]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/netlink/af_netlink.c
Merge branch 'for-linus-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[mirror_ubuntu-bionic-kernel.git] / net / netlink / af_netlink.c
1 /*
2 * NETLINK Kernel-user communication protocol.
3 *
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
6 * Patrick McHardy <kaber@trash.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Tue Jun 26 14:36:48 MEST 2001 Herbert "herp" Rosmanith
14 * added netlink_proto_exit
15 * Tue Jan 22 18:32:44 BRST 2002 Arnaldo C. de Melo <acme@conectiva.com.br>
16 * use nlk_sk, as sk->protinfo is on a diet 8)
17 * Fri Jul 22 19:51:12 MEST 2005 Harald Welte <laforge@gnumonks.org>
18 * - inc module use count of module that owns
19 * the kernel socket in case userspace opens
20 * socket of same protocol
21 * - remove all module support, since netlink is
22 * mandatory if CONFIG_NET=y these days
23 */
24
25 #include <linux/module.h>
26
27 #include <linux/capability.h>
28 #include <linux/kernel.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/sched.h>
32 #include <linux/errno.h>
33 #include <linux/string.h>
34 #include <linux/stat.h>
35 #include <linux/socket.h>
36 #include <linux/un.h>
37 #include <linux/fcntl.h>
38 #include <linux/termios.h>
39 #include <linux/sockios.h>
40 #include <linux/net.h>
41 #include <linux/fs.h>
42 #include <linux/slab.h>
43 #include <asm/uaccess.h>
44 #include <linux/skbuff.h>
45 #include <linux/netdevice.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/proc_fs.h>
48 #include <linux/seq_file.h>
49 #include <linux/notifier.h>
50 #include <linux/security.h>
51 #include <linux/jhash.h>
52 #include <linux/jiffies.h>
53 #include <linux/random.h>
54 #include <linux/bitops.h>
55 #include <linux/mm.h>
56 #include <linux/types.h>
57 #include <linux/audit.h>
58 #include <linux/mutex.h>
59 #include <linux/vmalloc.h>
60 #include <linux/if_arp.h>
61 #include <linux/rhashtable.h>
62 #include <asm/cacheflush.h>
63 #include <linux/hash.h>
64 #include <linux/genetlink.h>
65
66 #include <net/net_namespace.h>
67 #include <net/sock.h>
68 #include <net/scm.h>
69 #include <net/netlink.h>
70
71 #include "af_netlink.h"
72
73 struct listeners {
74 struct rcu_head rcu;
75 unsigned long masks[0];
76 };
77
78 /* state bits */
79 #define NETLINK_S_CONGESTED 0x0
80
81 /* flags */
82 #define NETLINK_F_KERNEL_SOCKET 0x1
83 #define NETLINK_F_RECV_PKTINFO 0x2
84 #define NETLINK_F_BROADCAST_SEND_ERROR 0x4
85 #define NETLINK_F_RECV_NO_ENOBUFS 0x8
86 #define NETLINK_F_LISTEN_ALL_NSID 0x10
87
88 static inline int netlink_is_kernel(struct sock *sk)
89 {
90 return nlk_sk(sk)->flags & NETLINK_F_KERNEL_SOCKET;
91 }
92
93 struct netlink_table *nl_table __read_mostly;
94 EXPORT_SYMBOL_GPL(nl_table);
95
96 static DECLARE_WAIT_QUEUE_HEAD(nl_table_wait);
97
98 static int netlink_dump(struct sock *sk);
99 static void netlink_skb_destructor(struct sk_buff *skb);
100
101 /* nl_table locking explained:
102 * Lookup and traversal are protected with an RCU read-side lock. Insertion
103 * and removal are protected with per bucket lock while using RCU list
104 * modification primitives and may run in parallel to RCU protected lookups.
105 * Destruction of the Netlink socket may only occur *after* nl_table_lock has
106 * been acquired * either during or after the socket has been removed from
107 * the list and after an RCU grace period.
108 */
109 DEFINE_RWLOCK(nl_table_lock);
110 EXPORT_SYMBOL_GPL(nl_table_lock);
111 static atomic_t nl_table_users = ATOMIC_INIT(0);
112
113 #define nl_deref_protected(X) rcu_dereference_protected(X, lockdep_is_held(&nl_table_lock));
114
115 static ATOMIC_NOTIFIER_HEAD(netlink_chain);
116
117 static DEFINE_SPINLOCK(netlink_tap_lock);
118 static struct list_head netlink_tap_all __read_mostly;
119
120 static const struct rhashtable_params netlink_rhashtable_params;
121
122 static inline u32 netlink_group_mask(u32 group)
123 {
124 return group ? 1 << (group - 1) : 0;
125 }
126
127 int netlink_add_tap(struct netlink_tap *nt)
128 {
129 if (unlikely(nt->dev->type != ARPHRD_NETLINK))
130 return -EINVAL;
131
132 spin_lock(&netlink_tap_lock);
133 list_add_rcu(&nt->list, &netlink_tap_all);
134 spin_unlock(&netlink_tap_lock);
135
136 __module_get(nt->module);
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(netlink_add_tap);
141
142 static int __netlink_remove_tap(struct netlink_tap *nt)
143 {
144 bool found = false;
145 struct netlink_tap *tmp;
146
147 spin_lock(&netlink_tap_lock);
148
149 list_for_each_entry(tmp, &netlink_tap_all, list) {
150 if (nt == tmp) {
151 list_del_rcu(&nt->list);
152 found = true;
153 goto out;
154 }
155 }
156
157 pr_warn("__netlink_remove_tap: %p not found\n", nt);
158 out:
159 spin_unlock(&netlink_tap_lock);
160
161 if (found)
162 module_put(nt->module);
163
164 return found ? 0 : -ENODEV;
165 }
166
167 int netlink_remove_tap(struct netlink_tap *nt)
168 {
169 int ret;
170
171 ret = __netlink_remove_tap(nt);
172 synchronize_net();
173
174 return ret;
175 }
176 EXPORT_SYMBOL_GPL(netlink_remove_tap);
177
178 static bool netlink_filter_tap(const struct sk_buff *skb)
179 {
180 struct sock *sk = skb->sk;
181
182 /* We take the more conservative approach and
183 * whitelist socket protocols that may pass.
184 */
185 switch (sk->sk_protocol) {
186 case NETLINK_ROUTE:
187 case NETLINK_USERSOCK:
188 case NETLINK_SOCK_DIAG:
189 case NETLINK_NFLOG:
190 case NETLINK_XFRM:
191 case NETLINK_FIB_LOOKUP:
192 case NETLINK_NETFILTER:
193 case NETLINK_GENERIC:
194 return true;
195 }
196
197 return false;
198 }
199
200 static int __netlink_deliver_tap_skb(struct sk_buff *skb,
201 struct net_device *dev)
202 {
203 struct sk_buff *nskb;
204 struct sock *sk = skb->sk;
205 int ret = -ENOMEM;
206
207 dev_hold(dev);
208 nskb = skb_clone(skb, GFP_ATOMIC);
209 if (nskb) {
210 nskb->dev = dev;
211 nskb->protocol = htons((u16) sk->sk_protocol);
212 nskb->pkt_type = netlink_is_kernel(sk) ?
213 PACKET_KERNEL : PACKET_USER;
214 skb_reset_network_header(nskb);
215 ret = dev_queue_xmit(nskb);
216 if (unlikely(ret > 0))
217 ret = net_xmit_errno(ret);
218 }
219
220 dev_put(dev);
221 return ret;
222 }
223
224 static void __netlink_deliver_tap(struct sk_buff *skb)
225 {
226 int ret;
227 struct netlink_tap *tmp;
228
229 if (!netlink_filter_tap(skb))
230 return;
231
232 list_for_each_entry_rcu(tmp, &netlink_tap_all, list) {
233 ret = __netlink_deliver_tap_skb(skb, tmp->dev);
234 if (unlikely(ret))
235 break;
236 }
237 }
238
239 static void netlink_deliver_tap(struct sk_buff *skb)
240 {
241 rcu_read_lock();
242
243 if (unlikely(!list_empty(&netlink_tap_all)))
244 __netlink_deliver_tap(skb);
245
246 rcu_read_unlock();
247 }
248
249 static void netlink_deliver_tap_kernel(struct sock *dst, struct sock *src,
250 struct sk_buff *skb)
251 {
252 if (!(netlink_is_kernel(dst) && netlink_is_kernel(src)))
253 netlink_deliver_tap(skb);
254 }
255
256 static void netlink_overrun(struct sock *sk)
257 {
258 struct netlink_sock *nlk = nlk_sk(sk);
259
260 if (!(nlk->flags & NETLINK_F_RECV_NO_ENOBUFS)) {
261 if (!test_and_set_bit(NETLINK_S_CONGESTED,
262 &nlk_sk(sk)->state)) {
263 sk->sk_err = ENOBUFS;
264 sk->sk_error_report(sk);
265 }
266 }
267 atomic_inc(&sk->sk_drops);
268 }
269
270 static void netlink_rcv_wake(struct sock *sk)
271 {
272 struct netlink_sock *nlk = nlk_sk(sk);
273
274 if (skb_queue_empty(&sk->sk_receive_queue))
275 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
276 if (!test_bit(NETLINK_S_CONGESTED, &nlk->state))
277 wake_up_interruptible(&nlk->wait);
278 }
279
280 #ifdef CONFIG_NETLINK_MMAP
281 static bool netlink_skb_is_mmaped(const struct sk_buff *skb)
282 {
283 return NETLINK_CB(skb).flags & NETLINK_SKB_MMAPED;
284 }
285
286 static bool netlink_rx_is_mmaped(struct sock *sk)
287 {
288 return nlk_sk(sk)->rx_ring.pg_vec != NULL;
289 }
290
291 static bool netlink_tx_is_mmaped(struct sock *sk)
292 {
293 return nlk_sk(sk)->tx_ring.pg_vec != NULL;
294 }
295
296 static __pure struct page *pgvec_to_page(const void *addr)
297 {
298 if (is_vmalloc_addr(addr))
299 return vmalloc_to_page(addr);
300 else
301 return virt_to_page(addr);
302 }
303
304 static void free_pg_vec(void **pg_vec, unsigned int order, unsigned int len)
305 {
306 unsigned int i;
307
308 for (i = 0; i < len; i++) {
309 if (pg_vec[i] != NULL) {
310 if (is_vmalloc_addr(pg_vec[i]))
311 vfree(pg_vec[i]);
312 else
313 free_pages((unsigned long)pg_vec[i], order);
314 }
315 }
316 kfree(pg_vec);
317 }
318
319 static void *alloc_one_pg_vec_page(unsigned long order)
320 {
321 void *buffer;
322 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP | __GFP_ZERO |
323 __GFP_NOWARN | __GFP_NORETRY;
324
325 buffer = (void *)__get_free_pages(gfp_flags, order);
326 if (buffer != NULL)
327 return buffer;
328
329 buffer = vzalloc((1 << order) * PAGE_SIZE);
330 if (buffer != NULL)
331 return buffer;
332
333 gfp_flags &= ~__GFP_NORETRY;
334 return (void *)__get_free_pages(gfp_flags, order);
335 }
336
337 static void **alloc_pg_vec(struct netlink_sock *nlk,
338 struct nl_mmap_req *req, unsigned int order)
339 {
340 unsigned int block_nr = req->nm_block_nr;
341 unsigned int i;
342 void **pg_vec;
343
344 pg_vec = kcalloc(block_nr, sizeof(void *), GFP_KERNEL);
345 if (pg_vec == NULL)
346 return NULL;
347
348 for (i = 0; i < block_nr; i++) {
349 pg_vec[i] = alloc_one_pg_vec_page(order);
350 if (pg_vec[i] == NULL)
351 goto err1;
352 }
353
354 return pg_vec;
355 err1:
356 free_pg_vec(pg_vec, order, block_nr);
357 return NULL;
358 }
359
360
361 static void
362 __netlink_set_ring(struct sock *sk, struct nl_mmap_req *req, bool tx_ring, void **pg_vec,
363 unsigned int order)
364 {
365 struct netlink_sock *nlk = nlk_sk(sk);
366 struct sk_buff_head *queue;
367 struct netlink_ring *ring;
368
369 queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
370 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
371
372 spin_lock_bh(&queue->lock);
373
374 ring->frame_max = req->nm_frame_nr - 1;
375 ring->head = 0;
376 ring->frame_size = req->nm_frame_size;
377 ring->pg_vec_pages = req->nm_block_size / PAGE_SIZE;
378
379 swap(ring->pg_vec_len, req->nm_block_nr);
380 swap(ring->pg_vec_order, order);
381 swap(ring->pg_vec, pg_vec);
382
383 __skb_queue_purge(queue);
384 spin_unlock_bh(&queue->lock);
385
386 WARN_ON(atomic_read(&nlk->mapped));
387
388 if (pg_vec)
389 free_pg_vec(pg_vec, order, req->nm_block_nr);
390 }
391
392 static int netlink_set_ring(struct sock *sk, struct nl_mmap_req *req,
393 bool tx_ring)
394 {
395 struct netlink_sock *nlk = nlk_sk(sk);
396 struct netlink_ring *ring;
397 void **pg_vec = NULL;
398 unsigned int order = 0;
399
400 ring = tx_ring ? &nlk->tx_ring : &nlk->rx_ring;
401
402 if (atomic_read(&nlk->mapped))
403 return -EBUSY;
404 if (atomic_read(&ring->pending))
405 return -EBUSY;
406
407 if (req->nm_block_nr) {
408 if (ring->pg_vec != NULL)
409 return -EBUSY;
410
411 if ((int)req->nm_block_size <= 0)
412 return -EINVAL;
413 if (!PAGE_ALIGNED(req->nm_block_size))
414 return -EINVAL;
415 if (req->nm_frame_size < NL_MMAP_HDRLEN)
416 return -EINVAL;
417 if (!IS_ALIGNED(req->nm_frame_size, NL_MMAP_MSG_ALIGNMENT))
418 return -EINVAL;
419
420 ring->frames_per_block = req->nm_block_size /
421 req->nm_frame_size;
422 if (ring->frames_per_block == 0)
423 return -EINVAL;
424 if (ring->frames_per_block * req->nm_block_nr !=
425 req->nm_frame_nr)
426 return -EINVAL;
427
428 order = get_order(req->nm_block_size);
429 pg_vec = alloc_pg_vec(nlk, req, order);
430 if (pg_vec == NULL)
431 return -ENOMEM;
432 } else {
433 if (req->nm_frame_nr)
434 return -EINVAL;
435 }
436
437 mutex_lock(&nlk->pg_vec_lock);
438 if (atomic_read(&nlk->mapped) == 0) {
439 __netlink_set_ring(sk, req, tx_ring, pg_vec, order);
440 mutex_unlock(&nlk->pg_vec_lock);
441 return 0;
442 }
443
444 mutex_unlock(&nlk->pg_vec_lock);
445
446 if (pg_vec)
447 free_pg_vec(pg_vec, order, req->nm_block_nr);
448
449 return -EBUSY;
450 }
451
452 static void netlink_mm_open(struct vm_area_struct *vma)
453 {
454 struct file *file = vma->vm_file;
455 struct socket *sock = file->private_data;
456 struct sock *sk = sock->sk;
457
458 if (sk)
459 atomic_inc(&nlk_sk(sk)->mapped);
460 }
461
462 static void netlink_mm_close(struct vm_area_struct *vma)
463 {
464 struct file *file = vma->vm_file;
465 struct socket *sock = file->private_data;
466 struct sock *sk = sock->sk;
467
468 if (sk)
469 atomic_dec(&nlk_sk(sk)->mapped);
470 }
471
472 static const struct vm_operations_struct netlink_mmap_ops = {
473 .open = netlink_mm_open,
474 .close = netlink_mm_close,
475 };
476
477 static int netlink_mmap(struct file *file, struct socket *sock,
478 struct vm_area_struct *vma)
479 {
480 struct sock *sk = sock->sk;
481 struct netlink_sock *nlk = nlk_sk(sk);
482 struct netlink_ring *ring;
483 unsigned long start, size, expected;
484 unsigned int i;
485 int err = -EINVAL;
486
487 if (vma->vm_pgoff)
488 return -EINVAL;
489
490 mutex_lock(&nlk->pg_vec_lock);
491
492 expected = 0;
493 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
494 if (ring->pg_vec == NULL)
495 continue;
496 expected += ring->pg_vec_len * ring->pg_vec_pages * PAGE_SIZE;
497 }
498
499 if (expected == 0)
500 goto out;
501
502 size = vma->vm_end - vma->vm_start;
503 if (size != expected)
504 goto out;
505
506 start = vma->vm_start;
507 for (ring = &nlk->rx_ring; ring <= &nlk->tx_ring; ring++) {
508 if (ring->pg_vec == NULL)
509 continue;
510
511 for (i = 0; i < ring->pg_vec_len; i++) {
512 struct page *page;
513 void *kaddr = ring->pg_vec[i];
514 unsigned int pg_num;
515
516 for (pg_num = 0; pg_num < ring->pg_vec_pages; pg_num++) {
517 page = pgvec_to_page(kaddr);
518 err = vm_insert_page(vma, start, page);
519 if (err < 0)
520 goto out;
521 start += PAGE_SIZE;
522 kaddr += PAGE_SIZE;
523 }
524 }
525 }
526
527 atomic_inc(&nlk->mapped);
528 vma->vm_ops = &netlink_mmap_ops;
529 err = 0;
530 out:
531 mutex_unlock(&nlk->pg_vec_lock);
532 return err;
533 }
534
535 static void netlink_frame_flush_dcache(const struct nl_mmap_hdr *hdr, unsigned int nm_len)
536 {
537 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
538 struct page *p_start, *p_end;
539
540 /* First page is flushed through netlink_{get,set}_status */
541 p_start = pgvec_to_page(hdr + PAGE_SIZE);
542 p_end = pgvec_to_page((void *)hdr + NL_MMAP_HDRLEN + nm_len - 1);
543 while (p_start <= p_end) {
544 flush_dcache_page(p_start);
545 p_start++;
546 }
547 #endif
548 }
549
550 static enum nl_mmap_status netlink_get_status(const struct nl_mmap_hdr *hdr)
551 {
552 smp_rmb();
553 flush_dcache_page(pgvec_to_page(hdr));
554 return hdr->nm_status;
555 }
556
557 static void netlink_set_status(struct nl_mmap_hdr *hdr,
558 enum nl_mmap_status status)
559 {
560 smp_mb();
561 hdr->nm_status = status;
562 flush_dcache_page(pgvec_to_page(hdr));
563 }
564
565 static struct nl_mmap_hdr *
566 __netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos)
567 {
568 unsigned int pg_vec_pos, frame_off;
569
570 pg_vec_pos = pos / ring->frames_per_block;
571 frame_off = pos % ring->frames_per_block;
572
573 return ring->pg_vec[pg_vec_pos] + (frame_off * ring->frame_size);
574 }
575
576 static struct nl_mmap_hdr *
577 netlink_lookup_frame(const struct netlink_ring *ring, unsigned int pos,
578 enum nl_mmap_status status)
579 {
580 struct nl_mmap_hdr *hdr;
581
582 hdr = __netlink_lookup_frame(ring, pos);
583 if (netlink_get_status(hdr) != status)
584 return NULL;
585
586 return hdr;
587 }
588
589 static struct nl_mmap_hdr *
590 netlink_current_frame(const struct netlink_ring *ring,
591 enum nl_mmap_status status)
592 {
593 return netlink_lookup_frame(ring, ring->head, status);
594 }
595
596 static struct nl_mmap_hdr *
597 netlink_previous_frame(const struct netlink_ring *ring,
598 enum nl_mmap_status status)
599 {
600 unsigned int prev;
601
602 prev = ring->head ? ring->head - 1 : ring->frame_max;
603 return netlink_lookup_frame(ring, prev, status);
604 }
605
606 static void netlink_increment_head(struct netlink_ring *ring)
607 {
608 ring->head = ring->head != ring->frame_max ? ring->head + 1 : 0;
609 }
610
611 static void netlink_forward_ring(struct netlink_ring *ring)
612 {
613 unsigned int head = ring->head, pos = head;
614 const struct nl_mmap_hdr *hdr;
615
616 do {
617 hdr = __netlink_lookup_frame(ring, pos);
618 if (hdr->nm_status == NL_MMAP_STATUS_UNUSED)
619 break;
620 if (hdr->nm_status != NL_MMAP_STATUS_SKIP)
621 break;
622 netlink_increment_head(ring);
623 } while (ring->head != head);
624 }
625
626 static bool netlink_dump_space(struct netlink_sock *nlk)
627 {
628 struct netlink_ring *ring = &nlk->rx_ring;
629 struct nl_mmap_hdr *hdr;
630 unsigned int n;
631
632 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
633 if (hdr == NULL)
634 return false;
635
636 n = ring->head + ring->frame_max / 2;
637 if (n > ring->frame_max)
638 n -= ring->frame_max;
639
640 hdr = __netlink_lookup_frame(ring, n);
641
642 return hdr->nm_status == NL_MMAP_STATUS_UNUSED;
643 }
644
645 static unsigned int netlink_poll(struct file *file, struct socket *sock,
646 poll_table *wait)
647 {
648 struct sock *sk = sock->sk;
649 struct netlink_sock *nlk = nlk_sk(sk);
650 unsigned int mask;
651 int err;
652
653 if (nlk->rx_ring.pg_vec != NULL) {
654 /* Memory mapped sockets don't call recvmsg(), so flow control
655 * for dumps is performed here. A dump is allowed to continue
656 * if at least half the ring is unused.
657 */
658 while (nlk->cb_running && netlink_dump_space(nlk)) {
659 err = netlink_dump(sk);
660 if (err < 0) {
661 sk->sk_err = -err;
662 sk->sk_error_report(sk);
663 break;
664 }
665 }
666 netlink_rcv_wake(sk);
667 }
668
669 mask = datagram_poll(file, sock, wait);
670
671 spin_lock_bh(&sk->sk_receive_queue.lock);
672 if (nlk->rx_ring.pg_vec) {
673 netlink_forward_ring(&nlk->rx_ring);
674 if (!netlink_previous_frame(&nlk->rx_ring, NL_MMAP_STATUS_UNUSED))
675 mask |= POLLIN | POLLRDNORM;
676 }
677 spin_unlock_bh(&sk->sk_receive_queue.lock);
678
679 spin_lock_bh(&sk->sk_write_queue.lock);
680 if (nlk->tx_ring.pg_vec) {
681 if (netlink_current_frame(&nlk->tx_ring, NL_MMAP_STATUS_UNUSED))
682 mask |= POLLOUT | POLLWRNORM;
683 }
684 spin_unlock_bh(&sk->sk_write_queue.lock);
685
686 return mask;
687 }
688
689 static struct nl_mmap_hdr *netlink_mmap_hdr(struct sk_buff *skb)
690 {
691 return (struct nl_mmap_hdr *)(skb->head - NL_MMAP_HDRLEN);
692 }
693
694 static void netlink_ring_setup_skb(struct sk_buff *skb, struct sock *sk,
695 struct netlink_ring *ring,
696 struct nl_mmap_hdr *hdr)
697 {
698 unsigned int size;
699 void *data;
700
701 size = ring->frame_size - NL_MMAP_HDRLEN;
702 data = (void *)hdr + NL_MMAP_HDRLEN;
703
704 skb->head = data;
705 skb->data = data;
706 skb_reset_tail_pointer(skb);
707 skb->end = skb->tail + size;
708 skb->len = 0;
709
710 skb->destructor = netlink_skb_destructor;
711 NETLINK_CB(skb).flags |= NETLINK_SKB_MMAPED;
712 NETLINK_CB(skb).sk = sk;
713 }
714
715 static int netlink_mmap_sendmsg(struct sock *sk, struct msghdr *msg,
716 u32 dst_portid, u32 dst_group,
717 struct scm_cookie *scm)
718 {
719 struct netlink_sock *nlk = nlk_sk(sk);
720 struct netlink_ring *ring;
721 struct nl_mmap_hdr *hdr;
722 struct sk_buff *skb;
723 unsigned int maxlen;
724 int err = 0, len = 0;
725
726 mutex_lock(&nlk->pg_vec_lock);
727
728 ring = &nlk->tx_ring;
729 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
730
731 do {
732 unsigned int nm_len;
733
734 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_VALID);
735 if (hdr == NULL) {
736 if (!(msg->msg_flags & MSG_DONTWAIT) &&
737 atomic_read(&nlk->tx_ring.pending))
738 schedule();
739 continue;
740 }
741
742 nm_len = ACCESS_ONCE(hdr->nm_len);
743 if (nm_len > maxlen) {
744 err = -EINVAL;
745 goto out;
746 }
747
748 netlink_frame_flush_dcache(hdr, nm_len);
749
750 skb = alloc_skb(nm_len, GFP_KERNEL);
751 if (skb == NULL) {
752 err = -ENOBUFS;
753 goto out;
754 }
755 __skb_put(skb, nm_len);
756 memcpy(skb->data, (void *)hdr + NL_MMAP_HDRLEN, nm_len);
757 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
758
759 netlink_increment_head(ring);
760
761 NETLINK_CB(skb).portid = nlk->portid;
762 NETLINK_CB(skb).dst_group = dst_group;
763 NETLINK_CB(skb).creds = scm->creds;
764
765 err = security_netlink_send(sk, skb);
766 if (err) {
767 kfree_skb(skb);
768 goto out;
769 }
770
771 if (unlikely(dst_group)) {
772 atomic_inc(&skb->users);
773 netlink_broadcast(sk, skb, dst_portid, dst_group,
774 GFP_KERNEL);
775 }
776 err = netlink_unicast(sk, skb, dst_portid,
777 msg->msg_flags & MSG_DONTWAIT);
778 if (err < 0)
779 goto out;
780 len += err;
781
782 } while (hdr != NULL ||
783 (!(msg->msg_flags & MSG_DONTWAIT) &&
784 atomic_read(&nlk->tx_ring.pending)));
785
786 if (len > 0)
787 err = len;
788 out:
789 mutex_unlock(&nlk->pg_vec_lock);
790 return err;
791 }
792
793 static void netlink_queue_mmaped_skb(struct sock *sk, struct sk_buff *skb)
794 {
795 struct nl_mmap_hdr *hdr;
796
797 hdr = netlink_mmap_hdr(skb);
798 hdr->nm_len = skb->len;
799 hdr->nm_group = NETLINK_CB(skb).dst_group;
800 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
801 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
802 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
803 netlink_frame_flush_dcache(hdr, hdr->nm_len);
804 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
805
806 NETLINK_CB(skb).flags |= NETLINK_SKB_DELIVERED;
807 kfree_skb(skb);
808 }
809
810 static void netlink_ring_set_copied(struct sock *sk, struct sk_buff *skb)
811 {
812 struct netlink_sock *nlk = nlk_sk(sk);
813 struct netlink_ring *ring = &nlk->rx_ring;
814 struct nl_mmap_hdr *hdr;
815
816 spin_lock_bh(&sk->sk_receive_queue.lock);
817 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
818 if (hdr == NULL) {
819 spin_unlock_bh(&sk->sk_receive_queue.lock);
820 kfree_skb(skb);
821 netlink_overrun(sk);
822 return;
823 }
824 netlink_increment_head(ring);
825 __skb_queue_tail(&sk->sk_receive_queue, skb);
826 spin_unlock_bh(&sk->sk_receive_queue.lock);
827
828 hdr->nm_len = skb->len;
829 hdr->nm_group = NETLINK_CB(skb).dst_group;
830 hdr->nm_pid = NETLINK_CB(skb).creds.pid;
831 hdr->nm_uid = from_kuid(sk_user_ns(sk), NETLINK_CB(skb).creds.uid);
832 hdr->nm_gid = from_kgid(sk_user_ns(sk), NETLINK_CB(skb).creds.gid);
833 netlink_set_status(hdr, NL_MMAP_STATUS_COPY);
834 }
835
836 #else /* CONFIG_NETLINK_MMAP */
837 #define netlink_skb_is_mmaped(skb) false
838 #define netlink_rx_is_mmaped(sk) false
839 #define netlink_tx_is_mmaped(sk) false
840 #define netlink_mmap sock_no_mmap
841 #define netlink_poll datagram_poll
842 #define netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group, scm) 0
843 #endif /* CONFIG_NETLINK_MMAP */
844
845 static void netlink_skb_destructor(struct sk_buff *skb)
846 {
847 #ifdef CONFIG_NETLINK_MMAP
848 struct nl_mmap_hdr *hdr;
849 struct netlink_ring *ring;
850 struct sock *sk;
851
852 /* If a packet from the kernel to userspace was freed because of an
853 * error without being delivered to userspace, the kernel must reset
854 * the status. In the direction userspace to kernel, the status is
855 * always reset here after the packet was processed and freed.
856 */
857 if (netlink_skb_is_mmaped(skb)) {
858 hdr = netlink_mmap_hdr(skb);
859 sk = NETLINK_CB(skb).sk;
860
861 if (NETLINK_CB(skb).flags & NETLINK_SKB_TX) {
862 netlink_set_status(hdr, NL_MMAP_STATUS_UNUSED);
863 ring = &nlk_sk(sk)->tx_ring;
864 } else {
865 if (!(NETLINK_CB(skb).flags & NETLINK_SKB_DELIVERED)) {
866 hdr->nm_len = 0;
867 netlink_set_status(hdr, NL_MMAP_STATUS_VALID);
868 }
869 ring = &nlk_sk(sk)->rx_ring;
870 }
871
872 WARN_ON(atomic_read(&ring->pending) == 0);
873 atomic_dec(&ring->pending);
874 sock_put(sk);
875
876 skb->head = NULL;
877 }
878 #endif
879 if (is_vmalloc_addr(skb->head)) {
880 if (!skb->cloned ||
881 !atomic_dec_return(&(skb_shinfo(skb)->dataref)))
882 vfree(skb->head);
883
884 skb->head = NULL;
885 }
886 if (skb->sk != NULL)
887 sock_rfree(skb);
888 }
889
890 static void netlink_skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
891 {
892 WARN_ON(skb->sk != NULL);
893 skb->sk = sk;
894 skb->destructor = netlink_skb_destructor;
895 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
896 sk_mem_charge(sk, skb->truesize);
897 }
898
899 static void netlink_sock_destruct(struct sock *sk)
900 {
901 struct netlink_sock *nlk = nlk_sk(sk);
902
903 if (nlk->cb_running) {
904 if (nlk->cb.done)
905 nlk->cb.done(&nlk->cb);
906
907 module_put(nlk->cb.module);
908 kfree_skb(nlk->cb.skb);
909 }
910
911 skb_queue_purge(&sk->sk_receive_queue);
912 #ifdef CONFIG_NETLINK_MMAP
913 if (1) {
914 struct nl_mmap_req req;
915
916 memset(&req, 0, sizeof(req));
917 if (nlk->rx_ring.pg_vec)
918 __netlink_set_ring(sk, &req, false, NULL, 0);
919 memset(&req, 0, sizeof(req));
920 if (nlk->tx_ring.pg_vec)
921 __netlink_set_ring(sk, &req, true, NULL, 0);
922 }
923 #endif /* CONFIG_NETLINK_MMAP */
924
925 if (!sock_flag(sk, SOCK_DEAD)) {
926 printk(KERN_ERR "Freeing alive netlink socket %p\n", sk);
927 return;
928 }
929
930 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
931 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
932 WARN_ON(nlk_sk(sk)->groups);
933 }
934
935 /* This lock without WQ_FLAG_EXCLUSIVE is good on UP and it is _very_ bad on
936 * SMP. Look, when several writers sleep and reader wakes them up, all but one
937 * immediately hit write lock and grab all the cpus. Exclusive sleep solves
938 * this, _but_ remember, it adds useless work on UP machines.
939 */
940
941 void netlink_table_grab(void)
942 __acquires(nl_table_lock)
943 {
944 might_sleep();
945
946 write_lock_irq(&nl_table_lock);
947
948 if (atomic_read(&nl_table_users)) {
949 DECLARE_WAITQUEUE(wait, current);
950
951 add_wait_queue_exclusive(&nl_table_wait, &wait);
952 for (;;) {
953 set_current_state(TASK_UNINTERRUPTIBLE);
954 if (atomic_read(&nl_table_users) == 0)
955 break;
956 write_unlock_irq(&nl_table_lock);
957 schedule();
958 write_lock_irq(&nl_table_lock);
959 }
960
961 __set_current_state(TASK_RUNNING);
962 remove_wait_queue(&nl_table_wait, &wait);
963 }
964 }
965
966 void netlink_table_ungrab(void)
967 __releases(nl_table_lock)
968 {
969 write_unlock_irq(&nl_table_lock);
970 wake_up(&nl_table_wait);
971 }
972
973 static inline void
974 netlink_lock_table(void)
975 {
976 /* read_lock() synchronizes us to netlink_table_grab */
977
978 read_lock(&nl_table_lock);
979 atomic_inc(&nl_table_users);
980 read_unlock(&nl_table_lock);
981 }
982
983 static inline void
984 netlink_unlock_table(void)
985 {
986 if (atomic_dec_and_test(&nl_table_users))
987 wake_up(&nl_table_wait);
988 }
989
990 struct netlink_compare_arg
991 {
992 possible_net_t pnet;
993 u32 portid;
994 };
995
996 /* Doing sizeof directly may yield 4 extra bytes on 64-bit. */
997 #define netlink_compare_arg_len \
998 (offsetof(struct netlink_compare_arg, portid) + sizeof(u32))
999
1000 static inline int netlink_compare(struct rhashtable_compare_arg *arg,
1001 const void *ptr)
1002 {
1003 const struct netlink_compare_arg *x = arg->key;
1004 const struct netlink_sock *nlk = ptr;
1005
1006 return nlk->portid != x->portid ||
1007 !net_eq(sock_net(&nlk->sk), read_pnet(&x->pnet));
1008 }
1009
1010 static void netlink_compare_arg_init(struct netlink_compare_arg *arg,
1011 struct net *net, u32 portid)
1012 {
1013 memset(arg, 0, sizeof(*arg));
1014 write_pnet(&arg->pnet, net);
1015 arg->portid = portid;
1016 }
1017
1018 static struct sock *__netlink_lookup(struct netlink_table *table, u32 portid,
1019 struct net *net)
1020 {
1021 struct netlink_compare_arg arg;
1022
1023 netlink_compare_arg_init(&arg, net, portid);
1024 return rhashtable_lookup_fast(&table->hash, &arg,
1025 netlink_rhashtable_params);
1026 }
1027
1028 static int __netlink_insert(struct netlink_table *table, struct sock *sk)
1029 {
1030 struct netlink_compare_arg arg;
1031
1032 netlink_compare_arg_init(&arg, sock_net(sk), nlk_sk(sk)->portid);
1033 return rhashtable_lookup_insert_key(&table->hash, &arg,
1034 &nlk_sk(sk)->node,
1035 netlink_rhashtable_params);
1036 }
1037
1038 static struct sock *netlink_lookup(struct net *net, int protocol, u32 portid)
1039 {
1040 struct netlink_table *table = &nl_table[protocol];
1041 struct sock *sk;
1042
1043 rcu_read_lock();
1044 sk = __netlink_lookup(table, portid, net);
1045 if (sk)
1046 sock_hold(sk);
1047 rcu_read_unlock();
1048
1049 return sk;
1050 }
1051
1052 static const struct proto_ops netlink_ops;
1053
1054 static void
1055 netlink_update_listeners(struct sock *sk)
1056 {
1057 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
1058 unsigned long mask;
1059 unsigned int i;
1060 struct listeners *listeners;
1061
1062 listeners = nl_deref_protected(tbl->listeners);
1063 if (!listeners)
1064 return;
1065
1066 for (i = 0; i < NLGRPLONGS(tbl->groups); i++) {
1067 mask = 0;
1068 sk_for_each_bound(sk, &tbl->mc_list) {
1069 if (i < NLGRPLONGS(nlk_sk(sk)->ngroups))
1070 mask |= nlk_sk(sk)->groups[i];
1071 }
1072 listeners->masks[i] = mask;
1073 }
1074 /* this function is only called with the netlink table "grabbed", which
1075 * makes sure updates are visible before bind or setsockopt return. */
1076 }
1077
1078 static int netlink_insert(struct sock *sk, u32 portid)
1079 {
1080 struct netlink_table *table = &nl_table[sk->sk_protocol];
1081 int err;
1082
1083 lock_sock(sk);
1084
1085 err = -EBUSY;
1086 if (nlk_sk(sk)->portid)
1087 goto err;
1088
1089 err = -ENOMEM;
1090 if (BITS_PER_LONG > 32 &&
1091 unlikely(atomic_read(&table->hash.nelems) >= UINT_MAX))
1092 goto err;
1093
1094 nlk_sk(sk)->portid = portid;
1095 sock_hold(sk);
1096
1097 err = __netlink_insert(table, sk);
1098 if (err) {
1099 if (err == -EEXIST)
1100 err = -EADDRINUSE;
1101 nlk_sk(sk)->portid = 0;
1102 sock_put(sk);
1103 }
1104
1105 err:
1106 release_sock(sk);
1107 return err;
1108 }
1109
1110 static void netlink_remove(struct sock *sk)
1111 {
1112 struct netlink_table *table;
1113
1114 table = &nl_table[sk->sk_protocol];
1115 if (!rhashtable_remove_fast(&table->hash, &nlk_sk(sk)->node,
1116 netlink_rhashtable_params)) {
1117 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
1118 __sock_put(sk);
1119 }
1120
1121 netlink_table_grab();
1122 if (nlk_sk(sk)->subscriptions) {
1123 __sk_del_bind_node(sk);
1124 netlink_update_listeners(sk);
1125 }
1126 if (sk->sk_protocol == NETLINK_GENERIC)
1127 atomic_inc(&genl_sk_destructing_cnt);
1128 netlink_table_ungrab();
1129 }
1130
1131 static struct proto netlink_proto = {
1132 .name = "NETLINK",
1133 .owner = THIS_MODULE,
1134 .obj_size = sizeof(struct netlink_sock),
1135 };
1136
1137 static int __netlink_create(struct net *net, struct socket *sock,
1138 struct mutex *cb_mutex, int protocol,
1139 int kern)
1140 {
1141 struct sock *sk;
1142 struct netlink_sock *nlk;
1143
1144 sock->ops = &netlink_ops;
1145
1146 sk = sk_alloc(net, PF_NETLINK, GFP_KERNEL, &netlink_proto, kern);
1147 if (!sk)
1148 return -ENOMEM;
1149
1150 sock_init_data(sock, sk);
1151
1152 nlk = nlk_sk(sk);
1153 if (cb_mutex) {
1154 nlk->cb_mutex = cb_mutex;
1155 } else {
1156 nlk->cb_mutex = &nlk->cb_def_mutex;
1157 mutex_init(nlk->cb_mutex);
1158 }
1159 init_waitqueue_head(&nlk->wait);
1160 #ifdef CONFIG_NETLINK_MMAP
1161 mutex_init(&nlk->pg_vec_lock);
1162 #endif
1163
1164 sk->sk_destruct = netlink_sock_destruct;
1165 sk->sk_protocol = protocol;
1166 return 0;
1167 }
1168
1169 static int netlink_create(struct net *net, struct socket *sock, int protocol,
1170 int kern)
1171 {
1172 struct module *module = NULL;
1173 struct mutex *cb_mutex;
1174 struct netlink_sock *nlk;
1175 int (*bind)(struct net *net, int group);
1176 void (*unbind)(struct net *net, int group);
1177 int err = 0;
1178
1179 sock->state = SS_UNCONNECTED;
1180
1181 if (sock->type != SOCK_RAW && sock->type != SOCK_DGRAM)
1182 return -ESOCKTNOSUPPORT;
1183
1184 if (protocol < 0 || protocol >= MAX_LINKS)
1185 return -EPROTONOSUPPORT;
1186
1187 netlink_lock_table();
1188 #ifdef CONFIG_MODULES
1189 if (!nl_table[protocol].registered) {
1190 netlink_unlock_table();
1191 request_module("net-pf-%d-proto-%d", PF_NETLINK, protocol);
1192 netlink_lock_table();
1193 }
1194 #endif
1195 if (nl_table[protocol].registered &&
1196 try_module_get(nl_table[protocol].module))
1197 module = nl_table[protocol].module;
1198 else
1199 err = -EPROTONOSUPPORT;
1200 cb_mutex = nl_table[protocol].cb_mutex;
1201 bind = nl_table[protocol].bind;
1202 unbind = nl_table[protocol].unbind;
1203 netlink_unlock_table();
1204
1205 if (err < 0)
1206 goto out;
1207
1208 err = __netlink_create(net, sock, cb_mutex, protocol, kern);
1209 if (err < 0)
1210 goto out_module;
1211
1212 local_bh_disable();
1213 sock_prot_inuse_add(net, &netlink_proto, 1);
1214 local_bh_enable();
1215
1216 nlk = nlk_sk(sock->sk);
1217 nlk->module = module;
1218 nlk->netlink_bind = bind;
1219 nlk->netlink_unbind = unbind;
1220 out:
1221 return err;
1222
1223 out_module:
1224 module_put(module);
1225 goto out;
1226 }
1227
1228 static void deferred_put_nlk_sk(struct rcu_head *head)
1229 {
1230 struct netlink_sock *nlk = container_of(head, struct netlink_sock, rcu);
1231
1232 sock_put(&nlk->sk);
1233 }
1234
1235 static int netlink_release(struct socket *sock)
1236 {
1237 struct sock *sk = sock->sk;
1238 struct netlink_sock *nlk;
1239
1240 if (!sk)
1241 return 0;
1242
1243 netlink_remove(sk);
1244 sock_orphan(sk);
1245 nlk = nlk_sk(sk);
1246
1247 /*
1248 * OK. Socket is unlinked, any packets that arrive now
1249 * will be purged.
1250 */
1251
1252 /* must not acquire netlink_table_lock in any way again before unbind
1253 * and notifying genetlink is done as otherwise it might deadlock
1254 */
1255 if (nlk->netlink_unbind) {
1256 int i;
1257
1258 for (i = 0; i < nlk->ngroups; i++)
1259 if (test_bit(i, nlk->groups))
1260 nlk->netlink_unbind(sock_net(sk), i + 1);
1261 }
1262 if (sk->sk_protocol == NETLINK_GENERIC &&
1263 atomic_dec_return(&genl_sk_destructing_cnt) == 0)
1264 wake_up(&genl_sk_destructing_waitq);
1265
1266 sock->sk = NULL;
1267 wake_up_interruptible_all(&nlk->wait);
1268
1269 skb_queue_purge(&sk->sk_write_queue);
1270
1271 if (nlk->portid) {
1272 struct netlink_notify n = {
1273 .net = sock_net(sk),
1274 .protocol = sk->sk_protocol,
1275 .portid = nlk->portid,
1276 };
1277 atomic_notifier_call_chain(&netlink_chain,
1278 NETLINK_URELEASE, &n);
1279 }
1280
1281 module_put(nlk->module);
1282
1283 if (netlink_is_kernel(sk)) {
1284 netlink_table_grab();
1285 BUG_ON(nl_table[sk->sk_protocol].registered == 0);
1286 if (--nl_table[sk->sk_protocol].registered == 0) {
1287 struct listeners *old;
1288
1289 old = nl_deref_protected(nl_table[sk->sk_protocol].listeners);
1290 RCU_INIT_POINTER(nl_table[sk->sk_protocol].listeners, NULL);
1291 kfree_rcu(old, rcu);
1292 nl_table[sk->sk_protocol].module = NULL;
1293 nl_table[sk->sk_protocol].bind = NULL;
1294 nl_table[sk->sk_protocol].unbind = NULL;
1295 nl_table[sk->sk_protocol].flags = 0;
1296 nl_table[sk->sk_protocol].registered = 0;
1297 }
1298 netlink_table_ungrab();
1299 }
1300
1301 kfree(nlk->groups);
1302 nlk->groups = NULL;
1303
1304 local_bh_disable();
1305 sock_prot_inuse_add(sock_net(sk), &netlink_proto, -1);
1306 local_bh_enable();
1307 call_rcu(&nlk->rcu, deferred_put_nlk_sk);
1308 return 0;
1309 }
1310
1311 static int netlink_autobind(struct socket *sock)
1312 {
1313 struct sock *sk = sock->sk;
1314 struct net *net = sock_net(sk);
1315 struct netlink_table *table = &nl_table[sk->sk_protocol];
1316 s32 portid = task_tgid_vnr(current);
1317 int err;
1318 s32 rover = -4096;
1319 bool ok;
1320
1321 retry:
1322 cond_resched();
1323 rcu_read_lock();
1324 ok = !__netlink_lookup(table, portid, net);
1325 rcu_read_unlock();
1326 if (!ok) {
1327 /* Bind collision, search negative portid values. */
1328 if (rover == -4096)
1329 /* rover will be in range [S32_MIN, -4097] */
1330 rover = S32_MIN + prandom_u32_max(-4096 - S32_MIN);
1331 else if (rover >= -4096)
1332 rover = -4097;
1333 portid = rover--;
1334 goto retry;
1335 }
1336
1337 err = netlink_insert(sk, portid);
1338 if (err == -EADDRINUSE)
1339 goto retry;
1340
1341 /* If 2 threads race to autobind, that is fine. */
1342 if (err == -EBUSY)
1343 err = 0;
1344
1345 return err;
1346 }
1347
1348 /**
1349 * __netlink_ns_capable - General netlink message capability test
1350 * @nsp: NETLINK_CB of the socket buffer holding a netlink command from userspace.
1351 * @user_ns: The user namespace of the capability to use
1352 * @cap: The capability to use
1353 *
1354 * Test to see if the opener of the socket we received the message
1355 * from had when the netlink socket was created and the sender of the
1356 * message has has the capability @cap in the user namespace @user_ns.
1357 */
1358 bool __netlink_ns_capable(const struct netlink_skb_parms *nsp,
1359 struct user_namespace *user_ns, int cap)
1360 {
1361 return ((nsp->flags & NETLINK_SKB_DST) ||
1362 file_ns_capable(nsp->sk->sk_socket->file, user_ns, cap)) &&
1363 ns_capable(user_ns, cap);
1364 }
1365 EXPORT_SYMBOL(__netlink_ns_capable);
1366
1367 /**
1368 * netlink_ns_capable - General netlink message capability test
1369 * @skb: socket buffer holding a netlink command from userspace
1370 * @user_ns: The user namespace of the capability to use
1371 * @cap: The capability to use
1372 *
1373 * Test to see if the opener of the socket we received the message
1374 * from had when the netlink socket was created and the sender of the
1375 * message has has the capability @cap in the user namespace @user_ns.
1376 */
1377 bool netlink_ns_capable(const struct sk_buff *skb,
1378 struct user_namespace *user_ns, int cap)
1379 {
1380 return __netlink_ns_capable(&NETLINK_CB(skb), user_ns, cap);
1381 }
1382 EXPORT_SYMBOL(netlink_ns_capable);
1383
1384 /**
1385 * netlink_capable - Netlink global message capability test
1386 * @skb: socket buffer holding a netlink command from userspace
1387 * @cap: The capability to use
1388 *
1389 * Test to see if the opener of the socket we received the message
1390 * from had when the netlink socket was created and the sender of the
1391 * message has has the capability @cap in all user namespaces.
1392 */
1393 bool netlink_capable(const struct sk_buff *skb, int cap)
1394 {
1395 return netlink_ns_capable(skb, &init_user_ns, cap);
1396 }
1397 EXPORT_SYMBOL(netlink_capable);
1398
1399 /**
1400 * netlink_net_capable - Netlink network namespace message capability test
1401 * @skb: socket buffer holding a netlink command from userspace
1402 * @cap: The capability to use
1403 *
1404 * Test to see if the opener of the socket we received the message
1405 * from had when the netlink socket was created and the sender of the
1406 * message has has the capability @cap over the network namespace of
1407 * the socket we received the message from.
1408 */
1409 bool netlink_net_capable(const struct sk_buff *skb, int cap)
1410 {
1411 return netlink_ns_capable(skb, sock_net(skb->sk)->user_ns, cap);
1412 }
1413 EXPORT_SYMBOL(netlink_net_capable);
1414
1415 static inline int netlink_allowed(const struct socket *sock, unsigned int flag)
1416 {
1417 return (nl_table[sock->sk->sk_protocol].flags & flag) ||
1418 ns_capable(sock_net(sock->sk)->user_ns, CAP_NET_ADMIN);
1419 }
1420
1421 static void
1422 netlink_update_subscriptions(struct sock *sk, unsigned int subscriptions)
1423 {
1424 struct netlink_sock *nlk = nlk_sk(sk);
1425
1426 if (nlk->subscriptions && !subscriptions)
1427 __sk_del_bind_node(sk);
1428 else if (!nlk->subscriptions && subscriptions)
1429 sk_add_bind_node(sk, &nl_table[sk->sk_protocol].mc_list);
1430 nlk->subscriptions = subscriptions;
1431 }
1432
1433 static int netlink_realloc_groups(struct sock *sk)
1434 {
1435 struct netlink_sock *nlk = nlk_sk(sk);
1436 unsigned int groups;
1437 unsigned long *new_groups;
1438 int err = 0;
1439
1440 netlink_table_grab();
1441
1442 groups = nl_table[sk->sk_protocol].groups;
1443 if (!nl_table[sk->sk_protocol].registered) {
1444 err = -ENOENT;
1445 goto out_unlock;
1446 }
1447
1448 if (nlk->ngroups >= groups)
1449 goto out_unlock;
1450
1451 new_groups = krealloc(nlk->groups, NLGRPSZ(groups), GFP_ATOMIC);
1452 if (new_groups == NULL) {
1453 err = -ENOMEM;
1454 goto out_unlock;
1455 }
1456 memset((char *)new_groups + NLGRPSZ(nlk->ngroups), 0,
1457 NLGRPSZ(groups) - NLGRPSZ(nlk->ngroups));
1458
1459 nlk->groups = new_groups;
1460 nlk->ngroups = groups;
1461 out_unlock:
1462 netlink_table_ungrab();
1463 return err;
1464 }
1465
1466 static void netlink_undo_bind(int group, long unsigned int groups,
1467 struct sock *sk)
1468 {
1469 struct netlink_sock *nlk = nlk_sk(sk);
1470 int undo;
1471
1472 if (!nlk->netlink_unbind)
1473 return;
1474
1475 for (undo = 0; undo < group; undo++)
1476 if (test_bit(undo, &groups))
1477 nlk->netlink_unbind(sock_net(sk), undo + 1);
1478 }
1479
1480 static int netlink_bind(struct socket *sock, struct sockaddr *addr,
1481 int addr_len)
1482 {
1483 struct sock *sk = sock->sk;
1484 struct net *net = sock_net(sk);
1485 struct netlink_sock *nlk = nlk_sk(sk);
1486 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1487 int err;
1488 long unsigned int groups = nladdr->nl_groups;
1489
1490 if (addr_len < sizeof(struct sockaddr_nl))
1491 return -EINVAL;
1492
1493 if (nladdr->nl_family != AF_NETLINK)
1494 return -EINVAL;
1495
1496 /* Only superuser is allowed to listen multicasts */
1497 if (groups) {
1498 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
1499 return -EPERM;
1500 err = netlink_realloc_groups(sk);
1501 if (err)
1502 return err;
1503 }
1504
1505 if (nlk->portid)
1506 if (nladdr->nl_pid != nlk->portid)
1507 return -EINVAL;
1508
1509 if (nlk->netlink_bind && groups) {
1510 int group;
1511
1512 for (group = 0; group < nlk->ngroups; group++) {
1513 if (!test_bit(group, &groups))
1514 continue;
1515 err = nlk->netlink_bind(net, group + 1);
1516 if (!err)
1517 continue;
1518 netlink_undo_bind(group, groups, sk);
1519 return err;
1520 }
1521 }
1522
1523 if (!nlk->portid) {
1524 err = nladdr->nl_pid ?
1525 netlink_insert(sk, nladdr->nl_pid) :
1526 netlink_autobind(sock);
1527 if (err) {
1528 netlink_undo_bind(nlk->ngroups, groups, sk);
1529 return err;
1530 }
1531 }
1532
1533 if (!groups && (nlk->groups == NULL || !(u32)nlk->groups[0]))
1534 return 0;
1535
1536 netlink_table_grab();
1537 netlink_update_subscriptions(sk, nlk->subscriptions +
1538 hweight32(groups) -
1539 hweight32(nlk->groups[0]));
1540 nlk->groups[0] = (nlk->groups[0] & ~0xffffffffUL) | groups;
1541 netlink_update_listeners(sk);
1542 netlink_table_ungrab();
1543
1544 return 0;
1545 }
1546
1547 static int netlink_connect(struct socket *sock, struct sockaddr *addr,
1548 int alen, int flags)
1549 {
1550 int err = 0;
1551 struct sock *sk = sock->sk;
1552 struct netlink_sock *nlk = nlk_sk(sk);
1553 struct sockaddr_nl *nladdr = (struct sockaddr_nl *)addr;
1554
1555 if (alen < sizeof(addr->sa_family))
1556 return -EINVAL;
1557
1558 if (addr->sa_family == AF_UNSPEC) {
1559 sk->sk_state = NETLINK_UNCONNECTED;
1560 nlk->dst_portid = 0;
1561 nlk->dst_group = 0;
1562 return 0;
1563 }
1564 if (addr->sa_family != AF_NETLINK)
1565 return -EINVAL;
1566
1567 if ((nladdr->nl_groups || nladdr->nl_pid) &&
1568 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
1569 return -EPERM;
1570
1571 if (!nlk->portid)
1572 err = netlink_autobind(sock);
1573
1574 if (err == 0) {
1575 sk->sk_state = NETLINK_CONNECTED;
1576 nlk->dst_portid = nladdr->nl_pid;
1577 nlk->dst_group = ffs(nladdr->nl_groups);
1578 }
1579
1580 return err;
1581 }
1582
1583 static int netlink_getname(struct socket *sock, struct sockaddr *addr,
1584 int *addr_len, int peer)
1585 {
1586 struct sock *sk = sock->sk;
1587 struct netlink_sock *nlk = nlk_sk(sk);
1588 DECLARE_SOCKADDR(struct sockaddr_nl *, nladdr, addr);
1589
1590 nladdr->nl_family = AF_NETLINK;
1591 nladdr->nl_pad = 0;
1592 *addr_len = sizeof(*nladdr);
1593
1594 if (peer) {
1595 nladdr->nl_pid = nlk->dst_portid;
1596 nladdr->nl_groups = netlink_group_mask(nlk->dst_group);
1597 } else {
1598 nladdr->nl_pid = nlk->portid;
1599 nladdr->nl_groups = nlk->groups ? nlk->groups[0] : 0;
1600 }
1601 return 0;
1602 }
1603
1604 static struct sock *netlink_getsockbyportid(struct sock *ssk, u32 portid)
1605 {
1606 struct sock *sock;
1607 struct netlink_sock *nlk;
1608
1609 sock = netlink_lookup(sock_net(ssk), ssk->sk_protocol, portid);
1610 if (!sock)
1611 return ERR_PTR(-ECONNREFUSED);
1612
1613 /* Don't bother queuing skb if kernel socket has no input function */
1614 nlk = nlk_sk(sock);
1615 if (sock->sk_state == NETLINK_CONNECTED &&
1616 nlk->dst_portid != nlk_sk(ssk)->portid) {
1617 sock_put(sock);
1618 return ERR_PTR(-ECONNREFUSED);
1619 }
1620 return sock;
1621 }
1622
1623 struct sock *netlink_getsockbyfilp(struct file *filp)
1624 {
1625 struct inode *inode = file_inode(filp);
1626 struct sock *sock;
1627
1628 if (!S_ISSOCK(inode->i_mode))
1629 return ERR_PTR(-ENOTSOCK);
1630
1631 sock = SOCKET_I(inode)->sk;
1632 if (sock->sk_family != AF_NETLINK)
1633 return ERR_PTR(-EINVAL);
1634
1635 sock_hold(sock);
1636 return sock;
1637 }
1638
1639 static struct sk_buff *netlink_alloc_large_skb(unsigned int size,
1640 int broadcast)
1641 {
1642 struct sk_buff *skb;
1643 void *data;
1644
1645 if (size <= NLMSG_GOODSIZE || broadcast)
1646 return alloc_skb(size, GFP_KERNEL);
1647
1648 size = SKB_DATA_ALIGN(size) +
1649 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1650
1651 data = vmalloc(size);
1652 if (data == NULL)
1653 return NULL;
1654
1655 skb = __build_skb(data, size);
1656 if (skb == NULL)
1657 vfree(data);
1658 else
1659 skb->destructor = netlink_skb_destructor;
1660
1661 return skb;
1662 }
1663
1664 /*
1665 * Attach a skb to a netlink socket.
1666 * The caller must hold a reference to the destination socket. On error, the
1667 * reference is dropped. The skb is not send to the destination, just all
1668 * all error checks are performed and memory in the queue is reserved.
1669 * Return values:
1670 * < 0: error. skb freed, reference to sock dropped.
1671 * 0: continue
1672 * 1: repeat lookup - reference dropped while waiting for socket memory.
1673 */
1674 int netlink_attachskb(struct sock *sk, struct sk_buff *skb,
1675 long *timeo, struct sock *ssk)
1676 {
1677 struct netlink_sock *nlk;
1678
1679 nlk = nlk_sk(sk);
1680
1681 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1682 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1683 !netlink_skb_is_mmaped(skb)) {
1684 DECLARE_WAITQUEUE(wait, current);
1685 if (!*timeo) {
1686 if (!ssk || netlink_is_kernel(ssk))
1687 netlink_overrun(sk);
1688 sock_put(sk);
1689 kfree_skb(skb);
1690 return -EAGAIN;
1691 }
1692
1693 __set_current_state(TASK_INTERRUPTIBLE);
1694 add_wait_queue(&nlk->wait, &wait);
1695
1696 if ((atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
1697 test_bit(NETLINK_S_CONGESTED, &nlk->state)) &&
1698 !sock_flag(sk, SOCK_DEAD))
1699 *timeo = schedule_timeout(*timeo);
1700
1701 __set_current_state(TASK_RUNNING);
1702 remove_wait_queue(&nlk->wait, &wait);
1703 sock_put(sk);
1704
1705 if (signal_pending(current)) {
1706 kfree_skb(skb);
1707 return sock_intr_errno(*timeo);
1708 }
1709 return 1;
1710 }
1711 netlink_skb_set_owner_r(skb, sk);
1712 return 0;
1713 }
1714
1715 static int __netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1716 {
1717 int len = skb->len;
1718
1719 netlink_deliver_tap(skb);
1720
1721 #ifdef CONFIG_NETLINK_MMAP
1722 if (netlink_skb_is_mmaped(skb))
1723 netlink_queue_mmaped_skb(sk, skb);
1724 else if (netlink_rx_is_mmaped(sk))
1725 netlink_ring_set_copied(sk, skb);
1726 else
1727 #endif /* CONFIG_NETLINK_MMAP */
1728 skb_queue_tail(&sk->sk_receive_queue, skb);
1729 sk->sk_data_ready(sk);
1730 return len;
1731 }
1732
1733 int netlink_sendskb(struct sock *sk, struct sk_buff *skb)
1734 {
1735 int len = __netlink_sendskb(sk, skb);
1736
1737 sock_put(sk);
1738 return len;
1739 }
1740
1741 void netlink_detachskb(struct sock *sk, struct sk_buff *skb)
1742 {
1743 kfree_skb(skb);
1744 sock_put(sk);
1745 }
1746
1747 static struct sk_buff *netlink_trim(struct sk_buff *skb, gfp_t allocation)
1748 {
1749 int delta;
1750
1751 WARN_ON(skb->sk != NULL);
1752 if (netlink_skb_is_mmaped(skb))
1753 return skb;
1754
1755 delta = skb->end - skb->tail;
1756 if (is_vmalloc_addr(skb->head) || delta * 2 < skb->truesize)
1757 return skb;
1758
1759 if (skb_shared(skb)) {
1760 struct sk_buff *nskb = skb_clone(skb, allocation);
1761 if (!nskb)
1762 return skb;
1763 consume_skb(skb);
1764 skb = nskb;
1765 }
1766
1767 if (!pskb_expand_head(skb, 0, -delta, allocation))
1768 skb->truesize -= delta;
1769
1770 return skb;
1771 }
1772
1773 static int netlink_unicast_kernel(struct sock *sk, struct sk_buff *skb,
1774 struct sock *ssk)
1775 {
1776 int ret;
1777 struct netlink_sock *nlk = nlk_sk(sk);
1778
1779 ret = -ECONNREFUSED;
1780 if (nlk->netlink_rcv != NULL) {
1781 ret = skb->len;
1782 netlink_skb_set_owner_r(skb, sk);
1783 NETLINK_CB(skb).sk = ssk;
1784 netlink_deliver_tap_kernel(sk, ssk, skb);
1785 nlk->netlink_rcv(skb);
1786 consume_skb(skb);
1787 } else {
1788 kfree_skb(skb);
1789 }
1790 sock_put(sk);
1791 return ret;
1792 }
1793
1794 int netlink_unicast(struct sock *ssk, struct sk_buff *skb,
1795 u32 portid, int nonblock)
1796 {
1797 struct sock *sk;
1798 int err;
1799 long timeo;
1800
1801 skb = netlink_trim(skb, gfp_any());
1802
1803 timeo = sock_sndtimeo(ssk, nonblock);
1804 retry:
1805 sk = netlink_getsockbyportid(ssk, portid);
1806 if (IS_ERR(sk)) {
1807 kfree_skb(skb);
1808 return PTR_ERR(sk);
1809 }
1810 if (netlink_is_kernel(sk))
1811 return netlink_unicast_kernel(sk, skb, ssk);
1812
1813 if (sk_filter(sk, skb)) {
1814 err = skb->len;
1815 kfree_skb(skb);
1816 sock_put(sk);
1817 return err;
1818 }
1819
1820 err = netlink_attachskb(sk, skb, &timeo, ssk);
1821 if (err == 1)
1822 goto retry;
1823 if (err)
1824 return err;
1825
1826 return netlink_sendskb(sk, skb);
1827 }
1828 EXPORT_SYMBOL(netlink_unicast);
1829
1830 struct sk_buff *netlink_alloc_skb(struct sock *ssk, unsigned int size,
1831 u32 dst_portid, gfp_t gfp_mask)
1832 {
1833 #ifdef CONFIG_NETLINK_MMAP
1834 struct sock *sk = NULL;
1835 struct sk_buff *skb;
1836 struct netlink_ring *ring;
1837 struct nl_mmap_hdr *hdr;
1838 unsigned int maxlen;
1839
1840 sk = netlink_getsockbyportid(ssk, dst_portid);
1841 if (IS_ERR(sk))
1842 goto out;
1843
1844 ring = &nlk_sk(sk)->rx_ring;
1845 /* fast-path without atomic ops for common case: non-mmaped receiver */
1846 if (ring->pg_vec == NULL)
1847 goto out_put;
1848
1849 if (ring->frame_size - NL_MMAP_HDRLEN < size)
1850 goto out_put;
1851
1852 skb = alloc_skb_head(gfp_mask);
1853 if (skb == NULL)
1854 goto err1;
1855
1856 spin_lock_bh(&sk->sk_receive_queue.lock);
1857 /* check again under lock */
1858 if (ring->pg_vec == NULL)
1859 goto out_free;
1860
1861 /* check again under lock */
1862 maxlen = ring->frame_size - NL_MMAP_HDRLEN;
1863 if (maxlen < size)
1864 goto out_free;
1865
1866 netlink_forward_ring(ring);
1867 hdr = netlink_current_frame(ring, NL_MMAP_STATUS_UNUSED);
1868 if (hdr == NULL)
1869 goto err2;
1870 netlink_ring_setup_skb(skb, sk, ring, hdr);
1871 netlink_set_status(hdr, NL_MMAP_STATUS_RESERVED);
1872 atomic_inc(&ring->pending);
1873 netlink_increment_head(ring);
1874
1875 spin_unlock_bh(&sk->sk_receive_queue.lock);
1876 return skb;
1877
1878 err2:
1879 kfree_skb(skb);
1880 spin_unlock_bh(&sk->sk_receive_queue.lock);
1881 netlink_overrun(sk);
1882 err1:
1883 sock_put(sk);
1884 return NULL;
1885
1886 out_free:
1887 kfree_skb(skb);
1888 spin_unlock_bh(&sk->sk_receive_queue.lock);
1889 out_put:
1890 sock_put(sk);
1891 out:
1892 #endif
1893 return alloc_skb(size, gfp_mask);
1894 }
1895 EXPORT_SYMBOL_GPL(netlink_alloc_skb);
1896
1897 int netlink_has_listeners(struct sock *sk, unsigned int group)
1898 {
1899 int res = 0;
1900 struct listeners *listeners;
1901
1902 BUG_ON(!netlink_is_kernel(sk));
1903
1904 rcu_read_lock();
1905 listeners = rcu_dereference(nl_table[sk->sk_protocol].listeners);
1906
1907 if (listeners && group - 1 < nl_table[sk->sk_protocol].groups)
1908 res = test_bit(group - 1, listeners->masks);
1909
1910 rcu_read_unlock();
1911
1912 return res;
1913 }
1914 EXPORT_SYMBOL_GPL(netlink_has_listeners);
1915
1916 static int netlink_broadcast_deliver(struct sock *sk, struct sk_buff *skb)
1917 {
1918 struct netlink_sock *nlk = nlk_sk(sk);
1919
1920 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
1921 !test_bit(NETLINK_S_CONGESTED, &nlk->state)) {
1922 netlink_skb_set_owner_r(skb, sk);
1923 __netlink_sendskb(sk, skb);
1924 return atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1);
1925 }
1926 return -1;
1927 }
1928
1929 struct netlink_broadcast_data {
1930 struct sock *exclude_sk;
1931 struct net *net;
1932 u32 portid;
1933 u32 group;
1934 int failure;
1935 int delivery_failure;
1936 int congested;
1937 int delivered;
1938 gfp_t allocation;
1939 struct sk_buff *skb, *skb2;
1940 int (*tx_filter)(struct sock *dsk, struct sk_buff *skb, void *data);
1941 void *tx_data;
1942 };
1943
1944 static void do_one_broadcast(struct sock *sk,
1945 struct netlink_broadcast_data *p)
1946 {
1947 struct netlink_sock *nlk = nlk_sk(sk);
1948 int val;
1949
1950 if (p->exclude_sk == sk)
1951 return;
1952
1953 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
1954 !test_bit(p->group - 1, nlk->groups))
1955 return;
1956
1957 if (!net_eq(sock_net(sk), p->net)) {
1958 if (!(nlk->flags & NETLINK_F_LISTEN_ALL_NSID))
1959 return;
1960
1961 if (!peernet_has_id(sock_net(sk), p->net))
1962 return;
1963
1964 if (!file_ns_capable(sk->sk_socket->file, p->net->user_ns,
1965 CAP_NET_BROADCAST))
1966 return;
1967 }
1968
1969 if (p->failure) {
1970 netlink_overrun(sk);
1971 return;
1972 }
1973
1974 sock_hold(sk);
1975 if (p->skb2 == NULL) {
1976 if (skb_shared(p->skb)) {
1977 p->skb2 = skb_clone(p->skb, p->allocation);
1978 } else {
1979 p->skb2 = skb_get(p->skb);
1980 /*
1981 * skb ownership may have been set when
1982 * delivered to a previous socket.
1983 */
1984 skb_orphan(p->skb2);
1985 }
1986 }
1987 if (p->skb2 == NULL) {
1988 netlink_overrun(sk);
1989 /* Clone failed. Notify ALL listeners. */
1990 p->failure = 1;
1991 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
1992 p->delivery_failure = 1;
1993 goto out;
1994 }
1995 if (p->tx_filter && p->tx_filter(sk, p->skb2, p->tx_data)) {
1996 kfree_skb(p->skb2);
1997 p->skb2 = NULL;
1998 goto out;
1999 }
2000 if (sk_filter(sk, p->skb2)) {
2001 kfree_skb(p->skb2);
2002 p->skb2 = NULL;
2003 goto out;
2004 }
2005 NETLINK_CB(p->skb2).nsid = peernet2id(sock_net(sk), p->net);
2006 NETLINK_CB(p->skb2).nsid_is_set = true;
2007 val = netlink_broadcast_deliver(sk, p->skb2);
2008 if (val < 0) {
2009 netlink_overrun(sk);
2010 if (nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR)
2011 p->delivery_failure = 1;
2012 } else {
2013 p->congested |= val;
2014 p->delivered = 1;
2015 p->skb2 = NULL;
2016 }
2017 out:
2018 sock_put(sk);
2019 }
2020
2021 int netlink_broadcast_filtered(struct sock *ssk, struct sk_buff *skb, u32 portid,
2022 u32 group, gfp_t allocation,
2023 int (*filter)(struct sock *dsk, struct sk_buff *skb, void *data),
2024 void *filter_data)
2025 {
2026 struct net *net = sock_net(ssk);
2027 struct netlink_broadcast_data info;
2028 struct sock *sk;
2029
2030 skb = netlink_trim(skb, allocation);
2031
2032 info.exclude_sk = ssk;
2033 info.net = net;
2034 info.portid = portid;
2035 info.group = group;
2036 info.failure = 0;
2037 info.delivery_failure = 0;
2038 info.congested = 0;
2039 info.delivered = 0;
2040 info.allocation = allocation;
2041 info.skb = skb;
2042 info.skb2 = NULL;
2043 info.tx_filter = filter;
2044 info.tx_data = filter_data;
2045
2046 /* While we sleep in clone, do not allow to change socket list */
2047
2048 netlink_lock_table();
2049
2050 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2051 do_one_broadcast(sk, &info);
2052
2053 consume_skb(skb);
2054
2055 netlink_unlock_table();
2056
2057 if (info.delivery_failure) {
2058 kfree_skb(info.skb2);
2059 return -ENOBUFS;
2060 }
2061 consume_skb(info.skb2);
2062
2063 if (info.delivered) {
2064 if (info.congested && (allocation & __GFP_WAIT))
2065 yield();
2066 return 0;
2067 }
2068 return -ESRCH;
2069 }
2070 EXPORT_SYMBOL(netlink_broadcast_filtered);
2071
2072 int netlink_broadcast(struct sock *ssk, struct sk_buff *skb, u32 portid,
2073 u32 group, gfp_t allocation)
2074 {
2075 return netlink_broadcast_filtered(ssk, skb, portid, group, allocation,
2076 NULL, NULL);
2077 }
2078 EXPORT_SYMBOL(netlink_broadcast);
2079
2080 struct netlink_set_err_data {
2081 struct sock *exclude_sk;
2082 u32 portid;
2083 u32 group;
2084 int code;
2085 };
2086
2087 static int do_one_set_err(struct sock *sk, struct netlink_set_err_data *p)
2088 {
2089 struct netlink_sock *nlk = nlk_sk(sk);
2090 int ret = 0;
2091
2092 if (sk == p->exclude_sk)
2093 goto out;
2094
2095 if (!net_eq(sock_net(sk), sock_net(p->exclude_sk)))
2096 goto out;
2097
2098 if (nlk->portid == p->portid || p->group - 1 >= nlk->ngroups ||
2099 !test_bit(p->group - 1, nlk->groups))
2100 goto out;
2101
2102 if (p->code == ENOBUFS && nlk->flags & NETLINK_F_RECV_NO_ENOBUFS) {
2103 ret = 1;
2104 goto out;
2105 }
2106
2107 sk->sk_err = p->code;
2108 sk->sk_error_report(sk);
2109 out:
2110 return ret;
2111 }
2112
2113 /**
2114 * netlink_set_err - report error to broadcast listeners
2115 * @ssk: the kernel netlink socket, as returned by netlink_kernel_create()
2116 * @portid: the PORTID of a process that we want to skip (if any)
2117 * @group: the broadcast group that will notice the error
2118 * @code: error code, must be negative (as usual in kernelspace)
2119 *
2120 * This function returns the number of broadcast listeners that have set the
2121 * NETLINK_NO_ENOBUFS socket option.
2122 */
2123 int netlink_set_err(struct sock *ssk, u32 portid, u32 group, int code)
2124 {
2125 struct netlink_set_err_data info;
2126 struct sock *sk;
2127 int ret = 0;
2128
2129 info.exclude_sk = ssk;
2130 info.portid = portid;
2131 info.group = group;
2132 /* sk->sk_err wants a positive error value */
2133 info.code = -code;
2134
2135 read_lock(&nl_table_lock);
2136
2137 sk_for_each_bound(sk, &nl_table[ssk->sk_protocol].mc_list)
2138 ret += do_one_set_err(sk, &info);
2139
2140 read_unlock(&nl_table_lock);
2141 return ret;
2142 }
2143 EXPORT_SYMBOL(netlink_set_err);
2144
2145 /* must be called with netlink table grabbed */
2146 static void netlink_update_socket_mc(struct netlink_sock *nlk,
2147 unsigned int group,
2148 int is_new)
2149 {
2150 int old, new = !!is_new, subscriptions;
2151
2152 old = test_bit(group - 1, nlk->groups);
2153 subscriptions = nlk->subscriptions - old + new;
2154 if (new)
2155 __set_bit(group - 1, nlk->groups);
2156 else
2157 __clear_bit(group - 1, nlk->groups);
2158 netlink_update_subscriptions(&nlk->sk, subscriptions);
2159 netlink_update_listeners(&nlk->sk);
2160 }
2161
2162 static int netlink_setsockopt(struct socket *sock, int level, int optname,
2163 char __user *optval, unsigned int optlen)
2164 {
2165 struct sock *sk = sock->sk;
2166 struct netlink_sock *nlk = nlk_sk(sk);
2167 unsigned int val = 0;
2168 int err;
2169
2170 if (level != SOL_NETLINK)
2171 return -ENOPROTOOPT;
2172
2173 if (optname != NETLINK_RX_RING && optname != NETLINK_TX_RING &&
2174 optlen >= sizeof(int) &&
2175 get_user(val, (unsigned int __user *)optval))
2176 return -EFAULT;
2177
2178 switch (optname) {
2179 case NETLINK_PKTINFO:
2180 if (val)
2181 nlk->flags |= NETLINK_F_RECV_PKTINFO;
2182 else
2183 nlk->flags &= ~NETLINK_F_RECV_PKTINFO;
2184 err = 0;
2185 break;
2186 case NETLINK_ADD_MEMBERSHIP:
2187 case NETLINK_DROP_MEMBERSHIP: {
2188 if (!netlink_allowed(sock, NL_CFG_F_NONROOT_RECV))
2189 return -EPERM;
2190 err = netlink_realloc_groups(sk);
2191 if (err)
2192 return err;
2193 if (!val || val - 1 >= nlk->ngroups)
2194 return -EINVAL;
2195 if (optname == NETLINK_ADD_MEMBERSHIP && nlk->netlink_bind) {
2196 err = nlk->netlink_bind(sock_net(sk), val);
2197 if (err)
2198 return err;
2199 }
2200 netlink_table_grab();
2201 netlink_update_socket_mc(nlk, val,
2202 optname == NETLINK_ADD_MEMBERSHIP);
2203 netlink_table_ungrab();
2204 if (optname == NETLINK_DROP_MEMBERSHIP && nlk->netlink_unbind)
2205 nlk->netlink_unbind(sock_net(sk), val);
2206
2207 err = 0;
2208 break;
2209 }
2210 case NETLINK_BROADCAST_ERROR:
2211 if (val)
2212 nlk->flags |= NETLINK_F_BROADCAST_SEND_ERROR;
2213 else
2214 nlk->flags &= ~NETLINK_F_BROADCAST_SEND_ERROR;
2215 err = 0;
2216 break;
2217 case NETLINK_NO_ENOBUFS:
2218 if (val) {
2219 nlk->flags |= NETLINK_F_RECV_NO_ENOBUFS;
2220 clear_bit(NETLINK_S_CONGESTED, &nlk->state);
2221 wake_up_interruptible(&nlk->wait);
2222 } else {
2223 nlk->flags &= ~NETLINK_F_RECV_NO_ENOBUFS;
2224 }
2225 err = 0;
2226 break;
2227 #ifdef CONFIG_NETLINK_MMAP
2228 case NETLINK_RX_RING:
2229 case NETLINK_TX_RING: {
2230 struct nl_mmap_req req;
2231
2232 /* Rings might consume more memory than queue limits, require
2233 * CAP_NET_ADMIN.
2234 */
2235 if (!capable(CAP_NET_ADMIN))
2236 return -EPERM;
2237 if (optlen < sizeof(req))
2238 return -EINVAL;
2239 if (copy_from_user(&req, optval, sizeof(req)))
2240 return -EFAULT;
2241 err = netlink_set_ring(sk, &req,
2242 optname == NETLINK_TX_RING);
2243 break;
2244 }
2245 #endif /* CONFIG_NETLINK_MMAP */
2246 case NETLINK_LISTEN_ALL_NSID:
2247 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_BROADCAST))
2248 return -EPERM;
2249
2250 if (val)
2251 nlk->flags |= NETLINK_F_LISTEN_ALL_NSID;
2252 else
2253 nlk->flags &= ~NETLINK_F_LISTEN_ALL_NSID;
2254 err = 0;
2255 break;
2256 default:
2257 err = -ENOPROTOOPT;
2258 }
2259 return err;
2260 }
2261
2262 static int netlink_getsockopt(struct socket *sock, int level, int optname,
2263 char __user *optval, int __user *optlen)
2264 {
2265 struct sock *sk = sock->sk;
2266 struct netlink_sock *nlk = nlk_sk(sk);
2267 int len, val, err;
2268
2269 if (level != SOL_NETLINK)
2270 return -ENOPROTOOPT;
2271
2272 if (get_user(len, optlen))
2273 return -EFAULT;
2274 if (len < 0)
2275 return -EINVAL;
2276
2277 switch (optname) {
2278 case NETLINK_PKTINFO:
2279 if (len < sizeof(int))
2280 return -EINVAL;
2281 len = sizeof(int);
2282 val = nlk->flags & NETLINK_F_RECV_PKTINFO ? 1 : 0;
2283 if (put_user(len, optlen) ||
2284 put_user(val, optval))
2285 return -EFAULT;
2286 err = 0;
2287 break;
2288 case NETLINK_BROADCAST_ERROR:
2289 if (len < sizeof(int))
2290 return -EINVAL;
2291 len = sizeof(int);
2292 val = nlk->flags & NETLINK_F_BROADCAST_SEND_ERROR ? 1 : 0;
2293 if (put_user(len, optlen) ||
2294 put_user(val, optval))
2295 return -EFAULT;
2296 err = 0;
2297 break;
2298 case NETLINK_NO_ENOBUFS:
2299 if (len < sizeof(int))
2300 return -EINVAL;
2301 len = sizeof(int);
2302 val = nlk->flags & NETLINK_F_RECV_NO_ENOBUFS ? 1 : 0;
2303 if (put_user(len, optlen) ||
2304 put_user(val, optval))
2305 return -EFAULT;
2306 err = 0;
2307 break;
2308 case NETLINK_LIST_MEMBERSHIPS: {
2309 int pos, idx, shift;
2310
2311 err = 0;
2312 netlink_table_grab();
2313 for (pos = 0; pos * 8 < nlk->ngroups; pos += sizeof(u32)) {
2314 if (len - pos < sizeof(u32))
2315 break;
2316
2317 idx = pos / sizeof(unsigned long);
2318 shift = (pos % sizeof(unsigned long)) * 8;
2319 if (put_user((u32)(nlk->groups[idx] >> shift),
2320 (u32 __user *)(optval + pos))) {
2321 err = -EFAULT;
2322 break;
2323 }
2324 }
2325 if (put_user(ALIGN(nlk->ngroups / 8, sizeof(u32)), optlen))
2326 err = -EFAULT;
2327 netlink_table_ungrab();
2328 break;
2329 }
2330 default:
2331 err = -ENOPROTOOPT;
2332 }
2333 return err;
2334 }
2335
2336 static void netlink_cmsg_recv_pktinfo(struct msghdr *msg, struct sk_buff *skb)
2337 {
2338 struct nl_pktinfo info;
2339
2340 info.group = NETLINK_CB(skb).dst_group;
2341 put_cmsg(msg, SOL_NETLINK, NETLINK_PKTINFO, sizeof(info), &info);
2342 }
2343
2344 static void netlink_cmsg_listen_all_nsid(struct sock *sk, struct msghdr *msg,
2345 struct sk_buff *skb)
2346 {
2347 if (!NETLINK_CB(skb).nsid_is_set)
2348 return;
2349
2350 put_cmsg(msg, SOL_NETLINK, NETLINK_LISTEN_ALL_NSID, sizeof(int),
2351 &NETLINK_CB(skb).nsid);
2352 }
2353
2354 static int netlink_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2355 {
2356 struct sock *sk = sock->sk;
2357 struct netlink_sock *nlk = nlk_sk(sk);
2358 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2359 u32 dst_portid;
2360 u32 dst_group;
2361 struct sk_buff *skb;
2362 int err;
2363 struct scm_cookie scm;
2364 u32 netlink_skb_flags = 0;
2365
2366 if (msg->msg_flags&MSG_OOB)
2367 return -EOPNOTSUPP;
2368
2369 err = scm_send(sock, msg, &scm, true);
2370 if (err < 0)
2371 return err;
2372
2373 if (msg->msg_namelen) {
2374 err = -EINVAL;
2375 if (addr->nl_family != AF_NETLINK)
2376 goto out;
2377 dst_portid = addr->nl_pid;
2378 dst_group = ffs(addr->nl_groups);
2379 err = -EPERM;
2380 if ((dst_group || dst_portid) &&
2381 !netlink_allowed(sock, NL_CFG_F_NONROOT_SEND))
2382 goto out;
2383 netlink_skb_flags |= NETLINK_SKB_DST;
2384 } else {
2385 dst_portid = nlk->dst_portid;
2386 dst_group = nlk->dst_group;
2387 }
2388
2389 if (!nlk->portid) {
2390 err = netlink_autobind(sock);
2391 if (err)
2392 goto out;
2393 }
2394
2395 /* It's a really convoluted way for userland to ask for mmaped
2396 * sendmsg(), but that's what we've got...
2397 */
2398 if (netlink_tx_is_mmaped(sk) &&
2399 msg->msg_iter.type == ITER_IOVEC &&
2400 msg->msg_iter.nr_segs == 1 &&
2401 msg->msg_iter.iov->iov_base == NULL) {
2402 err = netlink_mmap_sendmsg(sk, msg, dst_portid, dst_group,
2403 &scm);
2404 goto out;
2405 }
2406
2407 err = -EMSGSIZE;
2408 if (len > sk->sk_sndbuf - 32)
2409 goto out;
2410 err = -ENOBUFS;
2411 skb = netlink_alloc_large_skb(len, dst_group);
2412 if (skb == NULL)
2413 goto out;
2414
2415 NETLINK_CB(skb).portid = nlk->portid;
2416 NETLINK_CB(skb).dst_group = dst_group;
2417 NETLINK_CB(skb).creds = scm.creds;
2418 NETLINK_CB(skb).flags = netlink_skb_flags;
2419
2420 err = -EFAULT;
2421 if (memcpy_from_msg(skb_put(skb, len), msg, len)) {
2422 kfree_skb(skb);
2423 goto out;
2424 }
2425
2426 err = security_netlink_send(sk, skb);
2427 if (err) {
2428 kfree_skb(skb);
2429 goto out;
2430 }
2431
2432 if (dst_group) {
2433 atomic_inc(&skb->users);
2434 netlink_broadcast(sk, skb, dst_portid, dst_group, GFP_KERNEL);
2435 }
2436 err = netlink_unicast(sk, skb, dst_portid, msg->msg_flags&MSG_DONTWAIT);
2437
2438 out:
2439 scm_destroy(&scm);
2440 return err;
2441 }
2442
2443 static int netlink_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2444 int flags)
2445 {
2446 struct scm_cookie scm;
2447 struct sock *sk = sock->sk;
2448 struct netlink_sock *nlk = nlk_sk(sk);
2449 int noblock = flags&MSG_DONTWAIT;
2450 size_t copied;
2451 struct sk_buff *skb, *data_skb;
2452 int err, ret;
2453
2454 if (flags&MSG_OOB)
2455 return -EOPNOTSUPP;
2456
2457 copied = 0;
2458
2459 skb = skb_recv_datagram(sk, flags, noblock, &err);
2460 if (skb == NULL)
2461 goto out;
2462
2463 data_skb = skb;
2464
2465 #ifdef CONFIG_COMPAT_NETLINK_MESSAGES
2466 if (unlikely(skb_shinfo(skb)->frag_list)) {
2467 /*
2468 * If this skb has a frag_list, then here that means that we
2469 * will have to use the frag_list skb's data for compat tasks
2470 * and the regular skb's data for normal (non-compat) tasks.
2471 *
2472 * If we need to send the compat skb, assign it to the
2473 * 'data_skb' variable so that it will be used below for data
2474 * copying. We keep 'skb' for everything else, including
2475 * freeing both later.
2476 */
2477 if (flags & MSG_CMSG_COMPAT)
2478 data_skb = skb_shinfo(skb)->frag_list;
2479 }
2480 #endif
2481
2482 /* Record the max length of recvmsg() calls for future allocations */
2483 nlk->max_recvmsg_len = max(nlk->max_recvmsg_len, len);
2484 nlk->max_recvmsg_len = min_t(size_t, nlk->max_recvmsg_len,
2485 16384);
2486
2487 copied = data_skb->len;
2488 if (len < copied) {
2489 msg->msg_flags |= MSG_TRUNC;
2490 copied = len;
2491 }
2492
2493 skb_reset_transport_header(data_skb);
2494 err = skb_copy_datagram_msg(data_skb, 0, msg, copied);
2495
2496 if (msg->msg_name) {
2497 DECLARE_SOCKADDR(struct sockaddr_nl *, addr, msg->msg_name);
2498 addr->nl_family = AF_NETLINK;
2499 addr->nl_pad = 0;
2500 addr->nl_pid = NETLINK_CB(skb).portid;
2501 addr->nl_groups = netlink_group_mask(NETLINK_CB(skb).dst_group);
2502 msg->msg_namelen = sizeof(*addr);
2503 }
2504
2505 if (nlk->flags & NETLINK_F_RECV_PKTINFO)
2506 netlink_cmsg_recv_pktinfo(msg, skb);
2507 if (nlk->flags & NETLINK_F_LISTEN_ALL_NSID)
2508 netlink_cmsg_listen_all_nsid(sk, msg, skb);
2509
2510 memset(&scm, 0, sizeof(scm));
2511 scm.creds = *NETLINK_CREDS(skb);
2512 if (flags & MSG_TRUNC)
2513 copied = data_skb->len;
2514
2515 skb_free_datagram(sk, skb);
2516
2517 if (nlk->cb_running &&
2518 atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf / 2) {
2519 ret = netlink_dump(sk);
2520 if (ret) {
2521 sk->sk_err = -ret;
2522 sk->sk_error_report(sk);
2523 }
2524 }
2525
2526 scm_recv(sock, msg, &scm, flags);
2527 out:
2528 netlink_rcv_wake(sk);
2529 return err ? : copied;
2530 }
2531
2532 static void netlink_data_ready(struct sock *sk)
2533 {
2534 BUG();
2535 }
2536
2537 /*
2538 * We export these functions to other modules. They provide a
2539 * complete set of kernel non-blocking support for message
2540 * queueing.
2541 */
2542
2543 struct sock *
2544 __netlink_kernel_create(struct net *net, int unit, struct module *module,
2545 struct netlink_kernel_cfg *cfg)
2546 {
2547 struct socket *sock;
2548 struct sock *sk;
2549 struct netlink_sock *nlk;
2550 struct listeners *listeners = NULL;
2551 struct mutex *cb_mutex = cfg ? cfg->cb_mutex : NULL;
2552 unsigned int groups;
2553
2554 BUG_ON(!nl_table);
2555
2556 if (unit < 0 || unit >= MAX_LINKS)
2557 return NULL;
2558
2559 if (sock_create_lite(PF_NETLINK, SOCK_DGRAM, unit, &sock))
2560 return NULL;
2561
2562 if (__netlink_create(net, sock, cb_mutex, unit, 1) < 0)
2563 goto out_sock_release_nosk;
2564
2565 sk = sock->sk;
2566
2567 if (!cfg || cfg->groups < 32)
2568 groups = 32;
2569 else
2570 groups = cfg->groups;
2571
2572 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
2573 if (!listeners)
2574 goto out_sock_release;
2575
2576 sk->sk_data_ready = netlink_data_ready;
2577 if (cfg && cfg->input)
2578 nlk_sk(sk)->netlink_rcv = cfg->input;
2579
2580 if (netlink_insert(sk, 0))
2581 goto out_sock_release;
2582
2583 nlk = nlk_sk(sk);
2584 nlk->flags |= NETLINK_F_KERNEL_SOCKET;
2585
2586 netlink_table_grab();
2587 if (!nl_table[unit].registered) {
2588 nl_table[unit].groups = groups;
2589 rcu_assign_pointer(nl_table[unit].listeners, listeners);
2590 nl_table[unit].cb_mutex = cb_mutex;
2591 nl_table[unit].module = module;
2592 if (cfg) {
2593 nl_table[unit].bind = cfg->bind;
2594 nl_table[unit].unbind = cfg->unbind;
2595 nl_table[unit].flags = cfg->flags;
2596 if (cfg->compare)
2597 nl_table[unit].compare = cfg->compare;
2598 }
2599 nl_table[unit].registered = 1;
2600 } else {
2601 kfree(listeners);
2602 nl_table[unit].registered++;
2603 }
2604 netlink_table_ungrab();
2605 return sk;
2606
2607 out_sock_release:
2608 kfree(listeners);
2609 netlink_kernel_release(sk);
2610 return NULL;
2611
2612 out_sock_release_nosk:
2613 sock_release(sock);
2614 return NULL;
2615 }
2616 EXPORT_SYMBOL(__netlink_kernel_create);
2617
2618 void
2619 netlink_kernel_release(struct sock *sk)
2620 {
2621 if (sk == NULL || sk->sk_socket == NULL)
2622 return;
2623
2624 sock_release(sk->sk_socket);
2625 }
2626 EXPORT_SYMBOL(netlink_kernel_release);
2627
2628 int __netlink_change_ngroups(struct sock *sk, unsigned int groups)
2629 {
2630 struct listeners *new, *old;
2631 struct netlink_table *tbl = &nl_table[sk->sk_protocol];
2632
2633 if (groups < 32)
2634 groups = 32;
2635
2636 if (NLGRPSZ(tbl->groups) < NLGRPSZ(groups)) {
2637 new = kzalloc(sizeof(*new) + NLGRPSZ(groups), GFP_ATOMIC);
2638 if (!new)
2639 return -ENOMEM;
2640 old = nl_deref_protected(tbl->listeners);
2641 memcpy(new->masks, old->masks, NLGRPSZ(tbl->groups));
2642 rcu_assign_pointer(tbl->listeners, new);
2643
2644 kfree_rcu(old, rcu);
2645 }
2646 tbl->groups = groups;
2647
2648 return 0;
2649 }
2650
2651 /**
2652 * netlink_change_ngroups - change number of multicast groups
2653 *
2654 * This changes the number of multicast groups that are available
2655 * on a certain netlink family. Note that it is not possible to
2656 * change the number of groups to below 32. Also note that it does
2657 * not implicitly call netlink_clear_multicast_users() when the
2658 * number of groups is reduced.
2659 *
2660 * @sk: The kernel netlink socket, as returned by netlink_kernel_create().
2661 * @groups: The new number of groups.
2662 */
2663 int netlink_change_ngroups(struct sock *sk, unsigned int groups)
2664 {
2665 int err;
2666
2667 netlink_table_grab();
2668 err = __netlink_change_ngroups(sk, groups);
2669 netlink_table_ungrab();
2670
2671 return err;
2672 }
2673
2674 void __netlink_clear_multicast_users(struct sock *ksk, unsigned int group)
2675 {
2676 struct sock *sk;
2677 struct netlink_table *tbl = &nl_table[ksk->sk_protocol];
2678
2679 sk_for_each_bound(sk, &tbl->mc_list)
2680 netlink_update_socket_mc(nlk_sk(sk), group, 0);
2681 }
2682
2683 struct nlmsghdr *
2684 __nlmsg_put(struct sk_buff *skb, u32 portid, u32 seq, int type, int len, int flags)
2685 {
2686 struct nlmsghdr *nlh;
2687 int size = nlmsg_msg_size(len);
2688
2689 nlh = (struct nlmsghdr *)skb_put(skb, NLMSG_ALIGN(size));
2690 nlh->nlmsg_type = type;
2691 nlh->nlmsg_len = size;
2692 nlh->nlmsg_flags = flags;
2693 nlh->nlmsg_pid = portid;
2694 nlh->nlmsg_seq = seq;
2695 if (!__builtin_constant_p(size) || NLMSG_ALIGN(size) - size != 0)
2696 memset(nlmsg_data(nlh) + len, 0, NLMSG_ALIGN(size) - size);
2697 return nlh;
2698 }
2699 EXPORT_SYMBOL(__nlmsg_put);
2700
2701 /*
2702 * It looks a bit ugly.
2703 * It would be better to create kernel thread.
2704 */
2705
2706 static int netlink_dump(struct sock *sk)
2707 {
2708 struct netlink_sock *nlk = nlk_sk(sk);
2709 struct netlink_callback *cb;
2710 struct sk_buff *skb = NULL;
2711 struct nlmsghdr *nlh;
2712 int len, err = -ENOBUFS;
2713 int alloc_size;
2714
2715 mutex_lock(nlk->cb_mutex);
2716 if (!nlk->cb_running) {
2717 err = -EINVAL;
2718 goto errout_skb;
2719 }
2720
2721 cb = &nlk->cb;
2722 alloc_size = max_t(int, cb->min_dump_alloc, NLMSG_GOODSIZE);
2723
2724 if (!netlink_rx_is_mmaped(sk) &&
2725 atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2726 goto errout_skb;
2727
2728 /* NLMSG_GOODSIZE is small to avoid high order allocations being
2729 * required, but it makes sense to _attempt_ a 16K bytes allocation
2730 * to reduce number of system calls on dump operations, if user
2731 * ever provided a big enough buffer.
2732 */
2733 if (alloc_size < nlk->max_recvmsg_len) {
2734 skb = netlink_alloc_skb(sk,
2735 nlk->max_recvmsg_len,
2736 nlk->portid,
2737 GFP_KERNEL |
2738 __GFP_NOWARN |
2739 __GFP_NORETRY);
2740 /* available room should be exact amount to avoid MSG_TRUNC */
2741 if (skb)
2742 skb_reserve(skb, skb_tailroom(skb) -
2743 nlk->max_recvmsg_len);
2744 }
2745 if (!skb)
2746 skb = netlink_alloc_skb(sk, alloc_size, nlk->portid,
2747 GFP_KERNEL);
2748 if (!skb)
2749 goto errout_skb;
2750 netlink_skb_set_owner_r(skb, sk);
2751
2752 len = cb->dump(skb, cb);
2753
2754 if (len > 0) {
2755 mutex_unlock(nlk->cb_mutex);
2756
2757 if (sk_filter(sk, skb))
2758 kfree_skb(skb);
2759 else
2760 __netlink_sendskb(sk, skb);
2761 return 0;
2762 }
2763
2764 nlh = nlmsg_put_answer(skb, cb, NLMSG_DONE, sizeof(len), NLM_F_MULTI);
2765 if (!nlh)
2766 goto errout_skb;
2767
2768 nl_dump_check_consistent(cb, nlh);
2769
2770 memcpy(nlmsg_data(nlh), &len, sizeof(len));
2771
2772 if (sk_filter(sk, skb))
2773 kfree_skb(skb);
2774 else
2775 __netlink_sendskb(sk, skb);
2776
2777 if (cb->done)
2778 cb->done(cb);
2779
2780 nlk->cb_running = false;
2781 mutex_unlock(nlk->cb_mutex);
2782 module_put(cb->module);
2783 consume_skb(cb->skb);
2784 return 0;
2785
2786 errout_skb:
2787 mutex_unlock(nlk->cb_mutex);
2788 kfree_skb(skb);
2789 return err;
2790 }
2791
2792 int __netlink_dump_start(struct sock *ssk, struct sk_buff *skb,
2793 const struct nlmsghdr *nlh,
2794 struct netlink_dump_control *control)
2795 {
2796 struct netlink_callback *cb;
2797 struct sock *sk;
2798 struct netlink_sock *nlk;
2799 int ret;
2800
2801 /* Memory mapped dump requests need to be copied to avoid looping
2802 * on the pending state in netlink_mmap_sendmsg() while the CB hold
2803 * a reference to the skb.
2804 */
2805 if (netlink_skb_is_mmaped(skb)) {
2806 skb = skb_copy(skb, GFP_KERNEL);
2807 if (skb == NULL)
2808 return -ENOBUFS;
2809 } else
2810 atomic_inc(&skb->users);
2811
2812 sk = netlink_lookup(sock_net(ssk), ssk->sk_protocol, NETLINK_CB(skb).portid);
2813 if (sk == NULL) {
2814 ret = -ECONNREFUSED;
2815 goto error_free;
2816 }
2817
2818 nlk = nlk_sk(sk);
2819 mutex_lock(nlk->cb_mutex);
2820 /* A dump is in progress... */
2821 if (nlk->cb_running) {
2822 ret = -EBUSY;
2823 goto error_unlock;
2824 }
2825 /* add reference of module which cb->dump belongs to */
2826 if (!try_module_get(control->module)) {
2827 ret = -EPROTONOSUPPORT;
2828 goto error_unlock;
2829 }
2830
2831 cb = &nlk->cb;
2832 memset(cb, 0, sizeof(*cb));
2833 cb->dump = control->dump;
2834 cb->done = control->done;
2835 cb->nlh = nlh;
2836 cb->data = control->data;
2837 cb->module = control->module;
2838 cb->min_dump_alloc = control->min_dump_alloc;
2839 cb->skb = skb;
2840
2841 nlk->cb_running = true;
2842
2843 mutex_unlock(nlk->cb_mutex);
2844
2845 ret = netlink_dump(sk);
2846 sock_put(sk);
2847
2848 if (ret)
2849 return ret;
2850
2851 /* We successfully started a dump, by returning -EINTR we
2852 * signal not to send ACK even if it was requested.
2853 */
2854 return -EINTR;
2855
2856 error_unlock:
2857 sock_put(sk);
2858 mutex_unlock(nlk->cb_mutex);
2859 error_free:
2860 kfree_skb(skb);
2861 return ret;
2862 }
2863 EXPORT_SYMBOL(__netlink_dump_start);
2864
2865 void netlink_ack(struct sk_buff *in_skb, struct nlmsghdr *nlh, int err)
2866 {
2867 struct sk_buff *skb;
2868 struct nlmsghdr *rep;
2869 struct nlmsgerr *errmsg;
2870 size_t payload = sizeof(*errmsg);
2871
2872 /* error messages get the original request appened */
2873 if (err)
2874 payload += nlmsg_len(nlh);
2875
2876 skb = netlink_alloc_skb(in_skb->sk, nlmsg_total_size(payload),
2877 NETLINK_CB(in_skb).portid, GFP_KERNEL);
2878 if (!skb) {
2879 struct sock *sk;
2880
2881 sk = netlink_lookup(sock_net(in_skb->sk),
2882 in_skb->sk->sk_protocol,
2883 NETLINK_CB(in_skb).portid);
2884 if (sk) {
2885 sk->sk_err = ENOBUFS;
2886 sk->sk_error_report(sk);
2887 sock_put(sk);
2888 }
2889 return;
2890 }
2891
2892 rep = __nlmsg_put(skb, NETLINK_CB(in_skb).portid, nlh->nlmsg_seq,
2893 NLMSG_ERROR, payload, 0);
2894 errmsg = nlmsg_data(rep);
2895 errmsg->error = err;
2896 memcpy(&errmsg->msg, nlh, err ? nlh->nlmsg_len : sizeof(*nlh));
2897 netlink_unicast(in_skb->sk, skb, NETLINK_CB(in_skb).portid, MSG_DONTWAIT);
2898 }
2899 EXPORT_SYMBOL(netlink_ack);
2900
2901 int netlink_rcv_skb(struct sk_buff *skb, int (*cb)(struct sk_buff *,
2902 struct nlmsghdr *))
2903 {
2904 struct nlmsghdr *nlh;
2905 int err;
2906
2907 while (skb->len >= nlmsg_total_size(0)) {
2908 int msglen;
2909
2910 nlh = nlmsg_hdr(skb);
2911 err = 0;
2912
2913 if (nlh->nlmsg_len < NLMSG_HDRLEN || skb->len < nlh->nlmsg_len)
2914 return 0;
2915
2916 /* Only requests are handled by the kernel */
2917 if (!(nlh->nlmsg_flags & NLM_F_REQUEST))
2918 goto ack;
2919
2920 /* Skip control messages */
2921 if (nlh->nlmsg_type < NLMSG_MIN_TYPE)
2922 goto ack;
2923
2924 err = cb(skb, nlh);
2925 if (err == -EINTR)
2926 goto skip;
2927
2928 ack:
2929 if (nlh->nlmsg_flags & NLM_F_ACK || err)
2930 netlink_ack(skb, nlh, err);
2931
2932 skip:
2933 msglen = NLMSG_ALIGN(nlh->nlmsg_len);
2934 if (msglen > skb->len)
2935 msglen = skb->len;
2936 skb_pull(skb, msglen);
2937 }
2938
2939 return 0;
2940 }
2941 EXPORT_SYMBOL(netlink_rcv_skb);
2942
2943 /**
2944 * nlmsg_notify - send a notification netlink message
2945 * @sk: netlink socket to use
2946 * @skb: notification message
2947 * @portid: destination netlink portid for reports or 0
2948 * @group: destination multicast group or 0
2949 * @report: 1 to report back, 0 to disable
2950 * @flags: allocation flags
2951 */
2952 int nlmsg_notify(struct sock *sk, struct sk_buff *skb, u32 portid,
2953 unsigned int group, int report, gfp_t flags)
2954 {
2955 int err = 0;
2956
2957 if (group) {
2958 int exclude_portid = 0;
2959
2960 if (report) {
2961 atomic_inc(&skb->users);
2962 exclude_portid = portid;
2963 }
2964
2965 /* errors reported via destination sk->sk_err, but propagate
2966 * delivery errors if NETLINK_BROADCAST_ERROR flag is set */
2967 err = nlmsg_multicast(sk, skb, exclude_portid, group, flags);
2968 }
2969
2970 if (report) {
2971 int err2;
2972
2973 err2 = nlmsg_unicast(sk, skb, portid);
2974 if (!err || err == -ESRCH)
2975 err = err2;
2976 }
2977
2978 return err;
2979 }
2980 EXPORT_SYMBOL(nlmsg_notify);
2981
2982 #ifdef CONFIG_PROC_FS
2983 struct nl_seq_iter {
2984 struct seq_net_private p;
2985 struct rhashtable_iter hti;
2986 int link;
2987 };
2988
2989 static int netlink_walk_start(struct nl_seq_iter *iter)
2990 {
2991 int err;
2992
2993 err = rhashtable_walk_init(&nl_table[iter->link].hash, &iter->hti);
2994 if (err) {
2995 iter->link = MAX_LINKS;
2996 return err;
2997 }
2998
2999 err = rhashtable_walk_start(&iter->hti);
3000 return err == -EAGAIN ? 0 : err;
3001 }
3002
3003 static void netlink_walk_stop(struct nl_seq_iter *iter)
3004 {
3005 rhashtable_walk_stop(&iter->hti);
3006 rhashtable_walk_exit(&iter->hti);
3007 }
3008
3009 static void *__netlink_seq_next(struct seq_file *seq)
3010 {
3011 struct nl_seq_iter *iter = seq->private;
3012 struct netlink_sock *nlk;
3013
3014 do {
3015 for (;;) {
3016 int err;
3017
3018 nlk = rhashtable_walk_next(&iter->hti);
3019
3020 if (IS_ERR(nlk)) {
3021 if (PTR_ERR(nlk) == -EAGAIN)
3022 continue;
3023
3024 return nlk;
3025 }
3026
3027 if (nlk)
3028 break;
3029
3030 netlink_walk_stop(iter);
3031 if (++iter->link >= MAX_LINKS)
3032 return NULL;
3033
3034 err = netlink_walk_start(iter);
3035 if (err)
3036 return ERR_PTR(err);
3037 }
3038 } while (sock_net(&nlk->sk) != seq_file_net(seq));
3039
3040 return nlk;
3041 }
3042
3043 static void *netlink_seq_start(struct seq_file *seq, loff_t *posp)
3044 {
3045 struct nl_seq_iter *iter = seq->private;
3046 void *obj = SEQ_START_TOKEN;
3047 loff_t pos;
3048 int err;
3049
3050 iter->link = 0;
3051
3052 err = netlink_walk_start(iter);
3053 if (err)
3054 return ERR_PTR(err);
3055
3056 for (pos = *posp; pos && obj && !IS_ERR(obj); pos--)
3057 obj = __netlink_seq_next(seq);
3058
3059 return obj;
3060 }
3061
3062 static void *netlink_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3063 {
3064 ++*pos;
3065 return __netlink_seq_next(seq);
3066 }
3067
3068 static void netlink_seq_stop(struct seq_file *seq, void *v)
3069 {
3070 struct nl_seq_iter *iter = seq->private;
3071
3072 if (iter->link >= MAX_LINKS)
3073 return;
3074
3075 netlink_walk_stop(iter);
3076 }
3077
3078
3079 static int netlink_seq_show(struct seq_file *seq, void *v)
3080 {
3081 if (v == SEQ_START_TOKEN) {
3082 seq_puts(seq,
3083 "sk Eth Pid Groups "
3084 "Rmem Wmem Dump Locks Drops Inode\n");
3085 } else {
3086 struct sock *s = v;
3087 struct netlink_sock *nlk = nlk_sk(s);
3088
3089 seq_printf(seq, "%pK %-3d %-6u %08x %-8d %-8d %d %-8d %-8d %-8lu\n",
3090 s,
3091 s->sk_protocol,
3092 nlk->portid,
3093 nlk->groups ? (u32)nlk->groups[0] : 0,
3094 sk_rmem_alloc_get(s),
3095 sk_wmem_alloc_get(s),
3096 nlk->cb_running,
3097 atomic_read(&s->sk_refcnt),
3098 atomic_read(&s->sk_drops),
3099 sock_i_ino(s)
3100 );
3101
3102 }
3103 return 0;
3104 }
3105
3106 static const struct seq_operations netlink_seq_ops = {
3107 .start = netlink_seq_start,
3108 .next = netlink_seq_next,
3109 .stop = netlink_seq_stop,
3110 .show = netlink_seq_show,
3111 };
3112
3113
3114 static int netlink_seq_open(struct inode *inode, struct file *file)
3115 {
3116 return seq_open_net(inode, file, &netlink_seq_ops,
3117 sizeof(struct nl_seq_iter));
3118 }
3119
3120 static const struct file_operations netlink_seq_fops = {
3121 .owner = THIS_MODULE,
3122 .open = netlink_seq_open,
3123 .read = seq_read,
3124 .llseek = seq_lseek,
3125 .release = seq_release_net,
3126 };
3127
3128 #endif
3129
3130 int netlink_register_notifier(struct notifier_block *nb)
3131 {
3132 return atomic_notifier_chain_register(&netlink_chain, nb);
3133 }
3134 EXPORT_SYMBOL(netlink_register_notifier);
3135
3136 int netlink_unregister_notifier(struct notifier_block *nb)
3137 {
3138 return atomic_notifier_chain_unregister(&netlink_chain, nb);
3139 }
3140 EXPORT_SYMBOL(netlink_unregister_notifier);
3141
3142 static const struct proto_ops netlink_ops = {
3143 .family = PF_NETLINK,
3144 .owner = THIS_MODULE,
3145 .release = netlink_release,
3146 .bind = netlink_bind,
3147 .connect = netlink_connect,
3148 .socketpair = sock_no_socketpair,
3149 .accept = sock_no_accept,
3150 .getname = netlink_getname,
3151 .poll = netlink_poll,
3152 .ioctl = sock_no_ioctl,
3153 .listen = sock_no_listen,
3154 .shutdown = sock_no_shutdown,
3155 .setsockopt = netlink_setsockopt,
3156 .getsockopt = netlink_getsockopt,
3157 .sendmsg = netlink_sendmsg,
3158 .recvmsg = netlink_recvmsg,
3159 .mmap = netlink_mmap,
3160 .sendpage = sock_no_sendpage,
3161 };
3162
3163 static const struct net_proto_family netlink_family_ops = {
3164 .family = PF_NETLINK,
3165 .create = netlink_create,
3166 .owner = THIS_MODULE, /* for consistency 8) */
3167 };
3168
3169 static int __net_init netlink_net_init(struct net *net)
3170 {
3171 #ifdef CONFIG_PROC_FS
3172 if (!proc_create("netlink", 0, net->proc_net, &netlink_seq_fops))
3173 return -ENOMEM;
3174 #endif
3175 return 0;
3176 }
3177
3178 static void __net_exit netlink_net_exit(struct net *net)
3179 {
3180 #ifdef CONFIG_PROC_FS
3181 remove_proc_entry("netlink", net->proc_net);
3182 #endif
3183 }
3184
3185 static void __init netlink_add_usersock_entry(void)
3186 {
3187 struct listeners *listeners;
3188 int groups = 32;
3189
3190 listeners = kzalloc(sizeof(*listeners) + NLGRPSZ(groups), GFP_KERNEL);
3191 if (!listeners)
3192 panic("netlink_add_usersock_entry: Cannot allocate listeners\n");
3193
3194 netlink_table_grab();
3195
3196 nl_table[NETLINK_USERSOCK].groups = groups;
3197 rcu_assign_pointer(nl_table[NETLINK_USERSOCK].listeners, listeners);
3198 nl_table[NETLINK_USERSOCK].module = THIS_MODULE;
3199 nl_table[NETLINK_USERSOCK].registered = 1;
3200 nl_table[NETLINK_USERSOCK].flags = NL_CFG_F_NONROOT_SEND;
3201
3202 netlink_table_ungrab();
3203 }
3204
3205 static struct pernet_operations __net_initdata netlink_net_ops = {
3206 .init = netlink_net_init,
3207 .exit = netlink_net_exit,
3208 };
3209
3210 static inline u32 netlink_hash(const void *data, u32 len, u32 seed)
3211 {
3212 const struct netlink_sock *nlk = data;
3213 struct netlink_compare_arg arg;
3214
3215 netlink_compare_arg_init(&arg, sock_net(&nlk->sk), nlk->portid);
3216 return jhash2((u32 *)&arg, netlink_compare_arg_len / sizeof(u32), seed);
3217 }
3218
3219 static const struct rhashtable_params netlink_rhashtable_params = {
3220 .head_offset = offsetof(struct netlink_sock, node),
3221 .key_len = netlink_compare_arg_len,
3222 .obj_hashfn = netlink_hash,
3223 .obj_cmpfn = netlink_compare,
3224 .automatic_shrinking = true,
3225 };
3226
3227 static int __init netlink_proto_init(void)
3228 {
3229 int i;
3230 int err = proto_register(&netlink_proto, 0);
3231
3232 if (err != 0)
3233 goto out;
3234
3235 BUILD_BUG_ON(sizeof(struct netlink_skb_parms) > FIELD_SIZEOF(struct sk_buff, cb));
3236
3237 nl_table = kcalloc(MAX_LINKS, sizeof(*nl_table), GFP_KERNEL);
3238 if (!nl_table)
3239 goto panic;
3240
3241 for (i = 0; i < MAX_LINKS; i++) {
3242 if (rhashtable_init(&nl_table[i].hash,
3243 &netlink_rhashtable_params) < 0) {
3244 while (--i > 0)
3245 rhashtable_destroy(&nl_table[i].hash);
3246 kfree(nl_table);
3247 goto panic;
3248 }
3249 }
3250
3251 INIT_LIST_HEAD(&netlink_tap_all);
3252
3253 netlink_add_usersock_entry();
3254
3255 sock_register(&netlink_family_ops);
3256 register_pernet_subsys(&netlink_net_ops);
3257 /* The netlink device handler may be needed early. */
3258 rtnetlink_init();
3259 out:
3260 return err;
3261 panic:
3262 panic("netlink_init: Cannot allocate nl_table\n");
3263 }
3264
3265 core_initcall(netlink_proto_init);