1702 else if (netlink_rx_is_mmaped(sk))
1703 netlink_ring_set_copied(sk, skb);
1704 else
1705 #endif /* CONFIG_NETLINK_MMAP */
1706 skb_queue_tail(&sk->sk_receive_queue, skb);
1707 sk->sk_data_ready(sk);
1708 return len;
1709 }
1710
1711 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1712 {
1713 int len = __netlink_sendskb(sk, skb);
1714
1715 sock_put(sk);
1716 return len;
1717 }
1718
1719 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1720 {
1721 kfree_skb(skb);
1722 sock_put(sk);
1723 }
1724
1725 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1726 {
1727 int delta;
1728
1729 WARN_ON(skb->sk != NULL);
1730 if (netlink_skb_is_mmaped(skb))
1731 return skb;
1732
1733 delta = skb->end - skb->tail;
1734 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1735 return skb;
1736
1737 if (skb_shared(skb)) {
1738 struct sk_buff *nskb = skb_clone(skb, allocation);
1739 if (!nskb)
1740 return skb;
1741 consume_skb(skb);
1742 skb = nskb;
1743 }
1744
1745 if (!pskb_expand_head(skb, 0, -delta, allocation))
1746 skb->truesize -= delta;
1747
1748 return skb;
1749 }
1750
1751 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1752 struct sock *ssk)
1753 {
1754 int ret;
1755 struct netlink_sock *nlk = nlk_sk(sk);
1756
1757 ret = -ECONNREFUSED;
1758 if (nlk->netlink_rcv != NULL) {
1759 ret = skb->len;
1760 netlink_skb_set_owner_r(skb, sk);
1761 NETLINK_CB(skb).sk = ssk;
1762 netlink_deliver_tap_kernel(sk, ssk, skb);
1763 nlk->netlink_rcv(skb);
1764 consume_skb(skb);
1765 } else {
1766 kfree_skb(skb);
1767 }
1768 sock_put(sk);
1769 return ret;
1770 }
1771
1772 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1773 u32 portid, int nonblock)
1774 {
1775 struct sock *sk;
1776 int err;
1777 long timeo;
1778
1779 skb = netlink_trim(skb, gfp_any());
1780
1781 timeo = sock_sndtimeo(ssk, nonblock);
1782 retry:
1783 sk = netlink_getsockbyportid(ssk, portid);
1784 if (IS_ERR(sk)) {
1785 kfree_skb(skb);
1786 return PTR_ERR(sk);
1787 }
1788 if (netlink_is_kernel(sk))
1789 return netlink_unicast_kernel(sk, skb, ssk);
1790
1791 if (sk_filter(sk, skb)) {
1792 err = skb->len;
1793 kfree_skb(skb);
1794 sock_put(sk);
1795 return err;
1796 }
1797
1798 err = netlink_attachskb(sk, skb, &timeo, ssk);
1799 if (err == 1)
1800 goto retry;
1801 if (err)
1802 return err;
1803
1804 return netlink_sendskb(sk, skb);
1805 }
1806 EXPORT_SYMBOL(netlink_unicast);
1807
1808 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1809 u32 dst_portid, gfp_t gfp_mask)
1810 {
1811 #ifdef CONFIG_NETLINK_MMAP
1812 struct sock *sk = NULL;
1813 struct sk_buff *skb;
1814 struct netlink_ring *ring;
1815 struct nl_mmap_hdr *hdr;
1816 unsigned int maxlen;
1817
1818 sk = netlink_getsockbyportid(ssk, dst_portid);
1819 if (IS_ERR(sk))
1820 goto out;
1821
1822 ring = &nlk_sk(sk)->rx_ring;
1823 /* fast-path without atomic ops for common case: non-mmaped receiver */
1824 if (ring->pg_vec == NULL)
1825 goto out_put;
1826
1827 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1828 goto out_put;
1829
1830 skb = alloc_skb_head(gfp_mask);
1831 if (skb == NULL)
1832 goto err1;
1833
1834 spin_lock_bh(&sk->sk_receive_queue.lock);
1835 /* check again under lock */
1836 if (ring->pg_vec == NULL)
1837 goto out_free;
1838
1839 /* check again under lock */
1840 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1841 if (maxlen < size)
1842 goto out_free;
1843
1844 netlink_forward_ring(ring);
1845 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1846 if (hdr == NULL)
1847 goto err2;
1848 netlink_ring_setup_skb(skb, sk, ring, hdr);
1849 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1850 atomic_inc(&ring->pending);
1851 netlink_increment_head(ring);
1852
1853 spin_unlock_bh(&sk->sk_receive_queue.lock);
1854 return skb;
1855
1856 err2:
1857 kfree_skb(skb);
1858 spin_unlock_bh(&sk->sk_receive_queue.lock);
1859 netlink_overrun(sk);
1860 err1:
1861 sock_put(sk);
1862 return NULL;
1863
1864 out_free:
1865 kfree_skb(skb);
1866 spin_unlock_bh(&sk->sk_receive_queue.lock);
1867 out_put:
1868 sock_put(sk);
1869 out:
1870 #endif
1871 return alloc_skb(size, gfp_mask);
1872 }
1873 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1874
1875 int netlink_has_listeners(struct sock *sk, unsigned int group)
1876 {
1877 int res = 0;
1878 struct listeners *listeners;
1879
1880 BUG_ON(!netlink_is_kernel(sk));
1881
1882 rcu_read_lock();
1883 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1884
1885 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1886 res = test_bit(group - 1, listeners->masks);
1887
1888 rcu_read_unlock();
1889
1890 return res;
1891 }
1892 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1893
1894 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1895 {
1896 struct netlink_sock *nlk = nlk_sk(sk);
1897
1898 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1899 !test_bit(NETLINK_CONGESTED, &nlk->state)) {
1900 netlink_skb_set_owner_r(skb, sk);
1901 __netlink_sendskb(sk, skb);
1902 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1903 }
1904 return -1;
1905 }
1906
1907 struct netlink_broadcast_data {
1908 struct sock *exclude_sk;
1909 struct net *net;
1910 u32 portid;
1911 u32 group;
1912 int failure;
1913 int delivery_failure;
1914 int congested;
1915 int delivered;
1916 gfp_t allocation;
1917 struct sk_buff *skb, *skb2;
1918 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1919 void *tx_data;
1920 };
1921
1922 static void do_one_broadcast(struct sock *sk,
1923 struct netlink_broadcast_data *p)
1924 {
1925 struct netlink_sock *nlk = nlk_sk(sk);
1926 int val;
1927
1928 if (p->exclude_sk == sk)
1929 return;
1930
1931 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1932 !test_bit(p->group - 1, nlk->groups))
1933 return;
1934
1935 if (!net_eq(sock_net(sk), p->net))
1936 return;
1937
1938 if (p->failure) {
1939 netlink_overrun(sk);
1940 return;
1941 }
1942
1943 sock_hold(sk);
1944 if (p->skb2 == NULL) {
1945 if (skb_shared(p->skb)) {
1946 p->skb2 = skb_clone(p->skb, p->allocation);
1947 } else {
1948 p->skb2 = skb_get(p->skb);
1949 /*
1950 * skb ownership may have been set when
1951 * delivered to a previous socket.
1952 */
1953 skb_orphan(p->skb2);
1954 }
1955 }
1956 if (p->skb2 == NULL) {
1957 netlink_overrun(sk);
1958 /* Clone failed. Notify ALL listeners. */
1959 p->failure = 1;
1960 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1961 p->delivery_failure = 1;
1962 } else if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1963 kfree_skb(p->skb2);
1964 p->skb2 = NULL;
1965 } else if (sk_filter(sk, p->skb2)) {
1966 kfree_skb(p->skb2);
1967 p->skb2 = NULL;
1968 } else if ((val = netlink_broadcast_deliver(sk, p->skb2)) < 0) {
1969 netlink_overrun(sk);
1970 if (nlk->flags & NETLINK_BROADCAST_SEND_ERROR)
1971 p->delivery_failure = 1;
1972 } else {
1973 p->congested |= val;
1974 p->delivered = 1;
1975 p->skb2 = NULL;
1976 }
1977 sock_put(sk);
1978 }
1979
1980 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
1981 u32 group, gfp_t allocation,
1982 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
1983 void *filter_data)
1984 {
1985 struct net *net = sock_net(ssk);
1986 struct netlink_broadcast_data info;
1987 struct sock *sk;
1988
1989 skb = netlink_trim(skb, allocation);
1990
1991 info.exclude_sk = ssk;
1992 info.net = net;
1993 info.portid = portid;
1994 info.group = group;
1995 info.failure = 0;
1996 info.delivery_failure = 0;
1997 info.congested = 0;
1998 info.delivered = 0;
1999 info.allocation = allocation;
2000 info.skb = skb;
2001 info.skb2 = NULL;
2002 info.tx_filter = filter;
2003 info.tx_data = filter_data;
2004
2005 /* While we sleep in clone, do not allow to change socket list */
2006
2007 netlink_lock_table();
2008
2009 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2010 do_one_broadcast(sk, &info);
2011
2012 consume_skb(skb);
2013
2014 netlink_unlock_table();
2015
2016 if (info.delivery_failure) {
2017 kfree_skb(info.skb2);
2018 return -ENOBUFS;
2019 }
2020 consume_skb(info.skb2);
2021
2022 if (info.delivered) {
2023 if (info.congested && (allocation & __GFP_WAIT))
2024 yield();
2025 return 0;
2026 }
2027 return -ESRCH;
2028 }
2029 EXPORT_SYMBOL(netlink_broadcast_filtered);
2030
2031 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2032 u32 group, gfp_t allocation)
2033 {
2034 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2035 NULL, NULL);
2036 }
2037 EXPORT_SYMBOL(netlink_broadcast);
2038
2039 struct netlink_set_err_data {
2040 struct sock *exclude_sk;
2041 u32 portid;
2042 u32 group;
2043 int code;
2044 };
2045
2046 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2047 {
2048 struct netlink_sock *nlk = nlk_sk(sk);
2049 int ret = 0;
2050
2051 if (sk == p->exclude_sk)
2052 goto out;
2053
2054 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2055 goto out;
2056
2057 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2058 !test_bit(p->group - 1, nlk->groups))
2059 goto out;
2060
2061 if (p->code == ENOBUFS && nlk->flags & NETLINK_RECV_NO_ENOBUFS) {
2062 ret = 1;
2063 goto out;
2064 }
2065
2066 sk->sk_err = p->code;
2067 sk->sk_error_report(sk);
2068 out:
2069 return ret;
2070 }
2071
2072 /**
2073 * netlink_set_err - report error to broadcast listeners
2074 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2075 * @portid: the PORTID of a process that we want to skip (if any)
2076 * @group: the broadcast group that will notice the error
2077 * @code: error code, must be negative (as usual in kernelspace)
2078 *
2079 * This function returns the number of broadcast listeners that have set the
2080 * NETLINK_RECV_NO_ENOBUFS socket option.
2081 */
2082 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2083 {
2084 struct netlink_set_err_data info;
2085 struct sock *sk;
2086 int ret = 0;
2087
2088 info.exclude_sk = ssk;
2089 info.portid = portid;
2090 info.group = group;
2091 /* sk->sk_err wants a positive error value */
2092 info.code = -code;
2093
2094 read_lock(&nl_table_lock);
2095
2096 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2097 ret += do_one_set_err(sk, &info);
2098
2099 read_unlock(&nl_table_lock);
2100 return ret;
2101 }
2102 EXPORT_SYMBOL(netlink_set_err);
2103
2104 /* must be called with netlink table grabbed */
2105 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2106 unsigned int group,
2107 int is_new)
2108 {
2109 int old, new = !!is_new, subscriptions;
2110
2111 old = test_bit(group - 1, nlk->groups);
2112 subscriptions = nlk->subscriptions - old + new;
2113 if (new)
2114 __set_bit(group - 1, nlk->groups);
2115 else
2116 __clear_bit(group - 1, nlk->groups);
2117 netlink_update_subscriptions(&nlk->sk, subscriptions);
2118 netlink_update_listeners(&nlk->sk);
2119 }
2120
2121 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2122 char __user *optval, unsigned int optlen)
2123 {
2124 struct sock *sk = sock->sk;
2125 struct netlink_sock *nlk = nlk_sk(sk);
2126 unsigned int val = 0;
2127 int err;
2128
2129 if (level != SOL_NETLINK)
2130 return -ENOPROTOOPT;
2131
2132 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2133 optlen >= sizeof(int) &&
2134 get_user(val, (unsigned int __user *)optval))
2135 return -EFAULT;
2136
2137 switch (optname) {
2138 case NETLINK_PKTINFO:
2139 if (val)
2140 nlk->flags |= NETLINK_RECV_PKTINFO;
2141 else
2142 nlk->flags &= ~NETLINK_RECV_PKTINFO;
2143 err = 0;
2144 break;
2145 case NETLINK_ADD_MEMBERSHIP:
2146 case NETLINK_DROP_MEMBERSHIP: {
2147 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2148 return -EPERM;
2149 err = netlink_realloc_groups(sk);
2150 if (err)
2151 return err;
2152 if (!val || val - 1 >= nlk->ngroups)
2153 return -EINVAL;
2154 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2155 err = nlk->netlink_bind(sock_net(sk), val);
2156 if (err)
2157 return err;
2158 }
2159 netlink_table_grab();
2160 netlink_update_socket_mc(nlk, val,
2161 optname == NETLINK_ADD_MEMBERSHIP);
2162 netlink_table_ungrab();
2163 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2164 nlk->netlink_unbind(sock_net(sk), val);
2165
2166 err = 0;
2167 break;
2168 }
2169 case NETLINK_BROADCAST_ERROR:
2170 if (val)
2171 nlk->flags |= NETLINK_BROADCAST_SEND_ERROR;
2172 else
2173 nlk->flags &= ~NETLINK_BROADCAST_SEND_ERROR;
2174 err = 0;
2175 break;
2176 case NETLINK_NO_ENOBUFS:
2177 if (val) {
2178 nlk->flags |= NETLINK_RECV_NO_ENOBUFS;
2179 clear_bit(NETLINK_CONGESTED, &nlk->state);
2180 wake_up_interruptible(&nlk->wait);
2181 } else {
2182 nlk->flags &= ~NETLINK_RECV_NO_ENOBUFS;
2183 }
2184 err = 0;
2185 break;
2186 #ifdef CONFIG_NETLINK_MMAP
2187 case NETLINK_RX_RING:
2188 case NETLINK_TX_RING: {
2189 struct nl_mmap_req req;
2190
2191 /* Rings might consume more memory than queue limits, require
2192 * CAP_NET_ADMIN.
2193 */
2194 if (!capable(CAP_NET_ADMIN))
2195 return -EPERM;
2196 if (optlen < sizeof(req))
2197 return -EINVAL;
2198 if (copy_from_user(&req, optval, sizeof(req)))
2199 return -EFAULT;
2200 err = netlink_set_ring(sk, &req, false,
2201 optname == NETLINK_TX_RING);
2202 break;
2203 }
2204 #endif /* CONFIG_NETLINK_MMAP */
2205 default:
2206 err = -ENOPROTOOPT;
2207 }
2208 return err;
2209 }
2210
2211 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2212 char __user *optval, int __user *optlen)
2213 {
2214 struct sock *sk = sock->sk;
2215 struct netlink_sock *nlk = nlk_sk(sk);
2216 int len, val, err;
2217
2218 if (level != SOL_NETLINK)
2219 return -ENOPROTOOPT;
2220
2221 if (get_user(len, optlen))
2222 return -EFAULT;
2223 if (len < 0)
2224 return -EINVAL;
2225
2226 switch (optname) {
2227 case NETLINK_PKTINFO:
2228 if (len < sizeof(int))
2229 return -EINVAL;
2230 len = sizeof(int);
2231 val = nlk->flags & NETLINK_RECV_PKTINFO ? 1 : 0;
2232 if (put_user(len, optlen) ||
2233 put_user(val, optval))
2234 return -EFAULT;
2235 err = 0;
2236 break;
2237 case NETLINK_BROADCAST_ERROR:
2238 if (len < sizeof(int))
2239 return -EINVAL;
2240 len = sizeof(int);
2241 val = nlk->flags & NETLINK_BROADCAST_SEND_ERROR ? 1 : 0;
2242 if (put_user(len, optlen) ||
2243 put_user(val, optval))
2244 return -EFAULT;
2245 err = 0;
2246 break;
2247 case NETLINK_NO_ENOBUFS:
2248 if (len < sizeof(int))
2249 return -EINVAL;
2250 len = sizeof(int);
2251 val = nlk->flags & NETLINK_RECV_NO_ENOBUFS ? 1 : 0;
2252 if (put_user(len, optlen) ||
2253 put_user(val, optval))
2254 return -EFAULT;
2255 err = 0;
2256 break;
2257 default:
2258 err = -ENOPROTOOPT;
2259 }
2260 return err;
2261 }
2262
2263 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2264 {
2265 struct nl_pktinfo info;
2266
2267 info.group = NETLINK_CB(skb).dst_group;
2268 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2269 }
2270
2271 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2272 {
2273 struct sock *sk = sock->sk;
2274 struct netlink_sock *nlk = nlk_sk(sk);
2275 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2276 u32 dst_portid;
2277 u32 dst_group;
2278 struct sk_buff *skb;
2279 int err;
2280 struct scm_cookie scm;
2281 u32 netlink_skb_flags = 0;
2282
2283 if (msg->msg_flags&MSG_OOB)
2284 return -EOPNOTSUPP;
2285
2286 err = scm_send(sock, msg, &scm, true);
2287 if (err < 0)
2288 return err;
2289
2290 if (msg->msg_namelen) {
2291 err = -EINVAL;
2292 if (addr->nl_family != AF_NETLINK)
2293 goto out;
2294 dst_portid = addr->nl_pid;
2295 dst_group = ffs(addr->nl_groups);
2296 err = -EPERM;
2297 if ((dst_group || dst_portid) &&
2298 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2299 goto out;
2300 netlink_skb_flags |= NETLINK_SKB_DST;
2301 } else {
2302 dst_portid = nlk->dst_portid;
2303 dst_group = nlk->dst_group;
2304 }
2305
2306 if (!nlk->portid) {
2307 err = netlink_autobind(sock);
2308 if (err)
2309 goto out;
2310 }
2311
2312 /* It's a really convoluted way for userland to ask for mmaped
2313 * sendmsg(), but that's what we've got...
2314 */
2315 if (netlink_tx_is_mmaped(sk) &&
2316 msg->msg_iter.type == ITER_IOVEC &&
2317 msg->msg_iter.nr_segs == 1 &&
2318 msg->msg_iter.iov->iov_base == NULL) {
2319 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2320 &scm);
2321 goto out;
2322 }
2323
2324 err = -EMSGSIZE;
2325 if (len > sk->sk_sndbuf - 32)
2326 goto out;
2327 err = -ENOBUFS;
2328 skb = netlink_alloc_large_skb(len, dst_group);
2329 if (skb == NULL)
2330 goto out;
2331
2332 NETLINK_CB(skb).portid = nlk->portid;
2333 NETLINK_CB(skb).dst_group = dst_group;
2334 NETLINK_CB(skb).creds = scm.creds;
2335 NETLINK_CB(skb).flags = netlink_skb_flags;
2336
2337 err = -EFAULT;
2338 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2339 kfree_skb(skb);
2340 goto out;
2341 }
2342
2343 err = security_netlink_send(sk, skb);
2344 if (err) {
2345 kfree_skb(skb);
2346 goto out;
2347 }
2348
2349 if (dst_group) {
2350 atomic_inc(&skb->users);
2351 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2352 }
2353 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2354
2355 out:
2356 scm_destroy(&scm);
2357 return err;
2358 }
2359
2360 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2361 int flags)
2362 {
2363 struct scm_cookie scm;
2364 struct sock *sk = sock->sk;
2365 struct netlink_sock *nlk = nlk_sk(sk);
2366 int noblock = flags&MSG_DONTWAIT;
2367 size_t copied;
2368 struct sk_buff *skb, *data_skb;
2369 int err, ret;
2370
2371 if (flags&MSG_OOB)
2372 return -EOPNOTSUPP;
2373
2374 copied = 0;
2375
2376 skb = skb_recv_datagram(sk, flags, noblock, &err);
2377 if (skb == NULL)
2378 goto out;
2379
2380 data_skb = skb;
2381
2382 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2383 if (unlikely(skb_shinfo(skb)->frag_list)) {
2384 /*
2385 * If this skb has a frag_list, then here that means that we
2386 * will have to use the frag_list skb's data for compat tasks
2387 * and the regular skb's data for normal (non-compat) tasks.
2388 *
2389 * If we need to send the compat skb, assign it to the
2390 * 'data_skb' variable so that it will be used below for data
2391 * copying. We keep 'skb' for everything else, including
2392 * freeing both later.
2393 */
2394 if (flags & MSG_CMSG_COMPAT)
2395 data_skb = skb_shinfo(skb)->frag_list;
2396 }
2397 #endif
2398
2399 /* Record the max length of recvmsg() calls for future allocations */
2400 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2401 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2402 16384);
2403
2404 copied = data_skb->len;
2405 if (len < copied) {
2406 msg->msg_flags |= MSG_TRUNC;
2407 copied = len;
2408 }
2409
2410 skb_reset_transport_header(data_skb);
2411 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2412
2413 if (msg->msg_name) {
2414 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2415 addr->nl_family = AF_NETLINK;
2416 addr->nl_pad = 0;
2417 addr->nl_pid = NETLINK_CB(skb).portid;
2418 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2419 msg->msg_namelen = sizeof(*addr);
2420 }
2421
2422 if (nlk->flags & NETLINK_RECV_PKTINFO)
2423 netlink_cmsg_recv_pktinfo(msg, skb);
2424
2425 memset(&scm, 0, sizeof(scm));
2426 scm.creds = *NETLINK_CREDS(skb);
2427 if (flags & MSG_TRUNC)
2428 copied = data_skb->len;
2429
2430 skb_free_datagram(sk, skb);
2431
2432 if (nlk->cb_running &&
2433 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2434 ret = netlink_dump(sk);
2435 if (ret) {
2436 sk->sk_err = -ret;
2437 sk->sk_error_report(sk);
2438 }
2439 }
2440
2441 scm_recv(sock, msg, &scm, flags);
2442 out:
2443 netlink_rcv_wake(sk);
2444 return err ? : copied;
2445 }
2446
2447 static void netlink_data_ready(struct sock *sk)
2448 {
2449 BUG();
2450 }
2451
2452 /*
2453 * We export these functions to other modules. They provide a
2454 * complete set of kernel non-blocking support for message
2455 * queueing.
2456 */
2457
2458 struct sock *
2459 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2460 struct netlink_kernel_cfg *cfg)
2461 {
2462 struct socket *sock;
2463 struct sock *sk;
2464 struct netlink_sock *nlk;
2465 struct listeners *listeners = NULL;
2466 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2467 unsigned int groups;
2468
2469 BUG_ON(!nl_table);
2470
2471 if (unit < 0 || unit >= MAX_LINKS)
2472 return NULL;
2473
2474 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2475 return NULL;
2476
2477 /*
2478 * We have to just have a reference on the net from sk, but don't
2479 * get_net it. Besides, we cannot get and then put the net here.
2480 * So we create one inside init_net and the move it to net.
2481 */
2482
2483 if (__netlink_create(&init_net, sock, cb_mutex, unit) < 0)
2484 goto out_sock_release_nosk;
2485
2486 sk = sock->sk;
2487 sk_change_net(sk, net);
2488
2489 if (!cfg || cfg->groups < 32)
2490 groups = 32;
2491 else
2492 groups = cfg->groups;
2493
2494 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2495 if (!listeners)
2496 goto out_sock_release;
2497
2498 sk->sk_data_ready = netlink_data_ready;
2499 if (cfg && cfg->input)
2500 nlk_sk(sk)->netlink_rcv = cfg->input;
2501
2502 if (netlink_insert(sk, 0))
2503 goto out_sock_release;
2504
2505 nlk = nlk_sk(sk);
2506 nlk->flags |= NETLINK_KERNEL_SOCKET;
2507
2508 netlink_table_grab();
2509 if (!nl_table[unit].registered) {
2510 nl_table[unit].groups = groups;
2511 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2512 nl_table[unit].cb_mutex = cb_mutex;
2513 nl_table[unit].module = module;
2514 if (cfg) {
2515 nl_table[unit].bind = cfg->bind;
2516 nl_table[unit].unbind = cfg->unbind;
2517 nl_table[unit].flags = cfg->flags;
2518 if (cfg->compare)
2519 nl_table[unit].compare = cfg->compare;
2520 }
2521 nl_table[unit].registered = 1;
2522 } else {
2523 kfree(listeners);
2524 nl_table[unit].registered++;
2525 }
2526 netlink_table_ungrab();
2527 return sk;
2528
2529 out_sock_release:
2530 kfree(listeners);
2531 netlink_kernel_release(sk);
2532 return NULL;
2533
2534 out_sock_release_nosk:
2535 sock_release(sock);
2536 return NULL;
2537 }
2538 EXPORT_SYMBOL(__netlink_kernel_create);
2539
2540 void
2541 netlink_kernel_release(struct sock *sk)
2542 {
2543 sk_release_kernel(sk);
2544 }
2545 EXPORT_SYMBOL(netlink_kernel_release);
2546
2547 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2548 {
2549 struct listeners *new, *old;
2550 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2551
2552 if (groups < 32)
2553 groups = 32;
2554
2555 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2556 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2557 if (!new)
2558 return -ENOMEM;
2559 old = nl_deref_protected(tbl->listeners);
2560 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2561 rcu_assign_pointer(tbl->listeners, new);
2562
2563 kfree_rcu(old, rcu);
2564 }
2565 tbl->groups = groups;
2566
2567 return 0;
2568 }
2569
2570 /**
2571 * netlink_change_ngroups - change number of multicast groups
2572 *
2573 * This changes the number of multicast groups that are available
2574 * on a certain netlink family. Note that it is not possible to
2575 * change the number of groups to below 32. Also note that it does
2576 * not implicitly call netlink_clear_multicast_users() when the
2577 * number of groups is reduced.
2578 *
2579 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2580 * @groups: The new number of groups.
2581 */
2582 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2583 {
2584 int err;
2585
2586 netlink_table_grab();
2587 err = __netlink_change_ngroups(sk, groups);
2588 netlink_table_ungrab();
2589
2590 return err;
2591 }
2592
2593 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2594 {
2595 struct sock *sk;
2596 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2597
2598 sk_for_each_bound(sk, &tbl->mc_list)
2599 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2600 }
2601
2602 struct nlmsghdr *
2603 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2604 {
2605 struct nlmsghdr *nlh;
2606 int size = nlmsg_msg_size(len);
2607
2608 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2609 nlh->nlmsg_type = type;
2610 nlh->nlmsg_len = size;
2611 nlh->nlmsg_flags = flags;
2612 nlh->nlmsg_pid = portid;
2613 nlh->nlmsg_seq = seq;
2614 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2615 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2616 return nlh;
2617 }
2618 EXPORT_SYMBOL(__nlmsg_put);
2619
2620 /*
2621 * It looks a bit ugly.
2622 * It would be better to create kernel thread.
2623 */
2624
2625 static int netlink_dump(struct sock *sk)
2626 {
2627 struct netlink_sock *nlk = nlk_sk(sk);
2628 struct netlink_callback *cb;
2629 struct sk_buff *skb = NULL;
2630 struct nlmsghdr *nlh;
2631 int len, err = -ENOBUFS;
2632 int alloc_size;
2633
2634 mutex_lock(nlk->cb_mutex);
2635 if (!nlk->cb_running) {
2636 err = -EINVAL;
2637 goto errout_skb;
2638 }
2639
2640 cb = &nlk->cb;
2641 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2642
2643 if (!netlink_rx_is_mmaped(sk) &&
2644 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2645 goto errout_skb;
2646
2647 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2648 * required, but it makes sense to _attempt_ a 16K bytes allocation
2649 * to reduce number of system calls on dump operations, if user
2650 * ever provided a big enough buffer.
2651 */
2652 if (alloc_size < nlk->max_recvmsg_len) {
2653 skb = netlink_alloc_skb(sk,
2654 nlk->max_recvmsg_len,
2655 nlk->portid,
2656 GFP_KERNEL |
2657 __GFP_NOWARN |
2658 __GFP_NORETRY);
2659 /* available room should be exact amount to avoid MSG_TRUNC */
2660 if (skb)
2661 skb_reserve(skb, skb_tailroom(skb) -
2662 nlk->max_recvmsg_len);
2663 }
2664 if (!skb)
2665 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2666 GFP_KERNEL);
2667 if (!skb)
2668 goto errout_skb;
2669 netlink_skb_set_owner_r(skb, sk);
2670
2671 len = cb->dump(skb, cb);
2672
2673 if (len > 0) {
2674 mutex_unlock(nlk->cb_mutex);
2675
2676 if (sk_filter(sk, skb))
2677 kfree_skb(skb);
2678 else
2679 __netlink_sendskb(sk, skb);
2680 return 0;
2681 }
2682
2683 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2684 if (!nlh)
2685 goto errout_skb;
2686
2687 nl_dump_check_consistent(cb, nlh);
2688
2689 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2690
2691 if (sk_filter(sk, skb))
2692 kfree_skb(skb);
2693 else
2694 __netlink_sendskb(sk, skb);
2695
2696 if (cb->done)
2697 cb->done(cb);
2698
2699 nlk->cb_running = false;
2700 mutex_unlock(nlk->cb_mutex);
2701 module_put(cb->module);
2702 consume_skb(cb->skb);
2703 return 0;
2704
2705 errout_skb:
2706 mutex_unlock(nlk->cb_mutex);
2707 kfree_skb(skb);
2708 return err;
2709 }
2710
2711 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2712 const struct nlmsghdr *nlh,
2713 struct netlink_dump_control *control)
2714 {
2715 struct netlink_callback *cb;
2716 struct sock *sk;
2717 struct netlink_sock *nlk;
2718 int ret;
2719
2720 /* Memory mapped dump requests need to be copied to avoid looping
2721 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2722 * a reference to the skb.
2723 */
2724 if (netlink_skb_is_mmaped(skb)) {
2725 skb = skb_copy(skb, GFP_KERNEL);
2726 if (skb == NULL)
2727 return -ENOBUFS;
2728 } else
2729 atomic_inc(&skb->users);
2730
2731 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2732 if (sk == NULL) {
2733 ret = -ECONNREFUSED;
2734 goto error_free;
2735 }
2736
2737 nlk = nlk_sk(sk);
2738 mutex_lock(nlk->cb_mutex);
2739 /* A dump is in progress... */
2740 if (nlk->cb_running) {
2741 ret = -EBUSY;
2742 goto error_unlock;
2743 }
2744 /* add reference of module which cb->dump belongs to */
2745 if (!try_module_get(control->module)) {
2746 ret = -EPROTONOSUPPORT;
2747 goto error_unlock;
2748 }
2749
2750 cb = &nlk->cb;
2751 memset(cb, 0, sizeof(*cb));
2752 cb->dump = control->dump;
2753 cb->done = control->done;
2754 cb->nlh = nlh;
2755 cb->data = control->data;
2756 cb->module = control->module;
2757 cb->min_dump_alloc = control->min_dump_alloc;
2758 cb->skb = skb;
2759
2760 nlk->cb_running = true;
2761
2762 mutex_unlock(nlk->cb_mutex);
2763
2764 ret = netlink_dump(sk);
2765 sock_put(sk);
2766
2767 if (ret)
2768 return ret;
2769
2770 /* We successfully started a dump, by returning -EINTR we
2771 * signal not to send ACK even if it was requested.
2772 */
2773 return -EINTR;
2774
2775 error_unlock:
2776 sock_put(sk);
2777 mutex_unlock(nlk->cb_mutex);
2778 error_free:
2779 kfree_skb(skb);
2780 return ret;
2781 }
2782 EXPORT_SYMBOL(__netlink_dump_start);
2783
2784 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2785 {
2786 struct sk_buff *skb;
2787 struct nlmsghdr *rep;
2788 struct nlmsgerr *errmsg;
2789 size_t payload = sizeof(*errmsg);
2790
2791 /* error messages get the original request appened */
2792 if (err)
2793 payload += nlmsg_len(nlh);
2794
2795 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2796 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2797 if (!skb) {
2798 struct sock *sk;
2799
2800 sk = netlink_lookup(sock_net(in_skb->sk),
2801 in_skb->sk->sk_protocol,
2802 NETLINK_CB(in_skb).portid);
2803 if (sk) {
2804 sk->sk_err = ENOBUFS;
2805 sk->sk_error_report(sk);
2806 sock_put(sk);
2807 }
2808 return;
2809 }
2810
2811 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2812 NLMSG_ERROR, payload, 0);
2813 errmsg = nlmsg_data(rep);
2814 errmsg->error = err;
2815 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2816 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2817 }
2818 EXPORT_SYMBOL(netlink_ack);
2819
2820 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2821 struct nlmsghdr *))
2822 {
2823 struct nlmsghdr *nlh;
2824 int err;
2825
2826 while (skb->len >= nlmsg_total_size(0)) {
2827 int msglen;
2828
2829 nlh = nlmsg_hdr(skb);
2830 err = 0;
2831
2832 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2833 return 0;
2834
2835 /* Only requests are handled by the kernel */
2836 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2837 goto ack;
2838
2839 /* Skip control messages */
2840 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2841 goto ack;
2842
2843 err = cb(skb, nlh);
2844 if (err == -EINTR)
2845 goto skip;
2846
2847 ack:
2848 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2849 netlink_ack(skb, nlh, err);
2850
2851 skip:
2852 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2853 if (msglen > skb->len)
2854 msglen = skb->len;
2855 skb_pull(skb, msglen);
2856 }
2857
2858 return 0;
2859 }
2860 EXPORT_SYMBOL(netlink_rcv_skb);
2861
2862 /**
2863 * nlmsg_notify - send a notification netlink message
2864 * @sk: netlink socket to use
2865 * @skb: notification message
2866 * @portid: destination netlink portid for reports or 0
2867 * @group: destination multicast group or 0
2868 * @report: 1 to report back, 0 to disable
2869 * @flags: allocation flags
2870 */
2871 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2872 unsigned int group, int report, gfp_t flags)
2873 {
2874 int err = 0;
2875
2876 if (group) {
2877 int exclude_portid = 0;
2878
2879 if (report) {
2880 atomic_inc(&skb->users);
2881 exclude_portid = portid;
2882 }
2883
2884 /* errors reported via destination sk->sk_err, but propagate
2885 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2886 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2887 }
2888
2889 if (report) {
2890 int err2;
2891
2892 err2 = nlmsg_unicast(sk, skb, portid);
2893 if (!err || err == -ESRCH)
2894 err = err2;
2895 }
2896
2897 return err;
2898 }
2899 EXPORT_SYMBOL(nlmsg_notify);
2900
2901 #ifdef CONFIG_PROC_FS
2902 struct nl_seq_iter {
2903 struct seq_net_private p;
2904 struct rhashtable_iter hti;
2905 int link;
2906 };
2907
2908 static int netlink_walk_start(struct nl_seq_iter *iter)
2909 {
2910 int err;
2911
2912 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2913 if (err) {
2914 iter->link = MAX_LINKS;
2915 return err;
2916 }
2917
2918 err = rhashtable_walk_start(&iter->hti);
2919 return err == -EAGAIN ? 0 : err;
2920 }
2921
2922 static void netlink_walk_stop(struct nl_seq_iter *iter)
2923 {
2924 rhashtable_walk_stop(&iter->hti);
2925 rhashtable_walk_exit(&iter->hti);
2926 }
2927
2928 static void *__netlink_seq_next(struct seq_file *seq)
2929 {
2930 struct nl_seq_iter *iter = seq->private;
2931 struct netlink_sock *nlk;
2932
2933 do {
2934 for (;;) {
2935 int err;
2936
2937 nlk = rhashtable_walk_next(&iter->hti);
2938
2939 if (IS_ERR(nlk)) {
2940 if (PTR_ERR(nlk) == -EAGAIN)
2941 continue;
2942
2943 return nlk;
2944 }
2945
2946 if (nlk)
2947 break;
2948
2949 netlink_walk_stop(iter);
2950 if (++iter->link >= MAX_LINKS)
2951 return NULL;
2952
2953 err = netlink_walk_start(iter);
2954 if (err)
2955 return ERR_PTR(err);
2956 }
2957 } while (sock_net(&nlk->sk) != seq_file_net(seq));
2958
2959 return nlk;
2960 }
2961
2962 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
2963 {
2964 struct nl_seq_iter *iter = seq->private;
2965 void *obj = SEQ_START_TOKEN;
2966 loff_t pos;
2967 int err;
2968
2969 iter->link = 0;
2970
2971 err = netlink_walk_start(iter);
2972 if (err)
2973 return ERR_PTR(err);
2974
2975 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
2976 obj = __netlink_seq_next(seq);
2977
2978 return obj;
2979 }
2980
2981 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2982 {
2983 ++*pos;
2984 return __netlink_seq_next(seq);
2985 }
2986
2987 static void netlink_seq_stop(struct seq_file *seq, void *v)
2988 {
2989 struct nl_seq_iter *iter = seq->private;
2990
2991 if (iter->link >= MAX_LINKS)
2992 return;
2993
2994 netlink_walk_stop(iter);
2995 }
2996
2997
2998 static int netlink_seq_show(struct seq_file *seq, void *v)
2999 {
3000 if (v == SEQ_START_TOKEN) {
3001 seq_puts(seq,
3002 "sk Eth Pid Groups "
3003 "Rmem Wmem Dump Locks Drops Inode\n");
3004 } else {
3005 struct sock *s = v;
3006 struct netlink_sock *nlk = nlk_sk(s);
3007
3008 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3009 s,
3010 s->sk_protocol,
3011 nlk->portid,
3012 nlk->groups ? (u32)nlk->groups[0] : 0,
3013 sk_rmem_alloc_get(s),
3014 sk_wmem_alloc_get(s),
3015 nlk->cb_running,
3016 atomic_read(&s->sk_refcnt),
3017 atomic_read(&s->sk_drops),
3018 sock_i_ino(s)
3019 );
3020
3021 }
3022 return 0;
3023 }
3024
3025 static const struct seq_operations netlink_seq_ops = {
3026 .start = netlink_seq_start,
3027 .next = netlink_seq_next,
3028 .stop = netlink_seq_stop,
3029 .show = netlink_seq_show,
3030 };
3031
3032
3033 static int netlink_seq_open(struct inode *inode, struct file *file)
3034 {
3035 return seq_open_net(inode, file, &netlink_seq_ops,
3036 sizeof(struct nl_seq_iter));
3037 }
3038
3039 static const struct file_operations netlink_seq_fops = {
3040 .owner = THIS_MODULE,
3041 .open = netlink_seq_open,
3042 .read = seq_read,
3043 .llseek = seq_lseek,
3044 .release = seq_release_net,
3045 };
3046
3047 #endif
3048
3049 int netlink_register_notifier(struct notifier_block *nb)
3050 {
3051 return atomic_notifier_chain_register(&netlink_chain, nb);
3052 }
3053 EXPORT_SYMBOL(netlink_register_notifier);
3054
3055 int netlink_unregister_notifier(struct notifier_block *nb)
3056 {
3057 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3058 }
3059 EXPORT_SYMBOL(netlink_unregister_notifier);
3060
3061 static const struct proto_ops netlink_ops = {
3062 .family = PF_NETLINK,
3063 .owner = THIS_MODULE,
3064 .release = netlink_release,
3065 .bind = netlink_bind,
3066 .connect = netlink_connect,
3067 .socketpair = sock_no_socketpair,
3068 .accept = sock_no_accept,
3069 .getname = netlink_getname,
3070 .poll = netlink_poll,
3071 .ioctl = sock_no_ioctl,
3072 .listen = sock_no_listen,
3073 .shutdown = sock_no_shutdown,
3074 .setsockopt = netlink_setsockopt,
3075 .getsockopt = netlink_getsockopt,
3076 .sendmsg = netlink_sendmsg,
3077 .recvmsg = netlink_recvmsg,
3078 .mmap = netlink_mmap,
3079 .sendpage = sock_no_sendpage,
3080 };
3081
3082 static const struct net_proto_family netlink_family_ops = {
3083 .family = PF_NETLINK,
3084 .create = netlink_create,
3085 .owner = THIS_MODULE, /* for consistency 8) */
3086 };
3087
3088 static int __net_init netlink_net_init(struct net *net)
3089 {
3090 #ifdef CONFIG_PROC_FS
3091 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3092 return -ENOMEM;
3093 #endif
3094 return 0;
3095 }
3096
3097 static void __net_exit netlink_net_exit(struct net *net)
3098 {
3099 #ifdef CONFIG_PROC_FS
3100 remove_proc_entry("netlink", net->proc_net);
3101 #endif
3102 }
3103
3104 static void __init netlink_add_usersock_entry(void)
3105 {
3106 struct listeners *listeners;
3107 int groups = 32;
3108
3109 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3110 if (!listeners)
3111 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3112
3113 netlink_table_grab();
3114
3115 nl_table[NETLINK_USERSOCK].groups = groups;
3116 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3117 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3118 nl_table[NETLINK_USERSOCK].registered = 1;
3119 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3120
3121 netlink_table_ungrab();
3122 }
3123
3124 static struct pernet_operations __net_initdata netlink_net_ops = {
3125 .init = netlink_net_init,
3126 .exit = netlink_net_exit,
3127 };
3128
3129 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3130 {
3131 const struct netlink_sock *nlk = data;
3132 struct netlink_compare_arg arg;
3133
3134 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3135 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3136 }
3137
3138 static const struct rhashtable_params netlink_rhashtable_params = {
3139 .head_offset = offsetof(struct netlink_sock, node),
3140 .key_len = netlink_compare_arg_len,
3141 .obj_hashfn = netlink_hash,
3142 .obj_cmpfn = netlink_compare,
3143 .automatic_shrinking = true,
3144 };
3145
3146 static int __init netlink_proto_init(void)
3147 {
3148 int i;
3149 int err = proto_register(&netlink_proto, 0);
3150
3151 if (err != 0)
3152 goto out;
3153
3154 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3155
3156 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3157 if (!nl_table)
3158 goto panic;
3159
3160 for (i = 0; i < MAX_LINKS; i++) {
3161 if (rhashtable_init(&nl_table[i].hash,
3162 &netlink_rhashtable_params) < 0) {
3163 while (--i > 0)
3164 rhashtable_destroy(&nl_table[i].hash);
3165 kfree(nl_table);
3166 goto panic;
3167 }
3168 }
3169
3170 INIT_LIST_HEAD(&netlink_tap_all);
3171
3172 netlink_add_usersock_entry();
3173
3174 sock_register(&netlink_family_ops);
3175 register_pernet_subsys(&netlink_net_ops);
3176 /* The netlink device handler may be needed early. */
3177 rtnetlink_init();
3178 out:
3179 return err;
3180 panic:
3181 panic("netlink_init: Cannot allocate nl_table\n");
3182 }
3183
3184 core_initcall(netlink_proto_init);