]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/openvswitch/conntrack.c
efi/arm: Fix boot crash with CONFIG_CPUMASK_OFFSTACK=y
[mirror_ubuntu-artful-kernel.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u8 force : 1;
69 u16 family;
70 struct md_mark mark;
71 struct md_labels labels;
72 #ifdef CONFIG_NF_NAT_NEEDED
73 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
74 #endif
75 };
76
77 static bool labels_nonzero(const struct ovs_key_ct_labels *labels);
78
79 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
80
81 static u16 key_to_nfproto(const struct sw_flow_key *key)
82 {
83 switch (ntohs(key->eth.type)) {
84 case ETH_P_IP:
85 return NFPROTO_IPV4;
86 case ETH_P_IPV6:
87 return NFPROTO_IPV6;
88 default:
89 return NFPROTO_UNSPEC;
90 }
91 }
92
93 /* Map SKB connection state into the values used by flow definition. */
94 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
95 {
96 u8 ct_state = OVS_CS_F_TRACKED;
97
98 switch (ctinfo) {
99 case IP_CT_ESTABLISHED_REPLY:
100 case IP_CT_RELATED_REPLY:
101 ct_state |= OVS_CS_F_REPLY_DIR;
102 break;
103 default:
104 break;
105 }
106
107 switch (ctinfo) {
108 case IP_CT_ESTABLISHED:
109 case IP_CT_ESTABLISHED_REPLY:
110 ct_state |= OVS_CS_F_ESTABLISHED;
111 break;
112 case IP_CT_RELATED:
113 case IP_CT_RELATED_REPLY:
114 ct_state |= OVS_CS_F_RELATED;
115 break;
116 case IP_CT_NEW:
117 ct_state |= OVS_CS_F_NEW;
118 break;
119 default:
120 break;
121 }
122
123 return ct_state;
124 }
125
126 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
127 {
128 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
129 return ct ? ct->mark : 0;
130 #else
131 return 0;
132 #endif
133 }
134
135 /* Guard against conntrack labels max size shrinking below 128 bits. */
136 #if NF_CT_LABELS_MAX_SIZE < 16
137 #error NF_CT_LABELS_MAX_SIZE must be at least 16 bytes
138 #endif
139
140 static void ovs_ct_get_labels(const struct nf_conn *ct,
141 struct ovs_key_ct_labels *labels)
142 {
143 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
144
145 if (cl)
146 memcpy(labels, cl->bits, OVS_CT_LABELS_LEN);
147 else
148 memset(labels, 0, OVS_CT_LABELS_LEN);
149 }
150
151 static void __ovs_ct_update_key_orig_tp(struct sw_flow_key *key,
152 const struct nf_conntrack_tuple *orig,
153 u8 icmp_proto)
154 {
155 key->ct_orig_proto = orig->dst.protonum;
156 if (orig->dst.protonum == icmp_proto) {
157 key->ct.orig_tp.src = htons(orig->dst.u.icmp.type);
158 key->ct.orig_tp.dst = htons(orig->dst.u.icmp.code);
159 } else {
160 key->ct.orig_tp.src = orig->src.u.all;
161 key->ct.orig_tp.dst = orig->dst.u.all;
162 }
163 }
164
165 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
166 const struct nf_conntrack_zone *zone,
167 const struct nf_conn *ct)
168 {
169 key->ct_state = state;
170 key->ct_zone = zone->id;
171 key->ct.mark = ovs_ct_get_mark(ct);
172 ovs_ct_get_labels(ct, &key->ct.labels);
173
174 if (ct) {
175 const struct nf_conntrack_tuple *orig;
176
177 /* Use the master if we have one. */
178 if (ct->master)
179 ct = ct->master;
180 orig = &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple;
181
182 /* IP version must match with the master connection. */
183 if (key->eth.type == htons(ETH_P_IP) &&
184 nf_ct_l3num(ct) == NFPROTO_IPV4) {
185 key->ipv4.ct_orig.src = orig->src.u3.ip;
186 key->ipv4.ct_orig.dst = orig->dst.u3.ip;
187 __ovs_ct_update_key_orig_tp(key, orig, IPPROTO_ICMP);
188 return;
189 } else if (key->eth.type == htons(ETH_P_IPV6) &&
190 !sw_flow_key_is_nd(key) &&
191 nf_ct_l3num(ct) == NFPROTO_IPV6) {
192 key->ipv6.ct_orig.src = orig->src.u3.in6;
193 key->ipv6.ct_orig.dst = orig->dst.u3.in6;
194 __ovs_ct_update_key_orig_tp(key, orig, NEXTHDR_ICMP);
195 return;
196 }
197 }
198 /* Clear 'ct_orig_proto' to mark the non-existence of conntrack
199 * original direction key fields.
200 */
201 key->ct_orig_proto = 0;
202 }
203
204 /* Update 'key' based on skb->_nfct. If 'post_ct' is true, then OVS has
205 * previously sent the packet to conntrack via the ct action. If
206 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
207 * initialized from the connection status.
208 */
209 static void ovs_ct_update_key(const struct sk_buff *skb,
210 const struct ovs_conntrack_info *info,
211 struct sw_flow_key *key, bool post_ct,
212 bool keep_nat_flags)
213 {
214 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
215 enum ip_conntrack_info ctinfo;
216 struct nf_conn *ct;
217 u8 state = 0;
218
219 ct = nf_ct_get(skb, &ctinfo);
220 if (ct) {
221 state = ovs_ct_get_state(ctinfo);
222 /* All unconfirmed entries are NEW connections. */
223 if (!nf_ct_is_confirmed(ct))
224 state |= OVS_CS_F_NEW;
225 /* OVS persists the related flag for the duration of the
226 * connection.
227 */
228 if (ct->master)
229 state |= OVS_CS_F_RELATED;
230 if (keep_nat_flags) {
231 state |= key->ct_state & OVS_CS_F_NAT_MASK;
232 } else {
233 if (ct->status & IPS_SRC_NAT)
234 state |= OVS_CS_F_SRC_NAT;
235 if (ct->status & IPS_DST_NAT)
236 state |= OVS_CS_F_DST_NAT;
237 }
238 zone = nf_ct_zone(ct);
239 } else if (post_ct) {
240 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
241 if (info)
242 zone = &info->zone;
243 }
244 __ovs_ct_update_key(key, state, zone, ct);
245 }
246
247 /* This is called to initialize CT key fields possibly coming in from the local
248 * stack.
249 */
250 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
251 {
252 ovs_ct_update_key(skb, NULL, key, false, false);
253 }
254
255 #define IN6_ADDR_INITIALIZER(ADDR) \
256 { (ADDR).s6_addr32[0], (ADDR).s6_addr32[1], \
257 (ADDR).s6_addr32[2], (ADDR).s6_addr32[3] }
258
259 int ovs_ct_put_key(const struct sw_flow_key *swkey,
260 const struct sw_flow_key *output, struct sk_buff *skb)
261 {
262 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, output->ct_state))
263 return -EMSGSIZE;
264
265 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
266 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, output->ct_zone))
267 return -EMSGSIZE;
268
269 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
270 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, output->ct.mark))
271 return -EMSGSIZE;
272
273 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
274 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(output->ct.labels),
275 &output->ct.labels))
276 return -EMSGSIZE;
277
278 if (swkey->ct_orig_proto) {
279 if (swkey->eth.type == htons(ETH_P_IP)) {
280 struct ovs_key_ct_tuple_ipv4 orig = {
281 output->ipv4.ct_orig.src,
282 output->ipv4.ct_orig.dst,
283 output->ct.orig_tp.src,
284 output->ct.orig_tp.dst,
285 output->ct_orig_proto,
286 };
287 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4,
288 sizeof(orig), &orig))
289 return -EMSGSIZE;
290 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
291 struct ovs_key_ct_tuple_ipv6 orig = {
292 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.src),
293 IN6_ADDR_INITIALIZER(output->ipv6.ct_orig.dst),
294 output->ct.orig_tp.src,
295 output->ct.orig_tp.dst,
296 output->ct_orig_proto,
297 };
298 if (nla_put(skb, OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6,
299 sizeof(orig), &orig))
300 return -EMSGSIZE;
301 }
302 }
303
304 return 0;
305 }
306
307 static int ovs_ct_set_mark(struct nf_conn *ct, struct sw_flow_key *key,
308 u32 ct_mark, u32 mask)
309 {
310 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
311 u32 new_mark;
312
313 new_mark = ct_mark | (ct->mark & ~(mask));
314 if (ct->mark != new_mark) {
315 ct->mark = new_mark;
316 if (nf_ct_is_confirmed(ct))
317 nf_conntrack_event_cache(IPCT_MARK, ct);
318 key->ct.mark = new_mark;
319 }
320
321 return 0;
322 #else
323 return -ENOTSUPP;
324 #endif
325 }
326
327 static struct nf_conn_labels *ovs_ct_get_conn_labels(struct nf_conn *ct)
328 {
329 struct nf_conn_labels *cl;
330
331 cl = nf_ct_labels_find(ct);
332 if (!cl) {
333 nf_ct_labels_ext_add(ct);
334 cl = nf_ct_labels_find(ct);
335 }
336
337 return cl;
338 }
339
340 /* Initialize labels for a new, yet to be committed conntrack entry. Note that
341 * since the new connection is not yet confirmed, and thus no-one else has
342 * access to it's labels, we simply write them over.
343 */
344 static int ovs_ct_init_labels(struct nf_conn *ct, struct sw_flow_key *key,
345 const struct ovs_key_ct_labels *labels,
346 const struct ovs_key_ct_labels *mask)
347 {
348 struct nf_conn_labels *cl, *master_cl;
349 bool have_mask = labels_nonzero(mask);
350
351 /* Inherit master's labels to the related connection? */
352 master_cl = ct->master ? nf_ct_labels_find(ct->master) : NULL;
353
354 if (!master_cl && !have_mask)
355 return 0; /* Nothing to do. */
356
357 cl = ovs_ct_get_conn_labels(ct);
358 if (!cl)
359 return -ENOSPC;
360
361 /* Inherit the master's labels, if any. */
362 if (master_cl)
363 *cl = *master_cl;
364
365 if (have_mask) {
366 u32 *dst = (u32 *)cl->bits;
367 int i;
368
369 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
370 dst[i] = (dst[i] & ~mask->ct_labels_32[i]) |
371 (labels->ct_labels_32[i]
372 & mask->ct_labels_32[i]);
373 }
374
375 /* Labels are included in the IPCTNL_MSG_CT_NEW event only if the
376 * IPCT_LABEL bit it set in the event cache.
377 */
378 nf_conntrack_event_cache(IPCT_LABEL, ct);
379
380 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
381
382 return 0;
383 }
384
385 static int ovs_ct_set_labels(struct nf_conn *ct, struct sw_flow_key *key,
386 const struct ovs_key_ct_labels *labels,
387 const struct ovs_key_ct_labels *mask)
388 {
389 struct nf_conn_labels *cl;
390 int err;
391
392 cl = ovs_ct_get_conn_labels(ct);
393 if (!cl)
394 return -ENOSPC;
395
396 err = nf_connlabels_replace(ct, labels->ct_labels_32,
397 mask->ct_labels_32,
398 OVS_CT_LABELS_LEN_32);
399 if (err)
400 return err;
401
402 memcpy(&key->ct.labels, cl->bits, OVS_CT_LABELS_LEN);
403
404 return 0;
405 }
406
407 /* 'skb' should already be pulled to nh_ofs. */
408 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
409 {
410 const struct nf_conntrack_helper *helper;
411 const struct nf_conn_help *help;
412 enum ip_conntrack_info ctinfo;
413 unsigned int protoff;
414 struct nf_conn *ct;
415 int err;
416
417 ct = nf_ct_get(skb, &ctinfo);
418 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
419 return NF_ACCEPT;
420
421 help = nfct_help(ct);
422 if (!help)
423 return NF_ACCEPT;
424
425 helper = rcu_dereference(help->helper);
426 if (!helper)
427 return NF_ACCEPT;
428
429 switch (proto) {
430 case NFPROTO_IPV4:
431 protoff = ip_hdrlen(skb);
432 break;
433 case NFPROTO_IPV6: {
434 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
435 __be16 frag_off;
436 int ofs;
437
438 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
439 &frag_off);
440 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
441 pr_debug("proto header not found\n");
442 return NF_ACCEPT;
443 }
444 protoff = ofs;
445 break;
446 }
447 default:
448 WARN_ONCE(1, "helper invoked on non-IP family!");
449 return NF_DROP;
450 }
451
452 err = helper->help(skb, protoff, ct, ctinfo);
453 if (err != NF_ACCEPT)
454 return err;
455
456 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
457 * FTP with NAT) adusting the TCP payload size when mangling IP
458 * addresses and/or port numbers in the text-based control connection.
459 */
460 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
461 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
462 return NF_DROP;
463 return NF_ACCEPT;
464 }
465
466 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
467 * value if 'skb' is freed.
468 */
469 static int handle_fragments(struct net *net, struct sw_flow_key *key,
470 u16 zone, struct sk_buff *skb)
471 {
472 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
473 int err;
474
475 if (key->eth.type == htons(ETH_P_IP)) {
476 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
477
478 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
479 err = ip_defrag(net, skb, user);
480 if (err)
481 return err;
482
483 ovs_cb.mru = IPCB(skb)->frag_max_size;
484 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
485 } else if (key->eth.type == htons(ETH_P_IPV6)) {
486 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
487
488 skb_orphan(skb);
489 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
490 err = nf_ct_frag6_gather(net, skb, user);
491 if (err) {
492 if (err != -EINPROGRESS)
493 kfree_skb(skb);
494 return err;
495 }
496
497 key->ip.proto = ipv6_hdr(skb)->nexthdr;
498 ovs_cb.mru = IP6CB(skb)->frag_max_size;
499 #endif
500 } else {
501 kfree_skb(skb);
502 return -EPFNOSUPPORT;
503 }
504
505 key->ip.frag = OVS_FRAG_TYPE_NONE;
506 skb_clear_hash(skb);
507 skb->ignore_df = 1;
508 *OVS_CB(skb) = ovs_cb;
509
510 return 0;
511 }
512
513 static struct nf_conntrack_expect *
514 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
515 u16 proto, const struct sk_buff *skb)
516 {
517 struct nf_conntrack_tuple tuple;
518
519 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
520 return NULL;
521 return __nf_ct_expect_find(net, zone, &tuple);
522 }
523
524 /* This replicates logic from nf_conntrack_core.c that is not exported. */
525 static enum ip_conntrack_info
526 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
527 {
528 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
529
530 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
531 return IP_CT_ESTABLISHED_REPLY;
532 /* Once we've had two way comms, always ESTABLISHED. */
533 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
534 return IP_CT_ESTABLISHED;
535 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
536 return IP_CT_RELATED;
537 return IP_CT_NEW;
538 }
539
540 /* Find an existing connection which this packet belongs to without
541 * re-attributing statistics or modifying the connection state. This allows an
542 * skb->_nfct lost due to an upcall to be recovered during actions execution.
543 *
544 * Must be called with rcu_read_lock.
545 *
546 * On success, populates skb->_nfct and returns the connection. Returns NULL
547 * if there is no existing entry.
548 */
549 static struct nf_conn *
550 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
551 u8 l3num, struct sk_buff *skb, bool natted)
552 {
553 struct nf_conntrack_l3proto *l3proto;
554 struct nf_conntrack_l4proto *l4proto;
555 struct nf_conntrack_tuple tuple;
556 struct nf_conntrack_tuple_hash *h;
557 struct nf_conn *ct;
558 unsigned int dataoff;
559 u8 protonum;
560
561 l3proto = __nf_ct_l3proto_find(l3num);
562 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
563 &protonum) <= 0) {
564 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
565 return NULL;
566 }
567 l4proto = __nf_ct_l4proto_find(l3num, protonum);
568 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
569 protonum, net, &tuple, l3proto, l4proto)) {
570 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
571 return NULL;
572 }
573
574 /* Must invert the tuple if skb has been transformed by NAT. */
575 if (natted) {
576 struct nf_conntrack_tuple inverse;
577
578 if (!nf_ct_invert_tuple(&inverse, &tuple, l3proto, l4proto)) {
579 pr_debug("ovs_ct_find_existing: Inversion failed!\n");
580 return NULL;
581 }
582 tuple = inverse;
583 }
584
585 /* look for tuple match */
586 h = nf_conntrack_find_get(net, zone, &tuple);
587 if (!h)
588 return NULL; /* Not found. */
589
590 ct = nf_ct_tuplehash_to_ctrack(h);
591
592 /* Inverted packet tuple matches the reverse direction conntrack tuple,
593 * select the other tuplehash to get the right 'ctinfo' bits for this
594 * packet.
595 */
596 if (natted)
597 h = &ct->tuplehash[!h->tuple.dst.dir];
598
599 nf_ct_set(skb, ct, ovs_ct_get_info(h));
600 return ct;
601 }
602
603 /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */
604 static bool skb_nfct_cached(struct net *net,
605 const struct sw_flow_key *key,
606 const struct ovs_conntrack_info *info,
607 struct sk_buff *skb)
608 {
609 enum ip_conntrack_info ctinfo;
610 struct nf_conn *ct;
611
612 ct = nf_ct_get(skb, &ctinfo);
613 /* If no ct, check if we have evidence that an existing conntrack entry
614 * might be found for this skb. This happens when we lose a skb->_nfct
615 * due to an upcall. If the connection was not confirmed, it is not
616 * cached and needs to be run through conntrack again.
617 */
618 if (!ct && key->ct_state & OVS_CS_F_TRACKED &&
619 !(key->ct_state & OVS_CS_F_INVALID) &&
620 key->ct_zone == info->zone.id) {
621 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb,
622 !!(key->ct_state
623 & OVS_CS_F_NAT_MASK));
624 if (ct)
625 nf_ct_get(skb, &ctinfo);
626 }
627 if (!ct)
628 return false;
629 if (!net_eq(net, read_pnet(&ct->ct_net)))
630 return false;
631 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
632 return false;
633 if (info->helper) {
634 struct nf_conn_help *help;
635
636 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
637 if (help && rcu_access_pointer(help->helper) != info->helper)
638 return false;
639 }
640 /* Force conntrack entry direction to the current packet? */
641 if (info->force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) {
642 /* Delete the conntrack entry if confirmed, else just release
643 * the reference.
644 */
645 if (nf_ct_is_confirmed(ct))
646 nf_ct_delete(ct, 0, 0);
647 else
648 nf_conntrack_put(&ct->ct_general);
649 nf_ct_set(skb, NULL, 0);
650 return false;
651 }
652
653 return true;
654 }
655
656 #ifdef CONFIG_NF_NAT_NEEDED
657 /* Modelled after nf_nat_ipv[46]_fn().
658 * range is only used for new, uninitialized NAT state.
659 * Returns either NF_ACCEPT or NF_DROP.
660 */
661 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
662 enum ip_conntrack_info ctinfo,
663 const struct nf_nat_range *range,
664 enum nf_nat_manip_type maniptype)
665 {
666 int hooknum, nh_off, err = NF_ACCEPT;
667
668 nh_off = skb_network_offset(skb);
669 skb_pull_rcsum(skb, nh_off);
670
671 /* See HOOK2MANIP(). */
672 if (maniptype == NF_NAT_MANIP_SRC)
673 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
674 else
675 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
676
677 switch (ctinfo) {
678 case IP_CT_RELATED:
679 case IP_CT_RELATED_REPLY:
680 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
681 skb->protocol == htons(ETH_P_IP) &&
682 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
683 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
684 hooknum))
685 err = NF_DROP;
686 goto push;
687 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
688 skb->protocol == htons(ETH_P_IPV6)) {
689 __be16 frag_off;
690 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
691 int hdrlen = ipv6_skip_exthdr(skb,
692 sizeof(struct ipv6hdr),
693 &nexthdr, &frag_off);
694
695 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
696 if (!nf_nat_icmpv6_reply_translation(skb, ct,
697 ctinfo,
698 hooknum,
699 hdrlen))
700 err = NF_DROP;
701 goto push;
702 }
703 }
704 /* Non-ICMP, fall thru to initialize if needed. */
705 case IP_CT_NEW:
706 /* Seen it before? This can happen for loopback, retrans,
707 * or local packets.
708 */
709 if (!nf_nat_initialized(ct, maniptype)) {
710 /* Initialize according to the NAT action. */
711 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
712 /* Action is set up to establish a new
713 * mapping.
714 */
715 ? nf_nat_setup_info(ct, range, maniptype)
716 : nf_nat_alloc_null_binding(ct, hooknum);
717 if (err != NF_ACCEPT)
718 goto push;
719 }
720 break;
721
722 case IP_CT_ESTABLISHED:
723 case IP_CT_ESTABLISHED_REPLY:
724 break;
725
726 default:
727 err = NF_DROP;
728 goto push;
729 }
730
731 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
732 push:
733 skb_push(skb, nh_off);
734 skb_postpush_rcsum(skb, skb->data, nh_off);
735
736 return err;
737 }
738
739 static void ovs_nat_update_key(struct sw_flow_key *key,
740 const struct sk_buff *skb,
741 enum nf_nat_manip_type maniptype)
742 {
743 if (maniptype == NF_NAT_MANIP_SRC) {
744 __be16 src;
745
746 key->ct_state |= OVS_CS_F_SRC_NAT;
747 if (key->eth.type == htons(ETH_P_IP))
748 key->ipv4.addr.src = ip_hdr(skb)->saddr;
749 else if (key->eth.type == htons(ETH_P_IPV6))
750 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
751 sizeof(key->ipv6.addr.src));
752 else
753 return;
754
755 if (key->ip.proto == IPPROTO_UDP)
756 src = udp_hdr(skb)->source;
757 else if (key->ip.proto == IPPROTO_TCP)
758 src = tcp_hdr(skb)->source;
759 else if (key->ip.proto == IPPROTO_SCTP)
760 src = sctp_hdr(skb)->source;
761 else
762 return;
763
764 key->tp.src = src;
765 } else {
766 __be16 dst;
767
768 key->ct_state |= OVS_CS_F_DST_NAT;
769 if (key->eth.type == htons(ETH_P_IP))
770 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
771 else if (key->eth.type == htons(ETH_P_IPV6))
772 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
773 sizeof(key->ipv6.addr.dst));
774 else
775 return;
776
777 if (key->ip.proto == IPPROTO_UDP)
778 dst = udp_hdr(skb)->dest;
779 else if (key->ip.proto == IPPROTO_TCP)
780 dst = tcp_hdr(skb)->dest;
781 else if (key->ip.proto == IPPROTO_SCTP)
782 dst = sctp_hdr(skb)->dest;
783 else
784 return;
785
786 key->tp.dst = dst;
787 }
788 }
789
790 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
791 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
792 const struct ovs_conntrack_info *info,
793 struct sk_buff *skb, struct nf_conn *ct,
794 enum ip_conntrack_info ctinfo)
795 {
796 enum nf_nat_manip_type maniptype;
797 int err;
798
799 if (nf_ct_is_untracked(ct)) {
800 /* A NAT action may only be performed on tracked packets. */
801 return NF_ACCEPT;
802 }
803
804 /* Add NAT extension if not confirmed yet. */
805 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
806 return NF_ACCEPT; /* Can't NAT. */
807
808 /* Determine NAT type.
809 * Check if the NAT type can be deduced from the tracked connection.
810 * Make sure new expected connections (IP_CT_RELATED) are NATted only
811 * when committing.
812 */
813 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
814 ct->status & IPS_NAT_MASK &&
815 (ctinfo != IP_CT_RELATED || info->commit)) {
816 /* NAT an established or related connection like before. */
817 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
818 /* This is the REPLY direction for a connection
819 * for which NAT was applied in the forward
820 * direction. Do the reverse NAT.
821 */
822 maniptype = ct->status & IPS_SRC_NAT
823 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
824 else
825 maniptype = ct->status & IPS_SRC_NAT
826 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
827 } else if (info->nat & OVS_CT_SRC_NAT) {
828 maniptype = NF_NAT_MANIP_SRC;
829 } else if (info->nat & OVS_CT_DST_NAT) {
830 maniptype = NF_NAT_MANIP_DST;
831 } else {
832 return NF_ACCEPT; /* Connection is not NATed. */
833 }
834 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
835
836 /* Mark NAT done if successful and update the flow key. */
837 if (err == NF_ACCEPT)
838 ovs_nat_update_key(key, skb, maniptype);
839
840 return err;
841 }
842 #else /* !CONFIG_NF_NAT_NEEDED */
843 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
844 const struct ovs_conntrack_info *info,
845 struct sk_buff *skb, struct nf_conn *ct,
846 enum ip_conntrack_info ctinfo)
847 {
848 return NF_ACCEPT;
849 }
850 #endif
851
852 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
853 * not done already. Update key with new CT state after passing the packet
854 * through conntrack.
855 * Note that if the packet is deemed invalid by conntrack, skb->_nfct will be
856 * set to NULL and 0 will be returned.
857 */
858 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
859 const struct ovs_conntrack_info *info,
860 struct sk_buff *skb)
861 {
862 /* If we are recirculating packets to match on conntrack fields and
863 * committing with a separate conntrack action, then we don't need to
864 * actually run the packet through conntrack twice unless it's for a
865 * different zone.
866 */
867 bool cached = skb_nfct_cached(net, key, info, skb);
868 enum ip_conntrack_info ctinfo;
869 struct nf_conn *ct;
870
871 if (!cached) {
872 struct nf_conn *tmpl = info->ct;
873 int err;
874
875 /* Associate skb with specified zone. */
876 if (tmpl) {
877 if (skb_nfct(skb))
878 nf_conntrack_put(skb_nfct(skb));
879 nf_conntrack_get(&tmpl->ct_general);
880 nf_ct_set(skb, tmpl, IP_CT_NEW);
881 }
882
883 err = nf_conntrack_in(net, info->family,
884 NF_INET_PRE_ROUTING, skb);
885 if (err != NF_ACCEPT)
886 return -ENOENT;
887
888 /* Clear CT state NAT flags to mark that we have not yet done
889 * NAT after the nf_conntrack_in() call. We can actually clear
890 * the whole state, as it will be re-initialized below.
891 */
892 key->ct_state = 0;
893
894 /* Update the key, but keep the NAT flags. */
895 ovs_ct_update_key(skb, info, key, true, true);
896 }
897
898 ct = nf_ct_get(skb, &ctinfo);
899 if (ct) {
900 /* Packets starting a new connection must be NATted before the
901 * helper, so that the helper knows about the NAT. We enforce
902 * this by delaying both NAT and helper calls for unconfirmed
903 * connections until the committing CT action. For later
904 * packets NAT and Helper may be called in either order.
905 *
906 * NAT will be done only if the CT action has NAT, and only
907 * once per packet (per zone), as guarded by the NAT bits in
908 * the key->ct_state.
909 */
910 if (info->nat && !(key->ct_state & OVS_CS_F_NAT_MASK) &&
911 (nf_ct_is_confirmed(ct) || info->commit) &&
912 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
913 return -EINVAL;
914 }
915
916 /* Userspace may decide to perform a ct lookup without a helper
917 * specified followed by a (recirculate and) commit with one.
918 * Therefore, for unconfirmed connections which we will commit,
919 * we need to attach the helper here.
920 */
921 if (!nf_ct_is_confirmed(ct) && info->commit &&
922 info->helper && !nfct_help(ct)) {
923 int err = __nf_ct_try_assign_helper(ct, info->ct,
924 GFP_ATOMIC);
925 if (err)
926 return err;
927 }
928
929 /* Call the helper only if:
930 * - nf_conntrack_in() was executed above ("!cached") for a
931 * confirmed connection, or
932 * - When committing an unconfirmed connection.
933 */
934 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
935 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
936 return -EINVAL;
937 }
938 }
939
940 return 0;
941 }
942
943 /* Lookup connection and read fields into key. */
944 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
945 const struct ovs_conntrack_info *info,
946 struct sk_buff *skb)
947 {
948 struct nf_conntrack_expect *exp;
949
950 /* If we pass an expected packet through nf_conntrack_in() the
951 * expectation is typically removed, but the packet could still be
952 * lost in upcall processing. To prevent this from happening we
953 * perform an explicit expectation lookup. Expected connections are
954 * always new, and will be passed through conntrack only when they are
955 * committed, as it is OK to remove the expectation at that time.
956 */
957 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
958 if (exp) {
959 u8 state;
960
961 /* NOTE: New connections are NATted and Helped only when
962 * committed, so we are not calling into NAT here.
963 */
964 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
965 __ovs_ct_update_key(key, state, &info->zone, exp->master);
966 } else {
967 struct nf_conn *ct;
968 int err;
969
970 err = __ovs_ct_lookup(net, key, info, skb);
971 if (err)
972 return err;
973
974 ct = (struct nf_conn *)skb_nfct(skb);
975 if (ct)
976 nf_ct_deliver_cached_events(ct);
977 }
978
979 return 0;
980 }
981
982 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
983 {
984 size_t i;
985
986 for (i = 0; i < OVS_CT_LABELS_LEN_32; i++)
987 if (labels->ct_labels_32[i])
988 return true;
989
990 return false;
991 }
992
993 /* Lookup connection and confirm if unconfirmed. */
994 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
995 const struct ovs_conntrack_info *info,
996 struct sk_buff *skb)
997 {
998 enum ip_conntrack_info ctinfo;
999 struct nf_conn *ct;
1000 int err;
1001
1002 err = __ovs_ct_lookup(net, key, info, skb);
1003 if (err)
1004 return err;
1005
1006 /* The connection could be invalid, in which case this is a no-op.*/
1007 ct = nf_ct_get(skb, &ctinfo);
1008 if (!ct)
1009 return 0;
1010
1011 /* Apply changes before confirming the connection so that the initial
1012 * conntrack NEW netlink event carries the values given in the CT
1013 * action.
1014 */
1015 if (info->mark.mask) {
1016 err = ovs_ct_set_mark(ct, key, info->mark.value,
1017 info->mark.mask);
1018 if (err)
1019 return err;
1020 }
1021 if (!nf_ct_is_confirmed(ct)) {
1022 err = ovs_ct_init_labels(ct, key, &info->labels.value,
1023 &info->labels.mask);
1024 if (err)
1025 return err;
1026 } else if (labels_nonzero(&info->labels.mask)) {
1027 err = ovs_ct_set_labels(ct, key, &info->labels.value,
1028 &info->labels.mask);
1029 if (err)
1030 return err;
1031 }
1032 /* This will take care of sending queued events even if the connection
1033 * is already confirmed.
1034 */
1035 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
1036 return -EINVAL;
1037
1038 return 0;
1039 }
1040
1041 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
1042 * value if 'skb' is freed.
1043 */
1044 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
1045 struct sw_flow_key *key,
1046 const struct ovs_conntrack_info *info)
1047 {
1048 int nh_ofs;
1049 int err;
1050
1051 /* The conntrack module expects to be working at L3. */
1052 nh_ofs = skb_network_offset(skb);
1053 skb_pull_rcsum(skb, nh_ofs);
1054
1055 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
1056 err = handle_fragments(net, key, info->zone.id, skb);
1057 if (err)
1058 return err;
1059 }
1060
1061 if (info->commit)
1062 err = ovs_ct_commit(net, key, info, skb);
1063 else
1064 err = ovs_ct_lookup(net, key, info, skb);
1065
1066 skb_push(skb, nh_ofs);
1067 skb_postpush_rcsum(skb, skb->data, nh_ofs);
1068 if (err)
1069 kfree_skb(skb);
1070 return err;
1071 }
1072
1073 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
1074 const struct sw_flow_key *key, bool log)
1075 {
1076 struct nf_conntrack_helper *helper;
1077 struct nf_conn_help *help;
1078
1079 helper = nf_conntrack_helper_try_module_get(name, info->family,
1080 key->ip.proto);
1081 if (!helper) {
1082 OVS_NLERR(log, "Unknown helper \"%s\"", name);
1083 return -EINVAL;
1084 }
1085
1086 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
1087 if (!help) {
1088 module_put(helper->me);
1089 return -ENOMEM;
1090 }
1091
1092 rcu_assign_pointer(help->helper, helper);
1093 info->helper = helper;
1094 return 0;
1095 }
1096
1097 #ifdef CONFIG_NF_NAT_NEEDED
1098 static int parse_nat(const struct nlattr *attr,
1099 struct ovs_conntrack_info *info, bool log)
1100 {
1101 struct nlattr *a;
1102 int rem;
1103 bool have_ip_max = false;
1104 bool have_proto_max = false;
1105 bool ip_vers = (info->family == NFPROTO_IPV6);
1106
1107 nla_for_each_nested(a, attr, rem) {
1108 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
1109 [OVS_NAT_ATTR_SRC] = {0, 0},
1110 [OVS_NAT_ATTR_DST] = {0, 0},
1111 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
1112 sizeof(struct in6_addr)},
1113 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
1114 sizeof(struct in6_addr)},
1115 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
1116 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
1117 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
1118 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
1119 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
1120 };
1121 int type = nla_type(a);
1122
1123 if (type > OVS_NAT_ATTR_MAX) {
1124 OVS_NLERR(log,
1125 "Unknown NAT attribute (type=%d, max=%d).\n",
1126 type, OVS_NAT_ATTR_MAX);
1127 return -EINVAL;
1128 }
1129
1130 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1131 OVS_NLERR(log,
1132 "NAT attribute type %d has unexpected length (%d != %d).\n",
1133 type, nla_len(a),
1134 ovs_nat_attr_lens[type][ip_vers]);
1135 return -EINVAL;
1136 }
1137
1138 switch (type) {
1139 case OVS_NAT_ATTR_SRC:
1140 case OVS_NAT_ATTR_DST:
1141 if (info->nat) {
1142 OVS_NLERR(log,
1143 "Only one type of NAT may be specified.\n"
1144 );
1145 return -ERANGE;
1146 }
1147 info->nat |= OVS_CT_NAT;
1148 info->nat |= ((type == OVS_NAT_ATTR_SRC)
1149 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1150 break;
1151
1152 case OVS_NAT_ATTR_IP_MIN:
1153 nla_memcpy(&info->range.min_addr, a,
1154 sizeof(info->range.min_addr));
1155 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1156 break;
1157
1158 case OVS_NAT_ATTR_IP_MAX:
1159 have_ip_max = true;
1160 nla_memcpy(&info->range.max_addr, a,
1161 sizeof(info->range.max_addr));
1162 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1163 break;
1164
1165 case OVS_NAT_ATTR_PROTO_MIN:
1166 info->range.min_proto.all = htons(nla_get_u16(a));
1167 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1168 break;
1169
1170 case OVS_NAT_ATTR_PROTO_MAX:
1171 have_proto_max = true;
1172 info->range.max_proto.all = htons(nla_get_u16(a));
1173 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1174 break;
1175
1176 case OVS_NAT_ATTR_PERSISTENT:
1177 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1178 break;
1179
1180 case OVS_NAT_ATTR_PROTO_HASH:
1181 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1182 break;
1183
1184 case OVS_NAT_ATTR_PROTO_RANDOM:
1185 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1186 break;
1187
1188 default:
1189 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1190 return -EINVAL;
1191 }
1192 }
1193
1194 if (rem > 0) {
1195 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1196 return -EINVAL;
1197 }
1198 if (!info->nat) {
1199 /* Do not allow flags if no type is given. */
1200 if (info->range.flags) {
1201 OVS_NLERR(log,
1202 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1203 );
1204 return -EINVAL;
1205 }
1206 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1207 } else if (!info->commit) {
1208 OVS_NLERR(log,
1209 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1210 );
1211 return -EINVAL;
1212 }
1213 /* Allow missing IP_MAX. */
1214 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1215 memcpy(&info->range.max_addr, &info->range.min_addr,
1216 sizeof(info->range.max_addr));
1217 }
1218 /* Allow missing PROTO_MAX. */
1219 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1220 !have_proto_max) {
1221 info->range.max_proto.all = info->range.min_proto.all;
1222 }
1223 return 0;
1224 }
1225 #endif
1226
1227 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1228 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1229 [OVS_CT_ATTR_FORCE_COMMIT] = { .minlen = 0, .maxlen = 0 },
1230 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1231 .maxlen = sizeof(u16) },
1232 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1233 .maxlen = sizeof(struct md_mark) },
1234 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1235 .maxlen = sizeof(struct md_labels) },
1236 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1237 .maxlen = NF_CT_HELPER_NAME_LEN },
1238 #ifdef CONFIG_NF_NAT_NEEDED
1239 /* NAT length is checked when parsing the nested attributes. */
1240 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1241 #endif
1242 };
1243
1244 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1245 const char **helper, bool log)
1246 {
1247 struct nlattr *a;
1248 int rem;
1249
1250 nla_for_each_nested(a, attr, rem) {
1251 int type = nla_type(a);
1252 int maxlen = ovs_ct_attr_lens[type].maxlen;
1253 int minlen = ovs_ct_attr_lens[type].minlen;
1254
1255 if (type > OVS_CT_ATTR_MAX) {
1256 OVS_NLERR(log,
1257 "Unknown conntrack attr (type=%d, max=%d)",
1258 type, OVS_CT_ATTR_MAX);
1259 return -EINVAL;
1260 }
1261 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1262 OVS_NLERR(log,
1263 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1264 type, nla_len(a), maxlen);
1265 return -EINVAL;
1266 }
1267
1268 switch (type) {
1269 case OVS_CT_ATTR_FORCE_COMMIT:
1270 info->force = true;
1271 /* fall through. */
1272 case OVS_CT_ATTR_COMMIT:
1273 info->commit = true;
1274 break;
1275 #ifdef CONFIG_NF_CONNTRACK_ZONES
1276 case OVS_CT_ATTR_ZONE:
1277 info->zone.id = nla_get_u16(a);
1278 break;
1279 #endif
1280 #ifdef CONFIG_NF_CONNTRACK_MARK
1281 case OVS_CT_ATTR_MARK: {
1282 struct md_mark *mark = nla_data(a);
1283
1284 if (!mark->mask) {
1285 OVS_NLERR(log, "ct_mark mask cannot be 0");
1286 return -EINVAL;
1287 }
1288 info->mark = *mark;
1289 break;
1290 }
1291 #endif
1292 #ifdef CONFIG_NF_CONNTRACK_LABELS
1293 case OVS_CT_ATTR_LABELS: {
1294 struct md_labels *labels = nla_data(a);
1295
1296 if (!labels_nonzero(&labels->mask)) {
1297 OVS_NLERR(log, "ct_labels mask cannot be 0");
1298 return -EINVAL;
1299 }
1300 info->labels = *labels;
1301 break;
1302 }
1303 #endif
1304 case OVS_CT_ATTR_HELPER:
1305 *helper = nla_data(a);
1306 if (!memchr(*helper, '\0', nla_len(a))) {
1307 OVS_NLERR(log, "Invalid conntrack helper");
1308 return -EINVAL;
1309 }
1310 break;
1311 #ifdef CONFIG_NF_NAT_NEEDED
1312 case OVS_CT_ATTR_NAT: {
1313 int err = parse_nat(a, info, log);
1314
1315 if (err)
1316 return err;
1317 break;
1318 }
1319 #endif
1320 default:
1321 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1322 type);
1323 return -EINVAL;
1324 }
1325 }
1326
1327 #ifdef CONFIG_NF_CONNTRACK_MARK
1328 if (!info->commit && info->mark.mask) {
1329 OVS_NLERR(log,
1330 "Setting conntrack mark requires 'commit' flag.");
1331 return -EINVAL;
1332 }
1333 #endif
1334 #ifdef CONFIG_NF_CONNTRACK_LABELS
1335 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1336 OVS_NLERR(log,
1337 "Setting conntrack labels requires 'commit' flag.");
1338 return -EINVAL;
1339 }
1340 #endif
1341 if (rem > 0) {
1342 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1343 return -EINVAL;
1344 }
1345
1346 return 0;
1347 }
1348
1349 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1350 {
1351 if (attr == OVS_KEY_ATTR_CT_STATE)
1352 return true;
1353 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1354 attr == OVS_KEY_ATTR_CT_ZONE)
1355 return true;
1356 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1357 attr == OVS_KEY_ATTR_CT_MARK)
1358 return true;
1359 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1360 attr == OVS_KEY_ATTR_CT_LABELS) {
1361 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1362
1363 return ovs_net->xt_label;
1364 }
1365
1366 return false;
1367 }
1368
1369 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1370 const struct sw_flow_key *key,
1371 struct sw_flow_actions **sfa, bool log)
1372 {
1373 struct ovs_conntrack_info ct_info;
1374 const char *helper = NULL;
1375 u16 family;
1376 int err;
1377
1378 family = key_to_nfproto(key);
1379 if (family == NFPROTO_UNSPEC) {
1380 OVS_NLERR(log, "ct family unspecified");
1381 return -EINVAL;
1382 }
1383
1384 memset(&ct_info, 0, sizeof(ct_info));
1385 ct_info.family = family;
1386
1387 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1388 NF_CT_DEFAULT_ZONE_DIR, 0);
1389
1390 err = parse_ct(attr, &ct_info, &helper, log);
1391 if (err)
1392 return err;
1393
1394 /* Set up template for tracking connections in specific zones. */
1395 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1396 if (!ct_info.ct) {
1397 OVS_NLERR(log, "Failed to allocate conntrack template");
1398 return -ENOMEM;
1399 }
1400
1401 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1402 nf_conntrack_get(&ct_info.ct->ct_general);
1403
1404 if (helper) {
1405 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1406 if (err)
1407 goto err_free_ct;
1408 }
1409
1410 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1411 sizeof(ct_info), log);
1412 if (err)
1413 goto err_free_ct;
1414
1415 return 0;
1416 err_free_ct:
1417 __ovs_ct_free_action(&ct_info);
1418 return err;
1419 }
1420
1421 #ifdef CONFIG_NF_NAT_NEEDED
1422 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1423 struct sk_buff *skb)
1424 {
1425 struct nlattr *start;
1426
1427 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1428 if (!start)
1429 return false;
1430
1431 if (info->nat & OVS_CT_SRC_NAT) {
1432 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1433 return false;
1434 } else if (info->nat & OVS_CT_DST_NAT) {
1435 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1436 return false;
1437 } else {
1438 goto out;
1439 }
1440
1441 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1442 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1443 info->family == NFPROTO_IPV4) {
1444 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1445 info->range.min_addr.ip) ||
1446 (info->range.max_addr.ip
1447 != info->range.min_addr.ip &&
1448 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1449 info->range.max_addr.ip))))
1450 return false;
1451 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1452 info->family == NFPROTO_IPV6) {
1453 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1454 &info->range.min_addr.in6) ||
1455 (memcmp(&info->range.max_addr.in6,
1456 &info->range.min_addr.in6,
1457 sizeof(info->range.max_addr.in6)) &&
1458 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1459 &info->range.max_addr.in6))))
1460 return false;
1461 } else {
1462 return false;
1463 }
1464 }
1465 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1466 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1467 ntohs(info->range.min_proto.all)) ||
1468 (info->range.max_proto.all != info->range.min_proto.all &&
1469 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1470 ntohs(info->range.max_proto.all)))))
1471 return false;
1472
1473 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1474 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1475 return false;
1476 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1477 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1478 return false;
1479 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1480 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1481 return false;
1482 out:
1483 nla_nest_end(skb, start);
1484
1485 return true;
1486 }
1487 #endif
1488
1489 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1490 struct sk_buff *skb)
1491 {
1492 struct nlattr *start;
1493
1494 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1495 if (!start)
1496 return -EMSGSIZE;
1497
1498 if (ct_info->commit && nla_put_flag(skb, ct_info->force
1499 ? OVS_CT_ATTR_FORCE_COMMIT
1500 : OVS_CT_ATTR_COMMIT))
1501 return -EMSGSIZE;
1502 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1503 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1504 return -EMSGSIZE;
1505 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1506 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1507 &ct_info->mark))
1508 return -EMSGSIZE;
1509 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1510 labels_nonzero(&ct_info->labels.mask) &&
1511 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1512 &ct_info->labels))
1513 return -EMSGSIZE;
1514 if (ct_info->helper) {
1515 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1516 ct_info->helper->name))
1517 return -EMSGSIZE;
1518 }
1519 #ifdef CONFIG_NF_NAT_NEEDED
1520 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1521 return -EMSGSIZE;
1522 #endif
1523 nla_nest_end(skb, start);
1524
1525 return 0;
1526 }
1527
1528 void ovs_ct_free_action(const struct nlattr *a)
1529 {
1530 struct ovs_conntrack_info *ct_info = nla_data(a);
1531
1532 __ovs_ct_free_action(ct_info);
1533 }
1534
1535 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1536 {
1537 if (ct_info->helper)
1538 module_put(ct_info->helper->me);
1539 if (ct_info->ct)
1540 nf_ct_tmpl_free(ct_info->ct);
1541 }
1542
1543 void ovs_ct_init(struct net *net)
1544 {
1545 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1546 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1547
1548 if (nf_connlabels_get(net, n_bits - 1)) {
1549 ovs_net->xt_label = false;
1550 OVS_NLERR(true, "Failed to set connlabel length");
1551 } else {
1552 ovs_net->xt_label = true;
1553 }
1554 }
1555
1556 void ovs_ct_exit(struct net *net)
1557 {
1558 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1559
1560 if (ovs_net->xt_label)
1561 nf_connlabels_put(net);
1562 }