]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/openvswitch/conntrack.c
Merge remote-tracking branches 'asoc/topic/sgtl5000', 'asoc/topic/simple', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / net / openvswitch / conntrack.c
1 /*
2 * Copyright (c) 2015 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13
14 #include <linux/module.h>
15 #include <linux/openvswitch.h>
16 #include <linux/tcp.h>
17 #include <linux/udp.h>
18 #include <linux/sctp.h>
19 #include <net/ip.h>
20 #include <net/netfilter/nf_conntrack_core.h>
21 #include <net/netfilter/nf_conntrack_helper.h>
22 #include <net/netfilter/nf_conntrack_labels.h>
23 #include <net/netfilter/nf_conntrack_seqadj.h>
24 #include <net/netfilter/nf_conntrack_zones.h>
25 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
26
27 #ifdef CONFIG_NF_NAT_NEEDED
28 #include <linux/netfilter/nf_nat.h>
29 #include <net/netfilter/nf_nat_core.h>
30 #include <net/netfilter/nf_nat_l3proto.h>
31 #endif
32
33 #include "datapath.h"
34 #include "conntrack.h"
35 #include "flow.h"
36 #include "flow_netlink.h"
37
38 struct ovs_ct_len_tbl {
39 int maxlen;
40 int minlen;
41 };
42
43 /* Metadata mark for masked write to conntrack mark */
44 struct md_mark {
45 u32 value;
46 u32 mask;
47 };
48
49 /* Metadata label for masked write to conntrack label. */
50 struct md_labels {
51 struct ovs_key_ct_labels value;
52 struct ovs_key_ct_labels mask;
53 };
54
55 enum ovs_ct_nat {
56 OVS_CT_NAT = 1 << 0, /* NAT for committed connections only. */
57 OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
58 OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
59 };
60
61 /* Conntrack action context for execution. */
62 struct ovs_conntrack_info {
63 struct nf_conntrack_helper *helper;
64 struct nf_conntrack_zone zone;
65 struct nf_conn *ct;
66 u8 commit : 1;
67 u8 nat : 3; /* enum ovs_ct_nat */
68 u16 family;
69 struct md_mark mark;
70 struct md_labels labels;
71 #ifdef CONFIG_NF_NAT_NEEDED
72 struct nf_nat_range range; /* Only present for SRC NAT and DST NAT. */
73 #endif
74 };
75
76 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
77
78 static u16 key_to_nfproto(const struct sw_flow_key *key)
79 {
80 switch (ntohs(key->eth.type)) {
81 case ETH_P_IP:
82 return NFPROTO_IPV4;
83 case ETH_P_IPV6:
84 return NFPROTO_IPV6;
85 default:
86 return NFPROTO_UNSPEC;
87 }
88 }
89
90 /* Map SKB connection state into the values used by flow definition. */
91 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
92 {
93 u8 ct_state = OVS_CS_F_TRACKED;
94
95 switch (ctinfo) {
96 case IP_CT_ESTABLISHED_REPLY:
97 case IP_CT_RELATED_REPLY:
98 ct_state |= OVS_CS_F_REPLY_DIR;
99 break;
100 default:
101 break;
102 }
103
104 switch (ctinfo) {
105 case IP_CT_ESTABLISHED:
106 case IP_CT_ESTABLISHED_REPLY:
107 ct_state |= OVS_CS_F_ESTABLISHED;
108 break;
109 case IP_CT_RELATED:
110 case IP_CT_RELATED_REPLY:
111 ct_state |= OVS_CS_F_RELATED;
112 break;
113 case IP_CT_NEW:
114 ct_state |= OVS_CS_F_NEW;
115 break;
116 default:
117 break;
118 }
119
120 return ct_state;
121 }
122
123 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
124 {
125 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
126 return ct ? ct->mark : 0;
127 #else
128 return 0;
129 #endif
130 }
131
132 static void ovs_ct_get_labels(const struct nf_conn *ct,
133 struct ovs_key_ct_labels *labels)
134 {
135 struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
136
137 if (cl) {
138 size_t len = sizeof(cl->bits);
139
140 if (len > OVS_CT_LABELS_LEN)
141 len = OVS_CT_LABELS_LEN;
142 else if (len < OVS_CT_LABELS_LEN)
143 memset(labels, 0, OVS_CT_LABELS_LEN);
144 memcpy(labels, cl->bits, len);
145 } else {
146 memset(labels, 0, OVS_CT_LABELS_LEN);
147 }
148 }
149
150 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
151 const struct nf_conntrack_zone *zone,
152 const struct nf_conn *ct)
153 {
154 key->ct.state = state;
155 key->ct.zone = zone->id;
156 key->ct.mark = ovs_ct_get_mark(ct);
157 ovs_ct_get_labels(ct, &key->ct.labels);
158 }
159
160 /* Update 'key' based on skb->nfct. If 'post_ct' is true, then OVS has
161 * previously sent the packet to conntrack via the ct action. If
162 * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
163 * initialized from the connection status.
164 */
165 static void ovs_ct_update_key(const struct sk_buff *skb,
166 const struct ovs_conntrack_info *info,
167 struct sw_flow_key *key, bool post_ct,
168 bool keep_nat_flags)
169 {
170 const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
171 enum ip_conntrack_info ctinfo;
172 struct nf_conn *ct;
173 u8 state = 0;
174
175 ct = nf_ct_get(skb, &ctinfo);
176 if (ct) {
177 state = ovs_ct_get_state(ctinfo);
178 /* All unconfirmed entries are NEW connections. */
179 if (!nf_ct_is_confirmed(ct))
180 state |= OVS_CS_F_NEW;
181 /* OVS persists the related flag for the duration of the
182 * connection.
183 */
184 if (ct->master)
185 state |= OVS_CS_F_RELATED;
186 if (keep_nat_flags) {
187 state |= key->ct.state & OVS_CS_F_NAT_MASK;
188 } else {
189 if (ct->status & IPS_SRC_NAT)
190 state |= OVS_CS_F_SRC_NAT;
191 if (ct->status & IPS_DST_NAT)
192 state |= OVS_CS_F_DST_NAT;
193 }
194 zone = nf_ct_zone(ct);
195 } else if (post_ct) {
196 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
197 if (info)
198 zone = &info->zone;
199 }
200 __ovs_ct_update_key(key, state, zone, ct);
201 }
202
203 /* This is called to initialize CT key fields possibly coming in from the local
204 * stack.
205 */
206 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
207 {
208 ovs_ct_update_key(skb, NULL, key, false, false);
209 }
210
211 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
212 {
213 if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
214 return -EMSGSIZE;
215
216 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
217 nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
218 return -EMSGSIZE;
219
220 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
221 nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
222 return -EMSGSIZE;
223
224 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
225 nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
226 &key->ct.labels))
227 return -EMSGSIZE;
228
229 return 0;
230 }
231
232 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
233 u32 ct_mark, u32 mask)
234 {
235 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
236 enum ip_conntrack_info ctinfo;
237 struct nf_conn *ct;
238 u32 new_mark;
239
240 /* The connection could be invalid, in which case set_mark is no-op. */
241 ct = nf_ct_get(skb, &ctinfo);
242 if (!ct)
243 return 0;
244
245 new_mark = ct_mark | (ct->mark & ~(mask));
246 if (ct->mark != new_mark) {
247 ct->mark = new_mark;
248 nf_conntrack_event_cache(IPCT_MARK, ct);
249 key->ct.mark = new_mark;
250 }
251
252 return 0;
253 #else
254 return -ENOTSUPP;
255 #endif
256 }
257
258 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
259 const struct ovs_key_ct_labels *labels,
260 const struct ovs_key_ct_labels *mask)
261 {
262 enum ip_conntrack_info ctinfo;
263 struct nf_conn_labels *cl;
264 struct nf_conn *ct;
265 int err;
266
267 /* The connection could be invalid, in which case set_label is no-op.*/
268 ct = nf_ct_get(skb, &ctinfo);
269 if (!ct)
270 return 0;
271
272 cl = nf_ct_labels_find(ct);
273 if (!cl) {
274 nf_ct_labels_ext_add(ct);
275 cl = nf_ct_labels_find(ct);
276 }
277 if (!cl || sizeof(cl->bits) < OVS_CT_LABELS_LEN)
278 return -ENOSPC;
279
280 err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
281 OVS_CT_LABELS_LEN / sizeof(u32));
282 if (err)
283 return err;
284
285 ovs_ct_get_labels(ct, &key->ct.labels);
286 return 0;
287 }
288
289 /* 'skb' should already be pulled to nh_ofs. */
290 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
291 {
292 const struct nf_conntrack_helper *helper;
293 const struct nf_conn_help *help;
294 enum ip_conntrack_info ctinfo;
295 unsigned int protoff;
296 struct nf_conn *ct;
297 int err;
298
299 ct = nf_ct_get(skb, &ctinfo);
300 if (!ct || ctinfo == IP_CT_RELATED_REPLY)
301 return NF_ACCEPT;
302
303 help = nfct_help(ct);
304 if (!help)
305 return NF_ACCEPT;
306
307 helper = rcu_dereference(help->helper);
308 if (!helper)
309 return NF_ACCEPT;
310
311 switch (proto) {
312 case NFPROTO_IPV4:
313 protoff = ip_hdrlen(skb);
314 break;
315 case NFPROTO_IPV6: {
316 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
317 __be16 frag_off;
318 int ofs;
319
320 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
321 &frag_off);
322 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
323 pr_debug("proto header not found\n");
324 return NF_ACCEPT;
325 }
326 protoff = ofs;
327 break;
328 }
329 default:
330 WARN_ONCE(1, "helper invoked on non-IP family!");
331 return NF_DROP;
332 }
333
334 err = helper->help(skb, protoff, ct, ctinfo);
335 if (err != NF_ACCEPT)
336 return err;
337
338 /* Adjust seqs after helper. This is needed due to some helpers (e.g.,
339 * FTP with NAT) adusting the TCP payload size when mangling IP
340 * addresses and/or port numbers in the text-based control connection.
341 */
342 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
343 !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
344 return NF_DROP;
345 return NF_ACCEPT;
346 }
347
348 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
349 * value if 'skb' is freed.
350 */
351 static int handle_fragments(struct net *net, struct sw_flow_key *key,
352 u16 zone, struct sk_buff *skb)
353 {
354 struct ovs_skb_cb ovs_cb = *OVS_CB(skb);
355 int err;
356
357 if (key->eth.type == htons(ETH_P_IP)) {
358 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
359
360 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
361 err = ip_defrag(net, skb, user);
362 if (err)
363 return err;
364
365 ovs_cb.mru = IPCB(skb)->frag_max_size;
366 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
367 } else if (key->eth.type == htons(ETH_P_IPV6)) {
368 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
369
370 skb_orphan(skb);
371 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
372 err = nf_ct_frag6_gather(net, skb, user);
373 if (err)
374 return err;
375
376 key->ip.proto = ipv6_hdr(skb)->nexthdr;
377 ovs_cb.mru = IP6CB(skb)->frag_max_size;
378 #endif
379 } else {
380 kfree_skb(skb);
381 return -EPFNOSUPPORT;
382 }
383
384 key->ip.frag = OVS_FRAG_TYPE_NONE;
385 skb_clear_hash(skb);
386 skb->ignore_df = 1;
387 *OVS_CB(skb) = ovs_cb;
388
389 return 0;
390 }
391
392 static struct nf_conntrack_expect *
393 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
394 u16 proto, const struct sk_buff *skb)
395 {
396 struct nf_conntrack_tuple tuple;
397
398 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
399 return NULL;
400 return __nf_ct_expect_find(net, zone, &tuple);
401 }
402
403 /* This replicates logic from nf_conntrack_core.c that is not exported. */
404 static enum ip_conntrack_info
405 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
406 {
407 const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
408
409 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
410 return IP_CT_ESTABLISHED_REPLY;
411 /* Once we've had two way comms, always ESTABLISHED. */
412 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
413 return IP_CT_ESTABLISHED;
414 if (test_bit(IPS_EXPECTED_BIT, &ct->status))
415 return IP_CT_RELATED;
416 return IP_CT_NEW;
417 }
418
419 /* Find an existing connection which this packet belongs to without
420 * re-attributing statistics or modifying the connection state. This allows an
421 * skb->nfct lost due to an upcall to be recovered during actions execution.
422 *
423 * Must be called with rcu_read_lock.
424 *
425 * On success, populates skb->nfct and skb->nfctinfo, and returns the
426 * connection. Returns NULL if there is no existing entry.
427 */
428 static struct nf_conn *
429 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
430 u8 l3num, struct sk_buff *skb)
431 {
432 struct nf_conntrack_l3proto *l3proto;
433 struct nf_conntrack_l4proto *l4proto;
434 struct nf_conntrack_tuple tuple;
435 struct nf_conntrack_tuple_hash *h;
436 struct nf_conn *ct;
437 unsigned int dataoff;
438 u8 protonum;
439
440 l3proto = __nf_ct_l3proto_find(l3num);
441 if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
442 &protonum) <= 0) {
443 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
444 return NULL;
445 }
446 l4proto = __nf_ct_l4proto_find(l3num, protonum);
447 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
448 protonum, net, &tuple, l3proto, l4proto)) {
449 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
450 return NULL;
451 }
452
453 /* look for tuple match */
454 h = nf_conntrack_find_get(net, zone, &tuple);
455 if (!h)
456 return NULL; /* Not found. */
457
458 ct = nf_ct_tuplehash_to_ctrack(h);
459
460 skb->nfct = &ct->ct_general;
461 skb->nfctinfo = ovs_ct_get_info(h);
462 return ct;
463 }
464
465 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */
466 static bool skb_nfct_cached(struct net *net,
467 const struct sw_flow_key *key,
468 const struct ovs_conntrack_info *info,
469 struct sk_buff *skb)
470 {
471 enum ip_conntrack_info ctinfo;
472 struct nf_conn *ct;
473
474 ct = nf_ct_get(skb, &ctinfo);
475 /* If no ct, check if we have evidence that an existing conntrack entry
476 * might be found for this skb. This happens when we lose a skb->nfct
477 * due to an upcall. If the connection was not confirmed, it is not
478 * cached and needs to be run through conntrack again.
479 */
480 if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
481 !(key->ct.state & OVS_CS_F_INVALID) &&
482 key->ct.zone == info->zone.id)
483 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
484 if (!ct)
485 return false;
486 if (!net_eq(net, read_pnet(&ct->ct_net)))
487 return false;
488 if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
489 return false;
490 if (info->helper) {
491 struct nf_conn_help *help;
492
493 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
494 if (help && rcu_access_pointer(help->helper) != info->helper)
495 return false;
496 }
497
498 return true;
499 }
500
501 #ifdef CONFIG_NF_NAT_NEEDED
502 /* Modelled after nf_nat_ipv[46]_fn().
503 * range is only used for new, uninitialized NAT state.
504 * Returns either NF_ACCEPT or NF_DROP.
505 */
506 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
507 enum ip_conntrack_info ctinfo,
508 const struct nf_nat_range *range,
509 enum nf_nat_manip_type maniptype)
510 {
511 int hooknum, nh_off, err = NF_ACCEPT;
512
513 nh_off = skb_network_offset(skb);
514 skb_pull(skb, nh_off);
515
516 /* See HOOK2MANIP(). */
517 if (maniptype == NF_NAT_MANIP_SRC)
518 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
519 else
520 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
521
522 switch (ctinfo) {
523 case IP_CT_RELATED:
524 case IP_CT_RELATED_REPLY:
525 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
526 skb->protocol == htons(ETH_P_IP) &&
527 ip_hdr(skb)->protocol == IPPROTO_ICMP) {
528 if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
529 hooknum))
530 err = NF_DROP;
531 goto push;
532 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
533 skb->protocol == htons(ETH_P_IPV6)) {
534 __be16 frag_off;
535 u8 nexthdr = ipv6_hdr(skb)->nexthdr;
536 int hdrlen = ipv6_skip_exthdr(skb,
537 sizeof(struct ipv6hdr),
538 &nexthdr, &frag_off);
539
540 if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
541 if (!nf_nat_icmpv6_reply_translation(skb, ct,
542 ctinfo,
543 hooknum,
544 hdrlen))
545 err = NF_DROP;
546 goto push;
547 }
548 }
549 /* Non-ICMP, fall thru to initialize if needed. */
550 case IP_CT_NEW:
551 /* Seen it before? This can happen for loopback, retrans,
552 * or local packets.
553 */
554 if (!nf_nat_initialized(ct, maniptype)) {
555 /* Initialize according to the NAT action. */
556 err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
557 /* Action is set up to establish a new
558 * mapping.
559 */
560 ? nf_nat_setup_info(ct, range, maniptype)
561 : nf_nat_alloc_null_binding(ct, hooknum);
562 if (err != NF_ACCEPT)
563 goto push;
564 }
565 break;
566
567 case IP_CT_ESTABLISHED:
568 case IP_CT_ESTABLISHED_REPLY:
569 break;
570
571 default:
572 err = NF_DROP;
573 goto push;
574 }
575
576 err = nf_nat_packet(ct, ctinfo, hooknum, skb);
577 push:
578 skb_push(skb, nh_off);
579
580 return err;
581 }
582
583 static void ovs_nat_update_key(struct sw_flow_key *key,
584 const struct sk_buff *skb,
585 enum nf_nat_manip_type maniptype)
586 {
587 if (maniptype == NF_NAT_MANIP_SRC) {
588 __be16 src;
589
590 key->ct.state |= OVS_CS_F_SRC_NAT;
591 if (key->eth.type == htons(ETH_P_IP))
592 key->ipv4.addr.src = ip_hdr(skb)->saddr;
593 else if (key->eth.type == htons(ETH_P_IPV6))
594 memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
595 sizeof(key->ipv6.addr.src));
596 else
597 return;
598
599 if (key->ip.proto == IPPROTO_UDP)
600 src = udp_hdr(skb)->source;
601 else if (key->ip.proto == IPPROTO_TCP)
602 src = tcp_hdr(skb)->source;
603 else if (key->ip.proto == IPPROTO_SCTP)
604 src = sctp_hdr(skb)->source;
605 else
606 return;
607
608 key->tp.src = src;
609 } else {
610 __be16 dst;
611
612 key->ct.state |= OVS_CS_F_DST_NAT;
613 if (key->eth.type == htons(ETH_P_IP))
614 key->ipv4.addr.dst = ip_hdr(skb)->daddr;
615 else if (key->eth.type == htons(ETH_P_IPV6))
616 memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
617 sizeof(key->ipv6.addr.dst));
618 else
619 return;
620
621 if (key->ip.proto == IPPROTO_UDP)
622 dst = udp_hdr(skb)->dest;
623 else if (key->ip.proto == IPPROTO_TCP)
624 dst = tcp_hdr(skb)->dest;
625 else if (key->ip.proto == IPPROTO_SCTP)
626 dst = sctp_hdr(skb)->dest;
627 else
628 return;
629
630 key->tp.dst = dst;
631 }
632 }
633
634 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
635 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
636 const struct ovs_conntrack_info *info,
637 struct sk_buff *skb, struct nf_conn *ct,
638 enum ip_conntrack_info ctinfo)
639 {
640 enum nf_nat_manip_type maniptype;
641 int err;
642
643 if (nf_ct_is_untracked(ct)) {
644 /* A NAT action may only be performed on tracked packets. */
645 return NF_ACCEPT;
646 }
647
648 /* Add NAT extension if not confirmed yet. */
649 if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
650 return NF_ACCEPT; /* Can't NAT. */
651
652 /* Determine NAT type.
653 * Check if the NAT type can be deduced from the tracked connection.
654 * Make sure new expected connections (IP_CT_RELATED) are NATted only
655 * when committing.
656 */
657 if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
658 ct->status & IPS_NAT_MASK &&
659 (ctinfo != IP_CT_RELATED || info->commit)) {
660 /* NAT an established or related connection like before. */
661 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
662 /* This is the REPLY direction for a connection
663 * for which NAT was applied in the forward
664 * direction. Do the reverse NAT.
665 */
666 maniptype = ct->status & IPS_SRC_NAT
667 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
668 else
669 maniptype = ct->status & IPS_SRC_NAT
670 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
671 } else if (info->nat & OVS_CT_SRC_NAT) {
672 maniptype = NF_NAT_MANIP_SRC;
673 } else if (info->nat & OVS_CT_DST_NAT) {
674 maniptype = NF_NAT_MANIP_DST;
675 } else {
676 return NF_ACCEPT; /* Connection is not NATed. */
677 }
678 err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
679
680 /* Mark NAT done if successful and update the flow key. */
681 if (err == NF_ACCEPT)
682 ovs_nat_update_key(key, skb, maniptype);
683
684 return err;
685 }
686 #else /* !CONFIG_NF_NAT_NEEDED */
687 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
688 const struct ovs_conntrack_info *info,
689 struct sk_buff *skb, struct nf_conn *ct,
690 enum ip_conntrack_info ctinfo)
691 {
692 return NF_ACCEPT;
693 }
694 #endif
695
696 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
697 * not done already. Update key with new CT state after passing the packet
698 * through conntrack.
699 * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
700 * set to NULL and 0 will be returned.
701 */
702 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
703 const struct ovs_conntrack_info *info,
704 struct sk_buff *skb)
705 {
706 /* If we are recirculating packets to match on conntrack fields and
707 * committing with a separate conntrack action, then we don't need to
708 * actually run the packet through conntrack twice unless it's for a
709 * different zone.
710 */
711 bool cached = skb_nfct_cached(net, key, info, skb);
712 enum ip_conntrack_info ctinfo;
713 struct nf_conn *ct;
714
715 if (!cached) {
716 struct nf_conn *tmpl = info->ct;
717 int err;
718
719 /* Associate skb with specified zone. */
720 if (tmpl) {
721 if (skb->nfct)
722 nf_conntrack_put(skb->nfct);
723 nf_conntrack_get(&tmpl->ct_general);
724 skb->nfct = &tmpl->ct_general;
725 skb->nfctinfo = IP_CT_NEW;
726 }
727
728 /* Repeat if requested, see nf_iterate(). */
729 do {
730 err = nf_conntrack_in(net, info->family,
731 NF_INET_PRE_ROUTING, skb);
732 } while (err == NF_REPEAT);
733
734 if (err != NF_ACCEPT)
735 return -ENOENT;
736
737 /* Clear CT state NAT flags to mark that we have not yet done
738 * NAT after the nf_conntrack_in() call. We can actually clear
739 * the whole state, as it will be re-initialized below.
740 */
741 key->ct.state = 0;
742
743 /* Update the key, but keep the NAT flags. */
744 ovs_ct_update_key(skb, info, key, true, true);
745 }
746
747 ct = nf_ct_get(skb, &ctinfo);
748 if (ct) {
749 /* Packets starting a new connection must be NATted before the
750 * helper, so that the helper knows about the NAT. We enforce
751 * this by delaying both NAT and helper calls for unconfirmed
752 * connections until the committing CT action. For later
753 * packets NAT and Helper may be called in either order.
754 *
755 * NAT will be done only if the CT action has NAT, and only
756 * once per packet (per zone), as guarded by the NAT bits in
757 * the key->ct.state.
758 */
759 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
760 (nf_ct_is_confirmed(ct) || info->commit) &&
761 ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
762 return -EINVAL;
763 }
764
765 /* Userspace may decide to perform a ct lookup without a helper
766 * specified followed by a (recirculate and) commit with one.
767 * Therefore, for unconfirmed connections which we will commit,
768 * we need to attach the helper here.
769 */
770 if (!nf_ct_is_confirmed(ct) && info->commit &&
771 info->helper && !nfct_help(ct)) {
772 int err = __nf_ct_try_assign_helper(ct, info->ct,
773 GFP_ATOMIC);
774 if (err)
775 return err;
776 }
777
778 /* Call the helper only if:
779 * - nf_conntrack_in() was executed above ("!cached") for a
780 * confirmed connection, or
781 * - When committing an unconfirmed connection.
782 */
783 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
784 ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
785 return -EINVAL;
786 }
787 }
788
789 return 0;
790 }
791
792 /* Lookup connection and read fields into key. */
793 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
794 const struct ovs_conntrack_info *info,
795 struct sk_buff *skb)
796 {
797 struct nf_conntrack_expect *exp;
798
799 /* If we pass an expected packet through nf_conntrack_in() the
800 * expectation is typically removed, but the packet could still be
801 * lost in upcall processing. To prevent this from happening we
802 * perform an explicit expectation lookup. Expected connections are
803 * always new, and will be passed through conntrack only when they are
804 * committed, as it is OK to remove the expectation at that time.
805 */
806 exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
807 if (exp) {
808 u8 state;
809
810 /* NOTE: New connections are NATted and Helped only when
811 * committed, so we are not calling into NAT here.
812 */
813 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
814 __ovs_ct_update_key(key, state, &info->zone, exp->master);
815 } else {
816 struct nf_conn *ct;
817 int err;
818
819 err = __ovs_ct_lookup(net, key, info, skb);
820 if (err)
821 return err;
822
823 ct = (struct nf_conn *)skb->nfct;
824 if (ct)
825 nf_ct_deliver_cached_events(ct);
826 }
827
828 return 0;
829 }
830
831 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
832 {
833 size_t i;
834
835 for (i = 0; i < sizeof(*labels); i++)
836 if (labels->ct_labels[i])
837 return true;
838
839 return false;
840 }
841
842 /* Lookup connection and confirm if unconfirmed. */
843 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
844 const struct ovs_conntrack_info *info,
845 struct sk_buff *skb)
846 {
847 int err;
848
849 err = __ovs_ct_lookup(net, key, info, skb);
850 if (err)
851 return err;
852
853 /* Apply changes before confirming the connection so that the initial
854 * conntrack NEW netlink event carries the values given in the CT
855 * action.
856 */
857 if (info->mark.mask) {
858 err = ovs_ct_set_mark(skb, key, info->mark.value,
859 info->mark.mask);
860 if (err)
861 return err;
862 }
863 if (labels_nonzero(&info->labels.mask)) {
864 err = ovs_ct_set_labels(skb, key, &info->labels.value,
865 &info->labels.mask);
866 if (err)
867 return err;
868 }
869 /* This will take care of sending queued events even if the connection
870 * is already confirmed.
871 */
872 if (nf_conntrack_confirm(skb) != NF_ACCEPT)
873 return -EINVAL;
874
875 return 0;
876 }
877
878 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
879 * value if 'skb' is freed.
880 */
881 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
882 struct sw_flow_key *key,
883 const struct ovs_conntrack_info *info)
884 {
885 int nh_ofs;
886 int err;
887
888 /* The conntrack module expects to be working at L3. */
889 nh_ofs = skb_network_offset(skb);
890 skb_pull(skb, nh_ofs);
891
892 if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
893 err = handle_fragments(net, key, info->zone.id, skb);
894 if (err)
895 return err;
896 }
897
898 if (info->commit)
899 err = ovs_ct_commit(net, key, info, skb);
900 else
901 err = ovs_ct_lookup(net, key, info, skb);
902
903 skb_push(skb, nh_ofs);
904 if (err)
905 kfree_skb(skb);
906 return err;
907 }
908
909 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
910 const struct sw_flow_key *key, bool log)
911 {
912 struct nf_conntrack_helper *helper;
913 struct nf_conn_help *help;
914
915 helper = nf_conntrack_helper_try_module_get(name, info->family,
916 key->ip.proto);
917 if (!helper) {
918 OVS_NLERR(log, "Unknown helper \"%s\"", name);
919 return -EINVAL;
920 }
921
922 help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
923 if (!help) {
924 module_put(helper->me);
925 return -ENOMEM;
926 }
927
928 rcu_assign_pointer(help->helper, helper);
929 info->helper = helper;
930 return 0;
931 }
932
933 #ifdef CONFIG_NF_NAT_NEEDED
934 static int parse_nat(const struct nlattr *attr,
935 struct ovs_conntrack_info *info, bool log)
936 {
937 struct nlattr *a;
938 int rem;
939 bool have_ip_max = false;
940 bool have_proto_max = false;
941 bool ip_vers = (info->family == NFPROTO_IPV6);
942
943 nla_for_each_nested(a, attr, rem) {
944 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
945 [OVS_NAT_ATTR_SRC] = {0, 0},
946 [OVS_NAT_ATTR_DST] = {0, 0},
947 [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
948 sizeof(struct in6_addr)},
949 [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
950 sizeof(struct in6_addr)},
951 [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
952 [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
953 [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
954 [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
955 [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
956 };
957 int type = nla_type(a);
958
959 if (type > OVS_NAT_ATTR_MAX) {
960 OVS_NLERR(log,
961 "Unknown NAT attribute (type=%d, max=%d).\n",
962 type, OVS_NAT_ATTR_MAX);
963 return -EINVAL;
964 }
965
966 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
967 OVS_NLERR(log,
968 "NAT attribute type %d has unexpected length (%d != %d).\n",
969 type, nla_len(a),
970 ovs_nat_attr_lens[type][ip_vers]);
971 return -EINVAL;
972 }
973
974 switch (type) {
975 case OVS_NAT_ATTR_SRC:
976 case OVS_NAT_ATTR_DST:
977 if (info->nat) {
978 OVS_NLERR(log,
979 "Only one type of NAT may be specified.\n"
980 );
981 return -ERANGE;
982 }
983 info->nat |= OVS_CT_NAT;
984 info->nat |= ((type == OVS_NAT_ATTR_SRC)
985 ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
986 break;
987
988 case OVS_NAT_ATTR_IP_MIN:
989 nla_memcpy(&info->range.min_addr, a,
990 sizeof(info->range.min_addr));
991 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
992 break;
993
994 case OVS_NAT_ATTR_IP_MAX:
995 have_ip_max = true;
996 nla_memcpy(&info->range.max_addr, a,
997 sizeof(info->range.max_addr));
998 info->range.flags |= NF_NAT_RANGE_MAP_IPS;
999 break;
1000
1001 case OVS_NAT_ATTR_PROTO_MIN:
1002 info->range.min_proto.all = htons(nla_get_u16(a));
1003 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1004 break;
1005
1006 case OVS_NAT_ATTR_PROTO_MAX:
1007 have_proto_max = true;
1008 info->range.max_proto.all = htons(nla_get_u16(a));
1009 info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1010 break;
1011
1012 case OVS_NAT_ATTR_PERSISTENT:
1013 info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1014 break;
1015
1016 case OVS_NAT_ATTR_PROTO_HASH:
1017 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1018 break;
1019
1020 case OVS_NAT_ATTR_PROTO_RANDOM:
1021 info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1022 break;
1023
1024 default:
1025 OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1026 return -EINVAL;
1027 }
1028 }
1029
1030 if (rem > 0) {
1031 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1032 return -EINVAL;
1033 }
1034 if (!info->nat) {
1035 /* Do not allow flags if no type is given. */
1036 if (info->range.flags) {
1037 OVS_NLERR(log,
1038 "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1039 );
1040 return -EINVAL;
1041 }
1042 info->nat = OVS_CT_NAT; /* NAT existing connections. */
1043 } else if (!info->commit) {
1044 OVS_NLERR(log,
1045 "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1046 );
1047 return -EINVAL;
1048 }
1049 /* Allow missing IP_MAX. */
1050 if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1051 memcpy(&info->range.max_addr, &info->range.min_addr,
1052 sizeof(info->range.max_addr));
1053 }
1054 /* Allow missing PROTO_MAX. */
1055 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1056 !have_proto_max) {
1057 info->range.max_proto.all = info->range.min_proto.all;
1058 }
1059 return 0;
1060 }
1061 #endif
1062
1063 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1064 [OVS_CT_ATTR_COMMIT] = { .minlen = 0, .maxlen = 0 },
1065 [OVS_CT_ATTR_ZONE] = { .minlen = sizeof(u16),
1066 .maxlen = sizeof(u16) },
1067 [OVS_CT_ATTR_MARK] = { .minlen = sizeof(struct md_mark),
1068 .maxlen = sizeof(struct md_mark) },
1069 [OVS_CT_ATTR_LABELS] = { .minlen = sizeof(struct md_labels),
1070 .maxlen = sizeof(struct md_labels) },
1071 [OVS_CT_ATTR_HELPER] = { .minlen = 1,
1072 .maxlen = NF_CT_HELPER_NAME_LEN },
1073 #ifdef CONFIG_NF_NAT_NEEDED
1074 /* NAT length is checked when parsing the nested attributes. */
1075 [OVS_CT_ATTR_NAT] = { .minlen = 0, .maxlen = INT_MAX },
1076 #endif
1077 };
1078
1079 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1080 const char **helper, bool log)
1081 {
1082 struct nlattr *a;
1083 int rem;
1084
1085 nla_for_each_nested(a, attr, rem) {
1086 int type = nla_type(a);
1087 int maxlen = ovs_ct_attr_lens[type].maxlen;
1088 int minlen = ovs_ct_attr_lens[type].minlen;
1089
1090 if (type > OVS_CT_ATTR_MAX) {
1091 OVS_NLERR(log,
1092 "Unknown conntrack attr (type=%d, max=%d)",
1093 type, OVS_CT_ATTR_MAX);
1094 return -EINVAL;
1095 }
1096 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1097 OVS_NLERR(log,
1098 "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1099 type, nla_len(a), maxlen);
1100 return -EINVAL;
1101 }
1102
1103 switch (type) {
1104 case OVS_CT_ATTR_COMMIT:
1105 info->commit = true;
1106 break;
1107 #ifdef CONFIG_NF_CONNTRACK_ZONES
1108 case OVS_CT_ATTR_ZONE:
1109 info->zone.id = nla_get_u16(a);
1110 break;
1111 #endif
1112 #ifdef CONFIG_NF_CONNTRACK_MARK
1113 case OVS_CT_ATTR_MARK: {
1114 struct md_mark *mark = nla_data(a);
1115
1116 if (!mark->mask) {
1117 OVS_NLERR(log, "ct_mark mask cannot be 0");
1118 return -EINVAL;
1119 }
1120 info->mark = *mark;
1121 break;
1122 }
1123 #endif
1124 #ifdef CONFIG_NF_CONNTRACK_LABELS
1125 case OVS_CT_ATTR_LABELS: {
1126 struct md_labels *labels = nla_data(a);
1127
1128 if (!labels_nonzero(&labels->mask)) {
1129 OVS_NLERR(log, "ct_labels mask cannot be 0");
1130 return -EINVAL;
1131 }
1132 info->labels = *labels;
1133 break;
1134 }
1135 #endif
1136 case OVS_CT_ATTR_HELPER:
1137 *helper = nla_data(a);
1138 if (!memchr(*helper, '\0', nla_len(a))) {
1139 OVS_NLERR(log, "Invalid conntrack helper");
1140 return -EINVAL;
1141 }
1142 break;
1143 #ifdef CONFIG_NF_NAT_NEEDED
1144 case OVS_CT_ATTR_NAT: {
1145 int err = parse_nat(a, info, log);
1146
1147 if (err)
1148 return err;
1149 break;
1150 }
1151 #endif
1152 default:
1153 OVS_NLERR(log, "Unknown conntrack attr (%d)",
1154 type);
1155 return -EINVAL;
1156 }
1157 }
1158
1159 #ifdef CONFIG_NF_CONNTRACK_MARK
1160 if (!info->commit && info->mark.mask) {
1161 OVS_NLERR(log,
1162 "Setting conntrack mark requires 'commit' flag.");
1163 return -EINVAL;
1164 }
1165 #endif
1166 #ifdef CONFIG_NF_CONNTRACK_LABELS
1167 if (!info->commit && labels_nonzero(&info->labels.mask)) {
1168 OVS_NLERR(log,
1169 "Setting conntrack labels requires 'commit' flag.");
1170 return -EINVAL;
1171 }
1172 #endif
1173 if (rem > 0) {
1174 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1175 return -EINVAL;
1176 }
1177
1178 return 0;
1179 }
1180
1181 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1182 {
1183 if (attr == OVS_KEY_ATTR_CT_STATE)
1184 return true;
1185 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1186 attr == OVS_KEY_ATTR_CT_ZONE)
1187 return true;
1188 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1189 attr == OVS_KEY_ATTR_CT_MARK)
1190 return true;
1191 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1192 attr == OVS_KEY_ATTR_CT_LABELS) {
1193 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1194
1195 return ovs_net->xt_label;
1196 }
1197
1198 return false;
1199 }
1200
1201 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1202 const struct sw_flow_key *key,
1203 struct sw_flow_actions **sfa, bool log)
1204 {
1205 struct ovs_conntrack_info ct_info;
1206 const char *helper = NULL;
1207 u16 family;
1208 int err;
1209
1210 family = key_to_nfproto(key);
1211 if (family == NFPROTO_UNSPEC) {
1212 OVS_NLERR(log, "ct family unspecified");
1213 return -EINVAL;
1214 }
1215
1216 memset(&ct_info, 0, sizeof(ct_info));
1217 ct_info.family = family;
1218
1219 nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1220 NF_CT_DEFAULT_ZONE_DIR, 0);
1221
1222 err = parse_ct(attr, &ct_info, &helper, log);
1223 if (err)
1224 return err;
1225
1226 /* Set up template for tracking connections in specific zones. */
1227 ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1228 if (!ct_info.ct) {
1229 OVS_NLERR(log, "Failed to allocate conntrack template");
1230 return -ENOMEM;
1231 }
1232
1233 __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1234 nf_conntrack_get(&ct_info.ct->ct_general);
1235
1236 if (helper) {
1237 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1238 if (err)
1239 goto err_free_ct;
1240 }
1241
1242 err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1243 sizeof(ct_info), log);
1244 if (err)
1245 goto err_free_ct;
1246
1247 return 0;
1248 err_free_ct:
1249 __ovs_ct_free_action(&ct_info);
1250 return err;
1251 }
1252
1253 #ifdef CONFIG_NF_NAT_NEEDED
1254 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1255 struct sk_buff *skb)
1256 {
1257 struct nlattr *start;
1258
1259 start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1260 if (!start)
1261 return false;
1262
1263 if (info->nat & OVS_CT_SRC_NAT) {
1264 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1265 return false;
1266 } else if (info->nat & OVS_CT_DST_NAT) {
1267 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1268 return false;
1269 } else {
1270 goto out;
1271 }
1272
1273 if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1274 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1275 info->family == NFPROTO_IPV4) {
1276 if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1277 info->range.min_addr.ip) ||
1278 (info->range.max_addr.ip
1279 != info->range.min_addr.ip &&
1280 (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1281 info->range.max_addr.ip))))
1282 return false;
1283 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1284 info->family == NFPROTO_IPV6) {
1285 if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1286 &info->range.min_addr.in6) ||
1287 (memcmp(&info->range.max_addr.in6,
1288 &info->range.min_addr.in6,
1289 sizeof(info->range.max_addr.in6)) &&
1290 (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1291 &info->range.max_addr.in6))))
1292 return false;
1293 } else {
1294 return false;
1295 }
1296 }
1297 if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1298 (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1299 ntohs(info->range.min_proto.all)) ||
1300 (info->range.max_proto.all != info->range.min_proto.all &&
1301 nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1302 ntohs(info->range.max_proto.all)))))
1303 return false;
1304
1305 if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1306 nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1307 return false;
1308 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1309 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_HASH))
1310 return false;
1311 if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1312 nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1313 return false;
1314 out:
1315 nla_nest_end(skb, start);
1316
1317 return true;
1318 }
1319 #endif
1320
1321 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1322 struct sk_buff *skb)
1323 {
1324 struct nlattr *start;
1325
1326 start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1327 if (!start)
1328 return -EMSGSIZE;
1329
1330 if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1331 return -EMSGSIZE;
1332 if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1333 nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1334 return -EMSGSIZE;
1335 if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1336 nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1337 &ct_info->mark))
1338 return -EMSGSIZE;
1339 if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1340 labels_nonzero(&ct_info->labels.mask) &&
1341 nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1342 &ct_info->labels))
1343 return -EMSGSIZE;
1344 if (ct_info->helper) {
1345 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1346 ct_info->helper->name))
1347 return -EMSGSIZE;
1348 }
1349 #ifdef CONFIG_NF_NAT_NEEDED
1350 if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1351 return -EMSGSIZE;
1352 #endif
1353 nla_nest_end(skb, start);
1354
1355 return 0;
1356 }
1357
1358 void ovs_ct_free_action(const struct nlattr *a)
1359 {
1360 struct ovs_conntrack_info *ct_info = nla_data(a);
1361
1362 __ovs_ct_free_action(ct_info);
1363 }
1364
1365 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1366 {
1367 if (ct_info->helper)
1368 module_put(ct_info->helper->me);
1369 if (ct_info->ct)
1370 nf_ct_put(ct_info->ct);
1371 }
1372
1373 void ovs_ct_init(struct net *net)
1374 {
1375 unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1376 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1377
1378 if (nf_connlabels_get(net, n_bits - 1)) {
1379 ovs_net->xt_label = false;
1380 OVS_NLERR(true, "Failed to set connlabel length");
1381 } else {
1382 ovs_net->xt_label = true;
1383 }
1384 }
1385
1386 void ovs_ct_exit(struct net *net)
1387 {
1388 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1389
1390 if (ovs_net->xt_label)
1391 nf_connlabels_put(net);
1392 }