]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/openvswitch/conntrack.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u8 force : 1;
69 u8 have_eventmask : 1;
70 u16 family;
71 u32 eventmask; /* Mask of 1 << IPCT_*. */
72 struct md_mark mark;
73 struct md_labels labels;
74 #ifdef CONFIG_NF_NAT_NEEDED
75 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
76 #endif
77 };
78
79 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
80
81 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
82
83 static u16 key_to_nfproto(const struct sw_flow_key *key)
84 {
85 switch (ntohs(key->eth.type)) {
86 case ETH_P_IP:
87 return NFPROTO_IPV4;
88 case ETH_P_IPV6:
89 return NFPROTO_IPV6;
90 default:
91 return NFPROTO_UNSPEC;
92 }
93 }
94
95 /* Map SKB connection state into the values used by flow definition. */
96 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
97 {
98 u8 ct_state = OVS_CS_F_TRACKED;
99
100 switch (ctinfo) {
101 case IP_CT_ESTABLISHED_REPLY:
102 case IP_CT_RELATED_REPLY:
103 ct_state |= OVS_CS_F_REPLY_DIR;
104 break;
105 default:
106 break;
107 }
108
109 switch (ctinfo) {
110 case IP_CT_ESTABLISHED:
111 case IP_CT_ESTABLISHED_REPLY:
112 ct_state |= OVS_CS_F_ESTABLISHED;
113 break;
114 case IP_CT_RELATED:
115 case IP_CT_RELATED_REPLY:
116 ct_state |= OVS_CS_F_RELATED;
117 break;
118 case IP_CT_NEW:
119 ct_state |= OVS_CS_F_NEW;
120 break;
121 default:
122 break;
123 }
124
125 return ct_state;
126 }
127
128 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
129 {
130 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
131 return ct ? ct->mark : 0;
132 #else
133 return 0;
134 #endif
135 }
136
137 /* Guard against conntrack labels max size shrinking below 128 bits. */
138 #if NF_CT_LABELS_MAX_SIZE < 16
139 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
140 #endif
141
142 static void ovs_ct_get_labels(const struct nf_conn *ct,
143 struct ovs_key_ct_labels *labels)
144 {
145 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
146
147 if (cl)
148 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
149 else
150 memset(labels, 0, OVS_CT_LABELS_LEN);
151 }
152
153 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
154 const struct nf_conntrack_tuple *orig,
155 u8 icmp_proto)
156 {
157 key->ct_orig_proto = orig->dst.protonum;
158 if (orig->dst.protonum == icmp_proto) {
159 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
160 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
161 } else {
162 key->ct.orig_tp.src = orig->src.u.all;
163 key->ct.orig_tp.dst = orig->dst.u.all;
164 }
165 }
166
167 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
168 const struct nf_conntrack_zone *zone,
169 const struct nf_conn *ct)
170 {
171 key->ct_state = state;
172 key->ct_zone = zone->id;
173 key->ct.mark = ovs_ct_get_mark(ct);
174 ovs_ct_get_labels(ct, &key->ct.labels);
175
176 if (ct) {
177 const struct nf_conntrack_tuple *orig;
178
179 /* Use the master if we have one. */
180 if (ct->master)
181 ct = ct->master;
182 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
183
184 /* IP version must match with the master connection. */
185 if (key->eth.type == htons(ETH_P_IP) &&
186 nf_ct_l3num(ct) == NFPROTO_IPV4) {
187 key->ipv4.ct_orig.src = orig->src.u3.ip;
188 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
189 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
190 return;
191 } else if (key->eth.type == htons(ETH_P_IPV6) &&
192 !sw_flow_key_is_nd(key) &&
193 nf_ct_l3num(ct) == NFPROTO_IPV6) {
194 key->ipv6.ct_orig.src = orig->src.u3.in6;
195 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
196 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
197 return;
198 }
199 }
200 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
201 * original direction key fields.
202 */
203 key->ct_orig_proto = 0;
204 }
205
206 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
207 * previously sent the packet to conntrack via the ct action. If
208 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
209 * initialized from the connection status.
210 */
211 static void ovs_ct_update_key(const struct sk_buff *skb,
212 const struct ovs_conntrack_info *info,
213 struct sw_flow_key *key, bool post_ct,
214 bool keep_nat_flags)
215 {
216 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
217 enum ip_conntrack_info ctinfo;
218 struct nf_conn *ct;
219 u8 state = 0;
220
221 ct = nf_ct_get(skb, &ctinfo);
222 if (ct) {
223 state = ovs_ct_get_state(ctinfo);
224 /* All unconfirmed entries are NEW connections. */
225 if (!nf_ct_is_confirmed(ct))
226 state |= OVS_CS_F_NEW;
227 /* OVS persists the related flag for the duration of the
228 * connection.
229 */
230 if (ct->master)
231 state |= OVS_CS_F_RELATED;
232 if (keep_nat_flags) {
233 state |= key->ct_state & OVS_CS_F_NAT_MASK;
234 } else {
235 if (ct->status & IPS_SRC_NAT)
236 state |= OVS_CS_F_SRC_NAT;
237 if (ct->status & IPS_DST_NAT)
238 state |= OVS_CS_F_DST_NAT;
239 }
240 zone = nf_ct_zone(ct);
241 } else if (post_ct) {
242 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
243 if (info)
244 zone = &info->zone;
245 }
246 __ovs_ct_update_key(key, state, zone, ct);
247 }
248
249 /* This is called to initialize CT key fields possibly coming in from the local
250 * stack.
251 */
252 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
253 {
254 ovs_ct_update_key(skb, NULL, key, false, false);
255 }
256
257 #define IN6_ADDR_INITIALIZER(ADDR) \
258 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
259 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
260
261 int ovs_ct_put_key(const struct sw_flow_key *swkey,
262 const struct sw_flow_key *output, struct sk_buff *skb)
263 {
264 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
265 return -EMSGSIZE;
266
267 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
268 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
269 return -EMSGSIZE;
270
271 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
272 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
273 return -EMSGSIZE;
274
275 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
276 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
277 &output->ct.labels))
278 return -EMSGSIZE;
279
280 if (swkey->ct_orig_proto) {
281 if (swkey->eth.type == htons(ETH_P_IP)) {
282 struct ovs_key_ct_tuple_ipv4 orig = {
283 output->ipv4.ct_orig.src,
284 output->ipv4.ct_orig.dst,
285 output->ct.orig_tp.src,
286 output->ct.orig_tp.dst,
287 output->ct_orig_proto,
288 };
289 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
290 sizeof(orig), &orig))
291 return -EMSGSIZE;
292 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
293 struct ovs_key_ct_tuple_ipv6 orig = {
294 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
295 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
296 output->ct.orig_tp.src,
297 output->ct.orig_tp.dst,
298 output->ct_orig_proto,
299 };
300 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
301 sizeof(orig), &orig))
302 return -EMSGSIZE;
303 }
304 }
305
306 return 0;
307 }
308
309 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
310 u32 ct_mark, u32 mask)
311 {
312 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
313 u32 new_mark;
314
315 new_mark = ct_mark | (ct->mark & ~(mask));
316 if (ct->mark != new_mark) {
317 ct->mark = new_mark;
318 if (nf_ct_is_confirmed(ct))
319 nf_conntrack_event_cache(IPCT_MARK, ct);
320 key->ct.mark = new_mark;
321 }
322
323 return 0;
324 #else
325 return -ENOTSUPP;
326 #endif
327 }
328
329 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
330 {
331 struct nf_conn_labels *cl;
332
333 cl = nf_ct_labels_find(ct);
334 if (!cl) {
335 nf_ct_labels_ext_add(ct);
336 cl = nf_ct_labels_find(ct);
337 }
338
339 return cl;
340 }
341
342 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
343 * since the new connection is not yet confirmed, and thus no-one else has
344 * access to it's labels, we simply write them over.
345 */
346 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
347 const struct ovs_key_ct_labels *labels,
348 const struct ovs_key_ct_labels *mask)
349 {
350 struct nf_conn_labels *cl, *master_cl;
351 bool have_mask = labels_nonzero(mask);
352
353 /* Inherit master's labels to the related connection? */
354 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
355
356 if (!master_cl && !have_mask)
357 return 0; /* Nothing to do. */
358
359 cl = ovs_ct_get_conn_labels(ct);
360 if (!cl)
361 return -ENOSPC;
362
363 /* Inherit the master's labels, if any. */
364 if (master_cl)
365 *cl = *master_cl;
366
367 if (have_mask) {
368 u32 *dst = (u32 *)cl->bits;
369 int i;
370
371 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
372 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
373 (labels->ct_labels_32[i]
374 & mask->ct_labels_32[i]);
375 }
376
377 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
378 * IPCT_LABEL bit is set in the event cache.
379 */
380 nf_conntrack_event_cache(IPCT_LABEL, ct);
381
382 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
383
384 return 0;
385 }
386
387 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
388 const struct ovs_key_ct_labels *labels,
389 const struct ovs_key_ct_labels *mask)
390 {
391 struct nf_conn_labels *cl;
392 int err;
393
394 cl = ovs_ct_get_conn_labels(ct);
395 if (!cl)
396 return -ENOSPC;
397
398 err = nf_connlabels_replace(ct, labels->ct_labels_32,
399 mask->ct_labels_32,
400 OVS_CT_LABELS_LEN_32);
401 if (err)
402 return err;
403
404 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
405
406 return 0;
407 }
408
409 /* 'skb' should already be pulled to nh_ofs. */
410 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
411 {
412 const struct nf_conntrack_helper *helper;
413 const struct nf_conn_help *help;
414 enum ip_conntrack_info ctinfo;
415 unsigned int protoff;
416 struct nf_conn *ct;
417 int err;
418
419 ct = nf_ct_get(skb, &ctinfo);
420 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
421 return NF_ACCEPT;
422
423 help = nfct_help(ct);
424 if (!help)
425 return NF_ACCEPT;
426
427 helper = rcu_dereference(help->helper);
428 if (!helper)
429 return NF_ACCEPT;
430
431 switch (proto) {
432 case NFPROTO_IPV4:
433 protoff = ip_hdrlen(skb);
434 break;
435 case NFPROTO_IPV6: {
436 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
437 __be16 frag_off;
438 int ofs;
439
440 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
441 &frag_off);
442 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
443 pr_debug("proto header not found\n");
444 return NF_ACCEPT;
445 }
446 protoff = ofs;
447 break;
448 }
449 default:
450 WARN_ONCE(1, "helper invoked on non-IP family!");
451 return NF_DROP;
452 }
453
454 err = helper->help(skb, protoff, ct, ctinfo);
455 if (err != NF_ACCEPT)
456 return err;
457
458 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
459 * FTP with NAT) adusting the TCP payload size when mangling IP
460 * addresses and/or port numbers in the text-based control connection.
461 */
462 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
463 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
464 return NF_DROP;
465 return NF_ACCEPT;
466 }
467
468 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
469 * value if 'skb' is freed.
470 */
471 static int handle_fragments(struct net *net, struct sw_flow_key *key,
472 u16 zone, struct sk_buff *skb)
473 {
474 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
475 int err;
476
477 if (key->eth.type == htons(ETH_P_IP)) {
478 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
479
480 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
481 err = ip_defrag(net, skb, user);
482 if (err)
483 return err;
484
485 ovs_cb.mru = IPCB(skb)->frag_max_size;
486 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
487 } else if (key->eth.type == htons(ETH_P_IPV6)) {
488 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
489
490 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
491 err = nf_ct_frag6_gather(net, skb, user);
492 if (err) {
493 if (err != -EINPROGRESS)
494 kfree_skb(skb);
495 return err;
496 }
497
498 key->ip.proto = ipv6_hdr(skb)->nexthdr;
499 ovs_cb.mru = IP6CB(skb)->frag_max_size;
500 #endif
501 } else {
502 kfree_skb(skb);
503 return -EPFNOSUPPORT;
504 }
505
506 key->ip.frag = OVS_FRAG_TYPE_NONE;
507 skb_clear_hash(skb);
508 skb->ignore_df = 1;
509 *OVS_CB(skb) = ovs_cb;
510
511 return 0;
512 }
513
514 static struct nf_conntrack_expect *
515 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
516 u16 proto, const struct sk_buff *skb)
517 {
518 struct nf_conntrack_tuple tuple;
519 struct nf_conntrack_expect *exp;
520
521 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
522 return NULL;
523
524 exp = __nf_ct_expect_find(net, zone, &tuple);
525 if (exp) {
526 struct nf_conntrack_tuple_hash *h;
527
528 /* Delete existing conntrack entry, if it clashes with the
529 * expectation. This can happen since conntrack ALGs do not
530 * check for clashes between (new) expectations and existing
531 * conntrack entries. nf_conntrack_in() will check the
532 * expectations only if a conntrack entry can not be found,
533 * which can lead to OVS finding the expectation (here) in the
534 * init direction, but which will not be removed by the
535 * nf_conntrack_in() call, if a matching conntrack entry is
536 * found instead. In this case all init direction packets
537 * would be reported as new related packets, while reply
538 * direction packets would be reported as un-related
539 * established packets.
540 */
541 h = nf_conntrack_find_get(net, zone, &tuple);
542 if (h) {
543 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
544
545 nf_ct_delete(ct, 0, 0);
546 nf_conntrack_put(&ct->ct_general);
547 }
548 }
549
550 return exp;
551 }
552
553 /* This replicates logic from nf_conntrack_core.c that is not exported. */
554 static enum ip_conntrack_info
555 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
556 {
557 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
558
559 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
560 return IP_CT_ESTABLISHED_REPLY;
561 /* Once we've had two way comms, always ESTABLISHED. */
562 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
563 return IP_CT_ESTABLISHED;
564 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
565 return IP_CT_RELATED;
566 return IP_CT_NEW;
567 }
568
569 /* Find an existing connection which this packet belongs to without
570 * re-attributing statistics or modifying the connection state. This allows an
571 * skb->_nfct lost due to an upcall to be recovered during actions execution.
572 *
573 * Must be called with rcu_read_lock.
574 *
575 * On success, populates skb->_nfct and returns the connection. Returns NULL
576 * if there is no existing entry.
577 */
578 static struct nf_conn *
579 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
580 u8 l3num, struct sk_buff *skb, bool natted)
581 {
582 struct nf_conntrack_l3proto *l3proto;
583 struct nf_conntrack_l4proto *l4proto;
584 struct nf_conntrack_tuple tuple;
585 struct nf_conntrack_tuple_hash *h;
586 struct nf_conn *ct;
587 unsigned int dataoff;
588 u8 protonum;
589
590 l3proto = __nf_ct_l3proto_find(l3num);
591 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
592 &protonum) <= 0) {
593 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
594 return NULL;
595 }
596 l4proto = __nf_ct_l4proto_find(l3num, protonum);
597 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
598 protonum, net, &tuple, l3proto, l4proto)) {
599 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
600 return NULL;
601 }
602
603 /* Must invert the tuple if skb has been transformed by NAT. */
604 if (natted) {
605 struct nf_conntrack_tuple inverse;
606
607 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
608 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
609 return NULL;
610 }
611 tuple = inverse;
612 }
613
614 /* look for tuple match */
615 h = nf_conntrack_find_get(net, zone, &tuple);
616 if (!h)
617 return NULL; /* Not found. */
618
619 ct = nf_ct_tuplehash_to_ctrack(h);
620
621 /* Inverted packet tuple matches the reverse direction conntrack tuple,
622 * select the other tuplehash to get the right 'ctinfo' bits for this
623 * packet.
624 */
625 if (natted)
626 h = &ct->tuplehash[!h->tuple.dst.dir];
627
628 nf_ct_set(skb, ct, ovs_ct_get_info(h));
629 return ct;
630 }
631
632 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
633 static bool skb_nfct_cached(struct net *net,
634 const struct sw_flow_key *key,
635 const struct ovs_conntrack_info *info,
636 struct sk_buff *skb)
637 {
638 enum ip_conntrack_info ctinfo;
639 struct nf_conn *ct;
640
641 ct = nf_ct_get(skb, &ctinfo);
642 /* If no ct, check if we have evidence that an existing conntrack entry
643 * might be found for this skb. This happens when we lose a skb->_nfct
644 * due to an upcall. If the connection was not confirmed, it is not
645 * cached and needs to be run through conntrack again.
646 */
647 if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
648 !(key->ct_state & OVS_CS_F_INVALID) &&
649 key->ct_zone == info->zone.id) {
650 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
651 !!(key->ct_state
652 & OVS_CS_F_NAT_MASK));
653 if (ct)
654 nf_ct_get(skb, &ctinfo);
655 }
656 if (!ct)
657 return false;
658 if (!net_eq(net, read_pnet(&ct->ct_net)))
659 return false;
660 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
661 return false;
662 if (info->helper) {
663 struct nf_conn_help *help;
664
665 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
666 if (help && rcu_access_pointer(help->helper) != info->helper)
667 return false;
668 }
669 /* Force conntrack entry direction to the current packet? */
670 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
671 /* Delete the conntrack entry if confirmed, else just release
672 * the reference.
673 */
674 if (nf_ct_is_confirmed(ct))
675 nf_ct_delete(ct, 0, 0);
676
677 nf_conntrack_put(&ct->ct_general);
678 nf_ct_set(skb, NULL, 0);
679 return false;
680 }
681
682 return true;
683 }
684
685 #ifdef CONFIG_NF_NAT_NEEDED
686 /* Modelled after nf_nat_ipv[46]_fn().
687 * range is only used for new, uninitialized NAT state.
688 * Returns either NF_ACCEPT or NF_DROP.
689 */
690 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
691 enum ip_conntrack_info ctinfo,
692 const struct nf_nat_range *range,
693 enum nf_nat_manip_type maniptype)
694 {
695 int hooknum, nh_off, err = NF_ACCEPT;
696
697 nh_off = skb_network_offset(skb);
698 skb_pull_rcsum(skb, nh_off);
699
700 /* See HOOK2MANIP(). */
701 if (maniptype == NF_NAT_MANIP_SRC)
702 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
703 else
704 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
705
706 switch (ctinfo) {
707 case IP_CT_RELATED:
708 case IP_CT_RELATED_REPLY:
709 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
710 skb->protocol == htons(ETH_P_IP) &&
711 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
712 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
713 hooknum))
714 err = NF_DROP;
715 goto push;
716 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
717 skb->protocol == htons(ETH_P_IPV6)) {
718 __be16 frag_off;
719 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
720 int hdrlen = ipv6_skip_exthdr(skb,
721 sizeof(struct ipv6hdr),
722 &nexthdr, &frag_off);
723
724 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
725 if (!nf_nat_icmpv6_reply_translation(skb, ct,
726 ctinfo,
727 hooknum,
728 hdrlen))
729 err = NF_DROP;
730 goto push;
731 }
732 }
733 /* Non-ICMP, fall thru to initialize if needed. */
734 case IP_CT_NEW:
735 /* Seen it before? This can happen for loopback, retrans,
736 * or local packets.
737 */
738 if (!nf_nat_initialized(ct, maniptype)) {
739 /* Initialize according to the NAT action. */
740 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
741 /* Action is set up to establish a new
742 * mapping.
743 */
744 ? nf_nat_setup_info(ct, range, maniptype)
745 : nf_nat_alloc_null_binding(ct, hooknum);
746 if (err != NF_ACCEPT)
747 goto push;
748 }
749 break;
750
751 case IP_CT_ESTABLISHED:
752 case IP_CT_ESTABLISHED_REPLY:
753 break;
754
755 default:
756 err = NF_DROP;
757 goto push;
758 }
759
760 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
761 push:
762 skb_push(skb, nh_off);
763 skb_postpush_rcsum(skb, skb->data, nh_off);
764
765 return err;
766 }
767
768 static void ovs_nat_update_key(struct sw_flow_key *key,
769 const struct sk_buff *skb,
770 enum nf_nat_manip_type maniptype)
771 {
772 if (maniptype == NF_NAT_MANIP_SRC) {
773 __be16 src;
774
775 key->ct_state |= OVS_CS_F_SRC_NAT;
776 if (key->eth.type == htons(ETH_P_IP))
777 key->ipv4.addr.src = ip_hdr(skb)->saddr;
778 else if (key->eth.type == htons(ETH_P_IPV6))
779 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
780 sizeof(key->ipv6.addr.src));
781 else
782 return;
783
784 if (key->ip.proto == IPPROTO_UDP)
785 src = udp_hdr(skb)->source;
786 else if (key->ip.proto == IPPROTO_TCP)
787 src = tcp_hdr(skb)->source;
788 else if (key->ip.proto == IPPROTO_SCTP)
789 src = sctp_hdr(skb)->source;
790 else
791 return;
792
793 key->tp.src = src;
794 } else {
795 __be16 dst;
796
797 key->ct_state |= OVS_CS_F_DST_NAT;
798 if (key->eth.type == htons(ETH_P_IP))
799 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
800 else if (key->eth.type == htons(ETH_P_IPV6))
801 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
802 sizeof(key->ipv6.addr.dst));
803 else
804 return;
805
806 if (key->ip.proto == IPPROTO_UDP)
807 dst = udp_hdr(skb)->dest;
808 else if (key->ip.proto == IPPROTO_TCP)
809 dst = tcp_hdr(skb)->dest;
810 else if (key->ip.proto == IPPROTO_SCTP)
811 dst = sctp_hdr(skb)->dest;
812 else
813 return;
814
815 key->tp.dst = dst;
816 }
817 }
818
819 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
820 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
821 const struct ovs_conntrack_info *info,
822 struct sk_buff *skb, struct nf_conn *ct,
823 enum ip_conntrack_info ctinfo)
824 {
825 enum nf_nat_manip_type maniptype;
826 int err;
827
828 /* Add NAT extension if not confirmed yet. */
829 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
830 return NF_ACCEPT; /* Can't NAT. */
831
832 /* Determine NAT type.
833 * Check if the NAT type can be deduced from the tracked connection.
834 * Make sure new expected connections (IP_CT_RELATED) are NATted only
835 * when committing.
836 */
837 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
838 ct->status & IPS_NAT_MASK &&
839 (ctinfo != IP_CT_RELATED || info->commit)) {
840 /* NAT an established or related connection like before. */
841 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
842 /* This is the REPLY direction for a connection
843 * for which NAT was applied in the forward
844 * direction. Do the reverse NAT.
845 */
846 maniptype = ct->status & IPS_SRC_NAT
847 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
848 else
849 maniptype = ct->status & IPS_SRC_NAT
850 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
851 } else if (info->nat & OVS_CT_SRC_NAT) {
852 maniptype = NF_NAT_MANIP_SRC;
853 } else if (info->nat & OVS_CT_DST_NAT) {
854 maniptype = NF_NAT_MANIP_DST;
855 } else {
856 return NF_ACCEPT; /* Connection is not NATed. */
857 }
858 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
859
860 /* Mark NAT done if successful and update the flow key. */
861 if (err == NF_ACCEPT)
862 ovs_nat_update_key(key, skb, maniptype);
863
864 return err;
865 }
866 #else /* !CONFIG_NF_NAT_NEEDED */
867 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
868 const struct ovs_conntrack_info *info,
869 struct sk_buff *skb, struct nf_conn *ct,
870 enum ip_conntrack_info ctinfo)
871 {
872 return NF_ACCEPT;
873 }
874 #endif
875
876 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
877 * not done already. Update key with new CT state after passing the packet
878 * through conntrack.
879 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
880 * set to NULL and 0 will be returned.
881 */
882 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
883 const struct ovs_conntrack_info *info,
884 struct sk_buff *skb)
885 {
886 /* If we are recirculating packets to match on conntrack fields and
887 * committing with a separate conntrack action, then we don't need to
888 * actually run the packet through conntrack twice unless it's for a
889 * different zone.
890 */
891 bool cached = skb_nfct_cached(net, key, info, skb);
892 enum ip_conntrack_info ctinfo;
893 struct nf_conn *ct;
894
895 if (!cached) {
896 struct nf_conn *tmpl = info->ct;
897 int err;
898
899 /* Associate skb with specified zone. */
900 if (tmpl) {
901 if (skb_nfct(skb))
902 nf_conntrack_put(skb_nfct(skb));
903 nf_conntrack_get(&tmpl->ct_general);
904 nf_ct_set(skb, tmpl, IP_CT_NEW);
905 }
906
907 err = nf_conntrack_in(net, info->family,
908 NF_INET_PRE_ROUTING, skb);
909 if (err != NF_ACCEPT)
910 return -ENOENT;
911
912 /* Clear CT state NAT flags to mark that we have not yet done
913 * NAT after the nf_conntrack_in() call. We can actually clear
914 * the whole state, as it will be re-initialized below.
915 */
916 key->ct_state = 0;
917
918 /* Update the key, but keep the NAT flags. */
919 ovs_ct_update_key(skb, info, key, true, true);
920 }
921
922 ct = nf_ct_get(skb, &ctinfo);
923 if (ct) {
924 /* Packets starting a new connection must be NATted before the
925 * helper, so that the helper knows about the NAT. We enforce
926 * this by delaying both NAT and helper calls for unconfirmed
927 * connections until the committing CT action. For later
928 * packets NAT and Helper may be called in either order.
929 *
930 * NAT will be done only if the CT action has NAT, and only
931 * once per packet (per zone), as guarded by the NAT bits in
932 * the key->ct_state.
933 */
934 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
935 (nf_ct_is_confirmed(ct) || info->commit) &&
936 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
937 return -EINVAL;
938 }
939
940 /* Userspace may decide to perform a ct lookup without a helper
941 * specified followed by a (recirculate and) commit with one.
942 * Therefore, for unconfirmed connections which we will commit,
943 * we need to attach the helper here.
944 */
945 if (!nf_ct_is_confirmed(ct) && info->commit &&
946 info->helper && !nfct_help(ct)) {
947 int err = __nf_ct_try_assign_helper(ct, info->ct,
948 GFP_ATOMIC);
949 if (err)
950 return err;
951 }
952
953 /* Call the helper only if:
954 * - nf_conntrack_in() was executed above ("!cached") for a
955 * confirmed connection, or
956 * - When committing an unconfirmed connection.
957 */
958 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
959 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
960 return -EINVAL;
961 }
962 }
963
964 return 0;
965 }
966
967 /* Lookup connection and read fields into key. */
968 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
969 const struct ovs_conntrack_info *info,
970 struct sk_buff *skb)
971 {
972 struct nf_conntrack_expect *exp;
973
974 /* If we pass an expected packet through nf_conntrack_in() the
975 * expectation is typically removed, but the packet could still be
976 * lost in upcall processing. To prevent this from happening we
977 * perform an explicit expectation lookup. Expected connections are
978 * always new, and will be passed through conntrack only when they are
979 * committed, as it is OK to remove the expectation at that time.
980 */
981 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
982 if (exp) {
983 u8 state;
984
985 /* NOTE: New connections are NATted and Helped only when
986 * committed, so we are not calling into NAT here.
987 */
988 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
989 __ovs_ct_update_key(key, state, &info->zone, exp->master);
990 } else {
991 struct nf_conn *ct;
992 int err;
993
994 err = __ovs_ct_lookup(net, key, info, skb);
995 if (err)
996 return err;
997
998 ct = (struct nf_conn *)skb_nfct(skb);
999 if (ct)
1000 nf_ct_deliver_cached_events(ct);
1001 }
1002
1003 return 0;
1004 }
1005
1006 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
1007 {
1008 size_t i;
1009
1010 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
1011 if (labels->ct_labels_32[i])
1012 return true;
1013
1014 return false;
1015 }
1016
1017 /* Lookup connection and confirm if unconfirmed. */
1018 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
1019 const struct ovs_conntrack_info *info,
1020 struct sk_buff *skb)
1021 {
1022 enum ip_conntrack_info ctinfo;
1023 struct nf_conn *ct;
1024 int err;
1025
1026 err = __ovs_ct_lookup(net, key, info, skb);
1027 if (err)
1028 return err;
1029
1030 /* The connection could be invalid, in which case this is a no-op.*/
1031 ct = nf_ct_get(skb, &ctinfo);
1032 if (!ct)
1033 return 0;
1034
1035 /* Set the conntrack event mask if given. NEW and DELETE events have
1036 * their own groups, but the NFNLGRP_CONNTRACK_UPDATE group listener
1037 * typically would receive many kinds of updates. Setting the event
1038 * mask allows those events to be filtered. The set event mask will
1039 * remain in effect for the lifetime of the connection unless changed
1040 * by a further CT action with both the commit flag and the eventmask
1041 * option. */
1042 if (info->have_eventmask) {
1043 struct nf_conntrack_ecache *cache = nf_ct_ecache_find(ct);
1044
1045 if (cache)
1046 cache->ctmask = info->eventmask;
1047 }
1048
1049 /* Apply changes before confirming the connection so that the initial
1050 * conntrack NEW netlink event carries the values given in the CT
1051 * action.
1052 */
1053 if (info->mark.mask) {
1054 err = ovs_ct_set_mark(ct, key, info->mark.value,
1055 info->mark.mask);
1056 if (err)
1057 return err;
1058 }
1059 if (!nf_ct_is_confirmed(ct)) {
1060 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1061 &info->labels.mask);
1062 if (err)
1063 return err;
1064 } else if (labels_nonzero(&info->labels.mask)) {
1065 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1066 &info->labels.mask);
1067 if (err)
1068 return err;
1069 }
1070 /* This will take care of sending queued events even if the connection
1071 * is already confirmed.
1072 */
1073 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1074 return -EINVAL;
1075
1076 return 0;
1077 }
1078
1079 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1080 * value if 'skb' is freed.
1081 */
1082 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1083 struct sw_flow_key *key,
1084 const struct ovs_conntrack_info *info)
1085 {
1086 int nh_ofs;
1087 int err;
1088
1089 /* The conntrack module expects to be working at L3. */
1090 nh_ofs = skb_network_offset(skb);
1091 skb_pull_rcsum(skb, nh_ofs);
1092
1093 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1094 err = handle_fragments(net, key, info->zone.id, skb);
1095 if (err)
1096 return err;
1097 }
1098
1099 if (info->commit)
1100 err = ovs_ct_commit(net, key, info, skb);
1101 else
1102 err = ovs_ct_lookup(net, key, info, skb);
1103
1104 skb_push(skb, nh_ofs);
1105 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1106 if (err)
1107 kfree_skb(skb);
1108 return err;
1109 }
1110
1111 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1112 const struct sw_flow_key *key, bool log)
1113 {
1114 struct nf_conntrack_helper *helper;
1115 struct nf_conn_help *help;
1116
1117 helper = nf_conntrack_helper_try_module_get(name, info->family,
1118 key->ip.proto);
1119 if (!helper) {
1120 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1121 return -EINVAL;
1122 }
1123
1124 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1125 if (!help) {
1126 nf_conntrack_helper_put(helper);
1127 return -ENOMEM;
1128 }
1129
1130 rcu_assign_pointer(help->helper, helper);
1131 info->helper = helper;
1132 return 0;
1133 }
1134
1135 #ifdef CONFIG_NF_NAT_NEEDED
1136 static int parse_nat(const struct nlattr *attr,
1137 struct ovs_conntrack_info *info, bool log)
1138 {
1139 struct nlattr *a;
1140 int rem;
1141 bool have_ip_max = false;
1142 bool have_proto_max = false;
1143 bool ip_vers = (info->family == NFPROTO_IPV6);
1144
1145 nla_for_each_nested(a, attr, rem) {
1146 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1147 [OVS_NAT_ATTR_SRC] = {0, 0},
1148 [OVS_NAT_ATTR_DST] = {0, 0},
1149 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1150 sizeof(struct in6_addr)},
1151 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1152 sizeof(struct in6_addr)},
1153 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1154 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1155 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1156 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1157 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1158 };
1159 int type = nla_type(a);
1160
1161 if (type > OVS_NAT_ATTR_MAX) {
1162 OVS_NLERR(log,
1163 "Unknown NAT attribute (type=%d, max=%d).\n",
1164 type, OVS_NAT_ATTR_MAX);
1165 return -EINVAL;
1166 }
1167
1168 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1169 OVS_NLERR(log,
1170 "NAT attribute type %d has unexpected length (%d != %d).\n",
1171 type, nla_len(a),
1172 ovs_nat_attr_lens[type][ip_vers]);
1173 return -EINVAL;
1174 }
1175
1176 switch (type) {
1177 case OVS_NAT_ATTR_SRC:
1178 case OVS_NAT_ATTR_DST:
1179 if (info->nat) {
1180 OVS_NLERR(log,
1181 "Only one type of NAT may be specified.\n"
1182 );
1183 return -ERANGE;
1184 }
1185 info->nat |= OVS_CT_NAT;
1186 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1187 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1188 break;
1189
1190 case OVS_NAT_ATTR_IP_MIN:
1191 nla_memcpy(&info->range.min_addr, a,
1192 sizeof(info->range.min_addr));
1193 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1194 break;
1195
1196 case OVS_NAT_ATTR_IP_MAX:
1197 have_ip_max = true;
1198 nla_memcpy(&info->range.max_addr, a,
1199 sizeof(info->range.max_addr));
1200 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1201 break;
1202
1203 case OVS_NAT_ATTR_PROTO_MIN:
1204 info->range.min_proto.all = htons(nla_get_u16(a));
1205 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1206 break;
1207
1208 case OVS_NAT_ATTR_PROTO_MAX:
1209 have_proto_max = true;
1210 info->range.max_proto.all = htons(nla_get_u16(a));
1211 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1212 break;
1213
1214 case OVS_NAT_ATTR_PERSISTENT:
1215 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1216 break;
1217
1218 case OVS_NAT_ATTR_PROTO_HASH:
1219 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1220 break;
1221
1222 case OVS_NAT_ATTR_PROTO_RANDOM:
1223 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1224 break;
1225
1226 default:
1227 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1228 return -EINVAL;
1229 }
1230 }
1231
1232 if (rem > 0) {
1233 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1234 return -EINVAL;
1235 }
1236 if (!info->nat) {
1237 /* Do not allow flags if no type is given. */
1238 if (info->range.flags) {
1239 OVS_NLERR(log,
1240 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1241 );
1242 return -EINVAL;
1243 }
1244 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1245 } else if (!info->commit) {
1246 OVS_NLERR(log,
1247 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1248 );
1249 return -EINVAL;
1250 }
1251 /* Allow missing IP_MAX. */
1252 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1253 memcpy(&info->range.max_addr, &info->range.min_addr,
1254 sizeof(info->range.max_addr));
1255 }
1256 /* Allow missing PROTO_MAX. */
1257 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1258 !have_proto_max) {
1259 info->range.max_proto.all = info->range.min_proto.all;
1260 }
1261 return 0;
1262 }
1263 #endif
1264
1265 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1266 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1267 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1268 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1269 .maxlen = sizeof(u16) },
1270 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1271 .maxlen = sizeof(struct md_mark) },
1272 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1273 .maxlen = sizeof(struct md_labels) },
1274 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1275 .maxlen = NF_CT_HELPER_NAME_LEN },
1276 #ifdef CONFIG_NF_NAT_NEEDED
1277 /* NAT length is checked when parsing the nested attributes. */
1278 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1279 #endif
1280 [OVS_CT_ATTR_EVENTMASK] = { .minlen = sizeof(u32),
1281 .maxlen = sizeof(u32) },
1282 };
1283
1284 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1285 const char **helper, bool log)
1286 {
1287 struct nlattr *a;
1288 int rem;
1289
1290 nla_for_each_nested(a, attr, rem) {
1291 int type = nla_type(a);
1292 int maxlen = ovs_ct_attr_lens[type].maxlen;
1293 int minlen = ovs_ct_attr_lens[type].minlen;
1294
1295 if (type > OVS_CT_ATTR_MAX) {
1296 OVS_NLERR(log,
1297 "Unknown conntrack attr (type=%d, max=%d)",
1298 type, OVS_CT_ATTR_MAX);
1299 return -EINVAL;
1300 }
1301 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1302 OVS_NLERR(log,
1303 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1304 type, nla_len(a), maxlen);
1305 return -EINVAL;
1306 }
1307
1308 switch (type) {
1309 case OVS_CT_ATTR_FORCE_COMMIT:
1310 info->force = true;
1311 /* fall through. */
1312 case OVS_CT_ATTR_COMMIT:
1313 info->commit = true;
1314 break;
1315 #ifdef CONFIG_NF_CONNTRACK_ZONES
1316 case OVS_CT_ATTR_ZONE:
1317 info->zone.id = nla_get_u16(a);
1318 break;
1319 #endif
1320 #ifdef CONFIG_NF_CONNTRACK_MARK
1321 case OVS_CT_ATTR_MARK: {
1322 struct md_mark *mark = nla_data(a);
1323
1324 if (!mark->mask) {
1325 OVS_NLERR(log, "ct_mark mask cannot be 0");
1326 return -EINVAL;
1327 }
1328 info->mark = *mark;
1329 break;
1330 }
1331 #endif
1332 #ifdef CONFIG_NF_CONNTRACK_LABELS
1333 case OVS_CT_ATTR_LABELS: {
1334 struct md_labels *labels = nla_data(a);
1335
1336 if (!labels_nonzero(&labels->mask)) {
1337 OVS_NLERR(log, "ct_labels mask cannot be 0");
1338 return -EINVAL;
1339 }
1340 info->labels = *labels;
1341 break;
1342 }
1343 #endif
1344 case OVS_CT_ATTR_HELPER:
1345 *helper = nla_data(a);
1346 if (!memchr(*helper, '\0', nla_len(a))) {
1347 OVS_NLERR(log, "Invalid conntrack helper");
1348 return -EINVAL;
1349 }
1350 break;
1351 #ifdef CONFIG_NF_NAT_NEEDED
1352 case OVS_CT_ATTR_NAT: {
1353 int err = parse_nat(a, info, log);
1354
1355 if (err)
1356 return err;
1357 break;
1358 }
1359 #endif
1360 case OVS_CT_ATTR_EVENTMASK:
1361 info->have_eventmask = true;
1362 info->eventmask = nla_get_u32(a);
1363 break;
1364
1365 default:
1366 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1367 type);
1368 return -EINVAL;
1369 }
1370 }
1371
1372 #ifdef CONFIG_NF_CONNTRACK_MARK
1373 if (!info->commit && info->mark.mask) {
1374 OVS_NLERR(log,
1375 "Setting conntrack mark requires 'commit' flag.");
1376 return -EINVAL;
1377 }
1378 #endif
1379 #ifdef CONFIG_NF_CONNTRACK_LABELS
1380 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1381 OVS_NLERR(log,
1382 "Setting conntrack labels requires 'commit' flag.");
1383 return -EINVAL;
1384 }
1385 #endif
1386 if (rem > 0) {
1387 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1388 return -EINVAL;
1389 }
1390
1391 return 0;
1392 }
1393
1394 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1395 {
1396 if (attr == OVS_KEY_ATTR_CT_STATE)
1397 return true;
1398 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1399 attr == OVS_KEY_ATTR_CT_ZONE)
1400 return true;
1401 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1402 attr == OVS_KEY_ATTR_CT_MARK)
1403 return true;
1404 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1405 attr == OVS_KEY_ATTR_CT_LABELS) {
1406 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1407
1408 return ovs_net->xt_label;
1409 }
1410
1411 return false;
1412 }
1413
1414 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1415 const struct sw_flow_key *key,
1416 struct sw_flow_actions **sfa, bool log)
1417 {
1418 struct ovs_conntrack_info ct_info;
1419 const char *helper = NULL;
1420 u16 family;
1421 int err;
1422
1423 family = key_to_nfproto(key);
1424 if (family == NFPROTO_UNSPEC) {
1425 OVS_NLERR(log, "ct family unspecified");
1426 return -EINVAL;
1427 }
1428
1429 memset(&ct_info, 0, sizeof(ct_info));
1430 ct_info.family = family;
1431
1432 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1433 NF_CT_DEFAULT_ZONE_DIR, 0);
1434
1435 err = parse_ct(attr, &ct_info, &helper, log);
1436 if (err)
1437 return err;
1438
1439 /* Set up template for tracking connections in specific zones. */
1440 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1441 if (!ct_info.ct) {
1442 OVS_NLERR(log, "Failed to allocate conntrack template");
1443 return -ENOMEM;
1444 }
1445
1446 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1447 nf_conntrack_get(&ct_info.ct->ct_general);
1448
1449 if (helper) {
1450 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1451 if (err)
1452 goto err_free_ct;
1453 }
1454
1455 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1456 sizeof(ct_info), log);
1457 if (err)
1458 goto err_free_ct;
1459
1460 return 0;
1461 err_free_ct:
1462 __ovs_ct_free_action(&ct_info);
1463 return err;
1464 }
1465
1466 #ifdef CONFIG_NF_NAT_NEEDED
1467 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1468 struct sk_buff *skb)
1469 {
1470 struct nlattr *start;
1471
1472 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1473 if (!start)
1474 return false;
1475
1476 if (info->nat & OVS_CT_SRC_NAT) {
1477 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1478 return false;
1479 } else if (info->nat & OVS_CT_DST_NAT) {
1480 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1481 return false;
1482 } else {
1483 goto out;
1484 }
1485
1486 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1487 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1488 info->family == NFPROTO_IPV4) {
1489 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1490 info->range.min_addr.ip) ||
1491 (info->range.max_addr.ip
1492 != info->range.min_addr.ip &&
1493 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1494 info->range.max_addr.ip))))
1495 return false;
1496 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1497 info->family == NFPROTO_IPV6) {
1498 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1499 &info->range.min_addr.in6) ||
1500 (memcmp(&info->range.max_addr.in6,
1501 &info->range.min_addr.in6,
1502 sizeof(info->range.max_addr.in6)) &&
1503 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1504 &info->range.max_addr.in6))))
1505 return false;
1506 } else {
1507 return false;
1508 }
1509 }
1510 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1511 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1512 ntohs(info->range.min_proto.all)) ||
1513 (info->range.max_proto.all != info->range.min_proto.all &&
1514 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1515 ntohs(info->range.max_proto.all)))))
1516 return false;
1517
1518 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1519 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1520 return false;
1521 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1522 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1523 return false;
1524 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1525 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1526 return false;
1527 out:
1528 nla_nest_end(skb, start);
1529
1530 return true;
1531 }
1532 #endif
1533
1534 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1535 struct sk_buff *skb)
1536 {
1537 struct nlattr *start;
1538
1539 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1540 if (!start)
1541 return -EMSGSIZE;
1542
1543 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1544 ? OVS_CT_ATTR_FORCE_COMMIT
1545 : OVS_CT_ATTR_COMMIT))
1546 return -EMSGSIZE;
1547 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1548 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1549 return -EMSGSIZE;
1550 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1551 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1552 &ct_info->mark))
1553 return -EMSGSIZE;
1554 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1555 labels_nonzero(&ct_info->labels.mask) &&
1556 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1557 &ct_info->labels))
1558 return -EMSGSIZE;
1559 if (ct_info->helper) {
1560 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1561 ct_info->helper->name))
1562 return -EMSGSIZE;
1563 }
1564 if (ct_info->have_eventmask &&
1565 nla_put_u32(skb, OVS_CT_ATTR_EVENTMASK, ct_info->eventmask))
1566 return -EMSGSIZE;
1567
1568 #ifdef CONFIG_NF_NAT_NEEDED
1569 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1570 return -EMSGSIZE;
1571 #endif
1572 nla_nest_end(skb, start);
1573
1574 return 0;
1575 }
1576
1577 void ovs_ct_free_action(const struct nlattr *a)
1578 {
1579 struct ovs_conntrack_info *ct_info = nla_data(a);
1580
1581 __ovs_ct_free_action(ct_info);
1582 }
1583
1584 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1585 {
1586 if (ct_info->helper)
1587 nf_conntrack_helper_put(ct_info->helper);
1588 if (ct_info->ct)
1589 nf_ct_tmpl_free(ct_info->ct);
1590 }
1591
1592 void ovs_ct_init(struct net *net)
1593 {
1594 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1595 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1596
1597 if (nf_connlabels_get(net, n_bits - 1)) {
1598 ovs_net->xt_label = false;
1599 OVS_NLERR(true, "Failed to set connlabel length");
1600 } else {
1601 ovs_net->xt_label = true;
1602 }
1603 }
1604
1605 void ovs_ct_exit(struct net *net)
1606 {
1607 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1608
1609 if (ovs_net->xt_label)
1610 nf_connlabels_put(net);
1611 }