]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/openvswitch/flow_netlink.c
inet: fix possible panic in reqsk_queue_unlink()
[mirror_ubuntu-bionic-kernel.git] / net / openvswitch / flow_netlink.c
1 /*
2 * Copyright (c) 2007-2014 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50
51 #include "flow_netlink.h"
52 #include "vport-vxlan.h"
53
54 struct ovs_len_tbl {
55 int len;
56 const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60
61 static void update_range(struct sw_flow_match *match,
62 size_t offset, size_t size, bool is_mask)
63 {
64 struct sw_flow_key_range *range;
65 size_t start = rounddown(offset, sizeof(long));
66 size_t end = roundup(offset + size, sizeof(long));
67
68 if (!is_mask)
69 range = &match->range;
70 else
71 range = &match->mask->range;
72
73 if (range->start == range->end) {
74 range->start = start;
75 range->end = end;
76 return;
77 }
78
79 if (range->start > start)
80 range->start = start;
81
82 if (range->end < end)
83 range->end = end;
84 }
85
86 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
87 do { \
88 update_range(match, offsetof(struct sw_flow_key, field), \
89 sizeof((match)->key->field), is_mask); \
90 if (is_mask) \
91 (match)->mask->key.field = value; \
92 else \
93 (match)->key->field = value; \
94 } while (0)
95
96 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
97 do { \
98 update_range(match, offset, len, is_mask); \
99 if (is_mask) \
100 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
101 len); \
102 else \
103 memcpy((u8 *)(match)->key + offset, value_p, len); \
104 } while (0)
105
106 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
107 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
108 value_p, len, is_mask)
109
110 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
111 do { \
112 update_range(match, offsetof(struct sw_flow_key, field), \
113 sizeof((match)->key->field), is_mask); \
114 if (is_mask) \
115 memset((u8 *)&(match)->mask->key.field, value, \
116 sizeof((match)->mask->key.field)); \
117 else \
118 memset((u8 *)&(match)->key->field, value, \
119 sizeof((match)->key->field)); \
120 } while (0)
121
122 static bool match_validate(const struct sw_flow_match *match,
123 u64 key_attrs, u64 mask_attrs, bool log)
124 {
125 u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET;
126 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
127
128 /* The following mask attributes allowed only if they
129 * pass the validation tests. */
130 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
131 | (1 << OVS_KEY_ATTR_IPV6)
132 | (1 << OVS_KEY_ATTR_TCP)
133 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
134 | (1 << OVS_KEY_ATTR_UDP)
135 | (1 << OVS_KEY_ATTR_SCTP)
136 | (1 << OVS_KEY_ATTR_ICMP)
137 | (1 << OVS_KEY_ATTR_ICMPV6)
138 | (1 << OVS_KEY_ATTR_ARP)
139 | (1 << OVS_KEY_ATTR_ND)
140 | (1 << OVS_KEY_ATTR_MPLS));
141
142 /* Always allowed mask fields. */
143 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
144 | (1 << OVS_KEY_ATTR_IN_PORT)
145 | (1 << OVS_KEY_ATTR_ETHERTYPE));
146
147 /* Check key attributes. */
148 if (match->key->eth.type == htons(ETH_P_ARP)
149 || match->key->eth.type == htons(ETH_P_RARP)) {
150 key_expected |= 1 << OVS_KEY_ATTR_ARP;
151 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
152 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
153 }
154
155 if (eth_p_mpls(match->key->eth.type)) {
156 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
157 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
158 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
159 }
160
161 if (match->key->eth.type == htons(ETH_P_IP)) {
162 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
163 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
164 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
165
166 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
167 if (match->key->ip.proto == IPPROTO_UDP) {
168 key_expected |= 1 << OVS_KEY_ATTR_UDP;
169 if (match->mask && (match->mask->key.ip.proto == 0xff))
170 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
171 }
172
173 if (match->key->ip.proto == IPPROTO_SCTP) {
174 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
175 if (match->mask && (match->mask->key.ip.proto == 0xff))
176 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
177 }
178
179 if (match->key->ip.proto == IPPROTO_TCP) {
180 key_expected |= 1 << OVS_KEY_ATTR_TCP;
181 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
182 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
183 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
184 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
185 }
186 }
187
188 if (match->key->ip.proto == IPPROTO_ICMP) {
189 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
190 if (match->mask && (match->mask->key.ip.proto == 0xff))
191 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
192 }
193 }
194 }
195
196 if (match->key->eth.type == htons(ETH_P_IPV6)) {
197 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
198 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
199 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
200
201 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
202 if (match->key->ip.proto == IPPROTO_UDP) {
203 key_expected |= 1 << OVS_KEY_ATTR_UDP;
204 if (match->mask && (match->mask->key.ip.proto == 0xff))
205 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
206 }
207
208 if (match->key->ip.proto == IPPROTO_SCTP) {
209 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
210 if (match->mask && (match->mask->key.ip.proto == 0xff))
211 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
212 }
213
214 if (match->key->ip.proto == IPPROTO_TCP) {
215 key_expected |= 1 << OVS_KEY_ATTR_TCP;
216 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
217 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
218 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
219 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 }
221 }
222
223 if (match->key->ip.proto == IPPROTO_ICMPV6) {
224 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
225 if (match->mask && (match->mask->key.ip.proto == 0xff))
226 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
227
228 if (match->key->tp.src ==
229 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
230 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
231 key_expected |= 1 << OVS_KEY_ATTR_ND;
232 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
233 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
234 }
235 }
236 }
237 }
238
239 if ((key_attrs & key_expected) != key_expected) {
240 /* Key attributes check failed. */
241 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
242 (unsigned long long)key_attrs,
243 (unsigned long long)key_expected);
244 return false;
245 }
246
247 if ((mask_attrs & mask_allowed) != mask_attrs) {
248 /* Mask attributes check failed. */
249 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
250 (unsigned long long)mask_attrs,
251 (unsigned long long)mask_allowed);
252 return false;
253 }
254
255 return true;
256 }
257
258 size_t ovs_tun_key_attr_size(void)
259 {
260 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
261 * updating this function.
262 */
263 return nla_total_size(8) /* OVS_TUNNEL_KEY_ATTR_ID */
264 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_SRC */
265 + nla_total_size(4) /* OVS_TUNNEL_KEY_ATTR_IPV4_DST */
266 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
267 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
268 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
269 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
270 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
271 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
272 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
273 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
274 */
275 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
276 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
277 }
278
279 size_t ovs_key_attr_size(void)
280 {
281 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
282 * updating this function.
283 */
284 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 22);
285
286 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
287 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
288 + ovs_tun_key_attr_size()
289 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
290 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
291 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
292 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
293 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
294 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
295 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
296 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
297 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
298 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
299 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
300 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
301 }
302
303 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
304 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
305 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
306 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
307 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
308 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
309 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
310 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
311 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
312 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
313 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
314 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_NESTED },
315 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED },
316 };
317
318 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
319 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
320 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
321 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
322 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
323 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
324 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
325 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
326 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
327 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
328 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
329 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
330 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
331 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
332 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
333 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
334 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
335 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
336 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
337 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
338 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
339 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
340 .next = ovs_tunnel_key_lens, },
341 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
342 };
343
344 static bool is_all_zero(const u8 *fp, size_t size)
345 {
346 int i;
347
348 if (!fp)
349 return false;
350
351 for (i = 0; i < size; i++)
352 if (fp[i])
353 return false;
354
355 return true;
356 }
357
358 static int __parse_flow_nlattrs(const struct nlattr *attr,
359 const struct nlattr *a[],
360 u64 *attrsp, bool log, bool nz)
361 {
362 const struct nlattr *nla;
363 u64 attrs;
364 int rem;
365
366 attrs = *attrsp;
367 nla_for_each_nested(nla, attr, rem) {
368 u16 type = nla_type(nla);
369 int expected_len;
370
371 if (type > OVS_KEY_ATTR_MAX) {
372 OVS_NLERR(log, "Key type %d is out of range max %d",
373 type, OVS_KEY_ATTR_MAX);
374 return -EINVAL;
375 }
376
377 if (attrs & (1 << type)) {
378 OVS_NLERR(log, "Duplicate key (type %d).", type);
379 return -EINVAL;
380 }
381
382 expected_len = ovs_key_lens[type].len;
383 if (nla_len(nla) != expected_len && expected_len != OVS_ATTR_NESTED) {
384 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
385 type, nla_len(nla), expected_len);
386 return -EINVAL;
387 }
388
389 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
390 attrs |= 1 << type;
391 a[type] = nla;
392 }
393 }
394 if (rem) {
395 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
396 return -EINVAL;
397 }
398
399 *attrsp = attrs;
400 return 0;
401 }
402
403 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
404 const struct nlattr *a[], u64 *attrsp,
405 bool log)
406 {
407 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
408 }
409
410 static int parse_flow_nlattrs(const struct nlattr *attr,
411 const struct nlattr *a[], u64 *attrsp,
412 bool log)
413 {
414 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
415 }
416
417 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
418 struct sw_flow_match *match, bool is_mask,
419 bool log)
420 {
421 unsigned long opt_key_offset;
422
423 if (nla_len(a) > sizeof(match->key->tun_opts)) {
424 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
425 nla_len(a), sizeof(match->key->tun_opts));
426 return -EINVAL;
427 }
428
429 if (nla_len(a) % 4 != 0) {
430 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
431 nla_len(a));
432 return -EINVAL;
433 }
434
435 /* We need to record the length of the options passed
436 * down, otherwise packets with the same format but
437 * additional options will be silently matched.
438 */
439 if (!is_mask) {
440 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
441 false);
442 } else {
443 /* This is somewhat unusual because it looks at
444 * both the key and mask while parsing the
445 * attributes (and by extension assumes the key
446 * is parsed first). Normally, we would verify
447 * that each is the correct length and that the
448 * attributes line up in the validate function.
449 * However, that is difficult because this is
450 * variable length and we won't have the
451 * information later.
452 */
453 if (match->key->tun_opts_len != nla_len(a)) {
454 OVS_NLERR(log, "Geneve option len %d != mask len %d",
455 match->key->tun_opts_len, nla_len(a));
456 return -EINVAL;
457 }
458
459 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
460 }
461
462 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
463 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
464 nla_len(a), is_mask);
465 return 0;
466 }
467
468 static const struct nla_policy vxlan_opt_policy[OVS_VXLAN_EXT_MAX + 1] = {
469 [OVS_VXLAN_EXT_GBP] = { .type = NLA_U32 },
470 };
471
472 static int vxlan_tun_opt_from_nlattr(const struct nlattr *a,
473 struct sw_flow_match *match, bool is_mask,
474 bool log)
475 {
476 struct nlattr *tb[OVS_VXLAN_EXT_MAX+1];
477 unsigned long opt_key_offset;
478 struct ovs_vxlan_opts opts;
479 int err;
480
481 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
482
483 err = nla_parse_nested(tb, OVS_VXLAN_EXT_MAX, a, vxlan_opt_policy);
484 if (err < 0)
485 return err;
486
487 memset(&opts, 0, sizeof(opts));
488
489 if (tb[OVS_VXLAN_EXT_GBP])
490 opts.gbp = nla_get_u32(tb[OVS_VXLAN_EXT_GBP]);
491
492 if (!is_mask)
493 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
494 else
495 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
496
497 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
498 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
499 is_mask);
500 return 0;
501 }
502
503 static int ipv4_tun_from_nlattr(const struct nlattr *attr,
504 struct sw_flow_match *match, bool is_mask,
505 bool log)
506 {
507 struct nlattr *a;
508 int rem;
509 bool ttl = false;
510 __be16 tun_flags = 0;
511 int opts_type = 0;
512
513 nla_for_each_nested(a, attr, rem) {
514 int type = nla_type(a);
515 int err;
516
517 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
518 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
519 type, OVS_TUNNEL_KEY_ATTR_MAX);
520 return -EINVAL;
521 }
522
523 if (ovs_tunnel_key_lens[type].len != nla_len(a) &&
524 ovs_tunnel_key_lens[type].len != OVS_ATTR_NESTED) {
525 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
526 type, nla_len(a), ovs_tunnel_key_lens[type].len);
527 return -EINVAL;
528 }
529
530 switch (type) {
531 case OVS_TUNNEL_KEY_ATTR_ID:
532 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
533 nla_get_be64(a), is_mask);
534 tun_flags |= TUNNEL_KEY;
535 break;
536 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
537 SW_FLOW_KEY_PUT(match, tun_key.ipv4_src,
538 nla_get_in_addr(a), is_mask);
539 break;
540 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
541 SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst,
542 nla_get_in_addr(a), is_mask);
543 break;
544 case OVS_TUNNEL_KEY_ATTR_TOS:
545 SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos,
546 nla_get_u8(a), is_mask);
547 break;
548 case OVS_TUNNEL_KEY_ATTR_TTL:
549 SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl,
550 nla_get_u8(a), is_mask);
551 ttl = true;
552 break;
553 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
554 tun_flags |= TUNNEL_DONT_FRAGMENT;
555 break;
556 case OVS_TUNNEL_KEY_ATTR_CSUM:
557 tun_flags |= TUNNEL_CSUM;
558 break;
559 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
560 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
561 nla_get_be16(a), is_mask);
562 break;
563 case OVS_TUNNEL_KEY_ATTR_TP_DST:
564 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
565 nla_get_be16(a), is_mask);
566 break;
567 case OVS_TUNNEL_KEY_ATTR_OAM:
568 tun_flags |= TUNNEL_OAM;
569 break;
570 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
571 if (opts_type) {
572 OVS_NLERR(log, "Multiple metadata blocks provided");
573 return -EINVAL;
574 }
575
576 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
577 if (err)
578 return err;
579
580 tun_flags |= TUNNEL_GENEVE_OPT;
581 opts_type = type;
582 break;
583 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
584 if (opts_type) {
585 OVS_NLERR(log, "Multiple metadata blocks provided");
586 return -EINVAL;
587 }
588
589 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
590 if (err)
591 return err;
592
593 tun_flags |= TUNNEL_VXLAN_OPT;
594 opts_type = type;
595 break;
596 default:
597 OVS_NLERR(log, "Unknown IPv4 tunnel attribute %d",
598 type);
599 return -EINVAL;
600 }
601 }
602
603 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
604
605 if (rem > 0) {
606 OVS_NLERR(log, "IPv4 tunnel attribute has %d unknown bytes.",
607 rem);
608 return -EINVAL;
609 }
610
611 if (!is_mask) {
612 if (!match->key->tun_key.ipv4_dst) {
613 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
614 return -EINVAL;
615 }
616
617 if (!ttl) {
618 OVS_NLERR(log, "IPv4 tunnel TTL not specified.");
619 return -EINVAL;
620 }
621 }
622
623 return opts_type;
624 }
625
626 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
627 const void *tun_opts, int swkey_tun_opts_len)
628 {
629 const struct ovs_vxlan_opts *opts = tun_opts;
630 struct nlattr *nla;
631
632 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
633 if (!nla)
634 return -EMSGSIZE;
635
636 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
637 return -EMSGSIZE;
638
639 nla_nest_end(skb, nla);
640 return 0;
641 }
642
643 static int __ipv4_tun_to_nlattr(struct sk_buff *skb,
644 const struct ovs_key_ipv4_tunnel *output,
645 const void *tun_opts, int swkey_tun_opts_len)
646 {
647 if (output->tun_flags & TUNNEL_KEY &&
648 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id))
649 return -EMSGSIZE;
650 if (output->ipv4_src &&
651 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
652 output->ipv4_src))
653 return -EMSGSIZE;
654 if (output->ipv4_dst &&
655 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
656 output->ipv4_dst))
657 return -EMSGSIZE;
658 if (output->ipv4_tos &&
659 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos))
660 return -EMSGSIZE;
661 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl))
662 return -EMSGSIZE;
663 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
664 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
665 return -EMSGSIZE;
666 if ((output->tun_flags & TUNNEL_CSUM) &&
667 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
668 return -EMSGSIZE;
669 if (output->tp_src &&
670 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
671 return -EMSGSIZE;
672 if (output->tp_dst &&
673 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
674 return -EMSGSIZE;
675 if ((output->tun_flags & TUNNEL_OAM) &&
676 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
677 return -EMSGSIZE;
678 if (tun_opts) {
679 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
680 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
681 swkey_tun_opts_len, tun_opts))
682 return -EMSGSIZE;
683 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
684 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
685 return -EMSGSIZE;
686 }
687
688 return 0;
689 }
690
691 static int ipv4_tun_to_nlattr(struct sk_buff *skb,
692 const struct ovs_key_ipv4_tunnel *output,
693 const void *tun_opts, int swkey_tun_opts_len)
694 {
695 struct nlattr *nla;
696 int err;
697
698 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
699 if (!nla)
700 return -EMSGSIZE;
701
702 err = __ipv4_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len);
703 if (err)
704 return err;
705
706 nla_nest_end(skb, nla);
707 return 0;
708 }
709
710 int ovs_nla_put_egress_tunnel_key(struct sk_buff *skb,
711 const struct ovs_tunnel_info *egress_tun_info)
712 {
713 return __ipv4_tun_to_nlattr(skb, &egress_tun_info->tunnel,
714 egress_tun_info->options,
715 egress_tun_info->options_len);
716 }
717
718 static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs,
719 const struct nlattr **a, bool is_mask,
720 bool log)
721 {
722 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
723 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
724
725 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
726 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
727 }
728
729 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
730 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
731
732 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
733 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
734 }
735
736 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
737 SW_FLOW_KEY_PUT(match, phy.priority,
738 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
739 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
740 }
741
742 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
743 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
744
745 if (is_mask) {
746 in_port = 0xffffffff; /* Always exact match in_port. */
747 } else if (in_port >= DP_MAX_PORTS) {
748 OVS_NLERR(log, "Port %d exceeds max allowable %d",
749 in_port, DP_MAX_PORTS);
750 return -EINVAL;
751 }
752
753 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
754 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
755 } else if (!is_mask) {
756 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
757 }
758
759 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
760 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
761
762 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
763 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
764 }
765 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
766 if (ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
767 is_mask, log) < 0)
768 return -EINVAL;
769 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
770 }
771 return 0;
772 }
773
774 static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs,
775 const struct nlattr **a, bool is_mask,
776 bool log)
777 {
778 int err;
779
780 err = metadata_from_nlattrs(match, &attrs, a, is_mask, log);
781 if (err)
782 return err;
783
784 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
785 const struct ovs_key_ethernet *eth_key;
786
787 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
788 SW_FLOW_KEY_MEMCPY(match, eth.src,
789 eth_key->eth_src, ETH_ALEN, is_mask);
790 SW_FLOW_KEY_MEMCPY(match, eth.dst,
791 eth_key->eth_dst, ETH_ALEN, is_mask);
792 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
793 }
794
795 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
796 __be16 tci;
797
798 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
799 if (!(tci & htons(VLAN_TAG_PRESENT))) {
800 if (is_mask)
801 OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
802 else
803 OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
804
805 return -EINVAL;
806 }
807
808 SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
809 attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
810 }
811
812 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
813 __be16 eth_type;
814
815 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
816 if (is_mask) {
817 /* Always exact match EtherType. */
818 eth_type = htons(0xffff);
819 } else if (ntohs(eth_type) < ETH_P_802_3_MIN) {
820 OVS_NLERR(log, "EtherType %x is less than min %x",
821 ntohs(eth_type), ETH_P_802_3_MIN);
822 return -EINVAL;
823 }
824
825 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
826 attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
827 } else if (!is_mask) {
828 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
829 }
830
831 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
832 const struct ovs_key_ipv4 *ipv4_key;
833
834 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
835 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
836 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
837 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
838 return -EINVAL;
839 }
840 SW_FLOW_KEY_PUT(match, ip.proto,
841 ipv4_key->ipv4_proto, is_mask);
842 SW_FLOW_KEY_PUT(match, ip.tos,
843 ipv4_key->ipv4_tos, is_mask);
844 SW_FLOW_KEY_PUT(match, ip.ttl,
845 ipv4_key->ipv4_ttl, is_mask);
846 SW_FLOW_KEY_PUT(match, ip.frag,
847 ipv4_key->ipv4_frag, is_mask);
848 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
849 ipv4_key->ipv4_src, is_mask);
850 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
851 ipv4_key->ipv4_dst, is_mask);
852 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
853 }
854
855 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
856 const struct ovs_key_ipv6 *ipv6_key;
857
858 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
859 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
860 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
861 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
862 return -EINVAL;
863 }
864
865 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
866 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
867 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
868 return -EINVAL;
869 }
870
871 SW_FLOW_KEY_PUT(match, ipv6.label,
872 ipv6_key->ipv6_label, is_mask);
873 SW_FLOW_KEY_PUT(match, ip.proto,
874 ipv6_key->ipv6_proto, is_mask);
875 SW_FLOW_KEY_PUT(match, ip.tos,
876 ipv6_key->ipv6_tclass, is_mask);
877 SW_FLOW_KEY_PUT(match, ip.ttl,
878 ipv6_key->ipv6_hlimit, is_mask);
879 SW_FLOW_KEY_PUT(match, ip.frag,
880 ipv6_key->ipv6_frag, is_mask);
881 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
882 ipv6_key->ipv6_src,
883 sizeof(match->key->ipv6.addr.src),
884 is_mask);
885 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
886 ipv6_key->ipv6_dst,
887 sizeof(match->key->ipv6.addr.dst),
888 is_mask);
889
890 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
891 }
892
893 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
894 const struct ovs_key_arp *arp_key;
895
896 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
897 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
898 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
899 arp_key->arp_op);
900 return -EINVAL;
901 }
902
903 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
904 arp_key->arp_sip, is_mask);
905 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
906 arp_key->arp_tip, is_mask);
907 SW_FLOW_KEY_PUT(match, ip.proto,
908 ntohs(arp_key->arp_op), is_mask);
909 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
910 arp_key->arp_sha, ETH_ALEN, is_mask);
911 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
912 arp_key->arp_tha, ETH_ALEN, is_mask);
913
914 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
915 }
916
917 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
918 const struct ovs_key_mpls *mpls_key;
919
920 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
921 SW_FLOW_KEY_PUT(match, mpls.top_lse,
922 mpls_key->mpls_lse, is_mask);
923
924 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
925 }
926
927 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
928 const struct ovs_key_tcp *tcp_key;
929
930 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
931 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
932 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
933 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
934 }
935
936 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
937 SW_FLOW_KEY_PUT(match, tp.flags,
938 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
939 is_mask);
940 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
941 }
942
943 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
944 const struct ovs_key_udp *udp_key;
945
946 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
947 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
948 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
949 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
950 }
951
952 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
953 const struct ovs_key_sctp *sctp_key;
954
955 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
956 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
957 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
958 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
959 }
960
961 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
962 const struct ovs_key_icmp *icmp_key;
963
964 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
965 SW_FLOW_KEY_PUT(match, tp.src,
966 htons(icmp_key->icmp_type), is_mask);
967 SW_FLOW_KEY_PUT(match, tp.dst,
968 htons(icmp_key->icmp_code), is_mask);
969 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
970 }
971
972 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
973 const struct ovs_key_icmpv6 *icmpv6_key;
974
975 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
976 SW_FLOW_KEY_PUT(match, tp.src,
977 htons(icmpv6_key->icmpv6_type), is_mask);
978 SW_FLOW_KEY_PUT(match, tp.dst,
979 htons(icmpv6_key->icmpv6_code), is_mask);
980 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
981 }
982
983 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
984 const struct ovs_key_nd *nd_key;
985
986 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
987 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
988 nd_key->nd_target,
989 sizeof(match->key->ipv6.nd.target),
990 is_mask);
991 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
992 nd_key->nd_sll, ETH_ALEN, is_mask);
993 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
994 nd_key->nd_tll, ETH_ALEN, is_mask);
995 attrs &= ~(1 << OVS_KEY_ATTR_ND);
996 }
997
998 if (attrs != 0) {
999 OVS_NLERR(log, "Unknown key attributes %llx",
1000 (unsigned long long)attrs);
1001 return -EINVAL;
1002 }
1003
1004 return 0;
1005 }
1006
1007 static void nlattr_set(struct nlattr *attr, u8 val,
1008 const struct ovs_len_tbl *tbl)
1009 {
1010 struct nlattr *nla;
1011 int rem;
1012
1013 /* The nlattr stream should already have been validated */
1014 nla_for_each_nested(nla, attr, rem) {
1015 if (tbl && tbl[nla_type(nla)].len == OVS_ATTR_NESTED)
1016 nlattr_set(nla, val, tbl[nla_type(nla)].next);
1017 else
1018 memset(nla_data(nla), val, nla_len(nla));
1019 }
1020 }
1021
1022 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1023 {
1024 nlattr_set(attr, val, ovs_key_lens);
1025 }
1026
1027 /**
1028 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1029 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1030 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1031 * does not include any don't care bit.
1032 * @match: receives the extracted flow match information.
1033 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1034 * sequence. The fields should of the packet that triggered the creation
1035 * of this flow.
1036 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1037 * attribute specifies the mask field of the wildcarded flow.
1038 * @log: Boolean to allow kernel error logging. Normally true, but when
1039 * probing for feature compatibility this should be passed in as false to
1040 * suppress unnecessary error logging.
1041 */
1042 int ovs_nla_get_match(struct sw_flow_match *match,
1043 const struct nlattr *nla_key,
1044 const struct nlattr *nla_mask,
1045 bool log)
1046 {
1047 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1048 const struct nlattr *encap;
1049 struct nlattr *newmask = NULL;
1050 u64 key_attrs = 0;
1051 u64 mask_attrs = 0;
1052 bool encap_valid = false;
1053 int err;
1054
1055 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1056 if (err)
1057 return err;
1058
1059 if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
1060 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
1061 (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
1062 __be16 tci;
1063
1064 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
1065 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
1066 OVS_NLERR(log, "Invalid Vlan frame.");
1067 return -EINVAL;
1068 }
1069
1070 key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1071 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1072 encap = a[OVS_KEY_ATTR_ENCAP];
1073 key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1074 encap_valid = true;
1075
1076 if (tci & htons(VLAN_TAG_PRESENT)) {
1077 err = parse_flow_nlattrs(encap, a, &key_attrs, log);
1078 if (err)
1079 return err;
1080 } else if (!tci) {
1081 /* Corner case for truncated 802.1Q header. */
1082 if (nla_len(encap)) {
1083 OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
1084 return -EINVAL;
1085 }
1086 } else {
1087 OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
1088 return -EINVAL;
1089 }
1090 }
1091
1092 err = ovs_key_from_nlattrs(match, key_attrs, a, false, log);
1093 if (err)
1094 return err;
1095
1096 if (match->mask) {
1097 if (!nla_mask) {
1098 /* Create an exact match mask. We need to set to 0xff
1099 * all the 'match->mask' fields that have been touched
1100 * in 'match->key'. We cannot simply memset
1101 * 'match->mask', because padding bytes and fields not
1102 * specified in 'match->key' should be left to 0.
1103 * Instead, we use a stream of netlink attributes,
1104 * copied from 'key' and set to 0xff.
1105 * ovs_key_from_nlattrs() will take care of filling
1106 * 'match->mask' appropriately.
1107 */
1108 newmask = kmemdup(nla_key,
1109 nla_total_size(nla_len(nla_key)),
1110 GFP_KERNEL);
1111 if (!newmask)
1112 return -ENOMEM;
1113
1114 mask_set_nlattr(newmask, 0xff);
1115
1116 /* The userspace does not send tunnel attributes that
1117 * are 0, but we should not wildcard them nonetheless.
1118 */
1119 if (match->key->tun_key.ipv4_dst)
1120 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1121 0xff, true);
1122
1123 nla_mask = newmask;
1124 }
1125
1126 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1127 if (err)
1128 goto free_newmask;
1129
1130 /* Always match on tci. */
1131 SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true);
1132
1133 if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) {
1134 __be16 eth_type = 0;
1135 __be16 tci = 0;
1136
1137 if (!encap_valid) {
1138 OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
1139 err = -EINVAL;
1140 goto free_newmask;
1141 }
1142
1143 mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
1144 if (a[OVS_KEY_ATTR_ETHERTYPE])
1145 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1146
1147 if (eth_type == htons(0xffff)) {
1148 mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1149 encap = a[OVS_KEY_ATTR_ENCAP];
1150 err = parse_flow_mask_nlattrs(encap, a,
1151 &mask_attrs, log);
1152 if (err)
1153 goto free_newmask;
1154 } else {
1155 OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
1156 ntohs(eth_type));
1157 err = -EINVAL;
1158 goto free_newmask;
1159 }
1160
1161 if (a[OVS_KEY_ATTR_VLAN])
1162 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
1163
1164 if (!(tci & htons(VLAN_TAG_PRESENT))) {
1165 OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
1166 ntohs(tci));
1167 err = -EINVAL;
1168 goto free_newmask;
1169 }
1170 }
1171
1172 err = ovs_key_from_nlattrs(match, mask_attrs, a, true, log);
1173 if (err)
1174 goto free_newmask;
1175 }
1176
1177 if (!match_validate(match, key_attrs, mask_attrs, log))
1178 err = -EINVAL;
1179
1180 free_newmask:
1181 kfree(newmask);
1182 return err;
1183 }
1184
1185 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1186 {
1187 size_t len;
1188
1189 if (!attr)
1190 return 0;
1191
1192 len = nla_len(attr);
1193 if (len < 1 || len > MAX_UFID_LENGTH) {
1194 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1195 nla_len(attr), MAX_UFID_LENGTH);
1196 return 0;
1197 }
1198
1199 return len;
1200 }
1201
1202 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1203 * or false otherwise.
1204 */
1205 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1206 bool log)
1207 {
1208 sfid->ufid_len = get_ufid_len(attr, log);
1209 if (sfid->ufid_len)
1210 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1211
1212 return sfid->ufid_len;
1213 }
1214
1215 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1216 const struct sw_flow_key *key, bool log)
1217 {
1218 struct sw_flow_key *new_key;
1219
1220 if (ovs_nla_get_ufid(sfid, ufid, log))
1221 return 0;
1222
1223 /* If UFID was not provided, use unmasked key. */
1224 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1225 if (!new_key)
1226 return -ENOMEM;
1227 memcpy(new_key, key, sizeof(*key));
1228 sfid->unmasked_key = new_key;
1229
1230 return 0;
1231 }
1232
1233 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1234 {
1235 return attr ? nla_get_u32(attr) : 0;
1236 }
1237
1238 /**
1239 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1240 * @key: Receives extracted in_port, priority, tun_key and skb_mark.
1241 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1242 * sequence.
1243 * @log: Boolean to allow kernel error logging. Normally true, but when
1244 * probing for feature compatibility this should be passed in as false to
1245 * suppress unnecessary error logging.
1246 *
1247 * This parses a series of Netlink attributes that form a flow key, which must
1248 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1249 * get the metadata, that is, the parts of the flow key that cannot be
1250 * extracted from the packet itself.
1251 */
1252
1253 int ovs_nla_get_flow_metadata(const struct nlattr *attr,
1254 struct sw_flow_key *key,
1255 bool log)
1256 {
1257 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1258 struct sw_flow_match match;
1259 u64 attrs = 0;
1260 int err;
1261
1262 err = parse_flow_nlattrs(attr, a, &attrs, log);
1263 if (err)
1264 return -EINVAL;
1265
1266 memset(&match, 0, sizeof(match));
1267 match.key = key;
1268
1269 key->phy.in_port = DP_MAX_PORTS;
1270
1271 return metadata_from_nlattrs(&match, &attrs, a, false, log);
1272 }
1273
1274 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1275 const struct sw_flow_key *output, bool is_mask,
1276 struct sk_buff *skb)
1277 {
1278 struct ovs_key_ethernet *eth_key;
1279 struct nlattr *nla, *encap;
1280
1281 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1282 goto nla_put_failure;
1283
1284 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1285 goto nla_put_failure;
1286
1287 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1288 goto nla_put_failure;
1289
1290 if ((swkey->tun_key.ipv4_dst || is_mask)) {
1291 const void *opts = NULL;
1292
1293 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1294 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1295
1296 if (ipv4_tun_to_nlattr(skb, &output->tun_key, opts,
1297 swkey->tun_opts_len))
1298 goto nla_put_failure;
1299 }
1300
1301 if (swkey->phy.in_port == DP_MAX_PORTS) {
1302 if (is_mask && (output->phy.in_port == 0xffff))
1303 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1304 goto nla_put_failure;
1305 } else {
1306 u16 upper_u16;
1307 upper_u16 = !is_mask ? 0 : 0xffff;
1308
1309 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1310 (upper_u16 << 16) | output->phy.in_port))
1311 goto nla_put_failure;
1312 }
1313
1314 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1315 goto nla_put_failure;
1316
1317 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1318 if (!nla)
1319 goto nla_put_failure;
1320
1321 eth_key = nla_data(nla);
1322 ether_addr_copy(eth_key->eth_src, output->eth.src);
1323 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1324
1325 if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) {
1326 __be16 eth_type;
1327 eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
1328 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1329 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
1330 goto nla_put_failure;
1331 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1332 if (!swkey->eth.tci)
1333 goto unencap;
1334 } else
1335 encap = NULL;
1336
1337 if (swkey->eth.type == htons(ETH_P_802_2)) {
1338 /*
1339 * Ethertype 802.2 is represented in the netlink with omitted
1340 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1341 * 0xffff in the mask attribute. Ethertype can also
1342 * be wildcarded.
1343 */
1344 if (is_mask && output->eth.type)
1345 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1346 output->eth.type))
1347 goto nla_put_failure;
1348 goto unencap;
1349 }
1350
1351 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1352 goto nla_put_failure;
1353
1354 if (swkey->eth.type == htons(ETH_P_IP)) {
1355 struct ovs_key_ipv4 *ipv4_key;
1356
1357 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1358 if (!nla)
1359 goto nla_put_failure;
1360 ipv4_key = nla_data(nla);
1361 ipv4_key->ipv4_src = output->ipv4.addr.src;
1362 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1363 ipv4_key->ipv4_proto = output->ip.proto;
1364 ipv4_key->ipv4_tos = output->ip.tos;
1365 ipv4_key->ipv4_ttl = output->ip.ttl;
1366 ipv4_key->ipv4_frag = output->ip.frag;
1367 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1368 struct ovs_key_ipv6 *ipv6_key;
1369
1370 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1371 if (!nla)
1372 goto nla_put_failure;
1373 ipv6_key = nla_data(nla);
1374 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1375 sizeof(ipv6_key->ipv6_src));
1376 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1377 sizeof(ipv6_key->ipv6_dst));
1378 ipv6_key->ipv6_label = output->ipv6.label;
1379 ipv6_key->ipv6_proto = output->ip.proto;
1380 ipv6_key->ipv6_tclass = output->ip.tos;
1381 ipv6_key->ipv6_hlimit = output->ip.ttl;
1382 ipv6_key->ipv6_frag = output->ip.frag;
1383 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1384 swkey->eth.type == htons(ETH_P_RARP)) {
1385 struct ovs_key_arp *arp_key;
1386
1387 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1388 if (!nla)
1389 goto nla_put_failure;
1390 arp_key = nla_data(nla);
1391 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1392 arp_key->arp_sip = output->ipv4.addr.src;
1393 arp_key->arp_tip = output->ipv4.addr.dst;
1394 arp_key->arp_op = htons(output->ip.proto);
1395 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1396 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1397 } else if (eth_p_mpls(swkey->eth.type)) {
1398 struct ovs_key_mpls *mpls_key;
1399
1400 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1401 if (!nla)
1402 goto nla_put_failure;
1403 mpls_key = nla_data(nla);
1404 mpls_key->mpls_lse = output->mpls.top_lse;
1405 }
1406
1407 if ((swkey->eth.type == htons(ETH_P_IP) ||
1408 swkey->eth.type == htons(ETH_P_IPV6)) &&
1409 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1410
1411 if (swkey->ip.proto == IPPROTO_TCP) {
1412 struct ovs_key_tcp *tcp_key;
1413
1414 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1415 if (!nla)
1416 goto nla_put_failure;
1417 tcp_key = nla_data(nla);
1418 tcp_key->tcp_src = output->tp.src;
1419 tcp_key->tcp_dst = output->tp.dst;
1420 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1421 output->tp.flags))
1422 goto nla_put_failure;
1423 } else if (swkey->ip.proto == IPPROTO_UDP) {
1424 struct ovs_key_udp *udp_key;
1425
1426 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1427 if (!nla)
1428 goto nla_put_failure;
1429 udp_key = nla_data(nla);
1430 udp_key->udp_src = output->tp.src;
1431 udp_key->udp_dst = output->tp.dst;
1432 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1433 struct ovs_key_sctp *sctp_key;
1434
1435 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1436 if (!nla)
1437 goto nla_put_failure;
1438 sctp_key = nla_data(nla);
1439 sctp_key->sctp_src = output->tp.src;
1440 sctp_key->sctp_dst = output->tp.dst;
1441 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1442 swkey->ip.proto == IPPROTO_ICMP) {
1443 struct ovs_key_icmp *icmp_key;
1444
1445 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1446 if (!nla)
1447 goto nla_put_failure;
1448 icmp_key = nla_data(nla);
1449 icmp_key->icmp_type = ntohs(output->tp.src);
1450 icmp_key->icmp_code = ntohs(output->tp.dst);
1451 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1452 swkey->ip.proto == IPPROTO_ICMPV6) {
1453 struct ovs_key_icmpv6 *icmpv6_key;
1454
1455 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1456 sizeof(*icmpv6_key));
1457 if (!nla)
1458 goto nla_put_failure;
1459 icmpv6_key = nla_data(nla);
1460 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1461 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1462
1463 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1464 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1465 struct ovs_key_nd *nd_key;
1466
1467 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1468 if (!nla)
1469 goto nla_put_failure;
1470 nd_key = nla_data(nla);
1471 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1472 sizeof(nd_key->nd_target));
1473 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1474 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1475 }
1476 }
1477 }
1478
1479 unencap:
1480 if (encap)
1481 nla_nest_end(skb, encap);
1482
1483 return 0;
1484
1485 nla_put_failure:
1486 return -EMSGSIZE;
1487 }
1488
1489 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1490 const struct sw_flow_key *output, int attr, bool is_mask,
1491 struct sk_buff *skb)
1492 {
1493 int err;
1494 struct nlattr *nla;
1495
1496 nla = nla_nest_start(skb, attr);
1497 if (!nla)
1498 return -EMSGSIZE;
1499 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1500 if (err)
1501 return err;
1502 nla_nest_end(skb, nla);
1503
1504 return 0;
1505 }
1506
1507 /* Called with ovs_mutex or RCU read lock. */
1508 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1509 {
1510 if (ovs_identifier_is_ufid(&flow->id))
1511 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1512 flow->id.ufid);
1513
1514 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1515 OVS_FLOW_ATTR_KEY, false, skb);
1516 }
1517
1518 /* Called with ovs_mutex or RCU read lock. */
1519 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1520 {
1521 return ovs_nla_put_key(&flow->key, &flow->key,
1522 OVS_FLOW_ATTR_KEY, false, skb);
1523 }
1524
1525 /* Called with ovs_mutex or RCU read lock. */
1526 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1527 {
1528 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1529 OVS_FLOW_ATTR_MASK, true, skb);
1530 }
1531
1532 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1533
1534 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1535 {
1536 struct sw_flow_actions *sfa;
1537
1538 if (size > MAX_ACTIONS_BUFSIZE) {
1539 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1540 return ERR_PTR(-EINVAL);
1541 }
1542
1543 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1544 if (!sfa)
1545 return ERR_PTR(-ENOMEM);
1546
1547 sfa->actions_len = 0;
1548 return sfa;
1549 }
1550
1551 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1552 * The caller must hold rcu_read_lock for this to be sensible. */
1553 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1554 {
1555 kfree_rcu(sf_acts, rcu);
1556 }
1557
1558 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1559 int attr_len, bool log)
1560 {
1561
1562 struct sw_flow_actions *acts;
1563 int new_acts_size;
1564 int req_size = NLA_ALIGN(attr_len);
1565 int next_offset = offsetof(struct sw_flow_actions, actions) +
1566 (*sfa)->actions_len;
1567
1568 if (req_size <= (ksize(*sfa) - next_offset))
1569 goto out;
1570
1571 new_acts_size = ksize(*sfa) * 2;
1572
1573 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1574 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1575 return ERR_PTR(-EMSGSIZE);
1576 new_acts_size = MAX_ACTIONS_BUFSIZE;
1577 }
1578
1579 acts = nla_alloc_flow_actions(new_acts_size, log);
1580 if (IS_ERR(acts))
1581 return (void *)acts;
1582
1583 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1584 acts->actions_len = (*sfa)->actions_len;
1585 kfree(*sfa);
1586 *sfa = acts;
1587
1588 out:
1589 (*sfa)->actions_len += req_size;
1590 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
1591 }
1592
1593 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
1594 int attrtype, void *data, int len, bool log)
1595 {
1596 struct nlattr *a;
1597
1598 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
1599 if (IS_ERR(a))
1600 return a;
1601
1602 a->nla_type = attrtype;
1603 a->nla_len = nla_attr_size(len);
1604
1605 if (data)
1606 memcpy(nla_data(a), data, len);
1607 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
1608
1609 return a;
1610 }
1611
1612 static int add_action(struct sw_flow_actions **sfa, int attrtype,
1613 void *data, int len, bool log)
1614 {
1615 struct nlattr *a;
1616
1617 a = __add_action(sfa, attrtype, data, len, log);
1618
1619 return PTR_ERR_OR_ZERO(a);
1620 }
1621
1622 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
1623 int attrtype, bool log)
1624 {
1625 int used = (*sfa)->actions_len;
1626 int err;
1627
1628 err = add_action(sfa, attrtype, NULL, 0, log);
1629 if (err)
1630 return err;
1631
1632 return used;
1633 }
1634
1635 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
1636 int st_offset)
1637 {
1638 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
1639 st_offset);
1640
1641 a->nla_len = sfa->actions_len - st_offset;
1642 }
1643
1644 static int __ovs_nla_copy_actions(const struct nlattr *attr,
1645 const struct sw_flow_key *key,
1646 int depth, struct sw_flow_actions **sfa,
1647 __be16 eth_type, __be16 vlan_tci, bool log);
1648
1649 static int validate_and_copy_sample(const struct nlattr *attr,
1650 const struct sw_flow_key *key, int depth,
1651 struct sw_flow_actions **sfa,
1652 __be16 eth_type, __be16 vlan_tci, bool log)
1653 {
1654 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
1655 const struct nlattr *probability, *actions;
1656 const struct nlattr *a;
1657 int rem, start, err, st_acts;
1658
1659 memset(attrs, 0, sizeof(attrs));
1660 nla_for_each_nested(a, attr, rem) {
1661 int type = nla_type(a);
1662 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
1663 return -EINVAL;
1664 attrs[type] = a;
1665 }
1666 if (rem)
1667 return -EINVAL;
1668
1669 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
1670 if (!probability || nla_len(probability) != sizeof(u32))
1671 return -EINVAL;
1672
1673 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
1674 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
1675 return -EINVAL;
1676
1677 /* validation done, copy sample action. */
1678 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
1679 if (start < 0)
1680 return start;
1681 err = add_action(sfa, OVS_SAMPLE_ATTR_PROBABILITY,
1682 nla_data(probability), sizeof(u32), log);
1683 if (err)
1684 return err;
1685 st_acts = add_nested_action_start(sfa, OVS_SAMPLE_ATTR_ACTIONS, log);
1686 if (st_acts < 0)
1687 return st_acts;
1688
1689 err = __ovs_nla_copy_actions(actions, key, depth + 1, sfa,
1690 eth_type, vlan_tci, log);
1691 if (err)
1692 return err;
1693
1694 add_nested_action_end(*sfa, st_acts);
1695 add_nested_action_end(*sfa, start);
1696
1697 return 0;
1698 }
1699
1700 void ovs_match_init(struct sw_flow_match *match,
1701 struct sw_flow_key *key,
1702 struct sw_flow_mask *mask)
1703 {
1704 memset(match, 0, sizeof(*match));
1705 match->key = key;
1706 match->mask = mask;
1707
1708 memset(key, 0, sizeof(*key));
1709
1710 if (mask) {
1711 memset(&mask->key, 0, sizeof(mask->key));
1712 mask->range.start = mask->range.end = 0;
1713 }
1714 }
1715
1716 static int validate_geneve_opts(struct sw_flow_key *key)
1717 {
1718 struct geneve_opt *option;
1719 int opts_len = key->tun_opts_len;
1720 bool crit_opt = false;
1721
1722 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
1723 while (opts_len > 0) {
1724 int len;
1725
1726 if (opts_len < sizeof(*option))
1727 return -EINVAL;
1728
1729 len = sizeof(*option) + option->length * 4;
1730 if (len > opts_len)
1731 return -EINVAL;
1732
1733 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
1734
1735 option = (struct geneve_opt *)((u8 *)option + len);
1736 opts_len -= len;
1737 };
1738
1739 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
1740
1741 return 0;
1742 }
1743
1744 static int validate_and_copy_set_tun(const struct nlattr *attr,
1745 struct sw_flow_actions **sfa, bool log)
1746 {
1747 struct sw_flow_match match;
1748 struct sw_flow_key key;
1749 struct ovs_tunnel_info *tun_info;
1750 struct nlattr *a;
1751 int err = 0, start, opts_type;
1752
1753 ovs_match_init(&match, &key, NULL);
1754 opts_type = ipv4_tun_from_nlattr(nla_data(attr), &match, false, log);
1755 if (opts_type < 0)
1756 return opts_type;
1757
1758 if (key.tun_opts_len) {
1759 switch (opts_type) {
1760 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
1761 err = validate_geneve_opts(&key);
1762 if (err < 0)
1763 return err;
1764 break;
1765 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
1766 break;
1767 }
1768 };
1769
1770 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
1771 if (start < 0)
1772 return start;
1773
1774 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
1775 sizeof(*tun_info) + key.tun_opts_len, log);
1776 if (IS_ERR(a))
1777 return PTR_ERR(a);
1778
1779 tun_info = nla_data(a);
1780 tun_info->tunnel = key.tun_key;
1781 tun_info->options_len = key.tun_opts_len;
1782
1783 if (tun_info->options_len) {
1784 /* We need to store the options in the action itself since
1785 * everything else will go away after flow setup. We can append
1786 * it to tun_info and then point there.
1787 */
1788 memcpy((tun_info + 1),
1789 TUN_METADATA_OPTS(&key, key.tun_opts_len), key.tun_opts_len);
1790 tun_info->options = (tun_info + 1);
1791 } else {
1792 tun_info->options = NULL;
1793 }
1794
1795 add_nested_action_end(*sfa, start);
1796
1797 return err;
1798 }
1799
1800 /* Return false if there are any non-masked bits set.
1801 * Mask follows data immediately, before any netlink padding.
1802 */
1803 static bool validate_masked(u8 *data, int len)
1804 {
1805 u8 *mask = data + len;
1806
1807 while (len--)
1808 if (*data++ & ~*mask++)
1809 return false;
1810
1811 return true;
1812 }
1813
1814 static int validate_set(const struct nlattr *a,
1815 const struct sw_flow_key *flow_key,
1816 struct sw_flow_actions **sfa,
1817 bool *skip_copy, __be16 eth_type, bool masked, bool log)
1818 {
1819 const struct nlattr *ovs_key = nla_data(a);
1820 int key_type = nla_type(ovs_key);
1821 size_t key_len;
1822
1823 /* There can be only one key in a action */
1824 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
1825 return -EINVAL;
1826
1827 key_len = nla_len(ovs_key);
1828 if (masked)
1829 key_len /= 2;
1830
1831 if (key_type > OVS_KEY_ATTR_MAX ||
1832 (ovs_key_lens[key_type].len != key_len &&
1833 ovs_key_lens[key_type].len != OVS_ATTR_NESTED))
1834 return -EINVAL;
1835
1836 if (masked && !validate_masked(nla_data(ovs_key), key_len))
1837 return -EINVAL;
1838
1839 switch (key_type) {
1840 const struct ovs_key_ipv4 *ipv4_key;
1841 const struct ovs_key_ipv6 *ipv6_key;
1842 int err;
1843
1844 case OVS_KEY_ATTR_PRIORITY:
1845 case OVS_KEY_ATTR_SKB_MARK:
1846 case OVS_KEY_ATTR_ETHERNET:
1847 break;
1848
1849 case OVS_KEY_ATTR_TUNNEL:
1850 if (eth_p_mpls(eth_type))
1851 return -EINVAL;
1852
1853 if (masked)
1854 return -EINVAL; /* Masked tunnel set not supported. */
1855
1856 *skip_copy = true;
1857 err = validate_and_copy_set_tun(a, sfa, log);
1858 if (err)
1859 return err;
1860 break;
1861
1862 case OVS_KEY_ATTR_IPV4:
1863 if (eth_type != htons(ETH_P_IP))
1864 return -EINVAL;
1865
1866 ipv4_key = nla_data(ovs_key);
1867
1868 if (masked) {
1869 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
1870
1871 /* Non-writeable fields. */
1872 if (mask->ipv4_proto || mask->ipv4_frag)
1873 return -EINVAL;
1874 } else {
1875 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
1876 return -EINVAL;
1877
1878 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
1879 return -EINVAL;
1880 }
1881 break;
1882
1883 case OVS_KEY_ATTR_IPV6:
1884 if (eth_type != htons(ETH_P_IPV6))
1885 return -EINVAL;
1886
1887 ipv6_key = nla_data(ovs_key);
1888
1889 if (masked) {
1890 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
1891
1892 /* Non-writeable fields. */
1893 if (mask->ipv6_proto || mask->ipv6_frag)
1894 return -EINVAL;
1895
1896 /* Invalid bits in the flow label mask? */
1897 if (ntohl(mask->ipv6_label) & 0xFFF00000)
1898 return -EINVAL;
1899 } else {
1900 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
1901 return -EINVAL;
1902
1903 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
1904 return -EINVAL;
1905 }
1906 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
1907 return -EINVAL;
1908
1909 break;
1910
1911 case OVS_KEY_ATTR_TCP:
1912 if ((eth_type != htons(ETH_P_IP) &&
1913 eth_type != htons(ETH_P_IPV6)) ||
1914 flow_key->ip.proto != IPPROTO_TCP)
1915 return -EINVAL;
1916
1917 break;
1918
1919 case OVS_KEY_ATTR_UDP:
1920 if ((eth_type != htons(ETH_P_IP) &&
1921 eth_type != htons(ETH_P_IPV6)) ||
1922 flow_key->ip.proto != IPPROTO_UDP)
1923 return -EINVAL;
1924
1925 break;
1926
1927 case OVS_KEY_ATTR_MPLS:
1928 if (!eth_p_mpls(eth_type))
1929 return -EINVAL;
1930 break;
1931
1932 case OVS_KEY_ATTR_SCTP:
1933 if ((eth_type != htons(ETH_P_IP) &&
1934 eth_type != htons(ETH_P_IPV6)) ||
1935 flow_key->ip.proto != IPPROTO_SCTP)
1936 return -EINVAL;
1937
1938 break;
1939
1940 default:
1941 return -EINVAL;
1942 }
1943
1944 /* Convert non-masked non-tunnel set actions to masked set actions. */
1945 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
1946 int start, len = key_len * 2;
1947 struct nlattr *at;
1948
1949 *skip_copy = true;
1950
1951 start = add_nested_action_start(sfa,
1952 OVS_ACTION_ATTR_SET_TO_MASKED,
1953 log);
1954 if (start < 0)
1955 return start;
1956
1957 at = __add_action(sfa, key_type, NULL, len, log);
1958 if (IS_ERR(at))
1959 return PTR_ERR(at);
1960
1961 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
1962 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
1963 /* Clear non-writeable bits from otherwise writeable fields. */
1964 if (key_type == OVS_KEY_ATTR_IPV6) {
1965 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
1966
1967 mask->ipv6_label &= htonl(0x000FFFFF);
1968 }
1969 add_nested_action_end(*sfa, start);
1970 }
1971
1972 return 0;
1973 }
1974
1975 static int validate_userspace(const struct nlattr *attr)
1976 {
1977 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
1978 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
1979 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
1980 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
1981 };
1982 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
1983 int error;
1984
1985 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX,
1986 attr, userspace_policy);
1987 if (error)
1988 return error;
1989
1990 if (!a[OVS_USERSPACE_ATTR_PID] ||
1991 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
1992 return -EINVAL;
1993
1994 return 0;
1995 }
1996
1997 static int copy_action(const struct nlattr *from,
1998 struct sw_flow_actions **sfa, bool log)
1999 {
2000 int totlen = NLA_ALIGN(from->nla_len);
2001 struct nlattr *to;
2002
2003 to = reserve_sfa_size(sfa, from->nla_len, log);
2004 if (IS_ERR(to))
2005 return PTR_ERR(to);
2006
2007 memcpy(to, from, totlen);
2008 return 0;
2009 }
2010
2011 static int __ovs_nla_copy_actions(const struct nlattr *attr,
2012 const struct sw_flow_key *key,
2013 int depth, struct sw_flow_actions **sfa,
2014 __be16 eth_type, __be16 vlan_tci, bool log)
2015 {
2016 const struct nlattr *a;
2017 int rem, err;
2018
2019 if (depth >= SAMPLE_ACTION_DEPTH)
2020 return -EOVERFLOW;
2021
2022 nla_for_each_nested(a, attr, rem) {
2023 /* Expected argument lengths, (u32)-1 for variable length. */
2024 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2025 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2026 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2027 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2028 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2029 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2030 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2031 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2032 [OVS_ACTION_ATTR_SET] = (u32)-1,
2033 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2034 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2035 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash)
2036 };
2037 const struct ovs_action_push_vlan *vlan;
2038 int type = nla_type(a);
2039 bool skip_copy;
2040
2041 if (type > OVS_ACTION_ATTR_MAX ||
2042 (action_lens[type] != nla_len(a) &&
2043 action_lens[type] != (u32)-1))
2044 return -EINVAL;
2045
2046 skip_copy = false;
2047 switch (type) {
2048 case OVS_ACTION_ATTR_UNSPEC:
2049 return -EINVAL;
2050
2051 case OVS_ACTION_ATTR_USERSPACE:
2052 err = validate_userspace(a);
2053 if (err)
2054 return err;
2055 break;
2056
2057 case OVS_ACTION_ATTR_OUTPUT:
2058 if (nla_get_u32(a) >= DP_MAX_PORTS)
2059 return -EINVAL;
2060 break;
2061
2062 case OVS_ACTION_ATTR_HASH: {
2063 const struct ovs_action_hash *act_hash = nla_data(a);
2064
2065 switch (act_hash->hash_alg) {
2066 case OVS_HASH_ALG_L4:
2067 break;
2068 default:
2069 return -EINVAL;
2070 }
2071
2072 break;
2073 }
2074
2075 case OVS_ACTION_ATTR_POP_VLAN:
2076 vlan_tci = htons(0);
2077 break;
2078
2079 case OVS_ACTION_ATTR_PUSH_VLAN:
2080 vlan = nla_data(a);
2081 if (vlan->vlan_tpid != htons(ETH_P_8021Q))
2082 return -EINVAL;
2083 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2084 return -EINVAL;
2085 vlan_tci = vlan->vlan_tci;
2086 break;
2087
2088 case OVS_ACTION_ATTR_RECIRC:
2089 break;
2090
2091 case OVS_ACTION_ATTR_PUSH_MPLS: {
2092 const struct ovs_action_push_mpls *mpls = nla_data(a);
2093
2094 if (!eth_p_mpls(mpls->mpls_ethertype))
2095 return -EINVAL;
2096 /* Prohibit push MPLS other than to a white list
2097 * for packets that have a known tag order.
2098 */
2099 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2100 (eth_type != htons(ETH_P_IP) &&
2101 eth_type != htons(ETH_P_IPV6) &&
2102 eth_type != htons(ETH_P_ARP) &&
2103 eth_type != htons(ETH_P_RARP) &&
2104 !eth_p_mpls(eth_type)))
2105 return -EINVAL;
2106 eth_type = mpls->mpls_ethertype;
2107 break;
2108 }
2109
2110 case OVS_ACTION_ATTR_POP_MPLS:
2111 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2112 !eth_p_mpls(eth_type))
2113 return -EINVAL;
2114
2115 /* Disallow subsequent L2.5+ set and mpls_pop actions
2116 * as there is no check here to ensure that the new
2117 * eth_type is valid and thus set actions could
2118 * write off the end of the packet or otherwise
2119 * corrupt it.
2120 *
2121 * Support for these actions is planned using packet
2122 * recirculation.
2123 */
2124 eth_type = htons(0);
2125 break;
2126
2127 case OVS_ACTION_ATTR_SET:
2128 err = validate_set(a, key, sfa,
2129 &skip_copy, eth_type, false, log);
2130 if (err)
2131 return err;
2132 break;
2133
2134 case OVS_ACTION_ATTR_SET_MASKED:
2135 err = validate_set(a, key, sfa,
2136 &skip_copy, eth_type, true, log);
2137 if (err)
2138 return err;
2139 break;
2140
2141 case OVS_ACTION_ATTR_SAMPLE:
2142 err = validate_and_copy_sample(a, key, depth, sfa,
2143 eth_type, vlan_tci, log);
2144 if (err)
2145 return err;
2146 skip_copy = true;
2147 break;
2148
2149 default:
2150 OVS_NLERR(log, "Unknown Action type %d", type);
2151 return -EINVAL;
2152 }
2153 if (!skip_copy) {
2154 err = copy_action(a, sfa, log);
2155 if (err)
2156 return err;
2157 }
2158 }
2159
2160 if (rem > 0)
2161 return -EINVAL;
2162
2163 return 0;
2164 }
2165
2166 /* 'key' must be the masked key. */
2167 int ovs_nla_copy_actions(const struct nlattr *attr,
2168 const struct sw_flow_key *key,
2169 struct sw_flow_actions **sfa, bool log)
2170 {
2171 int err;
2172
2173 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2174 if (IS_ERR(*sfa))
2175 return PTR_ERR(*sfa);
2176
2177 err = __ovs_nla_copy_actions(attr, key, 0, sfa, key->eth.type,
2178 key->eth.tci, log);
2179 if (err)
2180 kfree(*sfa);
2181
2182 return err;
2183 }
2184
2185 static int sample_action_to_attr(const struct nlattr *attr, struct sk_buff *skb)
2186 {
2187 const struct nlattr *a;
2188 struct nlattr *start;
2189 int err = 0, rem;
2190
2191 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2192 if (!start)
2193 return -EMSGSIZE;
2194
2195 nla_for_each_nested(a, attr, rem) {
2196 int type = nla_type(a);
2197 struct nlattr *st_sample;
2198
2199 switch (type) {
2200 case OVS_SAMPLE_ATTR_PROBABILITY:
2201 if (nla_put(skb, OVS_SAMPLE_ATTR_PROBABILITY,
2202 sizeof(u32), nla_data(a)))
2203 return -EMSGSIZE;
2204 break;
2205 case OVS_SAMPLE_ATTR_ACTIONS:
2206 st_sample = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2207 if (!st_sample)
2208 return -EMSGSIZE;
2209 err = ovs_nla_put_actions(nla_data(a), nla_len(a), skb);
2210 if (err)
2211 return err;
2212 nla_nest_end(skb, st_sample);
2213 break;
2214 }
2215 }
2216
2217 nla_nest_end(skb, start);
2218 return err;
2219 }
2220
2221 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2222 {
2223 const struct nlattr *ovs_key = nla_data(a);
2224 int key_type = nla_type(ovs_key);
2225 struct nlattr *start;
2226 int err;
2227
2228 switch (key_type) {
2229 case OVS_KEY_ATTR_TUNNEL_INFO: {
2230 struct ovs_tunnel_info *tun_info = nla_data(ovs_key);
2231
2232 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2233 if (!start)
2234 return -EMSGSIZE;
2235
2236 err = ipv4_tun_to_nlattr(skb, &tun_info->tunnel,
2237 tun_info->options_len ?
2238 tun_info->options : NULL,
2239 tun_info->options_len);
2240 if (err)
2241 return err;
2242 nla_nest_end(skb, start);
2243 break;
2244 }
2245 default:
2246 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2247 return -EMSGSIZE;
2248 break;
2249 }
2250
2251 return 0;
2252 }
2253
2254 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2255 struct sk_buff *skb)
2256 {
2257 const struct nlattr *ovs_key = nla_data(a);
2258 struct nlattr *nla;
2259 size_t key_len = nla_len(ovs_key) / 2;
2260
2261 /* Revert the conversion we did from a non-masked set action to
2262 * masked set action.
2263 */
2264 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2265 if (!nla)
2266 return -EMSGSIZE;
2267
2268 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2269 return -EMSGSIZE;
2270
2271 nla_nest_end(skb, nla);
2272 return 0;
2273 }
2274
2275 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2276 {
2277 const struct nlattr *a;
2278 int rem, err;
2279
2280 nla_for_each_attr(a, attr, len, rem) {
2281 int type = nla_type(a);
2282
2283 switch (type) {
2284 case OVS_ACTION_ATTR_SET:
2285 err = set_action_to_attr(a, skb);
2286 if (err)
2287 return err;
2288 break;
2289
2290 case OVS_ACTION_ATTR_SET_TO_MASKED:
2291 err = masked_set_action_to_set_action_attr(a, skb);
2292 if (err)
2293 return err;
2294 break;
2295
2296 case OVS_ACTION_ATTR_SAMPLE:
2297 err = sample_action_to_attr(a, skb);
2298 if (err)
2299 return err;
2300 break;
2301 default:
2302 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2303 return -EMSGSIZE;
2304 break;
2305 }
2306 }
2307
2308 return 0;
2309 }