]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/openvswitch/flow.c
Merge tag 'hwparam-20170420' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowell...
[mirror_ubuntu-artful-kernel.git] / net / openvswitch / flow.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49
50 #include "conntrack.h"
51 #include "datapath.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "vport.h"
55
56 u64 ovs_flow_used_time(unsigned long flow_jiffies)
57 {
58 struct timespec cur_ts;
59 u64 cur_ms, idle_ms;
60
61 ktime_get_ts(&cur_ts);
62 idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
63 cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
64 cur_ts.tv_nsec / NSEC_PER_MSEC;
65
66 return cur_ms - idle_ms;
67 }
68
69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
70
71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
72 const struct sk_buff *skb)
73 {
74 struct flow_stats *stats;
75 int node = numa_node_id();
76 int cpu = smp_processor_id();
77 int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78
79 stats = rcu_dereference(flow->stats[cpu]);
80
81 /* Check if already have CPU-specific stats. */
82 if (likely(stats)) {
83 spin_lock(&stats->lock);
84 /* Mark if we write on the pre-allocated stats. */
85 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86 flow->stats_last_writer = cpu;
87 } else {
88 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89 spin_lock(&stats->lock);
90
91 /* If the current CPU is the only writer on the
92 * pre-allocated stats keep using them.
93 */
94 if (unlikely(flow->stats_last_writer != cpu)) {
95 /* A previous locker may have already allocated the
96 * stats, so we need to check again. If CPU-specific
97 * stats were already allocated, we update the pre-
98 * allocated stats as we have already locked them.
99 */
100 if (likely(flow->stats_last_writer != -1) &&
101 likely(!rcu_access_pointer(flow->stats[cpu]))) {
102 /* Try to allocate CPU-specific stats. */
103 struct flow_stats *new_stats;
104
105 new_stats =
106 kmem_cache_alloc_node(flow_stats_cache,
107 GFP_NOWAIT |
108 __GFP_THISNODE |
109 __GFP_NOWARN |
110 __GFP_NOMEMALLOC,
111 node);
112 if (likely(new_stats)) {
113 new_stats->used = jiffies;
114 new_stats->packet_count = 1;
115 new_stats->byte_count = len;
116 new_stats->tcp_flags = tcp_flags;
117 spin_lock_init(&new_stats->lock);
118
119 rcu_assign_pointer(flow->stats[cpu],
120 new_stats);
121 goto unlock;
122 }
123 }
124 flow->stats_last_writer = cpu;
125 }
126 }
127
128 stats->used = jiffies;
129 stats->packet_count++;
130 stats->byte_count += len;
131 stats->tcp_flags |= tcp_flags;
132 unlock:
133 spin_unlock(&stats->lock);
134 }
135
136 /* Must be called with rcu_read_lock or ovs_mutex. */
137 void ovs_flow_stats_get(const struct sw_flow *flow,
138 struct ovs_flow_stats *ovs_stats,
139 unsigned long *used, __be16 *tcp_flags)
140 {
141 int cpu;
142
143 *used = 0;
144 *tcp_flags = 0;
145 memset(ovs_stats, 0, sizeof(*ovs_stats));
146
147 /* We open code this to make sure cpu 0 is always considered */
148 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
149 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
150
151 if (stats) {
152 /* Local CPU may write on non-local stats, so we must
153 * block bottom-halves here.
154 */
155 spin_lock_bh(&stats->lock);
156 if (!*used || time_after(stats->used, *used))
157 *used = stats->used;
158 *tcp_flags |= stats->tcp_flags;
159 ovs_stats->n_packets += stats->packet_count;
160 ovs_stats->n_bytes += stats->byte_count;
161 spin_unlock_bh(&stats->lock);
162 }
163 }
164 }
165
166 /* Called with ovs_mutex. */
167 void ovs_flow_stats_clear(struct sw_flow *flow)
168 {
169 int cpu;
170
171 /* We open code this to make sure cpu 0 is always considered */
172 for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
173 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
174
175 if (stats) {
176 spin_lock_bh(&stats->lock);
177 stats->used = 0;
178 stats->packet_count = 0;
179 stats->byte_count = 0;
180 stats->tcp_flags = 0;
181 spin_unlock_bh(&stats->lock);
182 }
183 }
184 }
185
186 static int check_header(struct sk_buff *skb, int len)
187 {
188 if (unlikely(skb->len < len))
189 return -EINVAL;
190 if (unlikely(!pskb_may_pull(skb, len)))
191 return -ENOMEM;
192 return 0;
193 }
194
195 static bool arphdr_ok(struct sk_buff *skb)
196 {
197 return pskb_may_pull(skb, skb_network_offset(skb) +
198 sizeof(struct arp_eth_header));
199 }
200
201 static int check_iphdr(struct sk_buff *skb)
202 {
203 unsigned int nh_ofs = skb_network_offset(skb);
204 unsigned int ip_len;
205 int err;
206
207 err = check_header(skb, nh_ofs + sizeof(struct iphdr));
208 if (unlikely(err))
209 return err;
210
211 ip_len = ip_hdrlen(skb);
212 if (unlikely(ip_len < sizeof(struct iphdr) ||
213 skb->len < nh_ofs + ip_len))
214 return -EINVAL;
215
216 skb_set_transport_header(skb, nh_ofs + ip_len);
217 return 0;
218 }
219
220 static bool tcphdr_ok(struct sk_buff *skb)
221 {
222 int th_ofs = skb_transport_offset(skb);
223 int tcp_len;
224
225 if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
226 return false;
227
228 tcp_len = tcp_hdrlen(skb);
229 if (unlikely(tcp_len < sizeof(struct tcphdr) ||
230 skb->len < th_ofs + tcp_len))
231 return false;
232
233 return true;
234 }
235
236 static bool udphdr_ok(struct sk_buff *skb)
237 {
238 return pskb_may_pull(skb, skb_transport_offset(skb) +
239 sizeof(struct udphdr));
240 }
241
242 static bool sctphdr_ok(struct sk_buff *skb)
243 {
244 return pskb_may_pull(skb, skb_transport_offset(skb) +
245 sizeof(struct sctphdr));
246 }
247
248 static bool icmphdr_ok(struct sk_buff *skb)
249 {
250 return pskb_may_pull(skb, skb_transport_offset(skb) +
251 sizeof(struct icmphdr));
252 }
253
254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256 unsigned int nh_ofs = skb_network_offset(skb);
257 unsigned int nh_len;
258 int payload_ofs;
259 struct ipv6hdr *nh;
260 uint8_t nexthdr;
261 __be16 frag_off;
262 int err;
263
264 err = check_header(skb, nh_ofs + sizeof(*nh));
265 if (unlikely(err))
266 return err;
267
268 nh = ipv6_hdr(skb);
269 nexthdr = nh->nexthdr;
270 payload_ofs = (u8 *)(nh + 1) - skb->data;
271
272 key->ip.proto = NEXTHDR_NONE;
273 key->ip.tos = ipv6_get_dsfield(nh);
274 key->ip.ttl = nh->hop_limit;
275 key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
276 key->ipv6.addr.src = nh->saddr;
277 key->ipv6.addr.dst = nh->daddr;
278
279 payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
280
281 if (frag_off) {
282 if (frag_off & htons(~0x7))
283 key->ip.frag = OVS_FRAG_TYPE_LATER;
284 else
285 key->ip.frag = OVS_FRAG_TYPE_FIRST;
286 } else {
287 key->ip.frag = OVS_FRAG_TYPE_NONE;
288 }
289
290 /* Delayed handling of error in ipv6_skip_exthdr() as it
291 * always sets frag_off to a valid value which may be
292 * used to set key->ip.frag above.
293 */
294 if (unlikely(payload_ofs < 0))
295 return -EPROTO;
296
297 nh_len = payload_ofs - nh_ofs;
298 skb_set_transport_header(skb, nh_ofs + nh_len);
299 key->ip.proto = nexthdr;
300 return nh_len;
301 }
302
303 static bool icmp6hdr_ok(struct sk_buff *skb)
304 {
305 return pskb_may_pull(skb, skb_transport_offset(skb) +
306 sizeof(struct icmp6hdr));
307 }
308
309 /**
310 * Parse vlan tag from vlan header.
311 * Returns ERROR on memory error.
312 * Returns 0 if it encounters a non-vlan or incomplete packet.
313 * Returns 1 after successfully parsing vlan tag.
314 */
315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
316 bool untag_vlan)
317 {
318 struct vlan_head *vh = (struct vlan_head *)skb->data;
319
320 if (likely(!eth_type_vlan(vh->tpid)))
321 return 0;
322
323 if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
324 return 0;
325
326 if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
327 sizeof(__be16))))
328 return -ENOMEM;
329
330 vh = (struct vlan_head *)skb->data;
331 key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
332 key_vh->tpid = vh->tpid;
333
334 if (unlikely(untag_vlan)) {
335 int offset = skb->data - skb_mac_header(skb);
336 u16 tci;
337 int err;
338
339 __skb_push(skb, offset);
340 err = __skb_vlan_pop(skb, &tci);
341 __skb_pull(skb, offset);
342 if (err)
343 return err;
344 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
345 } else {
346 __skb_pull(skb, sizeof(struct vlan_head));
347 }
348 return 1;
349 }
350
351 static void clear_vlan(struct sw_flow_key *key)
352 {
353 key->eth.vlan.tci = 0;
354 key->eth.vlan.tpid = 0;
355 key->eth.cvlan.tci = 0;
356 key->eth.cvlan.tpid = 0;
357 }
358
359 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
360 {
361 int res;
362
363 if (skb_vlan_tag_present(skb)) {
364 key->eth.vlan.tci = htons(skb->vlan_tci);
365 key->eth.vlan.tpid = skb->vlan_proto;
366 } else {
367 /* Parse outer vlan tag in the non-accelerated case. */
368 res = parse_vlan_tag(skb, &key->eth.vlan, true);
369 if (res <= 0)
370 return res;
371 }
372
373 /* Parse inner vlan tag. */
374 res = parse_vlan_tag(skb, &key->eth.cvlan, false);
375 if (res <= 0)
376 return res;
377
378 return 0;
379 }
380
381 static __be16 parse_ethertype(struct sk_buff *skb)
382 {
383 struct llc_snap_hdr {
384 u8 dsap; /* Always 0xAA */
385 u8 ssap; /* Always 0xAA */
386 u8 ctrl;
387 u8 oui[3];
388 __be16 ethertype;
389 };
390 struct llc_snap_hdr *llc;
391 __be16 proto;
392
393 proto = *(__be16 *) skb->data;
394 __skb_pull(skb, sizeof(__be16));
395
396 if (eth_proto_is_802_3(proto))
397 return proto;
398
399 if (skb->len < sizeof(struct llc_snap_hdr))
400 return htons(ETH_P_802_2);
401
402 if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
403 return htons(0);
404
405 llc = (struct llc_snap_hdr *) skb->data;
406 if (llc->dsap != LLC_SAP_SNAP ||
407 llc->ssap != LLC_SAP_SNAP ||
408 (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
409 return htons(ETH_P_802_2);
410
411 __skb_pull(skb, sizeof(struct llc_snap_hdr));
412
413 if (eth_proto_is_802_3(llc->ethertype))
414 return llc->ethertype;
415
416 return htons(ETH_P_802_2);
417 }
418
419 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
420 int nh_len)
421 {
422 struct icmp6hdr *icmp = icmp6_hdr(skb);
423
424 /* The ICMPv6 type and code fields use the 16-bit transport port
425 * fields, so we need to store them in 16-bit network byte order.
426 */
427 key->tp.src = htons(icmp->icmp6_type);
428 key->tp.dst = htons(icmp->icmp6_code);
429 memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
430
431 if (icmp->icmp6_code == 0 &&
432 (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
433 icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
434 int icmp_len = skb->len - skb_transport_offset(skb);
435 struct nd_msg *nd;
436 int offset;
437
438 /* In order to process neighbor discovery options, we need the
439 * entire packet.
440 */
441 if (unlikely(icmp_len < sizeof(*nd)))
442 return 0;
443
444 if (unlikely(skb_linearize(skb)))
445 return -ENOMEM;
446
447 nd = (struct nd_msg *)skb_transport_header(skb);
448 key->ipv6.nd.target = nd->target;
449
450 icmp_len -= sizeof(*nd);
451 offset = 0;
452 while (icmp_len >= 8) {
453 struct nd_opt_hdr *nd_opt =
454 (struct nd_opt_hdr *)(nd->opt + offset);
455 int opt_len = nd_opt->nd_opt_len * 8;
456
457 if (unlikely(!opt_len || opt_len > icmp_len))
458 return 0;
459
460 /* Store the link layer address if the appropriate
461 * option is provided. It is considered an error if
462 * the same link layer option is specified twice.
463 */
464 if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
465 && opt_len == 8) {
466 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
467 goto invalid;
468 ether_addr_copy(key->ipv6.nd.sll,
469 &nd->opt[offset+sizeof(*nd_opt)]);
470 } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
471 && opt_len == 8) {
472 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
473 goto invalid;
474 ether_addr_copy(key->ipv6.nd.tll,
475 &nd->opt[offset+sizeof(*nd_opt)]);
476 }
477
478 icmp_len -= opt_len;
479 offset += opt_len;
480 }
481 }
482
483 return 0;
484
485 invalid:
486 memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
487 memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
488 memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
489
490 return 0;
491 }
492
493 /**
494 * key_extract - extracts a flow key from an Ethernet frame.
495 * @skb: sk_buff that contains the frame, with skb->data pointing to the
496 * Ethernet header
497 * @key: output flow key
498 *
499 * The caller must ensure that skb->len >= ETH_HLEN.
500 *
501 * Returns 0 if successful, otherwise a negative errno value.
502 *
503 * Initializes @skb header fields as follows:
504 *
505 * - skb->mac_header: the L2 header.
506 *
507 * - skb->network_header: just past the L2 header, or just past the
508 * VLAN header, to the first byte of the L2 payload.
509 *
510 * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
511 * on output, then just past the IP header, if one is present and
512 * of a correct length, otherwise the same as skb->network_header.
513 * For other key->eth.type values it is left untouched.
514 *
515 * - skb->protocol: the type of the data starting at skb->network_header.
516 * Equals to key->eth.type.
517 */
518 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
519 {
520 int error;
521 struct ethhdr *eth;
522
523 /* Flags are always used as part of stats */
524 key->tp.flags = 0;
525
526 skb_reset_mac_header(skb);
527
528 /* Link layer. */
529 clear_vlan(key);
530 if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
531 if (unlikely(eth_type_vlan(skb->protocol)))
532 return -EINVAL;
533
534 skb_reset_network_header(skb);
535 } else {
536 eth = eth_hdr(skb);
537 ether_addr_copy(key->eth.src, eth->h_source);
538 ether_addr_copy(key->eth.dst, eth->h_dest);
539
540 __skb_pull(skb, 2 * ETH_ALEN);
541 /* We are going to push all headers that we pull, so no need to
542 * update skb->csum here.
543 */
544
545 if (unlikely(parse_vlan(skb, key)))
546 return -ENOMEM;
547
548 skb->protocol = parse_ethertype(skb);
549 if (unlikely(skb->protocol == htons(0)))
550 return -ENOMEM;
551
552 skb_reset_network_header(skb);
553 __skb_push(skb, skb->data - skb_mac_header(skb));
554 }
555 skb_reset_mac_len(skb);
556 key->eth.type = skb->protocol;
557
558 /* Network layer. */
559 if (key->eth.type == htons(ETH_P_IP)) {
560 struct iphdr *nh;
561 __be16 offset;
562
563 error = check_iphdr(skb);
564 if (unlikely(error)) {
565 memset(&key->ip, 0, sizeof(key->ip));
566 memset(&key->ipv4, 0, sizeof(key->ipv4));
567 if (error == -EINVAL) {
568 skb->transport_header = skb->network_header;
569 error = 0;
570 }
571 return error;
572 }
573
574 nh = ip_hdr(skb);
575 key->ipv4.addr.src = nh->saddr;
576 key->ipv4.addr.dst = nh->daddr;
577
578 key->ip.proto = nh->protocol;
579 key->ip.tos = nh->tos;
580 key->ip.ttl = nh->ttl;
581
582 offset = nh->frag_off & htons(IP_OFFSET);
583 if (offset) {
584 key->ip.frag = OVS_FRAG_TYPE_LATER;
585 return 0;
586 }
587 if (nh->frag_off & htons(IP_MF) ||
588 skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
589 key->ip.frag = OVS_FRAG_TYPE_FIRST;
590 else
591 key->ip.frag = OVS_FRAG_TYPE_NONE;
592
593 /* Transport layer. */
594 if (key->ip.proto == IPPROTO_TCP) {
595 if (tcphdr_ok(skb)) {
596 struct tcphdr *tcp = tcp_hdr(skb);
597 key->tp.src = tcp->source;
598 key->tp.dst = tcp->dest;
599 key->tp.flags = TCP_FLAGS_BE16(tcp);
600 } else {
601 memset(&key->tp, 0, sizeof(key->tp));
602 }
603
604 } else if (key->ip.proto == IPPROTO_UDP) {
605 if (udphdr_ok(skb)) {
606 struct udphdr *udp = udp_hdr(skb);
607 key->tp.src = udp->source;
608 key->tp.dst = udp->dest;
609 } else {
610 memset(&key->tp, 0, sizeof(key->tp));
611 }
612 } else if (key->ip.proto == IPPROTO_SCTP) {
613 if (sctphdr_ok(skb)) {
614 struct sctphdr *sctp = sctp_hdr(skb);
615 key->tp.src = sctp->source;
616 key->tp.dst = sctp->dest;
617 } else {
618 memset(&key->tp, 0, sizeof(key->tp));
619 }
620 } else if (key->ip.proto == IPPROTO_ICMP) {
621 if (icmphdr_ok(skb)) {
622 struct icmphdr *icmp = icmp_hdr(skb);
623 /* The ICMP type and code fields use the 16-bit
624 * transport port fields, so we need to store
625 * them in 16-bit network byte order. */
626 key->tp.src = htons(icmp->type);
627 key->tp.dst = htons(icmp->code);
628 } else {
629 memset(&key->tp, 0, sizeof(key->tp));
630 }
631 }
632
633 } else if (key->eth.type == htons(ETH_P_ARP) ||
634 key->eth.type == htons(ETH_P_RARP)) {
635 struct arp_eth_header *arp;
636 bool arp_available = arphdr_ok(skb);
637
638 arp = (struct arp_eth_header *)skb_network_header(skb);
639
640 if (arp_available &&
641 arp->ar_hrd == htons(ARPHRD_ETHER) &&
642 arp->ar_pro == htons(ETH_P_IP) &&
643 arp->ar_hln == ETH_ALEN &&
644 arp->ar_pln == 4) {
645
646 /* We only match on the lower 8 bits of the opcode. */
647 if (ntohs(arp->ar_op) <= 0xff)
648 key->ip.proto = ntohs(arp->ar_op);
649 else
650 key->ip.proto = 0;
651
652 memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
653 memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
654 ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
655 ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
656 } else {
657 memset(&key->ip, 0, sizeof(key->ip));
658 memset(&key->ipv4, 0, sizeof(key->ipv4));
659 }
660 } else if (eth_p_mpls(key->eth.type)) {
661 size_t stack_len = MPLS_HLEN;
662
663 skb_set_inner_network_header(skb, skb->mac_len);
664 while (1) {
665 __be32 lse;
666
667 error = check_header(skb, skb->mac_len + stack_len);
668 if (unlikely(error))
669 return 0;
670
671 memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
672
673 if (stack_len == MPLS_HLEN)
674 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
675
676 skb_set_inner_network_header(skb, skb->mac_len + stack_len);
677 if (lse & htonl(MPLS_LS_S_MASK))
678 break;
679
680 stack_len += MPLS_HLEN;
681 }
682 } else if (key->eth.type == htons(ETH_P_IPV6)) {
683 int nh_len; /* IPv6 Header + Extensions */
684
685 nh_len = parse_ipv6hdr(skb, key);
686 if (unlikely(nh_len < 0)) {
687 switch (nh_len) {
688 case -EINVAL:
689 memset(&key->ip, 0, sizeof(key->ip));
690 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
691 /* fall-through */
692 case -EPROTO:
693 skb->transport_header = skb->network_header;
694 error = 0;
695 break;
696 default:
697 error = nh_len;
698 }
699 return error;
700 }
701
702 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
703 return 0;
704 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
705 key->ip.frag = OVS_FRAG_TYPE_FIRST;
706
707 /* Transport layer. */
708 if (key->ip.proto == NEXTHDR_TCP) {
709 if (tcphdr_ok(skb)) {
710 struct tcphdr *tcp = tcp_hdr(skb);
711 key->tp.src = tcp->source;
712 key->tp.dst = tcp->dest;
713 key->tp.flags = TCP_FLAGS_BE16(tcp);
714 } else {
715 memset(&key->tp, 0, sizeof(key->tp));
716 }
717 } else if (key->ip.proto == NEXTHDR_UDP) {
718 if (udphdr_ok(skb)) {
719 struct udphdr *udp = udp_hdr(skb);
720 key->tp.src = udp->source;
721 key->tp.dst = udp->dest;
722 } else {
723 memset(&key->tp, 0, sizeof(key->tp));
724 }
725 } else if (key->ip.proto == NEXTHDR_SCTP) {
726 if (sctphdr_ok(skb)) {
727 struct sctphdr *sctp = sctp_hdr(skb);
728 key->tp.src = sctp->source;
729 key->tp.dst = sctp->dest;
730 } else {
731 memset(&key->tp, 0, sizeof(key->tp));
732 }
733 } else if (key->ip.proto == NEXTHDR_ICMP) {
734 if (icmp6hdr_ok(skb)) {
735 error = parse_icmpv6(skb, key, nh_len);
736 if (error)
737 return error;
738 } else {
739 memset(&key->tp, 0, sizeof(key->tp));
740 }
741 }
742 }
743 return 0;
744 }
745
746 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
747 {
748 int res;
749
750 res = key_extract(skb, key);
751 if (!res)
752 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
753
754 return res;
755 }
756
757 static int key_extract_mac_proto(struct sk_buff *skb)
758 {
759 switch (skb->dev->type) {
760 case ARPHRD_ETHER:
761 return MAC_PROTO_ETHERNET;
762 case ARPHRD_NONE:
763 if (skb->protocol == htons(ETH_P_TEB))
764 return MAC_PROTO_ETHERNET;
765 return MAC_PROTO_NONE;
766 }
767 WARN_ON_ONCE(1);
768 return -EINVAL;
769 }
770
771 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
772 struct sk_buff *skb, struct sw_flow_key *key)
773 {
774 int res, err;
775
776 /* Extract metadata from packet. */
777 if (tun_info) {
778 key->tun_proto = ip_tunnel_info_af(tun_info);
779 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
780
781 if (tun_info->options_len) {
782 BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
783 8)) - 1
784 > sizeof(key->tun_opts));
785
786 ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
787 tun_info);
788 key->tun_opts_len = tun_info->options_len;
789 } else {
790 key->tun_opts_len = 0;
791 }
792 } else {
793 key->tun_proto = 0;
794 key->tun_opts_len = 0;
795 memset(&key->tun_key, 0, sizeof(key->tun_key));
796 }
797
798 key->phy.priority = skb->priority;
799 key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
800 key->phy.skb_mark = skb->mark;
801 key->ovs_flow_hash = 0;
802 res = key_extract_mac_proto(skb);
803 if (res < 0)
804 return res;
805 key->mac_proto = res;
806 key->recirc_id = 0;
807
808 err = key_extract(skb, key);
809 if (!err)
810 ovs_ct_fill_key(skb, key); /* Must be after key_extract(). */
811 return err;
812 }
813
814 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
815 struct sk_buff *skb,
816 struct sw_flow_key *key, bool log)
817 {
818 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
819 u64 attrs = 0;
820 int err;
821
822 err = parse_flow_nlattrs(attr, a, &attrs, log);
823 if (err)
824 return -EINVAL;
825
826 /* Extract metadata from netlink attributes. */
827 err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
828 if (err)
829 return err;
830
831 /* key_extract assumes that skb->protocol is set-up for
832 * layer 3 packets which is the case for other callers,
833 * in particular packets received from the network stack.
834 * Here the correct value can be set from the metadata
835 * extracted above.
836 * For L2 packet key eth type would be zero. skb protocol
837 * would be set to correct value later during key-extact.
838 */
839
840 skb->protocol = key->eth.type;
841 err = key_extract(skb, key);
842 if (err)
843 return err;
844
845 /* Check that we have conntrack original direction tuple metadata only
846 * for packets for which it makes sense. Otherwise the key may be
847 * corrupted due to overlapping key fields.
848 */
849 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
850 key->eth.type != htons(ETH_P_IP))
851 return -EINVAL;
852 if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
853 (key->eth.type != htons(ETH_P_IPV6) ||
854 sw_flow_key_is_nd(key)))
855 return -EINVAL;
856
857 return 0;
858 }