]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/openvswitch/conntrack.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-kernels.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71 #ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75
76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78 static u16 key_to_nfproto(const struct sw_flow_key *key)
79 {
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88 }
89
90 /* Map SKB connection state into the values used by flow definition. */
91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92 {
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121 }
122
123 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124 {
125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127 #else
128 return 0;
129 #endif
130 }
131
132 static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134 {
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = cl->words * sizeof(long);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148 }
149
150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153 {
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158 }
159
160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165 static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169 {
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201 }
202
203 /* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207 {
208 ovs_ct_update_key(skb, NULL, key, false, false);
209 }
210
211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212 {
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230 }
231
232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234 {
235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253 #else
254 return -ENOTSUPP;
255 #endif
256 }
257
258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261 {
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287 }
288
289 /* 'skb' should already be pulled to nh_ofs. */
290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291 {
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346 }
347
348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351 static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353 {
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
371 err = nf_ct_frag6_gather(net, skb, user);
372 if (err)
373 return err;
374
375 key->ip.proto = ipv6_hdr(skb)->nexthdr;
376 ovs_cb.mru = IP6CB(skb)->frag_max_size;
377 #endif
378 } else {
379 kfree_skb(skb);
380 return -EPFNOSUPPORT;
381 }
382
383 key->ip.frag = OVS_FRAG_TYPE_NONE;
384 skb_clear_hash(skb);
385 skb->ignore_df = 1;
386 *OVS_CB(skb) = ovs_cb;
387
388 return 0;
389 }
390
391 static struct nf_conntrack_expect *
392 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
393 u16 proto, const struct sk_buff *skb)
394 {
395 struct nf_conntrack_tuple tuple;
396
397 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
398 return NULL;
399 return __nf_ct_expect_find(net, zone, &tuple);
400 }
401
402 /* This replicates logic from nf_conntrack_core.c that is not exported. */
403 static enum ip_conntrack_info
404 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
405 {
406 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
407
408 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
409 return IP_CT_ESTABLISHED_REPLY;
410 /* Once we've had two way comms, always ESTABLISHED. */
411 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
412 return IP_CT_ESTABLISHED;
413 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
414 return IP_CT_RELATED;
415 return IP_CT_NEW;
416 }
417
418 /* Find an existing connection which this packet belongs to without
419 * re-attributing statistics or modifying the connection state. This allows an
420 * skb->nfct lost due to an upcall to be recovered during actions execution.
421 *
422 * Must be called with rcu_read_lock.
423 *
424 * On success, populates skb->nfct and skb->nfctinfo, and returns the
425 * connection. Returns NULL if there is no existing entry.
426 */
427 static struct nf_conn *
428 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
429 u8 l3num, struct sk_buff *skb)
430 {
431 struct nf_conntrack_l3proto *l3proto;
432 struct nf_conntrack_l4proto *l4proto;
433 struct nf_conntrack_tuple tuple;
434 struct nf_conntrack_tuple_hash *h;
435 enum ip_conntrack_info ctinfo;
436 struct nf_conn *ct;
437 unsigned int dataoff;
438 u8 protonum;
439
440 l3proto = __nf_ct_l3proto_find(l3num);
441 if (!l3proto) {
442 pr_debug("ovs_ct_find_existing: Can't get l3proto\n");
443 return NULL;
444 }
445 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
446 &protonum) <= 0) {
447 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
448 return NULL;
449 }
450 l4proto = __nf_ct_l4proto_find(l3num, protonum);
451 if (!l4proto) {
452 pr_debug("ovs_ct_find_existing: Can't get l4proto\n");
453 return NULL;
454 }
455 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
456 protonum, net, &tuple, l3proto, l4proto)) {
457 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
458 return NULL;
459 }
460
461 /* look for tuple match */
462 h = nf_conntrack_find_get(net, zone, &tuple);
463 if (!h)
464 return NULL; /* Not found. */
465
466 ct = nf_ct_tuplehash_to_ctrack(h);
467
468 ctinfo = ovs_ct_get_info(h);
469 if (ctinfo == IP_CT_NEW) {
470 /* This should not happen. */
471 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct);
472 }
473 skb->nfct = &ct->ct_general;
474 skb->nfctinfo = ctinfo;
475 return ct;
476 }
477
478 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */
479 static bool skb_nfct_cached(struct net *net,
480 const struct sw_flow_key *key,
481 const struct ovs_conntrack_info *info,
482 struct sk_buff *skb)
483 {
484 enum ip_conntrack_info ctinfo;
485 struct nf_conn *ct;
486
487 ct = nf_ct_get(skb, &ctinfo);
488 /* If no ct, check if we have evidence that an existing conntrack entry
489 * might be found for this skb. This happens when we lose a skb->nfct
490 * due to an upcall. If the connection was not confirmed, it is not
491 * cached and needs to be run through conntrack again.
492 */
493 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
494 !(key->ct.state & OVS_CS_F_INVALID) &&
495 key->ct.zone == info->zone.id)
496 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
497 if (!ct)
498 return false;
499 if (!net_eq(net, read_pnet(&ct->ct_net)))
500 return false;
501 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
502 return false;
503 if (info->helper) {
504 struct nf_conn_help *help;
505
506 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
507 if (help && rcu_access_pointer(help->helper) != info->helper)
508 return false;
509 }
510
511 return true;
512 }
513
514 #ifdef CONFIG_NF_NAT_NEEDED
515 /* Modelled after nf_nat_ipv[46]_fn().
516 * range is only used for new, uninitialized NAT state.
517 * Returns either NF_ACCEPT or NF_DROP.
518 */
519 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
520 enum ip_conntrack_info ctinfo,
521 const struct nf_nat_range *range,
522 enum nf_nat_manip_type maniptype)
523 {
524 int hooknum, nh_off, err = NF_ACCEPT;
525
526 nh_off = skb_network_offset(skb);
527 skb_pull(skb, nh_off);
528
529 /* See HOOK2MANIP(). */
530 if (maniptype == NF_NAT_MANIP_SRC)
531 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
532 else
533 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
534
535 switch (ctinfo) {
536 case IP_CT_RELATED:
537 case IP_CT_RELATED_REPLY:
538 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
539 skb->protocol == htons(ETH_P_IP) &&
540 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
541 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
542 hooknum))
543 err = NF_DROP;
544 goto push;
545 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
546 skb->protocol == htons(ETH_P_IPV6)) {
547 __be16 frag_off;
548 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
549 int hdrlen = ipv6_skip_exthdr(skb,
550 sizeof(struct ipv6hdr),
551 &nexthdr, &frag_off);
552
553 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
554 if (!nf_nat_icmpv6_reply_translation(skb, ct,
555 ctinfo,
556 hooknum,
557 hdrlen))
558 err = NF_DROP;
559 goto push;
560 }
561 }
562 /* Non-ICMP, fall thru to initialize if needed. */
563 case IP_CT_NEW:
564 /* Seen it before? This can happen for loopback, retrans,
565 * or local packets.
566 */
567 if (!nf_nat_initialized(ct, maniptype)) {
568 /* Initialize according to the NAT action. */
569 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
570 /* Action is set up to establish a new
571 * mapping.
572 */
573 ? nf_nat_setup_info(ct, range, maniptype)
574 : nf_nat_alloc_null_binding(ct, hooknum);
575 if (err != NF_ACCEPT)
576 goto push;
577 }
578 break;
579
580 case IP_CT_ESTABLISHED:
581 case IP_CT_ESTABLISHED_REPLY:
582 break;
583
584 default:
585 err = NF_DROP;
586 goto push;
587 }
588
589 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
590 push:
591 skb_push(skb, nh_off);
592
593 return err;
594 }
595
596 static void ovs_nat_update_key(struct sw_flow_key *key,
597 const struct sk_buff *skb,
598 enum nf_nat_manip_type maniptype)
599 {
600 if (maniptype == NF_NAT_MANIP_SRC) {
601 __be16 src;
602
603 key->ct.state |= OVS_CS_F_SRC_NAT;
604 if (key->eth.type == htons(ETH_P_IP))
605 key->ipv4.addr.src = ip_hdr(skb)->saddr;
606 else if (key->eth.type == htons(ETH_P_IPV6))
607 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
608 sizeof(key->ipv6.addr.src));
609 else
610 return;
611
612 if (key->ip.proto == IPPROTO_UDP)
613 src = udp_hdr(skb)->source;
614 else if (key->ip.proto == IPPROTO_TCP)
615 src = tcp_hdr(skb)->source;
616 else if (key->ip.proto == IPPROTO_SCTP)
617 src = sctp_hdr(skb)->source;
618 else
619 return;
620
621 key->tp.src = src;
622 } else {
623 __be16 dst;
624
625 key->ct.state |= OVS_CS_F_DST_NAT;
626 if (key->eth.type == htons(ETH_P_IP))
627 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
628 else if (key->eth.type == htons(ETH_P_IPV6))
629 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
630 sizeof(key->ipv6.addr.dst));
631 else
632 return;
633
634 if (key->ip.proto == IPPROTO_UDP)
635 dst = udp_hdr(skb)->dest;
636 else if (key->ip.proto == IPPROTO_TCP)
637 dst = tcp_hdr(skb)->dest;
638 else if (key->ip.proto == IPPROTO_SCTP)
639 dst = sctp_hdr(skb)->dest;
640 else
641 return;
642
643 key->tp.dst = dst;
644 }
645 }
646
647 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
648 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
649 const struct ovs_conntrack_info *info,
650 struct sk_buff *skb, struct nf_conn *ct,
651 enum ip_conntrack_info ctinfo)
652 {
653 enum nf_nat_manip_type maniptype;
654 int err;
655
656 if (nf_ct_is_untracked(ct)) {
657 /* A NAT action may only be performed on tracked packets. */
658 return NF_ACCEPT;
659 }
660
661 /* Add NAT extension if not confirmed yet. */
662 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
663 return NF_ACCEPT; /* Can't NAT. */
664
665 /* Determine NAT type.
666 * Check if the NAT type can be deduced from the tracked connection.
667 * Make sure new expected connections (IP_CT_RELATED) are NATted only
668 * when committing.
669 */
670 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
671 ct->status & IPS_NAT_MASK &&
672 (ctinfo != IP_CT_RELATED || info->commit)) {
673 /* NAT an established or related connection like before. */
674 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
675 /* This is the REPLY direction for a connection
676 * for which NAT was applied in the forward
677 * direction. Do the reverse NAT.
678 */
679 maniptype = ct->status & IPS_SRC_NAT
680 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
681 else
682 maniptype = ct->status & IPS_SRC_NAT
683 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
684 } else if (info->nat & OVS_CT_SRC_NAT) {
685 maniptype = NF_NAT_MANIP_SRC;
686 } else if (info->nat & OVS_CT_DST_NAT) {
687 maniptype = NF_NAT_MANIP_DST;
688 } else {
689 return NF_ACCEPT; /* Connection is not NATed. */
690 }
691 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
692
693 /* Mark NAT done if successful and update the flow key. */
694 if (err == NF_ACCEPT)
695 ovs_nat_update_key(key, skb, maniptype);
696
697 return err;
698 }
699 #else /* !CONFIG_NF_NAT_NEEDED */
700 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
701 const struct ovs_conntrack_info *info,
702 struct sk_buff *skb, struct nf_conn *ct,
703 enum ip_conntrack_info ctinfo)
704 {
705 return NF_ACCEPT;
706 }
707 #endif
708
709 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
710 * not done already. Update key with new CT state after passing the packet
711 * through conntrack.
712 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
713 * set to NULL and 0 will be returned.
714 */
715 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
716 const struct ovs_conntrack_info *info,
717 struct sk_buff *skb)
718 {
719 /* If we are recirculating packets to match on conntrack fields and
720 * committing with a separate conntrack action, then we don't need to
721 * actually run the packet through conntrack twice unless it's for a
722 * different zone.
723 */
724 bool cached = skb_nfct_cached(net, key, info, skb);
725 enum ip_conntrack_info ctinfo;
726 struct nf_conn *ct;
727
728 if (!cached) {
729 struct nf_conn *tmpl = info->ct;
730 int err;
731
732 /* Associate skb with specified zone. */
733 if (tmpl) {
734 if (skb->nfct)
735 nf_conntrack_put(skb->nfct);
736 nf_conntrack_get(&tmpl->ct_general);
737 skb->nfct = &tmpl->ct_general;
738 skb->nfctinfo = IP_CT_NEW;
739 }
740
741 /* Repeat if requested, see nf_iterate(). */
742 do {
743 err = nf_conntrack_in(net, info->family,
744 NF_INET_PRE_ROUTING, skb);
745 } while (err == NF_REPEAT);
746
747 if (err != NF_ACCEPT)
748 return -ENOENT;
749
750 /* Clear CT state NAT flags to mark that we have not yet done
751 * NAT after the nf_conntrack_in() call. We can actually clear
752 * the whole state, as it will be re-initialized below.
753 */
754 key->ct.state = 0;
755
756 /* Update the key, but keep the NAT flags. */
757 ovs_ct_update_key(skb, info, key, true, true);
758 }
759
760 ct = nf_ct_get(skb, &ctinfo);
761 if (ct) {
762 /* Packets starting a new connection must be NATted before the
763 * helper, so that the helper knows about the NAT. We enforce
764 * this by delaying both NAT and helper calls for unconfirmed
765 * connections until the committing CT action. For later
766 * packets NAT and Helper may be called in either order.
767 *
768 * NAT will be done only if the CT action has NAT, and only
769 * once per packet (per zone), as guarded by the NAT bits in
770 * the key->ct.state.
771 */
772 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
773 (nf_ct_is_confirmed(ct) || info->commit) &&
774 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
775 return -EINVAL;
776 }
777
778 /* Call the helper only if:
779 * - nf_conntrack_in() was executed above ("!cached") for a
780 * confirmed connection, or
781 * - When committing an unconfirmed connection.
782 */
783 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
784 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
785 return -EINVAL;
786 }
787 }
788
789 return 0;
790 }
791
792 /* Lookup connection and read fields into key. */
793 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
794 const struct ovs_conntrack_info *info,
795 struct sk_buff *skb)
796 {
797 struct nf_conntrack_expect *exp;
798
799 /* If we pass an expected packet through nf_conntrack_in() the
800 * expectation is typically removed, but the packet could still be
801 * lost in upcall processing. To prevent this from happening we
802 * perform an explicit expectation lookup. Expected connections are
803 * always new, and will be passed through conntrack only when they are
804 * committed, as it is OK to remove the expectation at that time.
805 */
806 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
807 if (exp) {
808 u8 state;
809
810 /* NOTE: New connections are NATted and Helped only when
811 * committed, so we are not calling into NAT here.
812 */
813 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
814 __ovs_ct_update_key(key, state, &info->zone, exp->master);
815 } else
816 return __ovs_ct_lookup(net, key, info, skb);
817
818 return 0;
819 }
820
821 /* Lookup connection and confirm if unconfirmed. */
822 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
823 const struct ovs_conntrack_info *info,
824 struct sk_buff *skb)
825 {
826 int err;
827
828 err = __ovs_ct_lookup(net, key, info, skb);
829 if (err)
830 return err;
831 /* This is a no-op if the connection has already been confirmed. */
832 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
833 return -EINVAL;
834
835 return 0;
836 }
837
838 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
839 {
840 size_t i;
841
842 for (i = 0; i < sizeof(*labels); i++)
843 if (labels->ct_labels[i])
844 return true;
845
846 return false;
847 }
848
849 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
850 * value if 'skb' is freed.
851 */
852 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
853 struct sw_flow_key *key,
854 const struct ovs_conntrack_info *info)
855 {
856 int nh_ofs;
857 int err;
858
859 /* The conntrack module expects to be working at L3. */
860 nh_ofs = skb_network_offset(skb);
861 skb_pull(skb, nh_ofs);
862
863 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
864 err = handle_fragments(net, key, info->zone.id, skb);
865 if (err)
866 return err;
867 }
868
869 if (info->commit)
870 err = ovs_ct_commit(net, key, info, skb);
871 else
872 err = ovs_ct_lookup(net, key, info, skb);
873 if (err)
874 goto err;
875
876 if (info->mark.mask) {
877 err = ovs_ct_set_mark(skb, key, info->mark.value,
878 info->mark.mask);
879 if (err)
880 goto err;
881 }
882 if (labels_nonzero(&info->labels.mask))
883 err = ovs_ct_set_labels(skb, key, &info->labels.value,
884 &info->labels.mask);
885 err:
886 skb_push(skb, nh_ofs);
887 if (err)
888 kfree_skb(skb);
889 return err;
890 }
891
892 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
893 const struct sw_flow_key *key, bool log)
894 {
895 struct nf_conntrack_helper *helper;
896 struct nf_conn_help *help;
897
898 helper = nf_conntrack_helper_try_module_get(name, info->family,
899 key->ip.proto);
900 if (!helper) {
901 OVS_NLERR(log, "Unknown helper \"%s\"", name);
902 return -EINVAL;
903 }
904
905 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
906 if (!help) {
907 module_put(helper->me);
908 return -ENOMEM;
909 }
910
911 rcu_assign_pointer(help->helper, helper);
912 info->helper = helper;
913 return 0;
914 }
915
916 #ifdef CONFIG_NF_NAT_NEEDED
917 static int parse_nat(const struct nlattr *attr,
918 struct ovs_conntrack_info *info, bool log)
919 {
920 struct nlattr *a;
921 int rem;
922 bool have_ip_max = false;
923 bool have_proto_max = false;
924 bool ip_vers = (info->family == NFPROTO_IPV6);
925
926 nla_for_each_nested(a, attr, rem) {
927 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
928 [OVS_NAT_ATTR_SRC] = {0, 0},
929 [OVS_NAT_ATTR_DST] = {0, 0},
930 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
931 sizeof(struct in6_addr)},
932 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
933 sizeof(struct in6_addr)},
934 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
935 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
936 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
937 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
938 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
939 };
940 int type = nla_type(a);
941
942 if (type > OVS_NAT_ATTR_MAX) {
943 OVS_NLERR(log,
944 "Unknown NAT attribute (type=%d, max=%d).\n",
945 type, OVS_NAT_ATTR_MAX);
946 return -EINVAL;
947 }
948
949 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
950 OVS_NLERR(log,
951 "NAT attribute type %d has unexpected length (%d != %d).\n",
952 type, nla_len(a),
953 ovs_nat_attr_lens[type][ip_vers]);
954 return -EINVAL;
955 }
956
957 switch (type) {
958 case OVS_NAT_ATTR_SRC:
959 case OVS_NAT_ATTR_DST:
960 if (info->nat) {
961 OVS_NLERR(log,
962 "Only one type of NAT may be specified.\n"
963 );
964 return -ERANGE;
965 }
966 info->nat |= OVS_CT_NAT;
967 info->nat |= ((type == OVS_NAT_ATTR_SRC)
968 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
969 break;
970
971 case OVS_NAT_ATTR_IP_MIN:
972 nla_memcpy(&info->range.min_addr, a,
973 sizeof(info->range.min_addr));
974 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
975 break;
976
977 case OVS_NAT_ATTR_IP_MAX:
978 have_ip_max = true;
979 nla_memcpy(&info->range.max_addr, a,
980 sizeof(info->range.max_addr));
981 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
982 break;
983
984 case OVS_NAT_ATTR_PROTO_MIN:
985 info->range.min_proto.all = htons(nla_get_u16(a));
986 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
987 break;
988
989 case OVS_NAT_ATTR_PROTO_MAX:
990 have_proto_max = true;
991 info->range.max_proto.all = htons(nla_get_u16(a));
992 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
993 break;
994
995 case OVS_NAT_ATTR_PERSISTENT:
996 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
997 break;
998
999 case OVS_NAT_ATTR_PROTO_HASH:
1000 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1001 break;
1002
1003 case OVS_NAT_ATTR_PROTO_RANDOM:
1004 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1005 break;
1006
1007 default:
1008 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1009 return -EINVAL;
1010 }
1011 }
1012
1013 if (rem > 0) {
1014 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1015 return -EINVAL;
1016 }
1017 if (!info->nat) {
1018 /* Do not allow flags if no type is given. */
1019 if (info->range.flags) {
1020 OVS_NLERR(log,
1021 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1022 );
1023 return -EINVAL;
1024 }
1025 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1026 } else if (!info->commit) {
1027 OVS_NLERR(log,
1028 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1029 );
1030 return -EINVAL;
1031 }
1032 /* Allow missing IP_MAX. */
1033 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1034 memcpy(&info->range.max_addr, &info->range.min_addr,
1035 sizeof(info->range.max_addr));
1036 }
1037 /* Allow missing PROTO_MAX. */
1038 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1039 !have_proto_max) {
1040 info->range.max_proto.all = info->range.min_proto.all;
1041 }
1042 return 0;
1043 }
1044 #endif
1045
1046 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1047 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1048 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1049 .maxlen = sizeof(u16) },
1050 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1051 .maxlen = sizeof(struct md_mark) },
1052 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1053 .maxlen = sizeof(struct md_labels) },
1054 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1055 .maxlen = NF_CT_HELPER_NAME_LEN },
1056 #ifdef CONFIG_NF_NAT_NEEDED
1057 /* NAT length is checked when parsing the nested attributes. */
1058 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1059 #endif
1060 };
1061
1062 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1063 const char **helper, bool log)
1064 {
1065 struct nlattr *a;
1066 int rem;
1067
1068 nla_for_each_nested(a, attr, rem) {
1069 int type = nla_type(a);
1070 int maxlen = ovs_ct_attr_lens[type].maxlen;
1071 int minlen = ovs_ct_attr_lens[type].minlen;
1072
1073 if (type > OVS_CT_ATTR_MAX) {
1074 OVS_NLERR(log,
1075 "Unknown conntrack attr (type=%d, max=%d)",
1076 type, OVS_CT_ATTR_MAX);
1077 return -EINVAL;
1078 }
1079 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1080 OVS_NLERR(log,
1081 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1082 type, nla_len(a), maxlen);
1083 return -EINVAL;
1084 }
1085
1086 switch (type) {
1087 case OVS_CT_ATTR_COMMIT:
1088 info->commit = true;
1089 break;
1090 #ifdef CONFIG_NF_CONNTRACK_ZONES
1091 case OVS_CT_ATTR_ZONE:
1092 info->zone.id = nla_get_u16(a);
1093 break;
1094 #endif
1095 #ifdef CONFIG_NF_CONNTRACK_MARK
1096 case OVS_CT_ATTR_MARK: {
1097 struct md_mark *mark = nla_data(a);
1098
1099 if (!mark->mask) {
1100 OVS_NLERR(log, "ct_mark mask cannot be 0");
1101 return -EINVAL;
1102 }
1103 info->mark = *mark;
1104 break;
1105 }
1106 #endif
1107 #ifdef CONFIG_NF_CONNTRACK_LABELS
1108 case OVS_CT_ATTR_LABELS: {
1109 struct md_labels *labels = nla_data(a);
1110
1111 if (!labels_nonzero(&labels->mask)) {
1112 OVS_NLERR(log, "ct_labels mask cannot be 0");
1113 return -EINVAL;
1114 }
1115 info->labels = *labels;
1116 break;
1117 }
1118 #endif
1119 case OVS_CT_ATTR_HELPER:
1120 *helper = nla_data(a);
1121 if (!memchr(*helper, '\0', nla_len(a))) {
1122 OVS_NLERR(log, "Invalid conntrack helper");
1123 return -EINVAL;
1124 }
1125 break;
1126 #ifdef CONFIG_NF_NAT_NEEDED
1127 case OVS_CT_ATTR_NAT: {
1128 int err = parse_nat(a, info, log);
1129
1130 if (err)
1131 return err;
1132 break;
1133 }
1134 #endif
1135 default:
1136 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1137 type);
1138 return -EINVAL;
1139 }
1140 }
1141
1142 if (rem > 0) {
1143 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1144 return -EINVAL;
1145 }
1146
1147 return 0;
1148 }
1149
1150 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1151 {
1152 if (attr == OVS_KEY_ATTR_CT_STATE)
1153 return true;
1154 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1155 attr == OVS_KEY_ATTR_CT_ZONE)
1156 return true;
1157 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1158 attr == OVS_KEY_ATTR_CT_MARK)
1159 return true;
1160 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1161 attr == OVS_KEY_ATTR_CT_LABELS) {
1162 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1163
1164 return ovs_net->xt_label;
1165 }
1166
1167 return false;
1168 }
1169
1170 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1171 const struct sw_flow_key *key,
1172 struct sw_flow_actions **sfa, bool log)
1173 {
1174 struct ovs_conntrack_info ct_info;
1175 const char *helper = NULL;
1176 u16 family;
1177 int err;
1178
1179 family = key_to_nfproto(key);
1180 if (family == NFPROTO_UNSPEC) {
1181 OVS_NLERR(log, "ct family unspecified");
1182 return -EINVAL;
1183 }
1184
1185 memset(&ct_info, 0, sizeof(ct_info));
1186 ct_info.family = family;
1187
1188 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1189 NF_CT_DEFAULT_ZONE_DIR, 0);
1190
1191 err = parse_ct(attr, &ct_info, &helper, log);
1192 if (err)
1193 return err;
1194
1195 /* Set up template for tracking connections in specific zones. */
1196 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1197 if (!ct_info.ct) {
1198 OVS_NLERR(log, "Failed to allocate conntrack template");
1199 return -ENOMEM;
1200 }
1201
1202 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1203 nf_conntrack_get(&ct_info.ct->ct_general);
1204
1205 if (helper) {
1206 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1207 if (err)
1208 goto err_free_ct;
1209 }
1210
1211 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1212 sizeof(ct_info), log);
1213 if (err)
1214 goto err_free_ct;
1215
1216 return 0;
1217 err_free_ct:
1218 __ovs_ct_free_action(&ct_info);
1219 return err;
1220 }
1221
1222 #ifdef CONFIG_NF_NAT_NEEDED
1223 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1224 struct sk_buff *skb)
1225 {
1226 struct nlattr *start;
1227
1228 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1229 if (!start)
1230 return false;
1231
1232 if (info->nat & OVS_CT_SRC_NAT) {
1233 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1234 return false;
1235 } else if (info->nat & OVS_CT_DST_NAT) {
1236 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1237 return false;
1238 } else {
1239 goto out;
1240 }
1241
1242 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1243 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1244 info->family == NFPROTO_IPV4) {
1245 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1246 info->range.min_addr.ip) ||
1247 (info->range.max_addr.ip
1248 != info->range.min_addr.ip &&
1249 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1250 info->range.max_addr.ip))))
1251 return false;
1252 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1253 info->family == NFPROTO_IPV6) {
1254 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1255 &info->range.min_addr.in6) ||
1256 (memcmp(&info->range.max_addr.in6,
1257 &info->range.min_addr.in6,
1258 sizeof(info->range.max_addr.in6)) &&
1259 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1260 &info->range.max_addr.in6))))
1261 return false;
1262 } else {
1263 return false;
1264 }
1265 }
1266 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1267 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1268 ntohs(info->range.min_proto.all)) ||
1269 (info->range.max_proto.all != info->range.min_proto.all &&
1270 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1271 ntohs(info->range.max_proto.all)))))
1272 return false;
1273
1274 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1275 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1276 return false;
1277 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1278 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1279 return false;
1280 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1281 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1282 return false;
1283 out:
1284 nla_nest_end(skb, start);
1285
1286 return true;
1287 }
1288 #endif
1289
1290 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1291 struct sk_buff *skb)
1292 {
1293 struct nlattr *start;
1294
1295 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1296 if (!start)
1297 return -EMSGSIZE;
1298
1299 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1300 return -EMSGSIZE;
1301 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1302 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1303 return -EMSGSIZE;
1304 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1305 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1306 &ct_info->mark))
1307 return -EMSGSIZE;
1308 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1309 labels_nonzero(&ct_info->labels.mask) &&
1310 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1311 &ct_info->labels))
1312 return -EMSGSIZE;
1313 if (ct_info->helper) {
1314 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1315 ct_info->helper->name))
1316 return -EMSGSIZE;
1317 }
1318 #ifdef CONFIG_NF_NAT_NEEDED
1319 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1320 return -EMSGSIZE;
1321 #endif
1322 nla_nest_end(skb, start);
1323
1324 return 0;
1325 }
1326
1327 void ovs_ct_free_action(const struct nlattr *a)
1328 {
1329 struct ovs_conntrack_info *ct_info = nla_data(a);
1330
1331 __ovs_ct_free_action(ct_info);
1332 }
1333
1334 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1335 {
1336 if (ct_info->helper)
1337 module_put(ct_info->helper->me);
1338 if (ct_info->ct)
1339 nf_ct_put(ct_info->ct);
1340 }
1341
1342 void ovs_ct_init(struct net *net)
1343 {
1344 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1345 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1346
1347 if (nf_connlabels_get(net, n_bits)) {
1348 ovs_net->xt_label = false;
1349 OVS_NLERR(true, "Failed to set connlabel length");
1350 } else {
1351 ovs_net->xt_label = true;
1352 }
1353 }
1354
1355 void ovs_ct_exit(struct net *net)
1356 {
1357 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1358
1359 if (ovs_net->xt_label)
1360 nf_connlabels_put(net);
1361 }