]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/openvswitch/flow_netlink.c
ipv4: convert dst_metrics.refcnt from atomic_t to refcount_t
[mirror_ubuntu-artful-kernel.git] / net / openvswitch / flow_netlink.c
1 /*
2 * Copyright (c) 2007-2017 Nicira, Inc.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA
17 */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include "flow.h"
22 #include "datapath.h"
23 #include <linux/uaccess.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/if_vlan.h>
28 #include <net/llc_pdu.h>
29 #include <linux/kernel.h>
30 #include <linux/jhash.h>
31 #include <linux/jiffies.h>
32 #include <linux/llc.h>
33 #include <linux/module.h>
34 #include <linux/in.h>
35 #include <linux/rcupdate.h>
36 #include <linux/if_arp.h>
37 #include <linux/ip.h>
38 #include <linux/ipv6.h>
39 #include <linux/sctp.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/icmpv6.h>
44 #include <linux/rculist.h>
45 #include <net/geneve.h>
46 #include <net/ip.h>
47 #include <net/ipv6.h>
48 #include <net/ndisc.h>
49 #include <net/mpls.h>
50 #include <net/vxlan.h>
51
52 #include "flow_netlink.h"
53
54 struct ovs_len_tbl {
55 int len;
56 const struct ovs_len_tbl *next;
57 };
58
59 #define OVS_ATTR_NESTED -1
60 #define OVS_ATTR_VARIABLE -2
61
62 static bool actions_may_change_flow(const struct nlattr *actions)
63 {
64 struct nlattr *nla;
65 int rem;
66
67 nla_for_each_nested(nla, actions, rem) {
68 u16 action = nla_type(nla);
69
70 switch (action) {
71 case OVS_ACTION_ATTR_OUTPUT:
72 case OVS_ACTION_ATTR_RECIRC:
73 case OVS_ACTION_ATTR_TRUNC:
74 case OVS_ACTION_ATTR_USERSPACE:
75 break;
76
77 case OVS_ACTION_ATTR_CT:
78 case OVS_ACTION_ATTR_HASH:
79 case OVS_ACTION_ATTR_POP_ETH:
80 case OVS_ACTION_ATTR_POP_MPLS:
81 case OVS_ACTION_ATTR_POP_VLAN:
82 case OVS_ACTION_ATTR_PUSH_ETH:
83 case OVS_ACTION_ATTR_PUSH_MPLS:
84 case OVS_ACTION_ATTR_PUSH_VLAN:
85 case OVS_ACTION_ATTR_SAMPLE:
86 case OVS_ACTION_ATTR_SET:
87 case OVS_ACTION_ATTR_SET_MASKED:
88 default:
89 return true;
90 }
91 }
92 return false;
93 }
94
95 static void update_range(struct sw_flow_match *match,
96 size_t offset, size_t size, bool is_mask)
97 {
98 struct sw_flow_key_range *range;
99 size_t start = rounddown(offset, sizeof(long));
100 size_t end = roundup(offset + size, sizeof(long));
101
102 if (!is_mask)
103 range = &match->range;
104 else
105 range = &match->mask->range;
106
107 if (range->start == range->end) {
108 range->start = start;
109 range->end = end;
110 return;
111 }
112
113 if (range->start > start)
114 range->start = start;
115
116 if (range->end < end)
117 range->end = end;
118 }
119
120 #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \
121 do { \
122 update_range(match, offsetof(struct sw_flow_key, field), \
123 sizeof((match)->key->field), is_mask); \
124 if (is_mask) \
125 (match)->mask->key.field = value; \
126 else \
127 (match)->key->field = value; \
128 } while (0)
129
130 #define SW_FLOW_KEY_MEMCPY_OFFSET(match, offset, value_p, len, is_mask) \
131 do { \
132 update_range(match, offset, len, is_mask); \
133 if (is_mask) \
134 memcpy((u8 *)&(match)->mask->key + offset, value_p, \
135 len); \
136 else \
137 memcpy((u8 *)(match)->key + offset, value_p, len); \
138 } while (0)
139
140 #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \
141 SW_FLOW_KEY_MEMCPY_OFFSET(match, offsetof(struct sw_flow_key, field), \
142 value_p, len, is_mask)
143
144 #define SW_FLOW_KEY_MEMSET_FIELD(match, field, value, is_mask) \
145 do { \
146 update_range(match, offsetof(struct sw_flow_key, field), \
147 sizeof((match)->key->field), is_mask); \
148 if (is_mask) \
149 memset((u8 *)&(match)->mask->key.field, value, \
150 sizeof((match)->mask->key.field)); \
151 else \
152 memset((u8 *)&(match)->key->field, value, \
153 sizeof((match)->key->field)); \
154 } while (0)
155
156 static bool match_validate(const struct sw_flow_match *match,
157 u64 key_attrs, u64 mask_attrs, bool log)
158 {
159 u64 key_expected = 0;
160 u64 mask_allowed = key_attrs; /* At most allow all key attributes */
161
162 /* The following mask attributes allowed only if they
163 * pass the validation tests. */
164 mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4)
165 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)
166 | (1 << OVS_KEY_ATTR_IPV6)
167 | (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)
168 | (1 << OVS_KEY_ATTR_TCP)
169 | (1 << OVS_KEY_ATTR_TCP_FLAGS)
170 | (1 << OVS_KEY_ATTR_UDP)
171 | (1 << OVS_KEY_ATTR_SCTP)
172 | (1 << OVS_KEY_ATTR_ICMP)
173 | (1 << OVS_KEY_ATTR_ICMPV6)
174 | (1 << OVS_KEY_ATTR_ARP)
175 | (1 << OVS_KEY_ATTR_ND)
176 | (1 << OVS_KEY_ATTR_MPLS));
177
178 /* Always allowed mask fields. */
179 mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL)
180 | (1 << OVS_KEY_ATTR_IN_PORT)
181 | (1 << OVS_KEY_ATTR_ETHERTYPE));
182
183 /* Check key attributes. */
184 if (match->key->eth.type == htons(ETH_P_ARP)
185 || match->key->eth.type == htons(ETH_P_RARP)) {
186 key_expected |= 1 << OVS_KEY_ATTR_ARP;
187 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
188 mask_allowed |= 1 << OVS_KEY_ATTR_ARP;
189 }
190
191 if (eth_p_mpls(match->key->eth.type)) {
192 key_expected |= 1 << OVS_KEY_ATTR_MPLS;
193 if (match->mask && (match->mask->key.eth.type == htons(0xffff)))
194 mask_allowed |= 1 << OVS_KEY_ATTR_MPLS;
195 }
196
197 if (match->key->eth.type == htons(ETH_P_IP)) {
198 key_expected |= 1 << OVS_KEY_ATTR_IPV4;
199 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
200 mask_allowed |= 1 << OVS_KEY_ATTR_IPV4;
201 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4;
202 }
203
204 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
205 if (match->key->ip.proto == IPPROTO_UDP) {
206 key_expected |= 1 << OVS_KEY_ATTR_UDP;
207 if (match->mask && (match->mask->key.ip.proto == 0xff))
208 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
209 }
210
211 if (match->key->ip.proto == IPPROTO_SCTP) {
212 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
213 if (match->mask && (match->mask->key.ip.proto == 0xff))
214 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
215 }
216
217 if (match->key->ip.proto == IPPROTO_TCP) {
218 key_expected |= 1 << OVS_KEY_ATTR_TCP;
219 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
220 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
221 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
222 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
223 }
224 }
225
226 if (match->key->ip.proto == IPPROTO_ICMP) {
227 key_expected |= 1 << OVS_KEY_ATTR_ICMP;
228 if (match->mask && (match->mask->key.ip.proto == 0xff))
229 mask_allowed |= 1 << OVS_KEY_ATTR_ICMP;
230 }
231 }
232 }
233
234 if (match->key->eth.type == htons(ETH_P_IPV6)) {
235 key_expected |= 1 << OVS_KEY_ATTR_IPV6;
236 if (match->mask && match->mask->key.eth.type == htons(0xffff)) {
237 mask_allowed |= 1 << OVS_KEY_ATTR_IPV6;
238 mask_allowed |= 1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6;
239 }
240
241 if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) {
242 if (match->key->ip.proto == IPPROTO_UDP) {
243 key_expected |= 1 << OVS_KEY_ATTR_UDP;
244 if (match->mask && (match->mask->key.ip.proto == 0xff))
245 mask_allowed |= 1 << OVS_KEY_ATTR_UDP;
246 }
247
248 if (match->key->ip.proto == IPPROTO_SCTP) {
249 key_expected |= 1 << OVS_KEY_ATTR_SCTP;
250 if (match->mask && (match->mask->key.ip.proto == 0xff))
251 mask_allowed |= 1 << OVS_KEY_ATTR_SCTP;
252 }
253
254 if (match->key->ip.proto == IPPROTO_TCP) {
255 key_expected |= 1 << OVS_KEY_ATTR_TCP;
256 key_expected |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
257 if (match->mask && (match->mask->key.ip.proto == 0xff)) {
258 mask_allowed |= 1 << OVS_KEY_ATTR_TCP;
259 mask_allowed |= 1 << OVS_KEY_ATTR_TCP_FLAGS;
260 }
261 }
262
263 if (match->key->ip.proto == IPPROTO_ICMPV6) {
264 key_expected |= 1 << OVS_KEY_ATTR_ICMPV6;
265 if (match->mask && (match->mask->key.ip.proto == 0xff))
266 mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6;
267
268 if (match->key->tp.src ==
269 htons(NDISC_NEIGHBOUR_SOLICITATION) ||
270 match->key->tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) {
271 key_expected |= 1 << OVS_KEY_ATTR_ND;
272 /* Original direction conntrack tuple
273 * uses the same space as the ND fields
274 * in the key, so both are not allowed
275 * at the same time.
276 */
277 mask_allowed &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
278 if (match->mask && (match->mask->key.tp.src == htons(0xff)))
279 mask_allowed |= 1 << OVS_KEY_ATTR_ND;
280 }
281 }
282 }
283 }
284
285 if ((key_attrs & key_expected) != key_expected) {
286 /* Key attributes check failed. */
287 OVS_NLERR(log, "Missing key (keys=%llx, expected=%llx)",
288 (unsigned long long)key_attrs,
289 (unsigned long long)key_expected);
290 return false;
291 }
292
293 if ((mask_attrs & mask_allowed) != mask_attrs) {
294 /* Mask attributes check failed. */
295 OVS_NLERR(log, "Unexpected mask (mask=%llx, allowed=%llx)",
296 (unsigned long long)mask_attrs,
297 (unsigned long long)mask_allowed);
298 return false;
299 }
300
301 return true;
302 }
303
304 size_t ovs_tun_key_attr_size(void)
305 {
306 /* Whenever adding new OVS_TUNNEL_KEY_ FIELDS, we should consider
307 * updating this function.
308 */
309 return nla_total_size_64bit(8) /* OVS_TUNNEL_KEY_ATTR_ID */
310 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_SRC */
311 + nla_total_size(16) /* OVS_TUNNEL_KEY_ATTR_IPV[46]_DST */
312 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TOS */
313 + nla_total_size(1) /* OVS_TUNNEL_KEY_ATTR_TTL */
314 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT */
315 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_CSUM */
316 + nla_total_size(0) /* OVS_TUNNEL_KEY_ATTR_OAM */
317 + nla_total_size(256) /* OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS */
318 /* OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS is mutually exclusive with
319 * OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS and covered by it.
320 */
321 + nla_total_size(2) /* OVS_TUNNEL_KEY_ATTR_TP_SRC */
322 + nla_total_size(2); /* OVS_TUNNEL_KEY_ATTR_TP_DST */
323 }
324
325 size_t ovs_key_attr_size(void)
326 {
327 /* Whenever adding new OVS_KEY_ FIELDS, we should consider
328 * updating this function.
329 */
330 BUILD_BUG_ON(OVS_KEY_ATTR_TUNNEL_INFO != 28);
331
332 return nla_total_size(4) /* OVS_KEY_ATTR_PRIORITY */
333 + nla_total_size(0) /* OVS_KEY_ATTR_TUNNEL */
334 + ovs_tun_key_attr_size()
335 + nla_total_size(4) /* OVS_KEY_ATTR_IN_PORT */
336 + nla_total_size(4) /* OVS_KEY_ATTR_SKB_MARK */
337 + nla_total_size(4) /* OVS_KEY_ATTR_DP_HASH */
338 + nla_total_size(4) /* OVS_KEY_ATTR_RECIRC_ID */
339 + nla_total_size(4) /* OVS_KEY_ATTR_CT_STATE */
340 + nla_total_size(2) /* OVS_KEY_ATTR_CT_ZONE */
341 + nla_total_size(4) /* OVS_KEY_ATTR_CT_MARK */
342 + nla_total_size(16) /* OVS_KEY_ATTR_CT_LABELS */
343 + nla_total_size(40) /* OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6 */
344 + nla_total_size(12) /* OVS_KEY_ATTR_ETHERNET */
345 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
346 + nla_total_size(4) /* OVS_KEY_ATTR_VLAN */
347 + nla_total_size(0) /* OVS_KEY_ATTR_ENCAP */
348 + nla_total_size(2) /* OVS_KEY_ATTR_ETHERTYPE */
349 + nla_total_size(40) /* OVS_KEY_ATTR_IPV6 */
350 + nla_total_size(2) /* OVS_KEY_ATTR_ICMPV6 */
351 + nla_total_size(28); /* OVS_KEY_ATTR_ND */
352 }
353
354 static const struct ovs_len_tbl ovs_vxlan_ext_key_lens[OVS_VXLAN_EXT_MAX + 1] = {
355 [OVS_VXLAN_EXT_GBP] = { .len = sizeof(u32) },
356 };
357
358 static const struct ovs_len_tbl ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = {
359 [OVS_TUNNEL_KEY_ATTR_ID] = { .len = sizeof(u64) },
360 [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = { .len = sizeof(u32) },
361 [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = { .len = sizeof(u32) },
362 [OVS_TUNNEL_KEY_ATTR_TOS] = { .len = 1 },
363 [OVS_TUNNEL_KEY_ATTR_TTL] = { .len = 1 },
364 [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = { .len = 0 },
365 [OVS_TUNNEL_KEY_ATTR_CSUM] = { .len = 0 },
366 [OVS_TUNNEL_KEY_ATTR_TP_SRC] = { .len = sizeof(u16) },
367 [OVS_TUNNEL_KEY_ATTR_TP_DST] = { .len = sizeof(u16) },
368 [OVS_TUNNEL_KEY_ATTR_OAM] = { .len = 0 },
369 [OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS] = { .len = OVS_ATTR_VARIABLE },
370 [OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS] = { .len = OVS_ATTR_NESTED,
371 .next = ovs_vxlan_ext_key_lens },
372 [OVS_TUNNEL_KEY_ATTR_IPV6_SRC] = { .len = sizeof(struct in6_addr) },
373 [OVS_TUNNEL_KEY_ATTR_IPV6_DST] = { .len = sizeof(struct in6_addr) },
374 };
375
376 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
377 static const struct ovs_len_tbl ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = {
378 [OVS_KEY_ATTR_ENCAP] = { .len = OVS_ATTR_NESTED },
379 [OVS_KEY_ATTR_PRIORITY] = { .len = sizeof(u32) },
380 [OVS_KEY_ATTR_IN_PORT] = { .len = sizeof(u32) },
381 [OVS_KEY_ATTR_SKB_MARK] = { .len = sizeof(u32) },
382 [OVS_KEY_ATTR_ETHERNET] = { .len = sizeof(struct ovs_key_ethernet) },
383 [OVS_KEY_ATTR_VLAN] = { .len = sizeof(__be16) },
384 [OVS_KEY_ATTR_ETHERTYPE] = { .len = sizeof(__be16) },
385 [OVS_KEY_ATTR_IPV4] = { .len = sizeof(struct ovs_key_ipv4) },
386 [OVS_KEY_ATTR_IPV6] = { .len = sizeof(struct ovs_key_ipv6) },
387 [OVS_KEY_ATTR_TCP] = { .len = sizeof(struct ovs_key_tcp) },
388 [OVS_KEY_ATTR_TCP_FLAGS] = { .len = sizeof(__be16) },
389 [OVS_KEY_ATTR_UDP] = { .len = sizeof(struct ovs_key_udp) },
390 [OVS_KEY_ATTR_SCTP] = { .len = sizeof(struct ovs_key_sctp) },
391 [OVS_KEY_ATTR_ICMP] = { .len = sizeof(struct ovs_key_icmp) },
392 [OVS_KEY_ATTR_ICMPV6] = { .len = sizeof(struct ovs_key_icmpv6) },
393 [OVS_KEY_ATTR_ARP] = { .len = sizeof(struct ovs_key_arp) },
394 [OVS_KEY_ATTR_ND] = { .len = sizeof(struct ovs_key_nd) },
395 [OVS_KEY_ATTR_RECIRC_ID] = { .len = sizeof(u32) },
396 [OVS_KEY_ATTR_DP_HASH] = { .len = sizeof(u32) },
397 [OVS_KEY_ATTR_TUNNEL] = { .len = OVS_ATTR_NESTED,
398 .next = ovs_tunnel_key_lens, },
399 [OVS_KEY_ATTR_MPLS] = { .len = sizeof(struct ovs_key_mpls) },
400 [OVS_KEY_ATTR_CT_STATE] = { .len = sizeof(u32) },
401 [OVS_KEY_ATTR_CT_ZONE] = { .len = sizeof(u16) },
402 [OVS_KEY_ATTR_CT_MARK] = { .len = sizeof(u32) },
403 [OVS_KEY_ATTR_CT_LABELS] = { .len = sizeof(struct ovs_key_ct_labels) },
404 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4] = {
405 .len = sizeof(struct ovs_key_ct_tuple_ipv4) },
406 [OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6] = {
407 .len = sizeof(struct ovs_key_ct_tuple_ipv6) },
408 };
409
410 static bool check_attr_len(unsigned int attr_len, unsigned int expected_len)
411 {
412 return expected_len == attr_len ||
413 expected_len == OVS_ATTR_NESTED ||
414 expected_len == OVS_ATTR_VARIABLE;
415 }
416
417 static bool is_all_zero(const u8 *fp, size_t size)
418 {
419 int i;
420
421 if (!fp)
422 return false;
423
424 for (i = 0; i < size; i++)
425 if (fp[i])
426 return false;
427
428 return true;
429 }
430
431 static int __parse_flow_nlattrs(const struct nlattr *attr,
432 const struct nlattr *a[],
433 u64 *attrsp, bool log, bool nz)
434 {
435 const struct nlattr *nla;
436 u64 attrs;
437 int rem;
438
439 attrs = *attrsp;
440 nla_for_each_nested(nla, attr, rem) {
441 u16 type = nla_type(nla);
442 int expected_len;
443
444 if (type > OVS_KEY_ATTR_MAX) {
445 OVS_NLERR(log, "Key type %d is out of range max %d",
446 type, OVS_KEY_ATTR_MAX);
447 return -EINVAL;
448 }
449
450 if (attrs & (1 << type)) {
451 OVS_NLERR(log, "Duplicate key (type %d).", type);
452 return -EINVAL;
453 }
454
455 expected_len = ovs_key_lens[type].len;
456 if (!check_attr_len(nla_len(nla), expected_len)) {
457 OVS_NLERR(log, "Key %d has unexpected len %d expected %d",
458 type, nla_len(nla), expected_len);
459 return -EINVAL;
460 }
461
462 if (!nz || !is_all_zero(nla_data(nla), expected_len)) {
463 attrs |= 1 << type;
464 a[type] = nla;
465 }
466 }
467 if (rem) {
468 OVS_NLERR(log, "Message has %d unknown bytes.", rem);
469 return -EINVAL;
470 }
471
472 *attrsp = attrs;
473 return 0;
474 }
475
476 static int parse_flow_mask_nlattrs(const struct nlattr *attr,
477 const struct nlattr *a[], u64 *attrsp,
478 bool log)
479 {
480 return __parse_flow_nlattrs(attr, a, attrsp, log, true);
481 }
482
483 int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[],
484 u64 *attrsp, bool log)
485 {
486 return __parse_flow_nlattrs(attr, a, attrsp, log, false);
487 }
488
489 static int genev_tun_opt_from_nlattr(const struct nlattr *a,
490 struct sw_flow_match *match, bool is_mask,
491 bool log)
492 {
493 unsigned long opt_key_offset;
494
495 if (nla_len(a) > sizeof(match->key->tun_opts)) {
496 OVS_NLERR(log, "Geneve option length err (len %d, max %zu).",
497 nla_len(a), sizeof(match->key->tun_opts));
498 return -EINVAL;
499 }
500
501 if (nla_len(a) % 4 != 0) {
502 OVS_NLERR(log, "Geneve opt len %d is not a multiple of 4.",
503 nla_len(a));
504 return -EINVAL;
505 }
506
507 /* We need to record the length of the options passed
508 * down, otherwise packets with the same format but
509 * additional options will be silently matched.
510 */
511 if (!is_mask) {
512 SW_FLOW_KEY_PUT(match, tun_opts_len, nla_len(a),
513 false);
514 } else {
515 /* This is somewhat unusual because it looks at
516 * both the key and mask while parsing the
517 * attributes (and by extension assumes the key
518 * is parsed first). Normally, we would verify
519 * that each is the correct length and that the
520 * attributes line up in the validate function.
521 * However, that is difficult because this is
522 * variable length and we won't have the
523 * information later.
524 */
525 if (match->key->tun_opts_len != nla_len(a)) {
526 OVS_NLERR(log, "Geneve option len %d != mask len %d",
527 match->key->tun_opts_len, nla_len(a));
528 return -EINVAL;
529 }
530
531 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
532 }
533
534 opt_key_offset = TUN_METADATA_OFFSET(nla_len(a));
535 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, nla_data(a),
536 nla_len(a), is_mask);
537 return 0;
538 }
539
540 static int vxlan_tun_opt_from_nlattr(const struct nlattr *attr,
541 struct sw_flow_match *match, bool is_mask,
542 bool log)
543 {
544 struct nlattr *a;
545 int rem;
546 unsigned long opt_key_offset;
547 struct vxlan_metadata opts;
548
549 BUILD_BUG_ON(sizeof(opts) > sizeof(match->key->tun_opts));
550
551 memset(&opts, 0, sizeof(opts));
552 nla_for_each_nested(a, attr, rem) {
553 int type = nla_type(a);
554
555 if (type > OVS_VXLAN_EXT_MAX) {
556 OVS_NLERR(log, "VXLAN extension %d out of range max %d",
557 type, OVS_VXLAN_EXT_MAX);
558 return -EINVAL;
559 }
560
561 if (!check_attr_len(nla_len(a),
562 ovs_vxlan_ext_key_lens[type].len)) {
563 OVS_NLERR(log, "VXLAN extension %d has unexpected len %d expected %d",
564 type, nla_len(a),
565 ovs_vxlan_ext_key_lens[type].len);
566 return -EINVAL;
567 }
568
569 switch (type) {
570 case OVS_VXLAN_EXT_GBP:
571 opts.gbp = nla_get_u32(a);
572 break;
573 default:
574 OVS_NLERR(log, "Unknown VXLAN extension attribute %d",
575 type);
576 return -EINVAL;
577 }
578 }
579 if (rem) {
580 OVS_NLERR(log, "VXLAN extension message has %d unknown bytes.",
581 rem);
582 return -EINVAL;
583 }
584
585 if (!is_mask)
586 SW_FLOW_KEY_PUT(match, tun_opts_len, sizeof(opts), false);
587 else
588 SW_FLOW_KEY_PUT(match, tun_opts_len, 0xff, true);
589
590 opt_key_offset = TUN_METADATA_OFFSET(sizeof(opts));
591 SW_FLOW_KEY_MEMCPY_OFFSET(match, opt_key_offset, &opts, sizeof(opts),
592 is_mask);
593 return 0;
594 }
595
596 static int ip_tun_from_nlattr(const struct nlattr *attr,
597 struct sw_flow_match *match, bool is_mask,
598 bool log)
599 {
600 bool ttl = false, ipv4 = false, ipv6 = false;
601 __be16 tun_flags = 0;
602 int opts_type = 0;
603 struct nlattr *a;
604 int rem;
605
606 nla_for_each_nested(a, attr, rem) {
607 int type = nla_type(a);
608 int err;
609
610 if (type > OVS_TUNNEL_KEY_ATTR_MAX) {
611 OVS_NLERR(log, "Tunnel attr %d out of range max %d",
612 type, OVS_TUNNEL_KEY_ATTR_MAX);
613 return -EINVAL;
614 }
615
616 if (!check_attr_len(nla_len(a),
617 ovs_tunnel_key_lens[type].len)) {
618 OVS_NLERR(log, "Tunnel attr %d has unexpected len %d expected %d",
619 type, nla_len(a), ovs_tunnel_key_lens[type].len);
620 return -EINVAL;
621 }
622
623 switch (type) {
624 case OVS_TUNNEL_KEY_ATTR_ID:
625 SW_FLOW_KEY_PUT(match, tun_key.tun_id,
626 nla_get_be64(a), is_mask);
627 tun_flags |= TUNNEL_KEY;
628 break;
629 case OVS_TUNNEL_KEY_ATTR_IPV4_SRC:
630 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.src,
631 nla_get_in_addr(a), is_mask);
632 ipv4 = true;
633 break;
634 case OVS_TUNNEL_KEY_ATTR_IPV4_DST:
635 SW_FLOW_KEY_PUT(match, tun_key.u.ipv4.dst,
636 nla_get_in_addr(a), is_mask);
637 ipv4 = true;
638 break;
639 case OVS_TUNNEL_KEY_ATTR_IPV6_SRC:
640 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.src,
641 nla_get_in6_addr(a), is_mask);
642 ipv6 = true;
643 break;
644 case OVS_TUNNEL_KEY_ATTR_IPV6_DST:
645 SW_FLOW_KEY_PUT(match, tun_key.u.ipv6.dst,
646 nla_get_in6_addr(a), is_mask);
647 ipv6 = true;
648 break;
649 case OVS_TUNNEL_KEY_ATTR_TOS:
650 SW_FLOW_KEY_PUT(match, tun_key.tos,
651 nla_get_u8(a), is_mask);
652 break;
653 case OVS_TUNNEL_KEY_ATTR_TTL:
654 SW_FLOW_KEY_PUT(match, tun_key.ttl,
655 nla_get_u8(a), is_mask);
656 ttl = true;
657 break;
658 case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT:
659 tun_flags |= TUNNEL_DONT_FRAGMENT;
660 break;
661 case OVS_TUNNEL_KEY_ATTR_CSUM:
662 tun_flags |= TUNNEL_CSUM;
663 break;
664 case OVS_TUNNEL_KEY_ATTR_TP_SRC:
665 SW_FLOW_KEY_PUT(match, tun_key.tp_src,
666 nla_get_be16(a), is_mask);
667 break;
668 case OVS_TUNNEL_KEY_ATTR_TP_DST:
669 SW_FLOW_KEY_PUT(match, tun_key.tp_dst,
670 nla_get_be16(a), is_mask);
671 break;
672 case OVS_TUNNEL_KEY_ATTR_OAM:
673 tun_flags |= TUNNEL_OAM;
674 break;
675 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
676 if (opts_type) {
677 OVS_NLERR(log, "Multiple metadata blocks provided");
678 return -EINVAL;
679 }
680
681 err = genev_tun_opt_from_nlattr(a, match, is_mask, log);
682 if (err)
683 return err;
684
685 tun_flags |= TUNNEL_GENEVE_OPT;
686 opts_type = type;
687 break;
688 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
689 if (opts_type) {
690 OVS_NLERR(log, "Multiple metadata blocks provided");
691 return -EINVAL;
692 }
693
694 err = vxlan_tun_opt_from_nlattr(a, match, is_mask, log);
695 if (err)
696 return err;
697
698 tun_flags |= TUNNEL_VXLAN_OPT;
699 opts_type = type;
700 break;
701 case OVS_TUNNEL_KEY_ATTR_PAD:
702 break;
703 default:
704 OVS_NLERR(log, "Unknown IP tunnel attribute %d",
705 type);
706 return -EINVAL;
707 }
708 }
709
710 SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask);
711 if (is_mask)
712 SW_FLOW_KEY_MEMSET_FIELD(match, tun_proto, 0xff, true);
713 else
714 SW_FLOW_KEY_PUT(match, tun_proto, ipv6 ? AF_INET6 : AF_INET,
715 false);
716
717 if (rem > 0) {
718 OVS_NLERR(log, "IP tunnel attribute has %d unknown bytes.",
719 rem);
720 return -EINVAL;
721 }
722
723 if (ipv4 && ipv6) {
724 OVS_NLERR(log, "Mixed IPv4 and IPv6 tunnel attributes");
725 return -EINVAL;
726 }
727
728 if (!is_mask) {
729 if (!ipv4 && !ipv6) {
730 OVS_NLERR(log, "IP tunnel dst address not specified");
731 return -EINVAL;
732 }
733 if (ipv4 && !match->key->tun_key.u.ipv4.dst) {
734 OVS_NLERR(log, "IPv4 tunnel dst address is zero");
735 return -EINVAL;
736 }
737 if (ipv6 && ipv6_addr_any(&match->key->tun_key.u.ipv6.dst)) {
738 OVS_NLERR(log, "IPv6 tunnel dst address is zero");
739 return -EINVAL;
740 }
741
742 if (!ttl) {
743 OVS_NLERR(log, "IP tunnel TTL not specified.");
744 return -EINVAL;
745 }
746 }
747
748 return opts_type;
749 }
750
751 static int vxlan_opt_to_nlattr(struct sk_buff *skb,
752 const void *tun_opts, int swkey_tun_opts_len)
753 {
754 const struct vxlan_metadata *opts = tun_opts;
755 struct nlattr *nla;
756
757 nla = nla_nest_start(skb, OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS);
758 if (!nla)
759 return -EMSGSIZE;
760
761 if (nla_put_u32(skb, OVS_VXLAN_EXT_GBP, opts->gbp) < 0)
762 return -EMSGSIZE;
763
764 nla_nest_end(skb, nla);
765 return 0;
766 }
767
768 static int __ip_tun_to_nlattr(struct sk_buff *skb,
769 const struct ip_tunnel_key *output,
770 const void *tun_opts, int swkey_tun_opts_len,
771 unsigned short tun_proto)
772 {
773 if (output->tun_flags & TUNNEL_KEY &&
774 nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id,
775 OVS_TUNNEL_KEY_ATTR_PAD))
776 return -EMSGSIZE;
777 switch (tun_proto) {
778 case AF_INET:
779 if (output->u.ipv4.src &&
780 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC,
781 output->u.ipv4.src))
782 return -EMSGSIZE;
783 if (output->u.ipv4.dst &&
784 nla_put_in_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST,
785 output->u.ipv4.dst))
786 return -EMSGSIZE;
787 break;
788 case AF_INET6:
789 if (!ipv6_addr_any(&output->u.ipv6.src) &&
790 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_SRC,
791 &output->u.ipv6.src))
792 return -EMSGSIZE;
793 if (!ipv6_addr_any(&output->u.ipv6.dst) &&
794 nla_put_in6_addr(skb, OVS_TUNNEL_KEY_ATTR_IPV6_DST,
795 &output->u.ipv6.dst))
796 return -EMSGSIZE;
797 break;
798 }
799 if (output->tos &&
800 nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->tos))
801 return -EMSGSIZE;
802 if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ttl))
803 return -EMSGSIZE;
804 if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) &&
805 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT))
806 return -EMSGSIZE;
807 if ((output->tun_flags & TUNNEL_CSUM) &&
808 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM))
809 return -EMSGSIZE;
810 if (output->tp_src &&
811 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_SRC, output->tp_src))
812 return -EMSGSIZE;
813 if (output->tp_dst &&
814 nla_put_be16(skb, OVS_TUNNEL_KEY_ATTR_TP_DST, output->tp_dst))
815 return -EMSGSIZE;
816 if ((output->tun_flags & TUNNEL_OAM) &&
817 nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_OAM))
818 return -EMSGSIZE;
819 if (swkey_tun_opts_len) {
820 if (output->tun_flags & TUNNEL_GENEVE_OPT &&
821 nla_put(skb, OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS,
822 swkey_tun_opts_len, tun_opts))
823 return -EMSGSIZE;
824 else if (output->tun_flags & TUNNEL_VXLAN_OPT &&
825 vxlan_opt_to_nlattr(skb, tun_opts, swkey_tun_opts_len))
826 return -EMSGSIZE;
827 }
828
829 return 0;
830 }
831
832 static int ip_tun_to_nlattr(struct sk_buff *skb,
833 const struct ip_tunnel_key *output,
834 const void *tun_opts, int swkey_tun_opts_len,
835 unsigned short tun_proto)
836 {
837 struct nlattr *nla;
838 int err;
839
840 nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL);
841 if (!nla)
842 return -EMSGSIZE;
843
844 err = __ip_tun_to_nlattr(skb, output, tun_opts, swkey_tun_opts_len,
845 tun_proto);
846 if (err)
847 return err;
848
849 nla_nest_end(skb, nla);
850 return 0;
851 }
852
853 int ovs_nla_put_tunnel_info(struct sk_buff *skb,
854 struct ip_tunnel_info *tun_info)
855 {
856 return __ip_tun_to_nlattr(skb, &tun_info->key,
857 ip_tunnel_info_opts(tun_info),
858 tun_info->options_len,
859 ip_tunnel_info_af(tun_info));
860 }
861
862 static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
863 const struct nlattr *a[],
864 bool is_mask, bool inner)
865 {
866 __be16 tci = 0;
867 __be16 tpid = 0;
868
869 if (a[OVS_KEY_ATTR_VLAN])
870 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
871
872 if (a[OVS_KEY_ATTR_ETHERTYPE])
873 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
874
875 if (likely(!inner)) {
876 SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
877 SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
878 } else {
879 SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
880 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
881 }
882 return 0;
883 }
884
885 static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
886 u64 key_attrs, bool inner,
887 const struct nlattr **a, bool log)
888 {
889 __be16 tci = 0;
890
891 if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
892 (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
893 eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
894 /* Not a VLAN. */
895 return 0;
896 }
897
898 if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
899 (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
900 OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
901 return -EINVAL;
902 }
903
904 if (a[OVS_KEY_ATTR_VLAN])
905 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
906
907 if (!(tci & htons(VLAN_TAG_PRESENT))) {
908 if (tci) {
909 OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
910 (inner) ? "C-VLAN" : "VLAN");
911 return -EINVAL;
912 } else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
913 /* Corner case for truncated VLAN header. */
914 OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
915 (inner) ? "C-VLAN" : "VLAN");
916 return -EINVAL;
917 }
918 }
919
920 return 1;
921 }
922
923 static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
924 u64 key_attrs, bool inner,
925 const struct nlattr **a, bool log)
926 {
927 __be16 tci = 0;
928 __be16 tpid = 0;
929 bool encap_valid = !!(match->key->eth.vlan.tci &
930 htons(VLAN_TAG_PRESENT));
931 bool i_encap_valid = !!(match->key->eth.cvlan.tci &
932 htons(VLAN_TAG_PRESENT));
933
934 if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
935 /* Not a VLAN. */
936 return 0;
937 }
938
939 if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
940 OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
941 (inner) ? "C-VLAN" : "VLAN");
942 return -EINVAL;
943 }
944
945 if (a[OVS_KEY_ATTR_VLAN])
946 tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
947
948 if (a[OVS_KEY_ATTR_ETHERTYPE])
949 tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
950
951 if (tpid != htons(0xffff)) {
952 OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
953 (inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
954 return -EINVAL;
955 }
956 if (!(tci & htons(VLAN_TAG_PRESENT))) {
957 OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
958 (inner) ? "C-VLAN" : "VLAN");
959 return -EINVAL;
960 }
961
962 return 1;
963 }
964
965 static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
966 u64 *key_attrs, bool inner,
967 const struct nlattr **a, bool is_mask,
968 bool log)
969 {
970 int err;
971 const struct nlattr *encap;
972
973 if (!is_mask)
974 err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
975 a, log);
976 else
977 err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
978 a, log);
979 if (err <= 0)
980 return err;
981
982 err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
983 if (err)
984 return err;
985
986 *key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
987 *key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
988 *key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
989
990 encap = a[OVS_KEY_ATTR_ENCAP];
991
992 if (!is_mask)
993 err = parse_flow_nlattrs(encap, a, key_attrs, log);
994 else
995 err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
996
997 return err;
998 }
999
1000 static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
1001 u64 *key_attrs, const struct nlattr **a,
1002 bool is_mask, bool log)
1003 {
1004 int err;
1005 bool encap_valid = false;
1006
1007 err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
1008 is_mask, log);
1009 if (err)
1010 return err;
1011
1012 encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
1013 if (encap_valid) {
1014 err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
1015 is_mask, log);
1016 if (err)
1017 return err;
1018 }
1019
1020 return 0;
1021 }
1022
1023 static int parse_eth_type_from_nlattrs(struct sw_flow_match *match,
1024 u64 *attrs, const struct nlattr **a,
1025 bool is_mask, bool log)
1026 {
1027 __be16 eth_type;
1028
1029 eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
1030 if (is_mask) {
1031 /* Always exact match EtherType. */
1032 eth_type = htons(0xffff);
1033 } else if (!eth_proto_is_802_3(eth_type)) {
1034 OVS_NLERR(log, "EtherType %x is less than min %x",
1035 ntohs(eth_type), ETH_P_802_3_MIN);
1036 return -EINVAL;
1037 }
1038
1039 SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask);
1040 *attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
1041 return 0;
1042 }
1043
1044 static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
1045 u64 *attrs, const struct nlattr **a,
1046 bool is_mask, bool log)
1047 {
1048 u8 mac_proto = MAC_PROTO_ETHERNET;
1049
1050 if (*attrs & (1 << OVS_KEY_ATTR_DP_HASH)) {
1051 u32 hash_val = nla_get_u32(a[OVS_KEY_ATTR_DP_HASH]);
1052
1053 SW_FLOW_KEY_PUT(match, ovs_flow_hash, hash_val, is_mask);
1054 *attrs &= ~(1 << OVS_KEY_ATTR_DP_HASH);
1055 }
1056
1057 if (*attrs & (1 << OVS_KEY_ATTR_RECIRC_ID)) {
1058 u32 recirc_id = nla_get_u32(a[OVS_KEY_ATTR_RECIRC_ID]);
1059
1060 SW_FLOW_KEY_PUT(match, recirc_id, recirc_id, is_mask);
1061 *attrs &= ~(1 << OVS_KEY_ATTR_RECIRC_ID);
1062 }
1063
1064 if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) {
1065 SW_FLOW_KEY_PUT(match, phy.priority,
1066 nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask);
1067 *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY);
1068 }
1069
1070 if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) {
1071 u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]);
1072
1073 if (is_mask) {
1074 in_port = 0xffffffff; /* Always exact match in_port. */
1075 } else if (in_port >= DP_MAX_PORTS) {
1076 OVS_NLERR(log, "Port %d exceeds max allowable %d",
1077 in_port, DP_MAX_PORTS);
1078 return -EINVAL;
1079 }
1080
1081 SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask);
1082 *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT);
1083 } else if (!is_mask) {
1084 SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask);
1085 }
1086
1087 if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) {
1088 uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]);
1089
1090 SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask);
1091 *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK);
1092 }
1093 if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) {
1094 if (ip_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match,
1095 is_mask, log) < 0)
1096 return -EINVAL;
1097 *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL);
1098 }
1099
1100 if (*attrs & (1 << OVS_KEY_ATTR_CT_STATE) &&
1101 ovs_ct_verify(net, OVS_KEY_ATTR_CT_STATE)) {
1102 u32 ct_state = nla_get_u32(a[OVS_KEY_ATTR_CT_STATE]);
1103
1104 if (ct_state & ~CT_SUPPORTED_MASK) {
1105 OVS_NLERR(log, "ct_state flags %08x unsupported",
1106 ct_state);
1107 return -EINVAL;
1108 }
1109
1110 SW_FLOW_KEY_PUT(match, ct_state, ct_state, is_mask);
1111 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_STATE);
1112 }
1113 if (*attrs & (1 << OVS_KEY_ATTR_CT_ZONE) &&
1114 ovs_ct_verify(net, OVS_KEY_ATTR_CT_ZONE)) {
1115 u16 ct_zone = nla_get_u16(a[OVS_KEY_ATTR_CT_ZONE]);
1116
1117 SW_FLOW_KEY_PUT(match, ct_zone, ct_zone, is_mask);
1118 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ZONE);
1119 }
1120 if (*attrs & (1 << OVS_KEY_ATTR_CT_MARK) &&
1121 ovs_ct_verify(net, OVS_KEY_ATTR_CT_MARK)) {
1122 u32 mark = nla_get_u32(a[OVS_KEY_ATTR_CT_MARK]);
1123
1124 SW_FLOW_KEY_PUT(match, ct.mark, mark, is_mask);
1125 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_MARK);
1126 }
1127 if (*attrs & (1 << OVS_KEY_ATTR_CT_LABELS) &&
1128 ovs_ct_verify(net, OVS_KEY_ATTR_CT_LABELS)) {
1129 const struct ovs_key_ct_labels *cl;
1130
1131 cl = nla_data(a[OVS_KEY_ATTR_CT_LABELS]);
1132 SW_FLOW_KEY_MEMCPY(match, ct.labels, cl->ct_labels,
1133 sizeof(*cl), is_mask);
1134 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_LABELS);
1135 }
1136 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4)) {
1137 const struct ovs_key_ct_tuple_ipv4 *ct;
1138
1139 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4]);
1140
1141 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.src, ct->ipv4_src, is_mask);
1142 SW_FLOW_KEY_PUT(match, ipv4.ct_orig.dst, ct->ipv4_dst, is_mask);
1143 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1144 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1145 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv4_proto, is_mask);
1146 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4);
1147 }
1148 if (*attrs & (1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6)) {
1149 const struct ovs_key_ct_tuple_ipv6 *ct;
1150
1151 ct = nla_data(a[OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6]);
1152
1153 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.src, &ct->ipv6_src,
1154 sizeof(match->key->ipv6.ct_orig.src),
1155 is_mask);
1156 SW_FLOW_KEY_MEMCPY(match, ipv6.ct_orig.dst, &ct->ipv6_dst,
1157 sizeof(match->key->ipv6.ct_orig.dst),
1158 is_mask);
1159 SW_FLOW_KEY_PUT(match, ct.orig_tp.src, ct->src_port, is_mask);
1160 SW_FLOW_KEY_PUT(match, ct.orig_tp.dst, ct->dst_port, is_mask);
1161 SW_FLOW_KEY_PUT(match, ct_orig_proto, ct->ipv6_proto, is_mask);
1162 *attrs &= ~(1ULL << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6);
1163 }
1164
1165 /* For layer 3 packets the Ethernet type is provided
1166 * and treated as metadata but no MAC addresses are provided.
1167 */
1168 if (!(*attrs & (1ULL << OVS_KEY_ATTR_ETHERNET)) &&
1169 (*attrs & (1ULL << OVS_KEY_ATTR_ETHERTYPE)))
1170 mac_proto = MAC_PROTO_NONE;
1171
1172 /* Always exact match mac_proto */
1173 SW_FLOW_KEY_PUT(match, mac_proto, is_mask ? 0xff : mac_proto, is_mask);
1174
1175 if (mac_proto == MAC_PROTO_NONE)
1176 return parse_eth_type_from_nlattrs(match, attrs, a, is_mask,
1177 log);
1178
1179 return 0;
1180 }
1181
1182 static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
1183 u64 attrs, const struct nlattr **a,
1184 bool is_mask, bool log)
1185 {
1186 int err;
1187
1188 err = metadata_from_nlattrs(net, match, &attrs, a, is_mask, log);
1189 if (err)
1190 return err;
1191
1192 if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) {
1193 const struct ovs_key_ethernet *eth_key;
1194
1195 eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]);
1196 SW_FLOW_KEY_MEMCPY(match, eth.src,
1197 eth_key->eth_src, ETH_ALEN, is_mask);
1198 SW_FLOW_KEY_MEMCPY(match, eth.dst,
1199 eth_key->eth_dst, ETH_ALEN, is_mask);
1200 attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET);
1201
1202 if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
1203 /* VLAN attribute is always parsed before getting here since it
1204 * may occur multiple times.
1205 */
1206 OVS_NLERR(log, "VLAN attribute unexpected.");
1207 return -EINVAL;
1208 }
1209
1210 if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
1211 err = parse_eth_type_from_nlattrs(match, &attrs, a, is_mask,
1212 log);
1213 if (err)
1214 return err;
1215 } else if (!is_mask) {
1216 SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask);
1217 }
1218 } else if (!match->key->eth.type) {
1219 OVS_NLERR(log, "Either Ethernet header or EtherType is required.");
1220 return -EINVAL;
1221 }
1222
1223 if (attrs & (1 << OVS_KEY_ATTR_IPV4)) {
1224 const struct ovs_key_ipv4 *ipv4_key;
1225
1226 ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]);
1227 if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) {
1228 OVS_NLERR(log, "IPv4 frag type %d is out of range max %d",
1229 ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX);
1230 return -EINVAL;
1231 }
1232 SW_FLOW_KEY_PUT(match, ip.proto,
1233 ipv4_key->ipv4_proto, is_mask);
1234 SW_FLOW_KEY_PUT(match, ip.tos,
1235 ipv4_key->ipv4_tos, is_mask);
1236 SW_FLOW_KEY_PUT(match, ip.ttl,
1237 ipv4_key->ipv4_ttl, is_mask);
1238 SW_FLOW_KEY_PUT(match, ip.frag,
1239 ipv4_key->ipv4_frag, is_mask);
1240 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1241 ipv4_key->ipv4_src, is_mask);
1242 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1243 ipv4_key->ipv4_dst, is_mask);
1244 attrs &= ~(1 << OVS_KEY_ATTR_IPV4);
1245 }
1246
1247 if (attrs & (1 << OVS_KEY_ATTR_IPV6)) {
1248 const struct ovs_key_ipv6 *ipv6_key;
1249
1250 ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]);
1251 if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) {
1252 OVS_NLERR(log, "IPv6 frag type %d is out of range max %d",
1253 ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX);
1254 return -EINVAL;
1255 }
1256
1257 if (!is_mask && ipv6_key->ipv6_label & htonl(0xFFF00000)) {
1258 OVS_NLERR(log, "IPv6 flow label %x is out of range (max=%x).\n",
1259 ntohl(ipv6_key->ipv6_label), (1 << 20) - 1);
1260 return -EINVAL;
1261 }
1262
1263 SW_FLOW_KEY_PUT(match, ipv6.label,
1264 ipv6_key->ipv6_label, is_mask);
1265 SW_FLOW_KEY_PUT(match, ip.proto,
1266 ipv6_key->ipv6_proto, is_mask);
1267 SW_FLOW_KEY_PUT(match, ip.tos,
1268 ipv6_key->ipv6_tclass, is_mask);
1269 SW_FLOW_KEY_PUT(match, ip.ttl,
1270 ipv6_key->ipv6_hlimit, is_mask);
1271 SW_FLOW_KEY_PUT(match, ip.frag,
1272 ipv6_key->ipv6_frag, is_mask);
1273 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src,
1274 ipv6_key->ipv6_src,
1275 sizeof(match->key->ipv6.addr.src),
1276 is_mask);
1277 SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst,
1278 ipv6_key->ipv6_dst,
1279 sizeof(match->key->ipv6.addr.dst),
1280 is_mask);
1281
1282 attrs &= ~(1 << OVS_KEY_ATTR_IPV6);
1283 }
1284
1285 if (attrs & (1 << OVS_KEY_ATTR_ARP)) {
1286 const struct ovs_key_arp *arp_key;
1287
1288 arp_key = nla_data(a[OVS_KEY_ATTR_ARP]);
1289 if (!is_mask && (arp_key->arp_op & htons(0xff00))) {
1290 OVS_NLERR(log, "Unknown ARP opcode (opcode=%d).",
1291 arp_key->arp_op);
1292 return -EINVAL;
1293 }
1294
1295 SW_FLOW_KEY_PUT(match, ipv4.addr.src,
1296 arp_key->arp_sip, is_mask);
1297 SW_FLOW_KEY_PUT(match, ipv4.addr.dst,
1298 arp_key->arp_tip, is_mask);
1299 SW_FLOW_KEY_PUT(match, ip.proto,
1300 ntohs(arp_key->arp_op), is_mask);
1301 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha,
1302 arp_key->arp_sha, ETH_ALEN, is_mask);
1303 SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha,
1304 arp_key->arp_tha, ETH_ALEN, is_mask);
1305
1306 attrs &= ~(1 << OVS_KEY_ATTR_ARP);
1307 }
1308
1309 if (attrs & (1 << OVS_KEY_ATTR_MPLS)) {
1310 const struct ovs_key_mpls *mpls_key;
1311
1312 mpls_key = nla_data(a[OVS_KEY_ATTR_MPLS]);
1313 SW_FLOW_KEY_PUT(match, mpls.top_lse,
1314 mpls_key->mpls_lse, is_mask);
1315
1316 attrs &= ~(1 << OVS_KEY_ATTR_MPLS);
1317 }
1318
1319 if (attrs & (1 << OVS_KEY_ATTR_TCP)) {
1320 const struct ovs_key_tcp *tcp_key;
1321
1322 tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]);
1323 SW_FLOW_KEY_PUT(match, tp.src, tcp_key->tcp_src, is_mask);
1324 SW_FLOW_KEY_PUT(match, tp.dst, tcp_key->tcp_dst, is_mask);
1325 attrs &= ~(1 << OVS_KEY_ATTR_TCP);
1326 }
1327
1328 if (attrs & (1 << OVS_KEY_ATTR_TCP_FLAGS)) {
1329 SW_FLOW_KEY_PUT(match, tp.flags,
1330 nla_get_be16(a[OVS_KEY_ATTR_TCP_FLAGS]),
1331 is_mask);
1332 attrs &= ~(1 << OVS_KEY_ATTR_TCP_FLAGS);
1333 }
1334
1335 if (attrs & (1 << OVS_KEY_ATTR_UDP)) {
1336 const struct ovs_key_udp *udp_key;
1337
1338 udp_key = nla_data(a[OVS_KEY_ATTR_UDP]);
1339 SW_FLOW_KEY_PUT(match, tp.src, udp_key->udp_src, is_mask);
1340 SW_FLOW_KEY_PUT(match, tp.dst, udp_key->udp_dst, is_mask);
1341 attrs &= ~(1 << OVS_KEY_ATTR_UDP);
1342 }
1343
1344 if (attrs & (1 << OVS_KEY_ATTR_SCTP)) {
1345 const struct ovs_key_sctp *sctp_key;
1346
1347 sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]);
1348 SW_FLOW_KEY_PUT(match, tp.src, sctp_key->sctp_src, is_mask);
1349 SW_FLOW_KEY_PUT(match, tp.dst, sctp_key->sctp_dst, is_mask);
1350 attrs &= ~(1 << OVS_KEY_ATTR_SCTP);
1351 }
1352
1353 if (attrs & (1 << OVS_KEY_ATTR_ICMP)) {
1354 const struct ovs_key_icmp *icmp_key;
1355
1356 icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]);
1357 SW_FLOW_KEY_PUT(match, tp.src,
1358 htons(icmp_key->icmp_type), is_mask);
1359 SW_FLOW_KEY_PUT(match, tp.dst,
1360 htons(icmp_key->icmp_code), is_mask);
1361 attrs &= ~(1 << OVS_KEY_ATTR_ICMP);
1362 }
1363
1364 if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) {
1365 const struct ovs_key_icmpv6 *icmpv6_key;
1366
1367 icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]);
1368 SW_FLOW_KEY_PUT(match, tp.src,
1369 htons(icmpv6_key->icmpv6_type), is_mask);
1370 SW_FLOW_KEY_PUT(match, tp.dst,
1371 htons(icmpv6_key->icmpv6_code), is_mask);
1372 attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6);
1373 }
1374
1375 if (attrs & (1 << OVS_KEY_ATTR_ND)) {
1376 const struct ovs_key_nd *nd_key;
1377
1378 nd_key = nla_data(a[OVS_KEY_ATTR_ND]);
1379 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target,
1380 nd_key->nd_target,
1381 sizeof(match->key->ipv6.nd.target),
1382 is_mask);
1383 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll,
1384 nd_key->nd_sll, ETH_ALEN, is_mask);
1385 SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll,
1386 nd_key->nd_tll, ETH_ALEN, is_mask);
1387 attrs &= ~(1 << OVS_KEY_ATTR_ND);
1388 }
1389
1390 if (attrs != 0) {
1391 OVS_NLERR(log, "Unknown key attributes %llx",
1392 (unsigned long long)attrs);
1393 return -EINVAL;
1394 }
1395
1396 return 0;
1397 }
1398
1399 static void nlattr_set(struct nlattr *attr, u8 val,
1400 const struct ovs_len_tbl *tbl)
1401 {
1402 struct nlattr *nla;
1403 int rem;
1404
1405 /* The nlattr stream should already have been validated */
1406 nla_for_each_nested(nla, attr, rem) {
1407 if (tbl[nla_type(nla)].len == OVS_ATTR_NESTED) {
1408 if (tbl[nla_type(nla)].next)
1409 tbl = tbl[nla_type(nla)].next;
1410 nlattr_set(nla, val, tbl);
1411 } else {
1412 memset(nla_data(nla), val, nla_len(nla));
1413 }
1414
1415 if (nla_type(nla) == OVS_KEY_ATTR_CT_STATE)
1416 *(u32 *)nla_data(nla) &= CT_SUPPORTED_MASK;
1417 }
1418 }
1419
1420 static void mask_set_nlattr(struct nlattr *attr, u8 val)
1421 {
1422 nlattr_set(attr, val, ovs_key_lens);
1423 }
1424
1425 /**
1426 * ovs_nla_get_match - parses Netlink attributes into a flow key and
1427 * mask. In case the 'mask' is NULL, the flow is treated as exact match
1428 * flow. Otherwise, it is treated as a wildcarded flow, except the mask
1429 * does not include any don't care bit.
1430 * @net: Used to determine per-namespace field support.
1431 * @match: receives the extracted flow match information.
1432 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1433 * sequence. The fields should of the packet that triggered the creation
1434 * of this flow.
1435 * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink
1436 * attribute specifies the mask field of the wildcarded flow.
1437 * @log: Boolean to allow kernel error logging. Normally true, but when
1438 * probing for feature compatibility this should be passed in as false to
1439 * suppress unnecessary error logging.
1440 */
1441 int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
1442 const struct nlattr *nla_key,
1443 const struct nlattr *nla_mask,
1444 bool log)
1445 {
1446 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
1447 struct nlattr *newmask = NULL;
1448 u64 key_attrs = 0;
1449 u64 mask_attrs = 0;
1450 int err;
1451
1452 err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
1453 if (err)
1454 return err;
1455
1456 err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
1457 if (err)
1458 return err;
1459
1460 err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
1461 if (err)
1462 return err;
1463
1464 if (match->mask) {
1465 if (!nla_mask) {
1466 /* Create an exact match mask. We need to set to 0xff
1467 * all the 'match->mask' fields that have been touched
1468 * in 'match->key'. We cannot simply memset
1469 * 'match->mask', because padding bytes and fields not
1470 * specified in 'match->key' should be left to 0.
1471 * Instead, we use a stream of netlink attributes,
1472 * copied from 'key' and set to 0xff.
1473 * ovs_key_from_nlattrs() will take care of filling
1474 * 'match->mask' appropriately.
1475 */
1476 newmask = kmemdup(nla_key,
1477 nla_total_size(nla_len(nla_key)),
1478 GFP_KERNEL);
1479 if (!newmask)
1480 return -ENOMEM;
1481
1482 mask_set_nlattr(newmask, 0xff);
1483
1484 /* The userspace does not send tunnel attributes that
1485 * are 0, but we should not wildcard them nonetheless.
1486 */
1487 if (match->key->tun_proto)
1488 SW_FLOW_KEY_MEMSET_FIELD(match, tun_key,
1489 0xff, true);
1490
1491 nla_mask = newmask;
1492 }
1493
1494 err = parse_flow_mask_nlattrs(nla_mask, a, &mask_attrs, log);
1495 if (err)
1496 goto free_newmask;
1497
1498 /* Always match on tci. */
1499 SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
1500 SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
1501
1502 err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
1503 if (err)
1504 goto free_newmask;
1505
1506 err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
1507 log);
1508 if (err)
1509 goto free_newmask;
1510 }
1511
1512 if (!match_validate(match, key_attrs, mask_attrs, log))
1513 err = -EINVAL;
1514
1515 free_newmask:
1516 kfree(newmask);
1517 return err;
1518 }
1519
1520 static size_t get_ufid_len(const struct nlattr *attr, bool log)
1521 {
1522 size_t len;
1523
1524 if (!attr)
1525 return 0;
1526
1527 len = nla_len(attr);
1528 if (len < 1 || len > MAX_UFID_LENGTH) {
1529 OVS_NLERR(log, "ufid size %u bytes exceeds the range (1, %d)",
1530 nla_len(attr), MAX_UFID_LENGTH);
1531 return 0;
1532 }
1533
1534 return len;
1535 }
1536
1537 /* Initializes 'flow->ufid', returning true if 'attr' contains a valid UFID,
1538 * or false otherwise.
1539 */
1540 bool ovs_nla_get_ufid(struct sw_flow_id *sfid, const struct nlattr *attr,
1541 bool log)
1542 {
1543 sfid->ufid_len = get_ufid_len(attr, log);
1544 if (sfid->ufid_len)
1545 memcpy(sfid->ufid, nla_data(attr), sfid->ufid_len);
1546
1547 return sfid->ufid_len;
1548 }
1549
1550 int ovs_nla_get_identifier(struct sw_flow_id *sfid, const struct nlattr *ufid,
1551 const struct sw_flow_key *key, bool log)
1552 {
1553 struct sw_flow_key *new_key;
1554
1555 if (ovs_nla_get_ufid(sfid, ufid, log))
1556 return 0;
1557
1558 /* If UFID was not provided, use unmasked key. */
1559 new_key = kmalloc(sizeof(*new_key), GFP_KERNEL);
1560 if (!new_key)
1561 return -ENOMEM;
1562 memcpy(new_key, key, sizeof(*key));
1563 sfid->unmasked_key = new_key;
1564
1565 return 0;
1566 }
1567
1568 u32 ovs_nla_get_ufid_flags(const struct nlattr *attr)
1569 {
1570 return attr ? nla_get_u32(attr) : 0;
1571 }
1572
1573 /**
1574 * ovs_nla_get_flow_metadata - parses Netlink attributes into a flow key.
1575 * @net: Network namespace.
1576 * @key: Receives extracted in_port, priority, tun_key, skb_mark and conntrack
1577 * metadata.
1578 * @a: Array of netlink attributes holding parsed %OVS_KEY_ATTR_* Netlink
1579 * attributes.
1580 * @attrs: Bit mask for the netlink attributes included in @a.
1581 * @log: Boolean to allow kernel error logging. Normally true, but when
1582 * probing for feature compatibility this should be passed in as false to
1583 * suppress unnecessary error logging.
1584 *
1585 * This parses a series of Netlink attributes that form a flow key, which must
1586 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1587 * get the metadata, that is, the parts of the flow key that cannot be
1588 * extracted from the packet itself.
1589 *
1590 * This must be called before the packet key fields are filled in 'key'.
1591 */
1592
1593 int ovs_nla_get_flow_metadata(struct net *net,
1594 const struct nlattr *a[OVS_KEY_ATTR_MAX + 1],
1595 u64 attrs, struct sw_flow_key *key, bool log)
1596 {
1597 struct sw_flow_match match;
1598
1599 memset(&match, 0, sizeof(match));
1600 match.key = key;
1601
1602 key->ct_state = 0;
1603 key->ct_zone = 0;
1604 key->ct_orig_proto = 0;
1605 memset(&key->ct, 0, sizeof(key->ct));
1606 memset(&key->ipv4.ct_orig, 0, sizeof(key->ipv4.ct_orig));
1607 memset(&key->ipv6.ct_orig, 0, sizeof(key->ipv6.ct_orig));
1608
1609 key->phy.in_port = DP_MAX_PORTS;
1610
1611 return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
1612 }
1613
1614 static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
1615 bool is_mask)
1616 {
1617 __be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
1618
1619 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
1620 nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
1621 return -EMSGSIZE;
1622 return 0;
1623 }
1624
1625 static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
1626 const struct sw_flow_key *output, bool is_mask,
1627 struct sk_buff *skb)
1628 {
1629 struct ovs_key_ethernet *eth_key;
1630 struct nlattr *nla;
1631 struct nlattr *encap = NULL;
1632 struct nlattr *in_encap = NULL;
1633
1634 if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
1635 goto nla_put_failure;
1636
1637 if (nla_put_u32(skb, OVS_KEY_ATTR_DP_HASH, output->ovs_flow_hash))
1638 goto nla_put_failure;
1639
1640 if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority))
1641 goto nla_put_failure;
1642
1643 if ((swkey->tun_proto || is_mask)) {
1644 const void *opts = NULL;
1645
1646 if (output->tun_key.tun_flags & TUNNEL_OPTIONS_PRESENT)
1647 opts = TUN_METADATA_OPTS(output, swkey->tun_opts_len);
1648
1649 if (ip_tun_to_nlattr(skb, &output->tun_key, opts,
1650 swkey->tun_opts_len, swkey->tun_proto))
1651 goto nla_put_failure;
1652 }
1653
1654 if (swkey->phy.in_port == DP_MAX_PORTS) {
1655 if (is_mask && (output->phy.in_port == 0xffff))
1656 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff))
1657 goto nla_put_failure;
1658 } else {
1659 u16 upper_u16;
1660 upper_u16 = !is_mask ? 0 : 0xffff;
1661
1662 if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT,
1663 (upper_u16 << 16) | output->phy.in_port))
1664 goto nla_put_failure;
1665 }
1666
1667 if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark))
1668 goto nla_put_failure;
1669
1670 if (ovs_ct_put_key(swkey, output, skb))
1671 goto nla_put_failure;
1672
1673 if (ovs_key_mac_proto(swkey) == MAC_PROTO_ETHERNET) {
1674 nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key));
1675 if (!nla)
1676 goto nla_put_failure;
1677
1678 eth_key = nla_data(nla);
1679 ether_addr_copy(eth_key->eth_src, output->eth.src);
1680 ether_addr_copy(eth_key->eth_dst, output->eth.dst);
1681
1682 if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
1683 if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
1684 goto nla_put_failure;
1685 encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1686 if (!swkey->eth.vlan.tci)
1687 goto unencap;
1688
1689 if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
1690 if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
1691 goto nla_put_failure;
1692 in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
1693 if (!swkey->eth.cvlan.tci)
1694 goto unencap;
1695 }
1696 }
1697
1698 if (swkey->eth.type == htons(ETH_P_802_2)) {
1699 /*
1700 * Ethertype 802.2 is represented in the netlink with omitted
1701 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and
1702 * 0xffff in the mask attribute. Ethertype can also
1703 * be wildcarded.
1704 */
1705 if (is_mask && output->eth.type)
1706 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE,
1707 output->eth.type))
1708 goto nla_put_failure;
1709 goto unencap;
1710 }
1711 }
1712
1713 if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
1714 goto nla_put_failure;
1715
1716 if (eth_type_vlan(swkey->eth.type)) {
1717 /* There are 3 VLAN tags, we don't know anything about the rest
1718 * of the packet, so truncate here.
1719 */
1720 WARN_ON_ONCE(!(encap && in_encap));
1721 goto unencap;
1722 }
1723
1724 if (swkey->eth.type == htons(ETH_P_IP)) {
1725 struct ovs_key_ipv4 *ipv4_key;
1726
1727 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key));
1728 if (!nla)
1729 goto nla_put_failure;
1730 ipv4_key = nla_data(nla);
1731 ipv4_key->ipv4_src = output->ipv4.addr.src;
1732 ipv4_key->ipv4_dst = output->ipv4.addr.dst;
1733 ipv4_key->ipv4_proto = output->ip.proto;
1734 ipv4_key->ipv4_tos = output->ip.tos;
1735 ipv4_key->ipv4_ttl = output->ip.ttl;
1736 ipv4_key->ipv4_frag = output->ip.frag;
1737 } else if (swkey->eth.type == htons(ETH_P_IPV6)) {
1738 struct ovs_key_ipv6 *ipv6_key;
1739
1740 nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key));
1741 if (!nla)
1742 goto nla_put_failure;
1743 ipv6_key = nla_data(nla);
1744 memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src,
1745 sizeof(ipv6_key->ipv6_src));
1746 memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst,
1747 sizeof(ipv6_key->ipv6_dst));
1748 ipv6_key->ipv6_label = output->ipv6.label;
1749 ipv6_key->ipv6_proto = output->ip.proto;
1750 ipv6_key->ipv6_tclass = output->ip.tos;
1751 ipv6_key->ipv6_hlimit = output->ip.ttl;
1752 ipv6_key->ipv6_frag = output->ip.frag;
1753 } else if (swkey->eth.type == htons(ETH_P_ARP) ||
1754 swkey->eth.type == htons(ETH_P_RARP)) {
1755 struct ovs_key_arp *arp_key;
1756
1757 nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key));
1758 if (!nla)
1759 goto nla_put_failure;
1760 arp_key = nla_data(nla);
1761 memset(arp_key, 0, sizeof(struct ovs_key_arp));
1762 arp_key->arp_sip = output->ipv4.addr.src;
1763 arp_key->arp_tip = output->ipv4.addr.dst;
1764 arp_key->arp_op = htons(output->ip.proto);
1765 ether_addr_copy(arp_key->arp_sha, output->ipv4.arp.sha);
1766 ether_addr_copy(arp_key->arp_tha, output->ipv4.arp.tha);
1767 } else if (eth_p_mpls(swkey->eth.type)) {
1768 struct ovs_key_mpls *mpls_key;
1769
1770 nla = nla_reserve(skb, OVS_KEY_ATTR_MPLS, sizeof(*mpls_key));
1771 if (!nla)
1772 goto nla_put_failure;
1773 mpls_key = nla_data(nla);
1774 mpls_key->mpls_lse = output->mpls.top_lse;
1775 }
1776
1777 if ((swkey->eth.type == htons(ETH_P_IP) ||
1778 swkey->eth.type == htons(ETH_P_IPV6)) &&
1779 swkey->ip.frag != OVS_FRAG_TYPE_LATER) {
1780
1781 if (swkey->ip.proto == IPPROTO_TCP) {
1782 struct ovs_key_tcp *tcp_key;
1783
1784 nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key));
1785 if (!nla)
1786 goto nla_put_failure;
1787 tcp_key = nla_data(nla);
1788 tcp_key->tcp_src = output->tp.src;
1789 tcp_key->tcp_dst = output->tp.dst;
1790 if (nla_put_be16(skb, OVS_KEY_ATTR_TCP_FLAGS,
1791 output->tp.flags))
1792 goto nla_put_failure;
1793 } else if (swkey->ip.proto == IPPROTO_UDP) {
1794 struct ovs_key_udp *udp_key;
1795
1796 nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key));
1797 if (!nla)
1798 goto nla_put_failure;
1799 udp_key = nla_data(nla);
1800 udp_key->udp_src = output->tp.src;
1801 udp_key->udp_dst = output->tp.dst;
1802 } else if (swkey->ip.proto == IPPROTO_SCTP) {
1803 struct ovs_key_sctp *sctp_key;
1804
1805 nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key));
1806 if (!nla)
1807 goto nla_put_failure;
1808 sctp_key = nla_data(nla);
1809 sctp_key->sctp_src = output->tp.src;
1810 sctp_key->sctp_dst = output->tp.dst;
1811 } else if (swkey->eth.type == htons(ETH_P_IP) &&
1812 swkey->ip.proto == IPPROTO_ICMP) {
1813 struct ovs_key_icmp *icmp_key;
1814
1815 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key));
1816 if (!nla)
1817 goto nla_put_failure;
1818 icmp_key = nla_data(nla);
1819 icmp_key->icmp_type = ntohs(output->tp.src);
1820 icmp_key->icmp_code = ntohs(output->tp.dst);
1821 } else if (swkey->eth.type == htons(ETH_P_IPV6) &&
1822 swkey->ip.proto == IPPROTO_ICMPV6) {
1823 struct ovs_key_icmpv6 *icmpv6_key;
1824
1825 nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6,
1826 sizeof(*icmpv6_key));
1827 if (!nla)
1828 goto nla_put_failure;
1829 icmpv6_key = nla_data(nla);
1830 icmpv6_key->icmpv6_type = ntohs(output->tp.src);
1831 icmpv6_key->icmpv6_code = ntohs(output->tp.dst);
1832
1833 if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION ||
1834 icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) {
1835 struct ovs_key_nd *nd_key;
1836
1837 nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key));
1838 if (!nla)
1839 goto nla_put_failure;
1840 nd_key = nla_data(nla);
1841 memcpy(nd_key->nd_target, &output->ipv6.nd.target,
1842 sizeof(nd_key->nd_target));
1843 ether_addr_copy(nd_key->nd_sll, output->ipv6.nd.sll);
1844 ether_addr_copy(nd_key->nd_tll, output->ipv6.nd.tll);
1845 }
1846 }
1847 }
1848
1849 unencap:
1850 if (in_encap)
1851 nla_nest_end(skb, in_encap);
1852 if (encap)
1853 nla_nest_end(skb, encap);
1854
1855 return 0;
1856
1857 nla_put_failure:
1858 return -EMSGSIZE;
1859 }
1860
1861 int ovs_nla_put_key(const struct sw_flow_key *swkey,
1862 const struct sw_flow_key *output, int attr, bool is_mask,
1863 struct sk_buff *skb)
1864 {
1865 int err;
1866 struct nlattr *nla;
1867
1868 nla = nla_nest_start(skb, attr);
1869 if (!nla)
1870 return -EMSGSIZE;
1871 err = __ovs_nla_put_key(swkey, output, is_mask, skb);
1872 if (err)
1873 return err;
1874 nla_nest_end(skb, nla);
1875
1876 return 0;
1877 }
1878
1879 /* Called with ovs_mutex or RCU read lock. */
1880 int ovs_nla_put_identifier(const struct sw_flow *flow, struct sk_buff *skb)
1881 {
1882 if (ovs_identifier_is_ufid(&flow->id))
1883 return nla_put(skb, OVS_FLOW_ATTR_UFID, flow->id.ufid_len,
1884 flow->id.ufid);
1885
1886 return ovs_nla_put_key(flow->id.unmasked_key, flow->id.unmasked_key,
1887 OVS_FLOW_ATTR_KEY, false, skb);
1888 }
1889
1890 /* Called with ovs_mutex or RCU read lock. */
1891 int ovs_nla_put_masked_key(const struct sw_flow *flow, struct sk_buff *skb)
1892 {
1893 return ovs_nla_put_key(&flow->key, &flow->key,
1894 OVS_FLOW_ATTR_KEY, false, skb);
1895 }
1896
1897 /* Called with ovs_mutex or RCU read lock. */
1898 int ovs_nla_put_mask(const struct sw_flow *flow, struct sk_buff *skb)
1899 {
1900 return ovs_nla_put_key(&flow->key, &flow->mask->key,
1901 OVS_FLOW_ATTR_MASK, true, skb);
1902 }
1903
1904 #define MAX_ACTIONS_BUFSIZE (32 * 1024)
1905
1906 static struct sw_flow_actions *nla_alloc_flow_actions(int size, bool log)
1907 {
1908 struct sw_flow_actions *sfa;
1909
1910 if (size > MAX_ACTIONS_BUFSIZE) {
1911 OVS_NLERR(log, "Flow action size %u bytes exceeds max", size);
1912 return ERR_PTR(-EINVAL);
1913 }
1914
1915 sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL);
1916 if (!sfa)
1917 return ERR_PTR(-ENOMEM);
1918
1919 sfa->actions_len = 0;
1920 return sfa;
1921 }
1922
1923 static void ovs_nla_free_set_action(const struct nlattr *a)
1924 {
1925 const struct nlattr *ovs_key = nla_data(a);
1926 struct ovs_tunnel_info *ovs_tun;
1927
1928 switch (nla_type(ovs_key)) {
1929 case OVS_KEY_ATTR_TUNNEL_INFO:
1930 ovs_tun = nla_data(ovs_key);
1931 dst_release((struct dst_entry *)ovs_tun->tun_dst);
1932 break;
1933 }
1934 }
1935
1936 void ovs_nla_free_flow_actions(struct sw_flow_actions *sf_acts)
1937 {
1938 const struct nlattr *a;
1939 int rem;
1940
1941 if (!sf_acts)
1942 return;
1943
1944 nla_for_each_attr(a, sf_acts->actions, sf_acts->actions_len, rem) {
1945 switch (nla_type(a)) {
1946 case OVS_ACTION_ATTR_SET:
1947 ovs_nla_free_set_action(a);
1948 break;
1949 case OVS_ACTION_ATTR_CT:
1950 ovs_ct_free_action(a);
1951 break;
1952 }
1953 }
1954
1955 kfree(sf_acts);
1956 }
1957
1958 static void __ovs_nla_free_flow_actions(struct rcu_head *head)
1959 {
1960 ovs_nla_free_flow_actions(container_of(head, struct sw_flow_actions, rcu));
1961 }
1962
1963 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
1964 * The caller must hold rcu_read_lock for this to be sensible. */
1965 void ovs_nla_free_flow_actions_rcu(struct sw_flow_actions *sf_acts)
1966 {
1967 call_rcu(&sf_acts->rcu, __ovs_nla_free_flow_actions);
1968 }
1969
1970 static struct nlattr *reserve_sfa_size(struct sw_flow_actions **sfa,
1971 int attr_len, bool log)
1972 {
1973
1974 struct sw_flow_actions *acts;
1975 int new_acts_size;
1976 int req_size = NLA_ALIGN(attr_len);
1977 int next_offset = offsetof(struct sw_flow_actions, actions) +
1978 (*sfa)->actions_len;
1979
1980 if (req_size <= (ksize(*sfa) - next_offset))
1981 goto out;
1982
1983 new_acts_size = ksize(*sfa) * 2;
1984
1985 if (new_acts_size > MAX_ACTIONS_BUFSIZE) {
1986 if ((MAX_ACTIONS_BUFSIZE - next_offset) < req_size)
1987 return ERR_PTR(-EMSGSIZE);
1988 new_acts_size = MAX_ACTIONS_BUFSIZE;
1989 }
1990
1991 acts = nla_alloc_flow_actions(new_acts_size, log);
1992 if (IS_ERR(acts))
1993 return (void *)acts;
1994
1995 memcpy(acts->actions, (*sfa)->actions, (*sfa)->actions_len);
1996 acts->actions_len = (*sfa)->actions_len;
1997 acts->orig_len = (*sfa)->orig_len;
1998 kfree(*sfa);
1999 *sfa = acts;
2000
2001 out:
2002 (*sfa)->actions_len += req_size;
2003 return (struct nlattr *) ((unsigned char *)(*sfa) + next_offset);
2004 }
2005
2006 static struct nlattr *__add_action(struct sw_flow_actions **sfa,
2007 int attrtype, void *data, int len, bool log)
2008 {
2009 struct nlattr *a;
2010
2011 a = reserve_sfa_size(sfa, nla_attr_size(len), log);
2012 if (IS_ERR(a))
2013 return a;
2014
2015 a->nla_type = attrtype;
2016 a->nla_len = nla_attr_size(len);
2017
2018 if (data)
2019 memcpy(nla_data(a), data, len);
2020 memset((unsigned char *) a + a->nla_len, 0, nla_padlen(len));
2021
2022 return a;
2023 }
2024
2025 int ovs_nla_add_action(struct sw_flow_actions **sfa, int attrtype, void *data,
2026 int len, bool log)
2027 {
2028 struct nlattr *a;
2029
2030 a = __add_action(sfa, attrtype, data, len, log);
2031
2032 return PTR_ERR_OR_ZERO(a);
2033 }
2034
2035 static inline int add_nested_action_start(struct sw_flow_actions **sfa,
2036 int attrtype, bool log)
2037 {
2038 int used = (*sfa)->actions_len;
2039 int err;
2040
2041 err = ovs_nla_add_action(sfa, attrtype, NULL, 0, log);
2042 if (err)
2043 return err;
2044
2045 return used;
2046 }
2047
2048 static inline void add_nested_action_end(struct sw_flow_actions *sfa,
2049 int st_offset)
2050 {
2051 struct nlattr *a = (struct nlattr *) ((unsigned char *)sfa->actions +
2052 st_offset);
2053
2054 a->nla_len = sfa->actions_len - st_offset;
2055 }
2056
2057 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2058 const struct sw_flow_key *key,
2059 struct sw_flow_actions **sfa,
2060 __be16 eth_type, __be16 vlan_tci, bool log);
2061
2062 static int validate_and_copy_sample(struct net *net, const struct nlattr *attr,
2063 const struct sw_flow_key *key,
2064 struct sw_flow_actions **sfa,
2065 __be16 eth_type, __be16 vlan_tci,
2066 bool log, bool last)
2067 {
2068 const struct nlattr *attrs[OVS_SAMPLE_ATTR_MAX + 1];
2069 const struct nlattr *probability, *actions;
2070 const struct nlattr *a;
2071 int rem, start, err;
2072 struct sample_arg arg;
2073
2074 memset(attrs, 0, sizeof(attrs));
2075 nla_for_each_nested(a, attr, rem) {
2076 int type = nla_type(a);
2077 if (!type || type > OVS_SAMPLE_ATTR_MAX || attrs[type])
2078 return -EINVAL;
2079 attrs[type] = a;
2080 }
2081 if (rem)
2082 return -EINVAL;
2083
2084 probability = attrs[OVS_SAMPLE_ATTR_PROBABILITY];
2085 if (!probability || nla_len(probability) != sizeof(u32))
2086 return -EINVAL;
2087
2088 actions = attrs[OVS_SAMPLE_ATTR_ACTIONS];
2089 if (!actions || (nla_len(actions) && nla_len(actions) < NLA_HDRLEN))
2090 return -EINVAL;
2091
2092 /* validation done, copy sample action. */
2093 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SAMPLE, log);
2094 if (start < 0)
2095 return start;
2096
2097 /* When both skb and flow may be changed, put the sample
2098 * into a deferred fifo. On the other hand, if only skb
2099 * may be modified, the actions can be executed in place.
2100 *
2101 * Do this analysis at the flow installation time.
2102 * Set 'clone_action->exec' to true if the actions can be
2103 * executed without being deferred.
2104 *
2105 * If the sample is the last action, it can always be excuted
2106 * rather than deferred.
2107 */
2108 arg.exec = last || !actions_may_change_flow(actions);
2109 arg.probability = nla_get_u32(probability);
2110
2111 err = ovs_nla_add_action(sfa, OVS_SAMPLE_ATTR_ARG, &arg, sizeof(arg),
2112 log);
2113 if (err)
2114 return err;
2115
2116 err = __ovs_nla_copy_actions(net, actions, key, sfa,
2117 eth_type, vlan_tci, log);
2118
2119 if (err)
2120 return err;
2121
2122 add_nested_action_end(*sfa, start);
2123
2124 return 0;
2125 }
2126
2127 void ovs_match_init(struct sw_flow_match *match,
2128 struct sw_flow_key *key,
2129 bool reset_key,
2130 struct sw_flow_mask *mask)
2131 {
2132 memset(match, 0, sizeof(*match));
2133 match->key = key;
2134 match->mask = mask;
2135
2136 if (reset_key)
2137 memset(key, 0, sizeof(*key));
2138
2139 if (mask) {
2140 memset(&mask->key, 0, sizeof(mask->key));
2141 mask->range.start = mask->range.end = 0;
2142 }
2143 }
2144
2145 static int validate_geneve_opts(struct sw_flow_key *key)
2146 {
2147 struct geneve_opt *option;
2148 int opts_len = key->tun_opts_len;
2149 bool crit_opt = false;
2150
2151 option = (struct geneve_opt *)TUN_METADATA_OPTS(key, key->tun_opts_len);
2152 while (opts_len > 0) {
2153 int len;
2154
2155 if (opts_len < sizeof(*option))
2156 return -EINVAL;
2157
2158 len = sizeof(*option) + option->length * 4;
2159 if (len > opts_len)
2160 return -EINVAL;
2161
2162 crit_opt |= !!(option->type & GENEVE_CRIT_OPT_TYPE);
2163
2164 option = (struct geneve_opt *)((u8 *)option + len);
2165 opts_len -= len;
2166 };
2167
2168 key->tun_key.tun_flags |= crit_opt ? TUNNEL_CRIT_OPT : 0;
2169
2170 return 0;
2171 }
2172
2173 static int validate_and_copy_set_tun(const struct nlattr *attr,
2174 struct sw_flow_actions **sfa, bool log)
2175 {
2176 struct sw_flow_match match;
2177 struct sw_flow_key key;
2178 struct metadata_dst *tun_dst;
2179 struct ip_tunnel_info *tun_info;
2180 struct ovs_tunnel_info *ovs_tun;
2181 struct nlattr *a;
2182 int err = 0, start, opts_type;
2183
2184 ovs_match_init(&match, &key, true, NULL);
2185 opts_type = ip_tun_from_nlattr(nla_data(attr), &match, false, log);
2186 if (opts_type < 0)
2187 return opts_type;
2188
2189 if (key.tun_opts_len) {
2190 switch (opts_type) {
2191 case OVS_TUNNEL_KEY_ATTR_GENEVE_OPTS:
2192 err = validate_geneve_opts(&key);
2193 if (err < 0)
2194 return err;
2195 break;
2196 case OVS_TUNNEL_KEY_ATTR_VXLAN_OPTS:
2197 break;
2198 }
2199 };
2200
2201 start = add_nested_action_start(sfa, OVS_ACTION_ATTR_SET, log);
2202 if (start < 0)
2203 return start;
2204
2205 tun_dst = metadata_dst_alloc(key.tun_opts_len, METADATA_IP_TUNNEL,
2206 GFP_KERNEL);
2207
2208 if (!tun_dst)
2209 return -ENOMEM;
2210
2211 err = dst_cache_init(&tun_dst->u.tun_info.dst_cache, GFP_KERNEL);
2212 if (err) {
2213 dst_release((struct dst_entry *)tun_dst);
2214 return err;
2215 }
2216
2217 a = __add_action(sfa, OVS_KEY_ATTR_TUNNEL_INFO, NULL,
2218 sizeof(*ovs_tun), log);
2219 if (IS_ERR(a)) {
2220 dst_release((struct dst_entry *)tun_dst);
2221 return PTR_ERR(a);
2222 }
2223
2224 ovs_tun = nla_data(a);
2225 ovs_tun->tun_dst = tun_dst;
2226
2227 tun_info = &tun_dst->u.tun_info;
2228 tun_info->mode = IP_TUNNEL_INFO_TX;
2229 if (key.tun_proto == AF_INET6)
2230 tun_info->mode |= IP_TUNNEL_INFO_IPV6;
2231 tun_info->key = key.tun_key;
2232
2233 /* We need to store the options in the action itself since
2234 * everything else will go away after flow setup. We can append
2235 * it to tun_info and then point there.
2236 */
2237 ip_tunnel_info_opts_set(tun_info,
2238 TUN_METADATA_OPTS(&key, key.tun_opts_len),
2239 key.tun_opts_len);
2240 add_nested_action_end(*sfa, start);
2241
2242 return err;
2243 }
2244
2245 /* Return false if there are any non-masked bits set.
2246 * Mask follows data immediately, before any netlink padding.
2247 */
2248 static bool validate_masked(u8 *data, int len)
2249 {
2250 u8 *mask = data + len;
2251
2252 while (len--)
2253 if (*data++ & ~*mask++)
2254 return false;
2255
2256 return true;
2257 }
2258
2259 static int validate_set(const struct nlattr *a,
2260 const struct sw_flow_key *flow_key,
2261 struct sw_flow_actions **sfa, bool *skip_copy,
2262 u8 mac_proto, __be16 eth_type, bool masked, bool log)
2263 {
2264 const struct nlattr *ovs_key = nla_data(a);
2265 int key_type = nla_type(ovs_key);
2266 size_t key_len;
2267
2268 /* There can be only one key in a action */
2269 if (nla_total_size(nla_len(ovs_key)) != nla_len(a))
2270 return -EINVAL;
2271
2272 key_len = nla_len(ovs_key);
2273 if (masked)
2274 key_len /= 2;
2275
2276 if (key_type > OVS_KEY_ATTR_MAX ||
2277 !check_attr_len(key_len, ovs_key_lens[key_type].len))
2278 return -EINVAL;
2279
2280 if (masked && !validate_masked(nla_data(ovs_key), key_len))
2281 return -EINVAL;
2282
2283 switch (key_type) {
2284 const struct ovs_key_ipv4 *ipv4_key;
2285 const struct ovs_key_ipv6 *ipv6_key;
2286 int err;
2287
2288 case OVS_KEY_ATTR_PRIORITY:
2289 case OVS_KEY_ATTR_SKB_MARK:
2290 case OVS_KEY_ATTR_CT_MARK:
2291 case OVS_KEY_ATTR_CT_LABELS:
2292 break;
2293
2294 case OVS_KEY_ATTR_ETHERNET:
2295 if (mac_proto != MAC_PROTO_ETHERNET)
2296 return -EINVAL;
2297 break;
2298
2299 case OVS_KEY_ATTR_TUNNEL:
2300 if (masked)
2301 return -EINVAL; /* Masked tunnel set not supported. */
2302
2303 *skip_copy = true;
2304 err = validate_and_copy_set_tun(a, sfa, log);
2305 if (err)
2306 return err;
2307 break;
2308
2309 case OVS_KEY_ATTR_IPV4:
2310 if (eth_type != htons(ETH_P_IP))
2311 return -EINVAL;
2312
2313 ipv4_key = nla_data(ovs_key);
2314
2315 if (masked) {
2316 const struct ovs_key_ipv4 *mask = ipv4_key + 1;
2317
2318 /* Non-writeable fields. */
2319 if (mask->ipv4_proto || mask->ipv4_frag)
2320 return -EINVAL;
2321 } else {
2322 if (ipv4_key->ipv4_proto != flow_key->ip.proto)
2323 return -EINVAL;
2324
2325 if (ipv4_key->ipv4_frag != flow_key->ip.frag)
2326 return -EINVAL;
2327 }
2328 break;
2329
2330 case OVS_KEY_ATTR_IPV6:
2331 if (eth_type != htons(ETH_P_IPV6))
2332 return -EINVAL;
2333
2334 ipv6_key = nla_data(ovs_key);
2335
2336 if (masked) {
2337 const struct ovs_key_ipv6 *mask = ipv6_key + 1;
2338
2339 /* Non-writeable fields. */
2340 if (mask->ipv6_proto || mask->ipv6_frag)
2341 return -EINVAL;
2342
2343 /* Invalid bits in the flow label mask? */
2344 if (ntohl(mask->ipv6_label) & 0xFFF00000)
2345 return -EINVAL;
2346 } else {
2347 if (ipv6_key->ipv6_proto != flow_key->ip.proto)
2348 return -EINVAL;
2349
2350 if (ipv6_key->ipv6_frag != flow_key->ip.frag)
2351 return -EINVAL;
2352 }
2353 if (ntohl(ipv6_key->ipv6_label) & 0xFFF00000)
2354 return -EINVAL;
2355
2356 break;
2357
2358 case OVS_KEY_ATTR_TCP:
2359 if ((eth_type != htons(ETH_P_IP) &&
2360 eth_type != htons(ETH_P_IPV6)) ||
2361 flow_key->ip.proto != IPPROTO_TCP)
2362 return -EINVAL;
2363
2364 break;
2365
2366 case OVS_KEY_ATTR_UDP:
2367 if ((eth_type != htons(ETH_P_IP) &&
2368 eth_type != htons(ETH_P_IPV6)) ||
2369 flow_key->ip.proto != IPPROTO_UDP)
2370 return -EINVAL;
2371
2372 break;
2373
2374 case OVS_KEY_ATTR_MPLS:
2375 if (!eth_p_mpls(eth_type))
2376 return -EINVAL;
2377 break;
2378
2379 case OVS_KEY_ATTR_SCTP:
2380 if ((eth_type != htons(ETH_P_IP) &&
2381 eth_type != htons(ETH_P_IPV6)) ||
2382 flow_key->ip.proto != IPPROTO_SCTP)
2383 return -EINVAL;
2384
2385 break;
2386
2387 default:
2388 return -EINVAL;
2389 }
2390
2391 /* Convert non-masked non-tunnel set actions to masked set actions. */
2392 if (!masked && key_type != OVS_KEY_ATTR_TUNNEL) {
2393 int start, len = key_len * 2;
2394 struct nlattr *at;
2395
2396 *skip_copy = true;
2397
2398 start = add_nested_action_start(sfa,
2399 OVS_ACTION_ATTR_SET_TO_MASKED,
2400 log);
2401 if (start < 0)
2402 return start;
2403
2404 at = __add_action(sfa, key_type, NULL, len, log);
2405 if (IS_ERR(at))
2406 return PTR_ERR(at);
2407
2408 memcpy(nla_data(at), nla_data(ovs_key), key_len); /* Key. */
2409 memset(nla_data(at) + key_len, 0xff, key_len); /* Mask. */
2410 /* Clear non-writeable bits from otherwise writeable fields. */
2411 if (key_type == OVS_KEY_ATTR_IPV6) {
2412 struct ovs_key_ipv6 *mask = nla_data(at) + key_len;
2413
2414 mask->ipv6_label &= htonl(0x000FFFFF);
2415 }
2416 add_nested_action_end(*sfa, start);
2417 }
2418
2419 return 0;
2420 }
2421
2422 static int validate_userspace(const struct nlattr *attr)
2423 {
2424 static const struct nla_policy userspace_policy[OVS_USERSPACE_ATTR_MAX + 1] = {
2425 [OVS_USERSPACE_ATTR_PID] = {.type = NLA_U32 },
2426 [OVS_USERSPACE_ATTR_USERDATA] = {.type = NLA_UNSPEC },
2427 [OVS_USERSPACE_ATTR_EGRESS_TUN_PORT] = {.type = NLA_U32 },
2428 };
2429 struct nlattr *a[OVS_USERSPACE_ATTR_MAX + 1];
2430 int error;
2431
2432 error = nla_parse_nested(a, OVS_USERSPACE_ATTR_MAX, attr,
2433 userspace_policy, NULL);
2434 if (error)
2435 return error;
2436
2437 if (!a[OVS_USERSPACE_ATTR_PID] ||
2438 !nla_get_u32(a[OVS_USERSPACE_ATTR_PID]))
2439 return -EINVAL;
2440
2441 return 0;
2442 }
2443
2444 static int copy_action(const struct nlattr *from,
2445 struct sw_flow_actions **sfa, bool log)
2446 {
2447 int totlen = NLA_ALIGN(from->nla_len);
2448 struct nlattr *to;
2449
2450 to = reserve_sfa_size(sfa, from->nla_len, log);
2451 if (IS_ERR(to))
2452 return PTR_ERR(to);
2453
2454 memcpy(to, from, totlen);
2455 return 0;
2456 }
2457
2458 static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2459 const struct sw_flow_key *key,
2460 struct sw_flow_actions **sfa,
2461 __be16 eth_type, __be16 vlan_tci, bool log)
2462 {
2463 u8 mac_proto = ovs_key_mac_proto(key);
2464 const struct nlattr *a;
2465 int rem, err;
2466
2467 nla_for_each_nested(a, attr, rem) {
2468 /* Expected argument lengths, (u32)-1 for variable length. */
2469 static const u32 action_lens[OVS_ACTION_ATTR_MAX + 1] = {
2470 [OVS_ACTION_ATTR_OUTPUT] = sizeof(u32),
2471 [OVS_ACTION_ATTR_RECIRC] = sizeof(u32),
2472 [OVS_ACTION_ATTR_USERSPACE] = (u32)-1,
2473 [OVS_ACTION_ATTR_PUSH_MPLS] = sizeof(struct ovs_action_push_mpls),
2474 [OVS_ACTION_ATTR_POP_MPLS] = sizeof(__be16),
2475 [OVS_ACTION_ATTR_PUSH_VLAN] = sizeof(struct ovs_action_push_vlan),
2476 [OVS_ACTION_ATTR_POP_VLAN] = 0,
2477 [OVS_ACTION_ATTR_SET] = (u32)-1,
2478 [OVS_ACTION_ATTR_SET_MASKED] = (u32)-1,
2479 [OVS_ACTION_ATTR_SAMPLE] = (u32)-1,
2480 [OVS_ACTION_ATTR_HASH] = sizeof(struct ovs_action_hash),
2481 [OVS_ACTION_ATTR_CT] = (u32)-1,
2482 [OVS_ACTION_ATTR_TRUNC] = sizeof(struct ovs_action_trunc),
2483 [OVS_ACTION_ATTR_PUSH_ETH] = sizeof(struct ovs_action_push_eth),
2484 [OVS_ACTION_ATTR_POP_ETH] = 0,
2485 };
2486 const struct ovs_action_push_vlan *vlan;
2487 int type = nla_type(a);
2488 bool skip_copy;
2489
2490 if (type > OVS_ACTION_ATTR_MAX ||
2491 (action_lens[type] != nla_len(a) &&
2492 action_lens[type] != (u32)-1))
2493 return -EINVAL;
2494
2495 skip_copy = false;
2496 switch (type) {
2497 case OVS_ACTION_ATTR_UNSPEC:
2498 return -EINVAL;
2499
2500 case OVS_ACTION_ATTR_USERSPACE:
2501 err = validate_userspace(a);
2502 if (err)
2503 return err;
2504 break;
2505
2506 case OVS_ACTION_ATTR_OUTPUT:
2507 if (nla_get_u32(a) >= DP_MAX_PORTS)
2508 return -EINVAL;
2509 break;
2510
2511 case OVS_ACTION_ATTR_TRUNC: {
2512 const struct ovs_action_trunc *trunc = nla_data(a);
2513
2514 if (trunc->max_len < ETH_HLEN)
2515 return -EINVAL;
2516 break;
2517 }
2518
2519 case OVS_ACTION_ATTR_HASH: {
2520 const struct ovs_action_hash *act_hash = nla_data(a);
2521
2522 switch (act_hash->hash_alg) {
2523 case OVS_HASH_ALG_L4:
2524 break;
2525 default:
2526 return -EINVAL;
2527 }
2528
2529 break;
2530 }
2531
2532 case OVS_ACTION_ATTR_POP_VLAN:
2533 if (mac_proto != MAC_PROTO_ETHERNET)
2534 return -EINVAL;
2535 vlan_tci = htons(0);
2536 break;
2537
2538 case OVS_ACTION_ATTR_PUSH_VLAN:
2539 if (mac_proto != MAC_PROTO_ETHERNET)
2540 return -EINVAL;
2541 vlan = nla_data(a);
2542 if (!eth_type_vlan(vlan->vlan_tpid))
2543 return -EINVAL;
2544 if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
2545 return -EINVAL;
2546 vlan_tci = vlan->vlan_tci;
2547 break;
2548
2549 case OVS_ACTION_ATTR_RECIRC:
2550 break;
2551
2552 case OVS_ACTION_ATTR_PUSH_MPLS: {
2553 const struct ovs_action_push_mpls *mpls = nla_data(a);
2554
2555 if (!eth_p_mpls(mpls->mpls_ethertype))
2556 return -EINVAL;
2557 /* Prohibit push MPLS other than to a white list
2558 * for packets that have a known tag order.
2559 */
2560 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2561 (eth_type != htons(ETH_P_IP) &&
2562 eth_type != htons(ETH_P_IPV6) &&
2563 eth_type != htons(ETH_P_ARP) &&
2564 eth_type != htons(ETH_P_RARP) &&
2565 !eth_p_mpls(eth_type)))
2566 return -EINVAL;
2567 eth_type = mpls->mpls_ethertype;
2568 break;
2569 }
2570
2571 case OVS_ACTION_ATTR_POP_MPLS:
2572 if (vlan_tci & htons(VLAN_TAG_PRESENT) ||
2573 !eth_p_mpls(eth_type))
2574 return -EINVAL;
2575
2576 /* Disallow subsequent L2.5+ set and mpls_pop actions
2577 * as there is no check here to ensure that the new
2578 * eth_type is valid and thus set actions could
2579 * write off the end of the packet or otherwise
2580 * corrupt it.
2581 *
2582 * Support for these actions is planned using packet
2583 * recirculation.
2584 */
2585 eth_type = htons(0);
2586 break;
2587
2588 case OVS_ACTION_ATTR_SET:
2589 err = validate_set(a, key, sfa,
2590 &skip_copy, mac_proto, eth_type,
2591 false, log);
2592 if (err)
2593 return err;
2594 break;
2595
2596 case OVS_ACTION_ATTR_SET_MASKED:
2597 err = validate_set(a, key, sfa,
2598 &skip_copy, mac_proto, eth_type,
2599 true, log);
2600 if (err)
2601 return err;
2602 break;
2603
2604 case OVS_ACTION_ATTR_SAMPLE: {
2605 bool last = nla_is_last(a, rem);
2606
2607 err = validate_and_copy_sample(net, a, key, sfa,
2608 eth_type, vlan_tci,
2609 log, last);
2610 if (err)
2611 return err;
2612 skip_copy = true;
2613 break;
2614 }
2615
2616 case OVS_ACTION_ATTR_CT:
2617 err = ovs_ct_copy_action(net, a, key, sfa, log);
2618 if (err)
2619 return err;
2620 skip_copy = true;
2621 break;
2622
2623 case OVS_ACTION_ATTR_PUSH_ETH:
2624 /* Disallow pushing an Ethernet header if one
2625 * is already present */
2626 if (mac_proto != MAC_PROTO_NONE)
2627 return -EINVAL;
2628 mac_proto = MAC_PROTO_NONE;
2629 break;
2630
2631 case OVS_ACTION_ATTR_POP_ETH:
2632 if (mac_proto != MAC_PROTO_ETHERNET)
2633 return -EINVAL;
2634 if (vlan_tci & htons(VLAN_TAG_PRESENT))
2635 return -EINVAL;
2636 mac_proto = MAC_PROTO_ETHERNET;
2637 break;
2638
2639 default:
2640 OVS_NLERR(log, "Unknown Action type %d", type);
2641 return -EINVAL;
2642 }
2643 if (!skip_copy) {
2644 err = copy_action(a, sfa, log);
2645 if (err)
2646 return err;
2647 }
2648 }
2649
2650 if (rem > 0)
2651 return -EINVAL;
2652
2653 return 0;
2654 }
2655
2656 /* 'key' must be the masked key. */
2657 int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
2658 const struct sw_flow_key *key,
2659 struct sw_flow_actions **sfa, bool log)
2660 {
2661 int err;
2662
2663 *sfa = nla_alloc_flow_actions(nla_len(attr), log);
2664 if (IS_ERR(*sfa))
2665 return PTR_ERR(*sfa);
2666
2667 (*sfa)->orig_len = nla_len(attr);
2668 err = __ovs_nla_copy_actions(net, attr, key, sfa, key->eth.type,
2669 key->eth.vlan.tci, log);
2670 if (err)
2671 ovs_nla_free_flow_actions(*sfa);
2672
2673 return err;
2674 }
2675
2676 static int sample_action_to_attr(const struct nlattr *attr,
2677 struct sk_buff *skb)
2678 {
2679 struct nlattr *start, *ac_start = NULL, *sample_arg;
2680 int err = 0, rem = nla_len(attr);
2681 const struct sample_arg *arg;
2682 struct nlattr *actions;
2683
2684 start = nla_nest_start(skb, OVS_ACTION_ATTR_SAMPLE);
2685 if (!start)
2686 return -EMSGSIZE;
2687
2688 sample_arg = nla_data(attr);
2689 arg = nla_data(sample_arg);
2690 actions = nla_next(sample_arg, &rem);
2691
2692 if (nla_put_u32(skb, OVS_SAMPLE_ATTR_PROBABILITY, arg->probability)) {
2693 err = -EMSGSIZE;
2694 goto out;
2695 }
2696
2697 ac_start = nla_nest_start(skb, OVS_SAMPLE_ATTR_ACTIONS);
2698 if (!ac_start) {
2699 err = -EMSGSIZE;
2700 goto out;
2701 }
2702
2703 err = ovs_nla_put_actions(actions, rem, skb);
2704
2705 out:
2706 if (err) {
2707 nla_nest_cancel(skb, ac_start);
2708 nla_nest_cancel(skb, start);
2709 } else {
2710 nla_nest_end(skb, ac_start);
2711 nla_nest_end(skb, start);
2712 }
2713
2714 return err;
2715 }
2716
2717 static int set_action_to_attr(const struct nlattr *a, struct sk_buff *skb)
2718 {
2719 const struct nlattr *ovs_key = nla_data(a);
2720 int key_type = nla_type(ovs_key);
2721 struct nlattr *start;
2722 int err;
2723
2724 switch (key_type) {
2725 case OVS_KEY_ATTR_TUNNEL_INFO: {
2726 struct ovs_tunnel_info *ovs_tun = nla_data(ovs_key);
2727 struct ip_tunnel_info *tun_info = &ovs_tun->tun_dst->u.tun_info;
2728
2729 start = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2730 if (!start)
2731 return -EMSGSIZE;
2732
2733 err = ip_tun_to_nlattr(skb, &tun_info->key,
2734 ip_tunnel_info_opts(tun_info),
2735 tun_info->options_len,
2736 ip_tunnel_info_af(tun_info));
2737 if (err)
2738 return err;
2739 nla_nest_end(skb, start);
2740 break;
2741 }
2742 default:
2743 if (nla_put(skb, OVS_ACTION_ATTR_SET, nla_len(a), ovs_key))
2744 return -EMSGSIZE;
2745 break;
2746 }
2747
2748 return 0;
2749 }
2750
2751 static int masked_set_action_to_set_action_attr(const struct nlattr *a,
2752 struct sk_buff *skb)
2753 {
2754 const struct nlattr *ovs_key = nla_data(a);
2755 struct nlattr *nla;
2756 size_t key_len = nla_len(ovs_key) / 2;
2757
2758 /* Revert the conversion we did from a non-masked set action to
2759 * masked set action.
2760 */
2761 nla = nla_nest_start(skb, OVS_ACTION_ATTR_SET);
2762 if (!nla)
2763 return -EMSGSIZE;
2764
2765 if (nla_put(skb, nla_type(ovs_key), key_len, nla_data(ovs_key)))
2766 return -EMSGSIZE;
2767
2768 nla_nest_end(skb, nla);
2769 return 0;
2770 }
2771
2772 int ovs_nla_put_actions(const struct nlattr *attr, int len, struct sk_buff *skb)
2773 {
2774 const struct nlattr *a;
2775 int rem, err;
2776
2777 nla_for_each_attr(a, attr, len, rem) {
2778 int type = nla_type(a);
2779
2780 switch (type) {
2781 case OVS_ACTION_ATTR_SET:
2782 err = set_action_to_attr(a, skb);
2783 if (err)
2784 return err;
2785 break;
2786
2787 case OVS_ACTION_ATTR_SET_TO_MASKED:
2788 err = masked_set_action_to_set_action_attr(a, skb);
2789 if (err)
2790 return err;
2791 break;
2792
2793 case OVS_ACTION_ATTR_SAMPLE:
2794 err = sample_action_to_attr(a, skb);
2795 if (err)
2796 return err;
2797 break;
2798
2799 case OVS_ACTION_ATTR_CT:
2800 err = ovs_ct_action_to_attr(nla_data(a), skb);
2801 if (err)
2802 return err;
2803 break;
2804
2805 default:
2806 if (nla_put(skb, type, nla_len(a), nla_data(a)))
2807 return -EMSGSIZE;
2808 break;
2809 }
2810 }
2811
2812 return 0;
2813 }