]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/packet/af_packet.c
Merge tag 'linux-kselftest-4.13-rc6-fixes' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-artful-kernel.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97
98 #include "internal.h"
99
100 /*
101 Assumptions:
102 - if device has no dev->hard_header routine, it adds and removes ll header
103 inside itself. In this case ll header is invisible outside of device,
104 but higher levels still should reserve dev->hard_header_len.
105 Some devices are enough clever to reallocate skb, when header
106 will not fit to reserved space (tunnel), another ones are silly
107 (PPP).
108 - packet socket receives packets with pulled ll header,
109 so that SOCK_RAW should push it back.
110
111 On receive:
112 -----------
113
114 Incoming, dev->hard_header!=NULL
115 mac_header -> ll header
116 data -> data
117
118 Outgoing, dev->hard_header!=NULL
119 mac_header -> ll header
120 data -> ll header
121
122 Incoming, dev->hard_header==NULL
123 mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 header. PPP makes it, that is wrong, because introduce
125 assymetry between rx and tx paths.
126 data -> data
127
128 Outgoing, dev->hard_header==NULL
129 mac_header -> data. ll header is still not built!
130 data -> data
131
132 Resume
133 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134
135
136 On transmit:
137 ------------
138
139 dev->hard_header != NULL
140 mac_header -> ll header
141 data -> ll header
142
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144 mac_header -> data
145 data -> data
146
147 We should set nh.raw on output to correct posistion,
148 packet classifier depends on it.
149 */
150
151 /* Private packet socket structures. */
152
153 /* identical to struct packet_mreq except it has
154 * a longer address field.
155 */
156 struct packet_mreq_max {
157 int mr_ifindex;
158 unsigned short mr_type;
159 unsigned short mr_alen;
160 unsigned char mr_address[MAX_ADDR_LEN];
161 };
162
163 union tpacket_uhdr {
164 struct tpacket_hdr *h1;
165 struct tpacket2_hdr *h2;
166 struct tpacket3_hdr *h3;
167 void *raw;
168 };
169
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 int closing, int tx_ring);
172
173 #define V3_ALIGNMENT (8)
174
175 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179
180 #define PGV_FROM_VMALLOC 1
181
182 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
183 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
184 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
185 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
186 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
187 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
188 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
189
190 struct packet_sock;
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 struct packet_type *pt, struct net_device *orig_dev);
193
194 static void *packet_previous_frame(struct packet_sock *po,
195 struct packet_ring_buffer *rb,
196 int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb);
218
219 struct packet_skb_cb {
220 union {
221 struct sockaddr_pkt pkt;
222 union {
223 /* Trick: alias skb original length with
224 * ll.sll_family and ll.protocol in order
225 * to save room.
226 */
227 unsigned int origlen;
228 struct sockaddr_ll ll;
229 };
230 } sa;
231 };
232
233 #define vio_le() virtio_legacy_is_little_endian()
234
235 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
236
237 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
238 #define GET_PBLOCK_DESC(x, bid) \
239 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
240 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
241 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
242 #define GET_NEXT_PRB_BLK_NUM(x) \
243 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
244 ((x)->kactive_blk_num+1) : 0)
245
246 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
247 static void __fanout_link(struct sock *sk, struct packet_sock *po);
248
249 static int packet_direct_xmit(struct sk_buff *skb)
250 {
251 struct net_device *dev = skb->dev;
252 struct sk_buff *orig_skb = skb;
253 struct netdev_queue *txq;
254 int ret = NETDEV_TX_BUSY;
255
256 if (unlikely(!netif_running(dev) ||
257 !netif_carrier_ok(dev)))
258 goto drop;
259
260 skb = validate_xmit_skb_list(skb, dev);
261 if (skb != orig_skb)
262 goto drop;
263
264 packet_pick_tx_queue(dev, skb);
265 txq = skb_get_tx_queue(dev, skb);
266
267 local_bh_disable();
268
269 HARD_TX_LOCK(dev, txq, smp_processor_id());
270 if (!netif_xmit_frozen_or_drv_stopped(txq))
271 ret = netdev_start_xmit(skb, dev, txq, false);
272 HARD_TX_UNLOCK(dev, txq);
273
274 local_bh_enable();
275
276 if (!dev_xmit_complete(ret))
277 kfree_skb(skb);
278
279 return ret;
280 drop:
281 atomic_long_inc(&dev->tx_dropped);
282 kfree_skb_list(skb);
283 return NET_XMIT_DROP;
284 }
285
286 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
287 {
288 struct net_device *dev;
289
290 rcu_read_lock();
291 dev = rcu_dereference(po->cached_dev);
292 if (likely(dev))
293 dev_hold(dev);
294 rcu_read_unlock();
295
296 return dev;
297 }
298
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 struct net_device *dev)
301 {
302 rcu_assign_pointer(po->cached_dev, dev);
303 }
304
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309
310 static bool packet_use_direct_xmit(const struct packet_sock *po)
311 {
312 return po->xmit == packet_direct_xmit;
313 }
314
315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
318 }
319
320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
321 {
322 const struct net_device_ops *ops = dev->netdev_ops;
323 u16 queue_index;
324
325 if (ops->ndo_select_queue) {
326 queue_index = ops->ndo_select_queue(dev, skb, NULL,
327 __packet_pick_tx_queue);
328 queue_index = netdev_cap_txqueue(dev, queue_index);
329 } else {
330 queue_index = __packet_pick_tx_queue(dev, skb);
331 }
332
333 skb_set_queue_mapping(skb, queue_index);
334 }
335
336 /* register_prot_hook must be invoked with the po->bind_lock held,
337 * or from a context in which asynchronous accesses to the packet
338 * socket is not possible (packet_create()).
339 */
340 static void register_prot_hook(struct sock *sk)
341 {
342 struct packet_sock *po = pkt_sk(sk);
343
344 if (!po->running) {
345 if (po->fanout)
346 __fanout_link(sk, po);
347 else
348 dev_add_pack(&po->prot_hook);
349
350 sock_hold(sk);
351 po->running = 1;
352 }
353 }
354
355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
356 * held. If the sync parameter is true, we will temporarily drop
357 * the po->bind_lock and do a synchronize_net to make sure no
358 * asynchronous packet processing paths still refer to the elements
359 * of po->prot_hook. If the sync parameter is false, it is the
360 * callers responsibility to take care of this.
361 */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 struct packet_sock *po = pkt_sk(sk);
365
366 po->running = 0;
367
368 if (po->fanout)
369 __fanout_unlink(sk, po);
370 else
371 __dev_remove_pack(&po->prot_hook);
372
373 __sock_put(sk);
374
375 if (sync) {
376 spin_unlock(&po->bind_lock);
377 synchronize_net();
378 spin_lock(&po->bind_lock);
379 }
380 }
381
382 static void unregister_prot_hook(struct sock *sk, bool sync)
383 {
384 struct packet_sock *po = pkt_sk(sk);
385
386 if (po->running)
387 __unregister_prot_hook(sk, sync);
388 }
389
390 static inline struct page * __pure pgv_to_page(void *addr)
391 {
392 if (is_vmalloc_addr(addr))
393 return vmalloc_to_page(addr);
394 return virt_to_page(addr);
395 }
396
397 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
398 {
399 union tpacket_uhdr h;
400
401 h.raw = frame;
402 switch (po->tp_version) {
403 case TPACKET_V1:
404 h.h1->tp_status = status;
405 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
406 break;
407 case TPACKET_V2:
408 h.h2->tp_status = status;
409 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
410 break;
411 case TPACKET_V3:
412 h.h3->tp_status = status;
413 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
414 break;
415 default:
416 WARN(1, "TPACKET version not supported.\n");
417 BUG();
418 }
419
420 smp_wmb();
421 }
422
423 static int __packet_get_status(struct packet_sock *po, void *frame)
424 {
425 union tpacket_uhdr h;
426
427 smp_rmb();
428
429 h.raw = frame;
430 switch (po->tp_version) {
431 case TPACKET_V1:
432 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
433 return h.h1->tp_status;
434 case TPACKET_V2:
435 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
436 return h.h2->tp_status;
437 case TPACKET_V3:
438 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
439 return h.h3->tp_status;
440 default:
441 WARN(1, "TPACKET version not supported.\n");
442 BUG();
443 return 0;
444 }
445 }
446
447 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
448 unsigned int flags)
449 {
450 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
451
452 if (shhwtstamps &&
453 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
454 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
455 return TP_STATUS_TS_RAW_HARDWARE;
456
457 if (ktime_to_timespec_cond(skb->tstamp, ts))
458 return TP_STATUS_TS_SOFTWARE;
459
460 return 0;
461 }
462
463 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
464 struct sk_buff *skb)
465 {
466 union tpacket_uhdr h;
467 struct timespec ts;
468 __u32 ts_status;
469
470 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
471 return 0;
472
473 h.raw = frame;
474 switch (po->tp_version) {
475 case TPACKET_V1:
476 h.h1->tp_sec = ts.tv_sec;
477 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
478 break;
479 case TPACKET_V2:
480 h.h2->tp_sec = ts.tv_sec;
481 h.h2->tp_nsec = ts.tv_nsec;
482 break;
483 case TPACKET_V3:
484 h.h3->tp_sec = ts.tv_sec;
485 h.h3->tp_nsec = ts.tv_nsec;
486 break;
487 default:
488 WARN(1, "TPACKET version not supported.\n");
489 BUG();
490 }
491
492 /* one flush is safe, as both fields always lie on the same cacheline */
493 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
494 smp_wmb();
495
496 return ts_status;
497 }
498
499 static void *packet_lookup_frame(struct packet_sock *po,
500 struct packet_ring_buffer *rb,
501 unsigned int position,
502 int status)
503 {
504 unsigned int pg_vec_pos, frame_offset;
505 union tpacket_uhdr h;
506
507 pg_vec_pos = position / rb->frames_per_block;
508 frame_offset = position % rb->frames_per_block;
509
510 h.raw = rb->pg_vec[pg_vec_pos].buffer +
511 (frame_offset * rb->frame_size);
512
513 if (status != __packet_get_status(po, h.raw))
514 return NULL;
515
516 return h.raw;
517 }
518
519 static void *packet_current_frame(struct packet_sock *po,
520 struct packet_ring_buffer *rb,
521 int status)
522 {
523 return packet_lookup_frame(po, rb, rb->head, status);
524 }
525
526 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
527 {
528 del_timer_sync(&pkc->retire_blk_timer);
529 }
530
531 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
532 struct sk_buff_head *rb_queue)
533 {
534 struct tpacket_kbdq_core *pkc;
535
536 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
537
538 spin_lock_bh(&rb_queue->lock);
539 pkc->delete_blk_timer = 1;
540 spin_unlock_bh(&rb_queue->lock);
541
542 prb_del_retire_blk_timer(pkc);
543 }
544
545 static void prb_init_blk_timer(struct packet_sock *po,
546 struct tpacket_kbdq_core *pkc,
547 void (*func) (unsigned long))
548 {
549 init_timer(&pkc->retire_blk_timer);
550 pkc->retire_blk_timer.data = (long)po;
551 pkc->retire_blk_timer.function = func;
552 pkc->retire_blk_timer.expires = jiffies;
553 }
554
555 static void prb_setup_retire_blk_timer(struct packet_sock *po)
556 {
557 struct tpacket_kbdq_core *pkc;
558
559 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
560 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
561 }
562
563 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
564 int blk_size_in_bytes)
565 {
566 struct net_device *dev;
567 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
568 struct ethtool_link_ksettings ecmd;
569 int err;
570
571 rtnl_lock();
572 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
573 if (unlikely(!dev)) {
574 rtnl_unlock();
575 return DEFAULT_PRB_RETIRE_TOV;
576 }
577 err = __ethtool_get_link_ksettings(dev, &ecmd);
578 rtnl_unlock();
579 if (!err) {
580 /*
581 * If the link speed is so slow you don't really
582 * need to worry about perf anyways
583 */
584 if (ecmd.base.speed < SPEED_1000 ||
585 ecmd.base.speed == SPEED_UNKNOWN) {
586 return DEFAULT_PRB_RETIRE_TOV;
587 } else {
588 msec = 1;
589 div = ecmd.base.speed / 1000;
590 }
591 }
592
593 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
594
595 if (div)
596 mbits /= div;
597
598 tmo = mbits * msec;
599
600 if (div)
601 return tmo+1;
602 return tmo;
603 }
604
605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
606 union tpacket_req_u *req_u)
607 {
608 p1->feature_req_word = req_u->req3.tp_feature_req_word;
609 }
610
611 static void init_prb_bdqc(struct packet_sock *po,
612 struct packet_ring_buffer *rb,
613 struct pgv *pg_vec,
614 union tpacket_req_u *req_u)
615 {
616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
617 struct tpacket_block_desc *pbd;
618
619 memset(p1, 0x0, sizeof(*p1));
620
621 p1->knxt_seq_num = 1;
622 p1->pkbdq = pg_vec;
623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
624 p1->pkblk_start = pg_vec[0].buffer;
625 p1->kblk_size = req_u->req3.tp_block_size;
626 p1->knum_blocks = req_u->req3.tp_block_nr;
627 p1->hdrlen = po->tp_hdrlen;
628 p1->version = po->tp_version;
629 p1->last_kactive_blk_num = 0;
630 po->stats.stats3.tp_freeze_q_cnt = 0;
631 if (req_u->req3.tp_retire_blk_tov)
632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
633 else
634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
635 req_u->req3.tp_block_size);
636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
638
639 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
640 prb_init_ft_ops(p1, req_u);
641 prb_setup_retire_blk_timer(po);
642 prb_open_block(p1, pbd);
643 }
644
645 /* Do NOT update the last_blk_num first.
646 * Assumes sk_buff_head lock is held.
647 */
648 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
649 {
650 mod_timer(&pkc->retire_blk_timer,
651 jiffies + pkc->tov_in_jiffies);
652 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
653 }
654
655 /*
656 * Timer logic:
657 * 1) We refresh the timer only when we open a block.
658 * By doing this we don't waste cycles refreshing the timer
659 * on packet-by-packet basis.
660 *
661 * With a 1MB block-size, on a 1Gbps line, it will take
662 * i) ~8 ms to fill a block + ii) memcpy etc.
663 * In this cut we are not accounting for the memcpy time.
664 *
665 * So, if the user sets the 'tmo' to 10ms then the timer
666 * will never fire while the block is still getting filled
667 * (which is what we want). However, the user could choose
668 * to close a block early and that's fine.
669 *
670 * But when the timer does fire, we check whether or not to refresh it.
671 * Since the tmo granularity is in msecs, it is not too expensive
672 * to refresh the timer, lets say every '8' msecs.
673 * Either the user can set the 'tmo' or we can derive it based on
674 * a) line-speed and b) block-size.
675 * prb_calc_retire_blk_tmo() calculates the tmo.
676 *
677 */
678 static void prb_retire_rx_blk_timer_expired(unsigned long data)
679 {
680 struct packet_sock *po = (struct packet_sock *)data;
681 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
682 unsigned int frozen;
683 struct tpacket_block_desc *pbd;
684
685 spin_lock(&po->sk.sk_receive_queue.lock);
686
687 frozen = prb_queue_frozen(pkc);
688 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
689
690 if (unlikely(pkc->delete_blk_timer))
691 goto out;
692
693 /* We only need to plug the race when the block is partially filled.
694 * tpacket_rcv:
695 * lock(); increment BLOCK_NUM_PKTS; unlock()
696 * copy_bits() is in progress ...
697 * timer fires on other cpu:
698 * we can't retire the current block because copy_bits
699 * is in progress.
700 *
701 */
702 if (BLOCK_NUM_PKTS(pbd)) {
703 while (atomic_read(&pkc->blk_fill_in_prog)) {
704 /* Waiting for skb_copy_bits to finish... */
705 cpu_relax();
706 }
707 }
708
709 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
710 if (!frozen) {
711 if (!BLOCK_NUM_PKTS(pbd)) {
712 /* An empty block. Just refresh the timer. */
713 goto refresh_timer;
714 }
715 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
716 if (!prb_dispatch_next_block(pkc, po))
717 goto refresh_timer;
718 else
719 goto out;
720 } else {
721 /* Case 1. Queue was frozen because user-space was
722 * lagging behind.
723 */
724 if (prb_curr_blk_in_use(pbd)) {
725 /*
726 * Ok, user-space is still behind.
727 * So just refresh the timer.
728 */
729 goto refresh_timer;
730 } else {
731 /* Case 2. queue was frozen,user-space caught up,
732 * now the link went idle && the timer fired.
733 * We don't have a block to close.So we open this
734 * block and restart the timer.
735 * opening a block thaws the queue,restarts timer
736 * Thawing/timer-refresh is a side effect.
737 */
738 prb_open_block(pkc, pbd);
739 goto out;
740 }
741 }
742 }
743
744 refresh_timer:
745 _prb_refresh_rx_retire_blk_timer(pkc);
746
747 out:
748 spin_unlock(&po->sk.sk_receive_queue.lock);
749 }
750
751 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
752 struct tpacket_block_desc *pbd1, __u32 status)
753 {
754 /* Flush everything minus the block header */
755
756 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
757 u8 *start, *end;
758
759 start = (u8 *)pbd1;
760
761 /* Skip the block header(we know header WILL fit in 4K) */
762 start += PAGE_SIZE;
763
764 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
765 for (; start < end; start += PAGE_SIZE)
766 flush_dcache_page(pgv_to_page(start));
767
768 smp_wmb();
769 #endif
770
771 /* Now update the block status. */
772
773 BLOCK_STATUS(pbd1) = status;
774
775 /* Flush the block header */
776
777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
778 start = (u8 *)pbd1;
779 flush_dcache_page(pgv_to_page(start));
780
781 smp_wmb();
782 #endif
783 }
784
785 /*
786 * Side effect:
787 *
788 * 1) flush the block
789 * 2) Increment active_blk_num
790 *
791 * Note:We DONT refresh the timer on purpose.
792 * Because almost always the next block will be opened.
793 */
794 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
795 struct tpacket_block_desc *pbd1,
796 struct packet_sock *po, unsigned int stat)
797 {
798 __u32 status = TP_STATUS_USER | stat;
799
800 struct tpacket3_hdr *last_pkt;
801 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
802 struct sock *sk = &po->sk;
803
804 if (po->stats.stats3.tp_drops)
805 status |= TP_STATUS_LOSING;
806
807 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
808 last_pkt->tp_next_offset = 0;
809
810 /* Get the ts of the last pkt */
811 if (BLOCK_NUM_PKTS(pbd1)) {
812 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
813 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
814 } else {
815 /* Ok, we tmo'd - so get the current time.
816 *
817 * It shouldn't really happen as we don't close empty
818 * blocks. See prb_retire_rx_blk_timer_expired().
819 */
820 struct timespec ts;
821 getnstimeofday(&ts);
822 h1->ts_last_pkt.ts_sec = ts.tv_sec;
823 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
824 }
825
826 smp_wmb();
827
828 /* Flush the block */
829 prb_flush_block(pkc1, pbd1, status);
830
831 sk->sk_data_ready(sk);
832
833 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
834 }
835
836 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
837 {
838 pkc->reset_pending_on_curr_blk = 0;
839 }
840
841 /*
842 * Side effect of opening a block:
843 *
844 * 1) prb_queue is thawed.
845 * 2) retire_blk_timer is refreshed.
846 *
847 */
848 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
849 struct tpacket_block_desc *pbd1)
850 {
851 struct timespec ts;
852 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
853
854 smp_rmb();
855
856 /* We could have just memset this but we will lose the
857 * flexibility of making the priv area sticky
858 */
859
860 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
861 BLOCK_NUM_PKTS(pbd1) = 0;
862 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863
864 getnstimeofday(&ts);
865
866 h1->ts_first_pkt.ts_sec = ts.tv_sec;
867 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
868
869 pkc1->pkblk_start = (char *)pbd1;
870 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
871
872 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
873 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
874
875 pbd1->version = pkc1->version;
876 pkc1->prev = pkc1->nxt_offset;
877 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
878
879 prb_thaw_queue(pkc1);
880 _prb_refresh_rx_retire_blk_timer(pkc1);
881
882 smp_wmb();
883 }
884
885 /*
886 * Queue freeze logic:
887 * 1) Assume tp_block_nr = 8 blocks.
888 * 2) At time 't0', user opens Rx ring.
889 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
890 * 4) user-space is either sleeping or processing block '0'.
891 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
892 * it will close block-7,loop around and try to fill block '0'.
893 * call-flow:
894 * __packet_lookup_frame_in_block
895 * prb_retire_current_block()
896 * prb_dispatch_next_block()
897 * |->(BLOCK_STATUS == USER) evaluates to true
898 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
899 * 6) Now there are two cases:
900 * 6.1) Link goes idle right after the queue is frozen.
901 * But remember, the last open_block() refreshed the timer.
902 * When this timer expires,it will refresh itself so that we can
903 * re-open block-0 in near future.
904 * 6.2) Link is busy and keeps on receiving packets. This is a simple
905 * case and __packet_lookup_frame_in_block will check if block-0
906 * is free and can now be re-used.
907 */
908 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
909 struct packet_sock *po)
910 {
911 pkc->reset_pending_on_curr_blk = 1;
912 po->stats.stats3.tp_freeze_q_cnt++;
913 }
914
915 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
916
917 /*
918 * If the next block is free then we will dispatch it
919 * and return a good offset.
920 * Else, we will freeze the queue.
921 * So, caller must check the return value.
922 */
923 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
924 struct packet_sock *po)
925 {
926 struct tpacket_block_desc *pbd;
927
928 smp_rmb();
929
930 /* 1. Get current block num */
931 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
932
933 /* 2. If this block is currently in_use then freeze the queue */
934 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
935 prb_freeze_queue(pkc, po);
936 return NULL;
937 }
938
939 /*
940 * 3.
941 * open this block and return the offset where the first packet
942 * needs to get stored.
943 */
944 prb_open_block(pkc, pbd);
945 return (void *)pkc->nxt_offset;
946 }
947
948 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
949 struct packet_sock *po, unsigned int status)
950 {
951 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
952
953 /* retire/close the current block */
954 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
955 /*
956 * Plug the case where copy_bits() is in progress on
957 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
958 * have space to copy the pkt in the current block and
959 * called prb_retire_current_block()
960 *
961 * We don't need to worry about the TMO case because
962 * the timer-handler already handled this case.
963 */
964 if (!(status & TP_STATUS_BLK_TMO)) {
965 while (atomic_read(&pkc->blk_fill_in_prog)) {
966 /* Waiting for skb_copy_bits to finish... */
967 cpu_relax();
968 }
969 }
970 prb_close_block(pkc, pbd, po, status);
971 return;
972 }
973 }
974
975 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
976 {
977 return TP_STATUS_USER & BLOCK_STATUS(pbd);
978 }
979
980 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
981 {
982 return pkc->reset_pending_on_curr_blk;
983 }
984
985 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
986 {
987 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
988 atomic_dec(&pkc->blk_fill_in_prog);
989 }
990
991 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
992 struct tpacket3_hdr *ppd)
993 {
994 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
995 }
996
997 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
998 struct tpacket3_hdr *ppd)
999 {
1000 ppd->hv1.tp_rxhash = 0;
1001 }
1002
1003 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1004 struct tpacket3_hdr *ppd)
1005 {
1006 if (skb_vlan_tag_present(pkc->skb)) {
1007 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1008 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1009 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1010 } else {
1011 ppd->hv1.tp_vlan_tci = 0;
1012 ppd->hv1.tp_vlan_tpid = 0;
1013 ppd->tp_status = TP_STATUS_AVAILABLE;
1014 }
1015 }
1016
1017 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1018 struct tpacket3_hdr *ppd)
1019 {
1020 ppd->hv1.tp_padding = 0;
1021 prb_fill_vlan_info(pkc, ppd);
1022
1023 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1024 prb_fill_rxhash(pkc, ppd);
1025 else
1026 prb_clear_rxhash(pkc, ppd);
1027 }
1028
1029 static void prb_fill_curr_block(char *curr,
1030 struct tpacket_kbdq_core *pkc,
1031 struct tpacket_block_desc *pbd,
1032 unsigned int len)
1033 {
1034 struct tpacket3_hdr *ppd;
1035
1036 ppd = (struct tpacket3_hdr *)curr;
1037 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1038 pkc->prev = curr;
1039 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1040 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1041 BLOCK_NUM_PKTS(pbd) += 1;
1042 atomic_inc(&pkc->blk_fill_in_prog);
1043 prb_run_all_ft_ops(pkc, ppd);
1044 }
1045
1046 /* Assumes caller has the sk->rx_queue.lock */
1047 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1048 struct sk_buff *skb,
1049 int status,
1050 unsigned int len
1051 )
1052 {
1053 struct tpacket_kbdq_core *pkc;
1054 struct tpacket_block_desc *pbd;
1055 char *curr, *end;
1056
1057 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1058 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1059
1060 /* Queue is frozen when user space is lagging behind */
1061 if (prb_queue_frozen(pkc)) {
1062 /*
1063 * Check if that last block which caused the queue to freeze,
1064 * is still in_use by user-space.
1065 */
1066 if (prb_curr_blk_in_use(pbd)) {
1067 /* Can't record this packet */
1068 return NULL;
1069 } else {
1070 /*
1071 * Ok, the block was released by user-space.
1072 * Now let's open that block.
1073 * opening a block also thaws the queue.
1074 * Thawing is a side effect.
1075 */
1076 prb_open_block(pkc, pbd);
1077 }
1078 }
1079
1080 smp_mb();
1081 curr = pkc->nxt_offset;
1082 pkc->skb = skb;
1083 end = (char *)pbd + pkc->kblk_size;
1084
1085 /* first try the current block */
1086 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1087 prb_fill_curr_block(curr, pkc, pbd, len);
1088 return (void *)curr;
1089 }
1090
1091 /* Ok, close the current block */
1092 prb_retire_current_block(pkc, po, 0);
1093
1094 /* Now, try to dispatch the next block */
1095 curr = (char *)prb_dispatch_next_block(pkc, po);
1096 if (curr) {
1097 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1098 prb_fill_curr_block(curr, pkc, pbd, len);
1099 return (void *)curr;
1100 }
1101
1102 /*
1103 * No free blocks are available.user_space hasn't caught up yet.
1104 * Queue was just frozen and now this packet will get dropped.
1105 */
1106 return NULL;
1107 }
1108
1109 static void *packet_current_rx_frame(struct packet_sock *po,
1110 struct sk_buff *skb,
1111 int status, unsigned int len)
1112 {
1113 char *curr = NULL;
1114 switch (po->tp_version) {
1115 case TPACKET_V1:
1116 case TPACKET_V2:
1117 curr = packet_lookup_frame(po, &po->rx_ring,
1118 po->rx_ring.head, status);
1119 return curr;
1120 case TPACKET_V3:
1121 return __packet_lookup_frame_in_block(po, skb, status, len);
1122 default:
1123 WARN(1, "TPACKET version not supported\n");
1124 BUG();
1125 return NULL;
1126 }
1127 }
1128
1129 static void *prb_lookup_block(struct packet_sock *po,
1130 struct packet_ring_buffer *rb,
1131 unsigned int idx,
1132 int status)
1133 {
1134 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1135 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1136
1137 if (status != BLOCK_STATUS(pbd))
1138 return NULL;
1139 return pbd;
1140 }
1141
1142 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1143 {
1144 unsigned int prev;
1145 if (rb->prb_bdqc.kactive_blk_num)
1146 prev = rb->prb_bdqc.kactive_blk_num-1;
1147 else
1148 prev = rb->prb_bdqc.knum_blocks-1;
1149 return prev;
1150 }
1151
1152 /* Assumes caller has held the rx_queue.lock */
1153 static void *__prb_previous_block(struct packet_sock *po,
1154 struct packet_ring_buffer *rb,
1155 int status)
1156 {
1157 unsigned int previous = prb_previous_blk_num(rb);
1158 return prb_lookup_block(po, rb, previous, status);
1159 }
1160
1161 static void *packet_previous_rx_frame(struct packet_sock *po,
1162 struct packet_ring_buffer *rb,
1163 int status)
1164 {
1165 if (po->tp_version <= TPACKET_V2)
1166 return packet_previous_frame(po, rb, status);
1167
1168 return __prb_previous_block(po, rb, status);
1169 }
1170
1171 static void packet_increment_rx_head(struct packet_sock *po,
1172 struct packet_ring_buffer *rb)
1173 {
1174 switch (po->tp_version) {
1175 case TPACKET_V1:
1176 case TPACKET_V2:
1177 return packet_increment_head(rb);
1178 case TPACKET_V3:
1179 default:
1180 WARN(1, "TPACKET version not supported.\n");
1181 BUG();
1182 return;
1183 }
1184 }
1185
1186 static void *packet_previous_frame(struct packet_sock *po,
1187 struct packet_ring_buffer *rb,
1188 int status)
1189 {
1190 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1191 return packet_lookup_frame(po, rb, previous, status);
1192 }
1193
1194 static void packet_increment_head(struct packet_ring_buffer *buff)
1195 {
1196 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1197 }
1198
1199 static void packet_inc_pending(struct packet_ring_buffer *rb)
1200 {
1201 this_cpu_inc(*rb->pending_refcnt);
1202 }
1203
1204 static void packet_dec_pending(struct packet_ring_buffer *rb)
1205 {
1206 this_cpu_dec(*rb->pending_refcnt);
1207 }
1208
1209 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1210 {
1211 unsigned int refcnt = 0;
1212 int cpu;
1213
1214 /* We don't use pending refcount in rx_ring. */
1215 if (rb->pending_refcnt == NULL)
1216 return 0;
1217
1218 for_each_possible_cpu(cpu)
1219 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1220
1221 return refcnt;
1222 }
1223
1224 static int packet_alloc_pending(struct packet_sock *po)
1225 {
1226 po->rx_ring.pending_refcnt = NULL;
1227
1228 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1229 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1230 return -ENOBUFS;
1231
1232 return 0;
1233 }
1234
1235 static void packet_free_pending(struct packet_sock *po)
1236 {
1237 free_percpu(po->tx_ring.pending_refcnt);
1238 }
1239
1240 #define ROOM_POW_OFF 2
1241 #define ROOM_NONE 0x0
1242 #define ROOM_LOW 0x1
1243 #define ROOM_NORMAL 0x2
1244
1245 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1246 {
1247 int idx, len;
1248
1249 len = po->rx_ring.frame_max + 1;
1250 idx = po->rx_ring.head;
1251 if (pow_off)
1252 idx += len >> pow_off;
1253 if (idx >= len)
1254 idx -= len;
1255 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1256 }
1257
1258 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1259 {
1260 int idx, len;
1261
1262 len = po->rx_ring.prb_bdqc.knum_blocks;
1263 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1264 if (pow_off)
1265 idx += len >> pow_off;
1266 if (idx >= len)
1267 idx -= len;
1268 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1269 }
1270
1271 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1272 {
1273 struct sock *sk = &po->sk;
1274 int ret = ROOM_NONE;
1275
1276 if (po->prot_hook.func != tpacket_rcv) {
1277 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1278 - (skb ? skb->truesize : 0);
1279 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1280 return ROOM_NORMAL;
1281 else if (avail > 0)
1282 return ROOM_LOW;
1283 else
1284 return ROOM_NONE;
1285 }
1286
1287 if (po->tp_version == TPACKET_V3) {
1288 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1289 ret = ROOM_NORMAL;
1290 else if (__tpacket_v3_has_room(po, 0))
1291 ret = ROOM_LOW;
1292 } else {
1293 if (__tpacket_has_room(po, ROOM_POW_OFF))
1294 ret = ROOM_NORMAL;
1295 else if (__tpacket_has_room(po, 0))
1296 ret = ROOM_LOW;
1297 }
1298
1299 return ret;
1300 }
1301
1302 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1303 {
1304 int ret;
1305 bool has_room;
1306
1307 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1308 ret = __packet_rcv_has_room(po, skb);
1309 has_room = ret == ROOM_NORMAL;
1310 if (po->pressure == has_room)
1311 po->pressure = !has_room;
1312 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1313
1314 return ret;
1315 }
1316
1317 static void packet_sock_destruct(struct sock *sk)
1318 {
1319 skb_queue_purge(&sk->sk_error_queue);
1320
1321 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1322 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1323
1324 if (!sock_flag(sk, SOCK_DEAD)) {
1325 pr_err("Attempt to release alive packet socket: %p\n", sk);
1326 return;
1327 }
1328
1329 sk_refcnt_debug_dec(sk);
1330 }
1331
1332 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1333 {
1334 u32 rxhash;
1335 int i, count = 0;
1336
1337 rxhash = skb_get_hash(skb);
1338 for (i = 0; i < ROLLOVER_HLEN; i++)
1339 if (po->rollover->history[i] == rxhash)
1340 count++;
1341
1342 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1343 return count > (ROLLOVER_HLEN >> 1);
1344 }
1345
1346 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1347 struct sk_buff *skb,
1348 unsigned int num)
1349 {
1350 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1351 }
1352
1353 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1354 struct sk_buff *skb,
1355 unsigned int num)
1356 {
1357 unsigned int val = atomic_inc_return(&f->rr_cur);
1358
1359 return val % num;
1360 }
1361
1362 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1363 struct sk_buff *skb,
1364 unsigned int num)
1365 {
1366 return smp_processor_id() % num;
1367 }
1368
1369 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1370 struct sk_buff *skb,
1371 unsigned int num)
1372 {
1373 return prandom_u32_max(num);
1374 }
1375
1376 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1377 struct sk_buff *skb,
1378 unsigned int idx, bool try_self,
1379 unsigned int num)
1380 {
1381 struct packet_sock *po, *po_next, *po_skip = NULL;
1382 unsigned int i, j, room = ROOM_NONE;
1383
1384 po = pkt_sk(f->arr[idx]);
1385
1386 if (try_self) {
1387 room = packet_rcv_has_room(po, skb);
1388 if (room == ROOM_NORMAL ||
1389 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1390 return idx;
1391 po_skip = po;
1392 }
1393
1394 i = j = min_t(int, po->rollover->sock, num - 1);
1395 do {
1396 po_next = pkt_sk(f->arr[i]);
1397 if (po_next != po_skip && !po_next->pressure &&
1398 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1399 if (i != j)
1400 po->rollover->sock = i;
1401 atomic_long_inc(&po->rollover->num);
1402 if (room == ROOM_LOW)
1403 atomic_long_inc(&po->rollover->num_huge);
1404 return i;
1405 }
1406
1407 if (++i == num)
1408 i = 0;
1409 } while (i != j);
1410
1411 atomic_long_inc(&po->rollover->num_failed);
1412 return idx;
1413 }
1414
1415 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1416 struct sk_buff *skb,
1417 unsigned int num)
1418 {
1419 return skb_get_queue_mapping(skb) % num;
1420 }
1421
1422 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1423 struct sk_buff *skb,
1424 unsigned int num)
1425 {
1426 struct bpf_prog *prog;
1427 unsigned int ret = 0;
1428
1429 rcu_read_lock();
1430 prog = rcu_dereference(f->bpf_prog);
1431 if (prog)
1432 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1433 rcu_read_unlock();
1434
1435 return ret;
1436 }
1437
1438 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1439 {
1440 return f->flags & (flag >> 8);
1441 }
1442
1443 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1444 struct packet_type *pt, struct net_device *orig_dev)
1445 {
1446 struct packet_fanout *f = pt->af_packet_priv;
1447 unsigned int num = READ_ONCE(f->num_members);
1448 struct net *net = read_pnet(&f->net);
1449 struct packet_sock *po;
1450 unsigned int idx;
1451
1452 if (!net_eq(dev_net(dev), net) || !num) {
1453 kfree_skb(skb);
1454 return 0;
1455 }
1456
1457 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1458 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1459 if (!skb)
1460 return 0;
1461 }
1462 switch (f->type) {
1463 case PACKET_FANOUT_HASH:
1464 default:
1465 idx = fanout_demux_hash(f, skb, num);
1466 break;
1467 case PACKET_FANOUT_LB:
1468 idx = fanout_demux_lb(f, skb, num);
1469 break;
1470 case PACKET_FANOUT_CPU:
1471 idx = fanout_demux_cpu(f, skb, num);
1472 break;
1473 case PACKET_FANOUT_RND:
1474 idx = fanout_demux_rnd(f, skb, num);
1475 break;
1476 case PACKET_FANOUT_QM:
1477 idx = fanout_demux_qm(f, skb, num);
1478 break;
1479 case PACKET_FANOUT_ROLLOVER:
1480 idx = fanout_demux_rollover(f, skb, 0, false, num);
1481 break;
1482 case PACKET_FANOUT_CBPF:
1483 case PACKET_FANOUT_EBPF:
1484 idx = fanout_demux_bpf(f, skb, num);
1485 break;
1486 }
1487
1488 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1489 idx = fanout_demux_rollover(f, skb, idx, true, num);
1490
1491 po = pkt_sk(f->arr[idx]);
1492 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1493 }
1494
1495 DEFINE_MUTEX(fanout_mutex);
1496 EXPORT_SYMBOL_GPL(fanout_mutex);
1497 static LIST_HEAD(fanout_list);
1498 static u16 fanout_next_id;
1499
1500 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1501 {
1502 struct packet_fanout *f = po->fanout;
1503
1504 spin_lock(&f->lock);
1505 f->arr[f->num_members] = sk;
1506 smp_wmb();
1507 f->num_members++;
1508 if (f->num_members == 1)
1509 dev_add_pack(&f->prot_hook);
1510 spin_unlock(&f->lock);
1511 }
1512
1513 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1514 {
1515 struct packet_fanout *f = po->fanout;
1516 int i;
1517
1518 spin_lock(&f->lock);
1519 for (i = 0; i < f->num_members; i++) {
1520 if (f->arr[i] == sk)
1521 break;
1522 }
1523 BUG_ON(i >= f->num_members);
1524 f->arr[i] = f->arr[f->num_members - 1];
1525 f->num_members--;
1526 if (f->num_members == 0)
1527 __dev_remove_pack(&f->prot_hook);
1528 spin_unlock(&f->lock);
1529 }
1530
1531 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1532 {
1533 if (sk->sk_family != PF_PACKET)
1534 return false;
1535
1536 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1537 }
1538
1539 static void fanout_init_data(struct packet_fanout *f)
1540 {
1541 switch (f->type) {
1542 case PACKET_FANOUT_LB:
1543 atomic_set(&f->rr_cur, 0);
1544 break;
1545 case PACKET_FANOUT_CBPF:
1546 case PACKET_FANOUT_EBPF:
1547 RCU_INIT_POINTER(f->bpf_prog, NULL);
1548 break;
1549 }
1550 }
1551
1552 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1553 {
1554 struct bpf_prog *old;
1555
1556 spin_lock(&f->lock);
1557 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1558 rcu_assign_pointer(f->bpf_prog, new);
1559 spin_unlock(&f->lock);
1560
1561 if (old) {
1562 synchronize_net();
1563 bpf_prog_destroy(old);
1564 }
1565 }
1566
1567 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1568 unsigned int len)
1569 {
1570 struct bpf_prog *new;
1571 struct sock_fprog fprog;
1572 int ret;
1573
1574 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1575 return -EPERM;
1576 if (len != sizeof(fprog))
1577 return -EINVAL;
1578 if (copy_from_user(&fprog, data, len))
1579 return -EFAULT;
1580
1581 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1582 if (ret)
1583 return ret;
1584
1585 __fanout_set_data_bpf(po->fanout, new);
1586 return 0;
1587 }
1588
1589 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1590 unsigned int len)
1591 {
1592 struct bpf_prog *new;
1593 u32 fd;
1594
1595 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1596 return -EPERM;
1597 if (len != sizeof(fd))
1598 return -EINVAL;
1599 if (copy_from_user(&fd, data, len))
1600 return -EFAULT;
1601
1602 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1603 if (IS_ERR(new))
1604 return PTR_ERR(new);
1605
1606 __fanout_set_data_bpf(po->fanout, new);
1607 return 0;
1608 }
1609
1610 static int fanout_set_data(struct packet_sock *po, char __user *data,
1611 unsigned int len)
1612 {
1613 switch (po->fanout->type) {
1614 case PACKET_FANOUT_CBPF:
1615 return fanout_set_data_cbpf(po, data, len);
1616 case PACKET_FANOUT_EBPF:
1617 return fanout_set_data_ebpf(po, data, len);
1618 default:
1619 return -EINVAL;
1620 };
1621 }
1622
1623 static void fanout_release_data(struct packet_fanout *f)
1624 {
1625 switch (f->type) {
1626 case PACKET_FANOUT_CBPF:
1627 case PACKET_FANOUT_EBPF:
1628 __fanout_set_data_bpf(f, NULL);
1629 };
1630 }
1631
1632 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1633 {
1634 struct packet_fanout *f;
1635
1636 list_for_each_entry(f, &fanout_list, list) {
1637 if (f->id == candidate_id &&
1638 read_pnet(&f->net) == sock_net(sk)) {
1639 return false;
1640 }
1641 }
1642 return true;
1643 }
1644
1645 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1646 {
1647 u16 id = fanout_next_id;
1648
1649 do {
1650 if (__fanout_id_is_free(sk, id)) {
1651 *new_id = id;
1652 fanout_next_id = id + 1;
1653 return true;
1654 }
1655
1656 id++;
1657 } while (id != fanout_next_id);
1658
1659 return false;
1660 }
1661
1662 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1663 {
1664 struct packet_rollover *rollover = NULL;
1665 struct packet_sock *po = pkt_sk(sk);
1666 struct packet_fanout *f, *match;
1667 u8 type = type_flags & 0xff;
1668 u8 flags = type_flags >> 8;
1669 int err;
1670
1671 switch (type) {
1672 case PACKET_FANOUT_ROLLOVER:
1673 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1674 return -EINVAL;
1675 case PACKET_FANOUT_HASH:
1676 case PACKET_FANOUT_LB:
1677 case PACKET_FANOUT_CPU:
1678 case PACKET_FANOUT_RND:
1679 case PACKET_FANOUT_QM:
1680 case PACKET_FANOUT_CBPF:
1681 case PACKET_FANOUT_EBPF:
1682 break;
1683 default:
1684 return -EINVAL;
1685 }
1686
1687 mutex_lock(&fanout_mutex);
1688
1689 err = -EINVAL;
1690 if (!po->running)
1691 goto out;
1692
1693 err = -EALREADY;
1694 if (po->fanout)
1695 goto out;
1696
1697 if (type == PACKET_FANOUT_ROLLOVER ||
1698 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1699 err = -ENOMEM;
1700 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1701 if (!rollover)
1702 goto out;
1703 atomic_long_set(&rollover->num, 0);
1704 atomic_long_set(&rollover->num_huge, 0);
1705 atomic_long_set(&rollover->num_failed, 0);
1706 po->rollover = rollover;
1707 }
1708
1709 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1710 if (id != 0) {
1711 err = -EINVAL;
1712 goto out;
1713 }
1714 if (!fanout_find_new_id(sk, &id)) {
1715 err = -ENOMEM;
1716 goto out;
1717 }
1718 /* ephemeral flag for the first socket in the group: drop it */
1719 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1720 }
1721
1722 match = NULL;
1723 list_for_each_entry(f, &fanout_list, list) {
1724 if (f->id == id &&
1725 read_pnet(&f->net) == sock_net(sk)) {
1726 match = f;
1727 break;
1728 }
1729 }
1730 err = -EINVAL;
1731 if (match && match->flags != flags)
1732 goto out;
1733 if (!match) {
1734 err = -ENOMEM;
1735 match = kzalloc(sizeof(*match), GFP_KERNEL);
1736 if (!match)
1737 goto out;
1738 write_pnet(&match->net, sock_net(sk));
1739 match->id = id;
1740 match->type = type;
1741 match->flags = flags;
1742 INIT_LIST_HEAD(&match->list);
1743 spin_lock_init(&match->lock);
1744 refcount_set(&match->sk_ref, 0);
1745 fanout_init_data(match);
1746 match->prot_hook.type = po->prot_hook.type;
1747 match->prot_hook.dev = po->prot_hook.dev;
1748 match->prot_hook.func = packet_rcv_fanout;
1749 match->prot_hook.af_packet_priv = match;
1750 match->prot_hook.id_match = match_fanout_group;
1751 list_add(&match->list, &fanout_list);
1752 }
1753 err = -EINVAL;
1754 if (match->type == type &&
1755 match->prot_hook.type == po->prot_hook.type &&
1756 match->prot_hook.dev == po->prot_hook.dev) {
1757 err = -ENOSPC;
1758 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1759 __dev_remove_pack(&po->prot_hook);
1760 po->fanout = match;
1761 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1762 __fanout_link(sk, po);
1763 err = 0;
1764 }
1765 }
1766 out:
1767 if (err && rollover) {
1768 kfree(rollover);
1769 po->rollover = NULL;
1770 }
1771 mutex_unlock(&fanout_mutex);
1772 return err;
1773 }
1774
1775 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1776 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1777 * It is the responsibility of the caller to call fanout_release_data() and
1778 * free the returned packet_fanout (after synchronize_net())
1779 */
1780 static struct packet_fanout *fanout_release(struct sock *sk)
1781 {
1782 struct packet_sock *po = pkt_sk(sk);
1783 struct packet_fanout *f;
1784
1785 mutex_lock(&fanout_mutex);
1786 f = po->fanout;
1787 if (f) {
1788 po->fanout = NULL;
1789
1790 if (refcount_dec_and_test(&f->sk_ref))
1791 list_del(&f->list);
1792 else
1793 f = NULL;
1794
1795 if (po->rollover)
1796 kfree_rcu(po->rollover, rcu);
1797 }
1798 mutex_unlock(&fanout_mutex);
1799
1800 return f;
1801 }
1802
1803 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1804 struct sk_buff *skb)
1805 {
1806 /* Earlier code assumed this would be a VLAN pkt, double-check
1807 * this now that we have the actual packet in hand. We can only
1808 * do this check on Ethernet devices.
1809 */
1810 if (unlikely(dev->type != ARPHRD_ETHER))
1811 return false;
1812
1813 skb_reset_mac_header(skb);
1814 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1815 }
1816
1817 static const struct proto_ops packet_ops;
1818
1819 static const struct proto_ops packet_ops_spkt;
1820
1821 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1822 struct packet_type *pt, struct net_device *orig_dev)
1823 {
1824 struct sock *sk;
1825 struct sockaddr_pkt *spkt;
1826
1827 /*
1828 * When we registered the protocol we saved the socket in the data
1829 * field for just this event.
1830 */
1831
1832 sk = pt->af_packet_priv;
1833
1834 /*
1835 * Yank back the headers [hope the device set this
1836 * right or kerboom...]
1837 *
1838 * Incoming packets have ll header pulled,
1839 * push it back.
1840 *
1841 * For outgoing ones skb->data == skb_mac_header(skb)
1842 * so that this procedure is noop.
1843 */
1844
1845 if (skb->pkt_type == PACKET_LOOPBACK)
1846 goto out;
1847
1848 if (!net_eq(dev_net(dev), sock_net(sk)))
1849 goto out;
1850
1851 skb = skb_share_check(skb, GFP_ATOMIC);
1852 if (skb == NULL)
1853 goto oom;
1854
1855 /* drop any routing info */
1856 skb_dst_drop(skb);
1857
1858 /* drop conntrack reference */
1859 nf_reset(skb);
1860
1861 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1862
1863 skb_push(skb, skb->data - skb_mac_header(skb));
1864
1865 /*
1866 * The SOCK_PACKET socket receives _all_ frames.
1867 */
1868
1869 spkt->spkt_family = dev->type;
1870 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1871 spkt->spkt_protocol = skb->protocol;
1872
1873 /*
1874 * Charge the memory to the socket. This is done specifically
1875 * to prevent sockets using all the memory up.
1876 */
1877
1878 if (sock_queue_rcv_skb(sk, skb) == 0)
1879 return 0;
1880
1881 out:
1882 kfree_skb(skb);
1883 oom:
1884 return 0;
1885 }
1886
1887
1888 /*
1889 * Output a raw packet to a device layer. This bypasses all the other
1890 * protocol layers and you must therefore supply it with a complete frame
1891 */
1892
1893 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1894 size_t len)
1895 {
1896 struct sock *sk = sock->sk;
1897 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1898 struct sk_buff *skb = NULL;
1899 struct net_device *dev;
1900 struct sockcm_cookie sockc;
1901 __be16 proto = 0;
1902 int err;
1903 int extra_len = 0;
1904
1905 /*
1906 * Get and verify the address.
1907 */
1908
1909 if (saddr) {
1910 if (msg->msg_namelen < sizeof(struct sockaddr))
1911 return -EINVAL;
1912 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1913 proto = saddr->spkt_protocol;
1914 } else
1915 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1916
1917 /*
1918 * Find the device first to size check it
1919 */
1920
1921 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1922 retry:
1923 rcu_read_lock();
1924 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1925 err = -ENODEV;
1926 if (dev == NULL)
1927 goto out_unlock;
1928
1929 err = -ENETDOWN;
1930 if (!(dev->flags & IFF_UP))
1931 goto out_unlock;
1932
1933 /*
1934 * You may not queue a frame bigger than the mtu. This is the lowest level
1935 * raw protocol and you must do your own fragmentation at this level.
1936 */
1937
1938 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1939 if (!netif_supports_nofcs(dev)) {
1940 err = -EPROTONOSUPPORT;
1941 goto out_unlock;
1942 }
1943 extra_len = 4; /* We're doing our own CRC */
1944 }
1945
1946 err = -EMSGSIZE;
1947 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1948 goto out_unlock;
1949
1950 if (!skb) {
1951 size_t reserved = LL_RESERVED_SPACE(dev);
1952 int tlen = dev->needed_tailroom;
1953 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1954
1955 rcu_read_unlock();
1956 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1957 if (skb == NULL)
1958 return -ENOBUFS;
1959 /* FIXME: Save some space for broken drivers that write a hard
1960 * header at transmission time by themselves. PPP is the notable
1961 * one here. This should really be fixed at the driver level.
1962 */
1963 skb_reserve(skb, reserved);
1964 skb_reset_network_header(skb);
1965
1966 /* Try to align data part correctly */
1967 if (hhlen) {
1968 skb->data -= hhlen;
1969 skb->tail -= hhlen;
1970 if (len < hhlen)
1971 skb_reset_network_header(skb);
1972 }
1973 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1974 if (err)
1975 goto out_free;
1976 goto retry;
1977 }
1978
1979 if (!dev_validate_header(dev, skb->data, len)) {
1980 err = -EINVAL;
1981 goto out_unlock;
1982 }
1983 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1984 !packet_extra_vlan_len_allowed(dev, skb)) {
1985 err = -EMSGSIZE;
1986 goto out_unlock;
1987 }
1988
1989 sockc.tsflags = sk->sk_tsflags;
1990 if (msg->msg_controllen) {
1991 err = sock_cmsg_send(sk, msg, &sockc);
1992 if (unlikely(err))
1993 goto out_unlock;
1994 }
1995
1996 skb->protocol = proto;
1997 skb->dev = dev;
1998 skb->priority = sk->sk_priority;
1999 skb->mark = sk->sk_mark;
2000
2001 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2002
2003 if (unlikely(extra_len == 4))
2004 skb->no_fcs = 1;
2005
2006 skb_probe_transport_header(skb, 0);
2007
2008 dev_queue_xmit(skb);
2009 rcu_read_unlock();
2010 return len;
2011
2012 out_unlock:
2013 rcu_read_unlock();
2014 out_free:
2015 kfree_skb(skb);
2016 return err;
2017 }
2018
2019 static unsigned int run_filter(struct sk_buff *skb,
2020 const struct sock *sk,
2021 unsigned int res)
2022 {
2023 struct sk_filter *filter;
2024
2025 rcu_read_lock();
2026 filter = rcu_dereference(sk->sk_filter);
2027 if (filter != NULL)
2028 res = bpf_prog_run_clear_cb(filter->prog, skb);
2029 rcu_read_unlock();
2030
2031 return res;
2032 }
2033
2034 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2035 size_t *len)
2036 {
2037 struct virtio_net_hdr vnet_hdr;
2038
2039 if (*len < sizeof(vnet_hdr))
2040 return -EINVAL;
2041 *len -= sizeof(vnet_hdr);
2042
2043 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
2044 return -EINVAL;
2045
2046 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2047 }
2048
2049 /*
2050 * This function makes lazy skb cloning in hope that most of packets
2051 * are discarded by BPF.
2052 *
2053 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2054 * and skb->cb are mangled. It works because (and until) packets
2055 * falling here are owned by current CPU. Output packets are cloned
2056 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2057 * sequencially, so that if we return skb to original state on exit,
2058 * we will not harm anyone.
2059 */
2060
2061 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2062 struct packet_type *pt, struct net_device *orig_dev)
2063 {
2064 struct sock *sk;
2065 struct sockaddr_ll *sll;
2066 struct packet_sock *po;
2067 u8 *skb_head = skb->data;
2068 int skb_len = skb->len;
2069 unsigned int snaplen, res;
2070 bool is_drop_n_account = false;
2071
2072 if (skb->pkt_type == PACKET_LOOPBACK)
2073 goto drop;
2074
2075 sk = pt->af_packet_priv;
2076 po = pkt_sk(sk);
2077
2078 if (!net_eq(dev_net(dev), sock_net(sk)))
2079 goto drop;
2080
2081 skb->dev = dev;
2082
2083 if (dev->header_ops) {
2084 /* The device has an explicit notion of ll header,
2085 * exported to higher levels.
2086 *
2087 * Otherwise, the device hides details of its frame
2088 * structure, so that corresponding packet head is
2089 * never delivered to user.
2090 */
2091 if (sk->sk_type != SOCK_DGRAM)
2092 skb_push(skb, skb->data - skb_mac_header(skb));
2093 else if (skb->pkt_type == PACKET_OUTGOING) {
2094 /* Special case: outgoing packets have ll header at head */
2095 skb_pull(skb, skb_network_offset(skb));
2096 }
2097 }
2098
2099 snaplen = skb->len;
2100
2101 res = run_filter(skb, sk, snaplen);
2102 if (!res)
2103 goto drop_n_restore;
2104 if (snaplen > res)
2105 snaplen = res;
2106
2107 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2108 goto drop_n_acct;
2109
2110 if (skb_shared(skb)) {
2111 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2112 if (nskb == NULL)
2113 goto drop_n_acct;
2114
2115 if (skb_head != skb->data) {
2116 skb->data = skb_head;
2117 skb->len = skb_len;
2118 }
2119 consume_skb(skb);
2120 skb = nskb;
2121 }
2122
2123 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2124
2125 sll = &PACKET_SKB_CB(skb)->sa.ll;
2126 sll->sll_hatype = dev->type;
2127 sll->sll_pkttype = skb->pkt_type;
2128 if (unlikely(po->origdev))
2129 sll->sll_ifindex = orig_dev->ifindex;
2130 else
2131 sll->sll_ifindex = dev->ifindex;
2132
2133 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2134
2135 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2136 * Use their space for storing the original skb length.
2137 */
2138 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2139
2140 if (pskb_trim(skb, snaplen))
2141 goto drop_n_acct;
2142
2143 skb_set_owner_r(skb, sk);
2144 skb->dev = NULL;
2145 skb_dst_drop(skb);
2146
2147 /* drop conntrack reference */
2148 nf_reset(skb);
2149
2150 spin_lock(&sk->sk_receive_queue.lock);
2151 po->stats.stats1.tp_packets++;
2152 sock_skb_set_dropcount(sk, skb);
2153 __skb_queue_tail(&sk->sk_receive_queue, skb);
2154 spin_unlock(&sk->sk_receive_queue.lock);
2155 sk->sk_data_ready(sk);
2156 return 0;
2157
2158 drop_n_acct:
2159 is_drop_n_account = true;
2160 spin_lock(&sk->sk_receive_queue.lock);
2161 po->stats.stats1.tp_drops++;
2162 atomic_inc(&sk->sk_drops);
2163 spin_unlock(&sk->sk_receive_queue.lock);
2164
2165 drop_n_restore:
2166 if (skb_head != skb->data && skb_shared(skb)) {
2167 skb->data = skb_head;
2168 skb->len = skb_len;
2169 }
2170 drop:
2171 if (!is_drop_n_account)
2172 consume_skb(skb);
2173 else
2174 kfree_skb(skb);
2175 return 0;
2176 }
2177
2178 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2179 struct packet_type *pt, struct net_device *orig_dev)
2180 {
2181 struct sock *sk;
2182 struct packet_sock *po;
2183 struct sockaddr_ll *sll;
2184 union tpacket_uhdr h;
2185 u8 *skb_head = skb->data;
2186 int skb_len = skb->len;
2187 unsigned int snaplen, res;
2188 unsigned long status = TP_STATUS_USER;
2189 unsigned short macoff, netoff, hdrlen;
2190 struct sk_buff *copy_skb = NULL;
2191 struct timespec ts;
2192 __u32 ts_status;
2193 bool is_drop_n_account = false;
2194
2195 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2196 * We may add members to them until current aligned size without forcing
2197 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2198 */
2199 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2200 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2201
2202 if (skb->pkt_type == PACKET_LOOPBACK)
2203 goto drop;
2204
2205 sk = pt->af_packet_priv;
2206 po = pkt_sk(sk);
2207
2208 if (!net_eq(dev_net(dev), sock_net(sk)))
2209 goto drop;
2210
2211 if (dev->header_ops) {
2212 if (sk->sk_type != SOCK_DGRAM)
2213 skb_push(skb, skb->data - skb_mac_header(skb));
2214 else if (skb->pkt_type == PACKET_OUTGOING) {
2215 /* Special case: outgoing packets have ll header at head */
2216 skb_pull(skb, skb_network_offset(skb));
2217 }
2218 }
2219
2220 snaplen = skb->len;
2221
2222 res = run_filter(skb, sk, snaplen);
2223 if (!res)
2224 goto drop_n_restore;
2225
2226 if (skb->ip_summed == CHECKSUM_PARTIAL)
2227 status |= TP_STATUS_CSUMNOTREADY;
2228 else if (skb->pkt_type != PACKET_OUTGOING &&
2229 (skb->ip_summed == CHECKSUM_COMPLETE ||
2230 skb_csum_unnecessary(skb)))
2231 status |= TP_STATUS_CSUM_VALID;
2232
2233 if (snaplen > res)
2234 snaplen = res;
2235
2236 if (sk->sk_type == SOCK_DGRAM) {
2237 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2238 po->tp_reserve;
2239 } else {
2240 unsigned int maclen = skb_network_offset(skb);
2241 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2242 (maclen < 16 ? 16 : maclen)) +
2243 po->tp_reserve;
2244 if (po->has_vnet_hdr)
2245 netoff += sizeof(struct virtio_net_hdr);
2246 macoff = netoff - maclen;
2247 }
2248 if (po->tp_version <= TPACKET_V2) {
2249 if (macoff + snaplen > po->rx_ring.frame_size) {
2250 if (po->copy_thresh &&
2251 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2252 if (skb_shared(skb)) {
2253 copy_skb = skb_clone(skb, GFP_ATOMIC);
2254 } else {
2255 copy_skb = skb_get(skb);
2256 skb_head = skb->data;
2257 }
2258 if (copy_skb)
2259 skb_set_owner_r(copy_skb, sk);
2260 }
2261 snaplen = po->rx_ring.frame_size - macoff;
2262 if ((int)snaplen < 0)
2263 snaplen = 0;
2264 }
2265 } else if (unlikely(macoff + snaplen >
2266 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2267 u32 nval;
2268
2269 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2270 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2271 snaplen, nval, macoff);
2272 snaplen = nval;
2273 if (unlikely((int)snaplen < 0)) {
2274 snaplen = 0;
2275 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2276 }
2277 }
2278 spin_lock(&sk->sk_receive_queue.lock);
2279 h.raw = packet_current_rx_frame(po, skb,
2280 TP_STATUS_KERNEL, (macoff+snaplen));
2281 if (!h.raw)
2282 goto drop_n_account;
2283 if (po->tp_version <= TPACKET_V2) {
2284 packet_increment_rx_head(po, &po->rx_ring);
2285 /*
2286 * LOSING will be reported till you read the stats,
2287 * because it's COR - Clear On Read.
2288 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2289 * at packet level.
2290 */
2291 if (po->stats.stats1.tp_drops)
2292 status |= TP_STATUS_LOSING;
2293 }
2294 po->stats.stats1.tp_packets++;
2295 if (copy_skb) {
2296 status |= TP_STATUS_COPY;
2297 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2298 }
2299 spin_unlock(&sk->sk_receive_queue.lock);
2300
2301 if (po->has_vnet_hdr) {
2302 if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2303 sizeof(struct virtio_net_hdr),
2304 vio_le(), true)) {
2305 spin_lock(&sk->sk_receive_queue.lock);
2306 goto drop_n_account;
2307 }
2308 }
2309
2310 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2311
2312 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2313 getnstimeofday(&ts);
2314
2315 status |= ts_status;
2316
2317 switch (po->tp_version) {
2318 case TPACKET_V1:
2319 h.h1->tp_len = skb->len;
2320 h.h1->tp_snaplen = snaplen;
2321 h.h1->tp_mac = macoff;
2322 h.h1->tp_net = netoff;
2323 h.h1->tp_sec = ts.tv_sec;
2324 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2325 hdrlen = sizeof(*h.h1);
2326 break;
2327 case TPACKET_V2:
2328 h.h2->tp_len = skb->len;
2329 h.h2->tp_snaplen = snaplen;
2330 h.h2->tp_mac = macoff;
2331 h.h2->tp_net = netoff;
2332 h.h2->tp_sec = ts.tv_sec;
2333 h.h2->tp_nsec = ts.tv_nsec;
2334 if (skb_vlan_tag_present(skb)) {
2335 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2336 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2337 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2338 } else {
2339 h.h2->tp_vlan_tci = 0;
2340 h.h2->tp_vlan_tpid = 0;
2341 }
2342 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2343 hdrlen = sizeof(*h.h2);
2344 break;
2345 case TPACKET_V3:
2346 /* tp_nxt_offset,vlan are already populated above.
2347 * So DONT clear those fields here
2348 */
2349 h.h3->tp_status |= status;
2350 h.h3->tp_len = skb->len;
2351 h.h3->tp_snaplen = snaplen;
2352 h.h3->tp_mac = macoff;
2353 h.h3->tp_net = netoff;
2354 h.h3->tp_sec = ts.tv_sec;
2355 h.h3->tp_nsec = ts.tv_nsec;
2356 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2357 hdrlen = sizeof(*h.h3);
2358 break;
2359 default:
2360 BUG();
2361 }
2362
2363 sll = h.raw + TPACKET_ALIGN(hdrlen);
2364 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2365 sll->sll_family = AF_PACKET;
2366 sll->sll_hatype = dev->type;
2367 sll->sll_protocol = skb->protocol;
2368 sll->sll_pkttype = skb->pkt_type;
2369 if (unlikely(po->origdev))
2370 sll->sll_ifindex = orig_dev->ifindex;
2371 else
2372 sll->sll_ifindex = dev->ifindex;
2373
2374 smp_mb();
2375
2376 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2377 if (po->tp_version <= TPACKET_V2) {
2378 u8 *start, *end;
2379
2380 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2381 macoff + snaplen);
2382
2383 for (start = h.raw; start < end; start += PAGE_SIZE)
2384 flush_dcache_page(pgv_to_page(start));
2385 }
2386 smp_wmb();
2387 #endif
2388
2389 if (po->tp_version <= TPACKET_V2) {
2390 __packet_set_status(po, h.raw, status);
2391 sk->sk_data_ready(sk);
2392 } else {
2393 prb_clear_blk_fill_status(&po->rx_ring);
2394 }
2395
2396 drop_n_restore:
2397 if (skb_head != skb->data && skb_shared(skb)) {
2398 skb->data = skb_head;
2399 skb->len = skb_len;
2400 }
2401 drop:
2402 if (!is_drop_n_account)
2403 consume_skb(skb);
2404 else
2405 kfree_skb(skb);
2406 return 0;
2407
2408 drop_n_account:
2409 is_drop_n_account = true;
2410 po->stats.stats1.tp_drops++;
2411 spin_unlock(&sk->sk_receive_queue.lock);
2412
2413 sk->sk_data_ready(sk);
2414 kfree_skb(copy_skb);
2415 goto drop_n_restore;
2416 }
2417
2418 static void tpacket_destruct_skb(struct sk_buff *skb)
2419 {
2420 struct packet_sock *po = pkt_sk(skb->sk);
2421
2422 if (likely(po->tx_ring.pg_vec)) {
2423 void *ph;
2424 __u32 ts;
2425
2426 ph = skb_shinfo(skb)->destructor_arg;
2427 packet_dec_pending(&po->tx_ring);
2428
2429 ts = __packet_set_timestamp(po, ph, skb);
2430 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2431 }
2432
2433 sock_wfree(skb);
2434 }
2435
2436 static void tpacket_set_protocol(const struct net_device *dev,
2437 struct sk_buff *skb)
2438 {
2439 if (dev->type == ARPHRD_ETHER) {
2440 skb_reset_mac_header(skb);
2441 skb->protocol = eth_hdr(skb)->h_proto;
2442 }
2443 }
2444
2445 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2446 {
2447 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2448 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2449 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2450 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2451 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2452 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2453 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2454
2455 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2456 return -EINVAL;
2457
2458 return 0;
2459 }
2460
2461 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2462 struct virtio_net_hdr *vnet_hdr)
2463 {
2464 if (*len < sizeof(*vnet_hdr))
2465 return -EINVAL;
2466 *len -= sizeof(*vnet_hdr);
2467
2468 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2469 return -EFAULT;
2470
2471 return __packet_snd_vnet_parse(vnet_hdr, *len);
2472 }
2473
2474 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2475 void *frame, struct net_device *dev, void *data, int tp_len,
2476 __be16 proto, unsigned char *addr, int hlen, int copylen,
2477 const struct sockcm_cookie *sockc)
2478 {
2479 union tpacket_uhdr ph;
2480 int to_write, offset, len, nr_frags, len_max;
2481 struct socket *sock = po->sk.sk_socket;
2482 struct page *page;
2483 int err;
2484
2485 ph.raw = frame;
2486
2487 skb->protocol = proto;
2488 skb->dev = dev;
2489 skb->priority = po->sk.sk_priority;
2490 skb->mark = po->sk.sk_mark;
2491 sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2492 skb_shinfo(skb)->destructor_arg = ph.raw;
2493
2494 skb_reserve(skb, hlen);
2495 skb_reset_network_header(skb);
2496
2497 to_write = tp_len;
2498
2499 if (sock->type == SOCK_DGRAM) {
2500 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2501 NULL, tp_len);
2502 if (unlikely(err < 0))
2503 return -EINVAL;
2504 } else if (copylen) {
2505 int hdrlen = min_t(int, copylen, tp_len);
2506
2507 skb_push(skb, dev->hard_header_len);
2508 skb_put(skb, copylen - dev->hard_header_len);
2509 err = skb_store_bits(skb, 0, data, hdrlen);
2510 if (unlikely(err))
2511 return err;
2512 if (!dev_validate_header(dev, skb->data, hdrlen))
2513 return -EINVAL;
2514 if (!skb->protocol)
2515 tpacket_set_protocol(dev, skb);
2516
2517 data += hdrlen;
2518 to_write -= hdrlen;
2519 }
2520
2521 offset = offset_in_page(data);
2522 len_max = PAGE_SIZE - offset;
2523 len = ((to_write > len_max) ? len_max : to_write);
2524
2525 skb->data_len = to_write;
2526 skb->len += to_write;
2527 skb->truesize += to_write;
2528 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2529
2530 while (likely(to_write)) {
2531 nr_frags = skb_shinfo(skb)->nr_frags;
2532
2533 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2534 pr_err("Packet exceed the number of skb frags(%lu)\n",
2535 MAX_SKB_FRAGS);
2536 return -EFAULT;
2537 }
2538
2539 page = pgv_to_page(data);
2540 data += len;
2541 flush_dcache_page(page);
2542 get_page(page);
2543 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2544 to_write -= len;
2545 offset = 0;
2546 len_max = PAGE_SIZE;
2547 len = ((to_write > len_max) ? len_max : to_write);
2548 }
2549
2550 skb_probe_transport_header(skb, 0);
2551
2552 return tp_len;
2553 }
2554
2555 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2556 int size_max, void **data)
2557 {
2558 union tpacket_uhdr ph;
2559 int tp_len, off;
2560
2561 ph.raw = frame;
2562
2563 switch (po->tp_version) {
2564 case TPACKET_V3:
2565 if (ph.h3->tp_next_offset != 0) {
2566 pr_warn_once("variable sized slot not supported");
2567 return -EINVAL;
2568 }
2569 tp_len = ph.h3->tp_len;
2570 break;
2571 case TPACKET_V2:
2572 tp_len = ph.h2->tp_len;
2573 break;
2574 default:
2575 tp_len = ph.h1->tp_len;
2576 break;
2577 }
2578 if (unlikely(tp_len > size_max)) {
2579 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2580 return -EMSGSIZE;
2581 }
2582
2583 if (unlikely(po->tp_tx_has_off)) {
2584 int off_min, off_max;
2585
2586 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2587 off_max = po->tx_ring.frame_size - tp_len;
2588 if (po->sk.sk_type == SOCK_DGRAM) {
2589 switch (po->tp_version) {
2590 case TPACKET_V3:
2591 off = ph.h3->tp_net;
2592 break;
2593 case TPACKET_V2:
2594 off = ph.h2->tp_net;
2595 break;
2596 default:
2597 off = ph.h1->tp_net;
2598 break;
2599 }
2600 } else {
2601 switch (po->tp_version) {
2602 case TPACKET_V3:
2603 off = ph.h3->tp_mac;
2604 break;
2605 case TPACKET_V2:
2606 off = ph.h2->tp_mac;
2607 break;
2608 default:
2609 off = ph.h1->tp_mac;
2610 break;
2611 }
2612 }
2613 if (unlikely((off < off_min) || (off_max < off)))
2614 return -EINVAL;
2615 } else {
2616 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2617 }
2618
2619 *data = frame + off;
2620 return tp_len;
2621 }
2622
2623 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2624 {
2625 struct sk_buff *skb;
2626 struct net_device *dev;
2627 struct virtio_net_hdr *vnet_hdr = NULL;
2628 struct sockcm_cookie sockc;
2629 __be16 proto;
2630 int err, reserve = 0;
2631 void *ph;
2632 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2633 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2634 int tp_len, size_max;
2635 unsigned char *addr;
2636 void *data;
2637 int len_sum = 0;
2638 int status = TP_STATUS_AVAILABLE;
2639 int hlen, tlen, copylen = 0;
2640
2641 mutex_lock(&po->pg_vec_lock);
2642
2643 if (likely(saddr == NULL)) {
2644 dev = packet_cached_dev_get(po);
2645 proto = po->num;
2646 addr = NULL;
2647 } else {
2648 err = -EINVAL;
2649 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2650 goto out;
2651 if (msg->msg_namelen < (saddr->sll_halen
2652 + offsetof(struct sockaddr_ll,
2653 sll_addr)))
2654 goto out;
2655 proto = saddr->sll_protocol;
2656 addr = saddr->sll_addr;
2657 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2658 }
2659
2660 err = -ENXIO;
2661 if (unlikely(dev == NULL))
2662 goto out;
2663 err = -ENETDOWN;
2664 if (unlikely(!(dev->flags & IFF_UP)))
2665 goto out_put;
2666
2667 sockc.tsflags = po->sk.sk_tsflags;
2668 if (msg->msg_controllen) {
2669 err = sock_cmsg_send(&po->sk, msg, &sockc);
2670 if (unlikely(err))
2671 goto out_put;
2672 }
2673
2674 if (po->sk.sk_socket->type == SOCK_RAW)
2675 reserve = dev->hard_header_len;
2676 size_max = po->tx_ring.frame_size
2677 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2678
2679 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2680 size_max = dev->mtu + reserve + VLAN_HLEN;
2681
2682 do {
2683 ph = packet_current_frame(po, &po->tx_ring,
2684 TP_STATUS_SEND_REQUEST);
2685 if (unlikely(ph == NULL)) {
2686 if (need_wait && need_resched())
2687 schedule();
2688 continue;
2689 }
2690
2691 skb = NULL;
2692 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2693 if (tp_len < 0)
2694 goto tpacket_error;
2695
2696 status = TP_STATUS_SEND_REQUEST;
2697 hlen = LL_RESERVED_SPACE(dev);
2698 tlen = dev->needed_tailroom;
2699 if (po->has_vnet_hdr) {
2700 vnet_hdr = data;
2701 data += sizeof(*vnet_hdr);
2702 tp_len -= sizeof(*vnet_hdr);
2703 if (tp_len < 0 ||
2704 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2705 tp_len = -EINVAL;
2706 goto tpacket_error;
2707 }
2708 copylen = __virtio16_to_cpu(vio_le(),
2709 vnet_hdr->hdr_len);
2710 }
2711 copylen = max_t(int, copylen, dev->hard_header_len);
2712 skb = sock_alloc_send_skb(&po->sk,
2713 hlen + tlen + sizeof(struct sockaddr_ll) +
2714 (copylen - dev->hard_header_len),
2715 !need_wait, &err);
2716
2717 if (unlikely(skb == NULL)) {
2718 /* we assume the socket was initially writeable ... */
2719 if (likely(len_sum > 0))
2720 err = len_sum;
2721 goto out_status;
2722 }
2723 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2724 addr, hlen, copylen, &sockc);
2725 if (likely(tp_len >= 0) &&
2726 tp_len > dev->mtu + reserve &&
2727 !po->has_vnet_hdr &&
2728 !packet_extra_vlan_len_allowed(dev, skb))
2729 tp_len = -EMSGSIZE;
2730
2731 if (unlikely(tp_len < 0)) {
2732 tpacket_error:
2733 if (po->tp_loss) {
2734 __packet_set_status(po, ph,
2735 TP_STATUS_AVAILABLE);
2736 packet_increment_head(&po->tx_ring);
2737 kfree_skb(skb);
2738 continue;
2739 } else {
2740 status = TP_STATUS_WRONG_FORMAT;
2741 err = tp_len;
2742 goto out_status;
2743 }
2744 }
2745
2746 if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2747 vio_le())) {
2748 tp_len = -EINVAL;
2749 goto tpacket_error;
2750 }
2751
2752 skb->destructor = tpacket_destruct_skb;
2753 __packet_set_status(po, ph, TP_STATUS_SENDING);
2754 packet_inc_pending(&po->tx_ring);
2755
2756 status = TP_STATUS_SEND_REQUEST;
2757 err = po->xmit(skb);
2758 if (unlikely(err > 0)) {
2759 err = net_xmit_errno(err);
2760 if (err && __packet_get_status(po, ph) ==
2761 TP_STATUS_AVAILABLE) {
2762 /* skb was destructed already */
2763 skb = NULL;
2764 goto out_status;
2765 }
2766 /*
2767 * skb was dropped but not destructed yet;
2768 * let's treat it like congestion or err < 0
2769 */
2770 err = 0;
2771 }
2772 packet_increment_head(&po->tx_ring);
2773 len_sum += tp_len;
2774 } while (likely((ph != NULL) ||
2775 /* Note: packet_read_pending() might be slow if we have
2776 * to call it as it's per_cpu variable, but in fast-path
2777 * we already short-circuit the loop with the first
2778 * condition, and luckily don't have to go that path
2779 * anyway.
2780 */
2781 (need_wait && packet_read_pending(&po->tx_ring))));
2782
2783 err = len_sum;
2784 goto out_put;
2785
2786 out_status:
2787 __packet_set_status(po, ph, status);
2788 kfree_skb(skb);
2789 out_put:
2790 dev_put(dev);
2791 out:
2792 mutex_unlock(&po->pg_vec_lock);
2793 return err;
2794 }
2795
2796 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2797 size_t reserve, size_t len,
2798 size_t linear, int noblock,
2799 int *err)
2800 {
2801 struct sk_buff *skb;
2802
2803 /* Under a page? Don't bother with paged skb. */
2804 if (prepad + len < PAGE_SIZE || !linear)
2805 linear = len;
2806
2807 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2808 err, 0);
2809 if (!skb)
2810 return NULL;
2811
2812 skb_reserve(skb, reserve);
2813 skb_put(skb, linear);
2814 skb->data_len = len - linear;
2815 skb->len += len - linear;
2816
2817 return skb;
2818 }
2819
2820 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2821 {
2822 struct sock *sk = sock->sk;
2823 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2824 struct sk_buff *skb;
2825 struct net_device *dev;
2826 __be16 proto;
2827 unsigned char *addr;
2828 int err, reserve = 0;
2829 struct sockcm_cookie sockc;
2830 struct virtio_net_hdr vnet_hdr = { 0 };
2831 int offset = 0;
2832 struct packet_sock *po = pkt_sk(sk);
2833 int hlen, tlen, linear;
2834 int extra_len = 0;
2835
2836 /*
2837 * Get and verify the address.
2838 */
2839
2840 if (likely(saddr == NULL)) {
2841 dev = packet_cached_dev_get(po);
2842 proto = po->num;
2843 addr = NULL;
2844 } else {
2845 err = -EINVAL;
2846 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2847 goto out;
2848 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2849 goto out;
2850 proto = saddr->sll_protocol;
2851 addr = saddr->sll_addr;
2852 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2853 }
2854
2855 err = -ENXIO;
2856 if (unlikely(dev == NULL))
2857 goto out_unlock;
2858 err = -ENETDOWN;
2859 if (unlikely(!(dev->flags & IFF_UP)))
2860 goto out_unlock;
2861
2862 sockc.tsflags = sk->sk_tsflags;
2863 sockc.mark = sk->sk_mark;
2864 if (msg->msg_controllen) {
2865 err = sock_cmsg_send(sk, msg, &sockc);
2866 if (unlikely(err))
2867 goto out_unlock;
2868 }
2869
2870 if (sock->type == SOCK_RAW)
2871 reserve = dev->hard_header_len;
2872 if (po->has_vnet_hdr) {
2873 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2874 if (err)
2875 goto out_unlock;
2876 }
2877
2878 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2879 if (!netif_supports_nofcs(dev)) {
2880 err = -EPROTONOSUPPORT;
2881 goto out_unlock;
2882 }
2883 extra_len = 4; /* We're doing our own CRC */
2884 }
2885
2886 err = -EMSGSIZE;
2887 if (!vnet_hdr.gso_type &&
2888 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2889 goto out_unlock;
2890
2891 err = -ENOBUFS;
2892 hlen = LL_RESERVED_SPACE(dev);
2893 tlen = dev->needed_tailroom;
2894 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2895 linear = max(linear, min_t(int, len, dev->hard_header_len));
2896 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2897 msg->msg_flags & MSG_DONTWAIT, &err);
2898 if (skb == NULL)
2899 goto out_unlock;
2900
2901 skb_set_network_header(skb, reserve);
2902
2903 err = -EINVAL;
2904 if (sock->type == SOCK_DGRAM) {
2905 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2906 if (unlikely(offset < 0))
2907 goto out_free;
2908 }
2909
2910 /* Returns -EFAULT on error */
2911 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2912 if (err)
2913 goto out_free;
2914
2915 if (sock->type == SOCK_RAW &&
2916 !dev_validate_header(dev, skb->data, len)) {
2917 err = -EINVAL;
2918 goto out_free;
2919 }
2920
2921 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2922
2923 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2924 !packet_extra_vlan_len_allowed(dev, skb)) {
2925 err = -EMSGSIZE;
2926 goto out_free;
2927 }
2928
2929 skb->protocol = proto;
2930 skb->dev = dev;
2931 skb->priority = sk->sk_priority;
2932 skb->mark = sockc.mark;
2933
2934 if (po->has_vnet_hdr) {
2935 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2936 if (err)
2937 goto out_free;
2938 len += sizeof(vnet_hdr);
2939 }
2940
2941 skb_probe_transport_header(skb, reserve);
2942
2943 if (unlikely(extra_len == 4))
2944 skb->no_fcs = 1;
2945
2946 err = po->xmit(skb);
2947 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2948 goto out_unlock;
2949
2950 dev_put(dev);
2951
2952 return len;
2953
2954 out_free:
2955 kfree_skb(skb);
2956 out_unlock:
2957 if (dev)
2958 dev_put(dev);
2959 out:
2960 return err;
2961 }
2962
2963 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2964 {
2965 struct sock *sk = sock->sk;
2966 struct packet_sock *po = pkt_sk(sk);
2967
2968 if (po->tx_ring.pg_vec)
2969 return tpacket_snd(po, msg);
2970 else
2971 return packet_snd(sock, msg, len);
2972 }
2973
2974 /*
2975 * Close a PACKET socket. This is fairly simple. We immediately go
2976 * to 'closed' state and remove our protocol entry in the device list.
2977 */
2978
2979 static int packet_release(struct socket *sock)
2980 {
2981 struct sock *sk = sock->sk;
2982 struct packet_sock *po;
2983 struct packet_fanout *f;
2984 struct net *net;
2985 union tpacket_req_u req_u;
2986
2987 if (!sk)
2988 return 0;
2989
2990 net = sock_net(sk);
2991 po = pkt_sk(sk);
2992
2993 mutex_lock(&net->packet.sklist_lock);
2994 sk_del_node_init_rcu(sk);
2995 mutex_unlock(&net->packet.sklist_lock);
2996
2997 preempt_disable();
2998 sock_prot_inuse_add(net, sk->sk_prot, -1);
2999 preempt_enable();
3000
3001 spin_lock(&po->bind_lock);
3002 unregister_prot_hook(sk, false);
3003 packet_cached_dev_reset(po);
3004
3005 if (po->prot_hook.dev) {
3006 dev_put(po->prot_hook.dev);
3007 po->prot_hook.dev = NULL;
3008 }
3009 spin_unlock(&po->bind_lock);
3010
3011 packet_flush_mclist(sk);
3012
3013 if (po->rx_ring.pg_vec) {
3014 memset(&req_u, 0, sizeof(req_u));
3015 packet_set_ring(sk, &req_u, 1, 0);
3016 }
3017
3018 if (po->tx_ring.pg_vec) {
3019 memset(&req_u, 0, sizeof(req_u));
3020 packet_set_ring(sk, &req_u, 1, 1);
3021 }
3022
3023 f = fanout_release(sk);
3024
3025 synchronize_net();
3026
3027 if (f) {
3028 fanout_release_data(f);
3029 kfree(f);
3030 }
3031 /*
3032 * Now the socket is dead. No more input will appear.
3033 */
3034 sock_orphan(sk);
3035 sock->sk = NULL;
3036
3037 /* Purge queues */
3038
3039 skb_queue_purge(&sk->sk_receive_queue);
3040 packet_free_pending(po);
3041 sk_refcnt_debug_release(sk);
3042
3043 sock_put(sk);
3044 return 0;
3045 }
3046
3047 /*
3048 * Attach a packet hook.
3049 */
3050
3051 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3052 __be16 proto)
3053 {
3054 struct packet_sock *po = pkt_sk(sk);
3055 struct net_device *dev_curr;
3056 __be16 proto_curr;
3057 bool need_rehook;
3058 struct net_device *dev = NULL;
3059 int ret = 0;
3060 bool unlisted = false;
3061
3062 if (po->fanout)
3063 return -EINVAL;
3064
3065 lock_sock(sk);
3066 spin_lock(&po->bind_lock);
3067 rcu_read_lock();
3068
3069 if (name) {
3070 dev = dev_get_by_name_rcu(sock_net(sk), name);
3071 if (!dev) {
3072 ret = -ENODEV;
3073 goto out_unlock;
3074 }
3075 } else if (ifindex) {
3076 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3077 if (!dev) {
3078 ret = -ENODEV;
3079 goto out_unlock;
3080 }
3081 }
3082
3083 if (dev)
3084 dev_hold(dev);
3085
3086 proto_curr = po->prot_hook.type;
3087 dev_curr = po->prot_hook.dev;
3088
3089 need_rehook = proto_curr != proto || dev_curr != dev;
3090
3091 if (need_rehook) {
3092 if (po->running) {
3093 rcu_read_unlock();
3094 __unregister_prot_hook(sk, true);
3095 rcu_read_lock();
3096 dev_curr = po->prot_hook.dev;
3097 if (dev)
3098 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3099 dev->ifindex);
3100 }
3101
3102 po->num = proto;
3103 po->prot_hook.type = proto;
3104
3105 if (unlikely(unlisted)) {
3106 dev_put(dev);
3107 po->prot_hook.dev = NULL;
3108 po->ifindex = -1;
3109 packet_cached_dev_reset(po);
3110 } else {
3111 po->prot_hook.dev = dev;
3112 po->ifindex = dev ? dev->ifindex : 0;
3113 packet_cached_dev_assign(po, dev);
3114 }
3115 }
3116 if (dev_curr)
3117 dev_put(dev_curr);
3118
3119 if (proto == 0 || !need_rehook)
3120 goto out_unlock;
3121
3122 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3123 register_prot_hook(sk);
3124 } else {
3125 sk->sk_err = ENETDOWN;
3126 if (!sock_flag(sk, SOCK_DEAD))
3127 sk->sk_error_report(sk);
3128 }
3129
3130 out_unlock:
3131 rcu_read_unlock();
3132 spin_unlock(&po->bind_lock);
3133 release_sock(sk);
3134 return ret;
3135 }
3136
3137 /*
3138 * Bind a packet socket to a device
3139 */
3140
3141 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3142 int addr_len)
3143 {
3144 struct sock *sk = sock->sk;
3145 char name[sizeof(uaddr->sa_data) + 1];
3146
3147 /*
3148 * Check legality
3149 */
3150
3151 if (addr_len != sizeof(struct sockaddr))
3152 return -EINVAL;
3153 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3154 * zero-terminated.
3155 */
3156 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3157 name[sizeof(uaddr->sa_data)] = 0;
3158
3159 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3160 }
3161
3162 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3163 {
3164 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3165 struct sock *sk = sock->sk;
3166
3167 /*
3168 * Check legality
3169 */
3170
3171 if (addr_len < sizeof(struct sockaddr_ll))
3172 return -EINVAL;
3173 if (sll->sll_family != AF_PACKET)
3174 return -EINVAL;
3175
3176 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3177 sll->sll_protocol ? : pkt_sk(sk)->num);
3178 }
3179
3180 static struct proto packet_proto = {
3181 .name = "PACKET",
3182 .owner = THIS_MODULE,
3183 .obj_size = sizeof(struct packet_sock),
3184 };
3185
3186 /*
3187 * Create a packet of type SOCK_PACKET.
3188 */
3189
3190 static int packet_create(struct net *net, struct socket *sock, int protocol,
3191 int kern)
3192 {
3193 struct sock *sk;
3194 struct packet_sock *po;
3195 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3196 int err;
3197
3198 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3199 return -EPERM;
3200 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3201 sock->type != SOCK_PACKET)
3202 return -ESOCKTNOSUPPORT;
3203
3204 sock->state = SS_UNCONNECTED;
3205
3206 err = -ENOBUFS;
3207 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3208 if (sk == NULL)
3209 goto out;
3210
3211 sock->ops = &packet_ops;
3212 if (sock->type == SOCK_PACKET)
3213 sock->ops = &packet_ops_spkt;
3214
3215 sock_init_data(sock, sk);
3216
3217 po = pkt_sk(sk);
3218 sk->sk_family = PF_PACKET;
3219 po->num = proto;
3220 po->xmit = dev_queue_xmit;
3221
3222 err = packet_alloc_pending(po);
3223 if (err)
3224 goto out2;
3225
3226 packet_cached_dev_reset(po);
3227
3228 sk->sk_destruct = packet_sock_destruct;
3229 sk_refcnt_debug_inc(sk);
3230
3231 /*
3232 * Attach a protocol block
3233 */
3234
3235 spin_lock_init(&po->bind_lock);
3236 mutex_init(&po->pg_vec_lock);
3237 po->rollover = NULL;
3238 po->prot_hook.func = packet_rcv;
3239
3240 if (sock->type == SOCK_PACKET)
3241 po->prot_hook.func = packet_rcv_spkt;
3242
3243 po->prot_hook.af_packet_priv = sk;
3244
3245 if (proto) {
3246 po->prot_hook.type = proto;
3247 register_prot_hook(sk);
3248 }
3249
3250 mutex_lock(&net->packet.sklist_lock);
3251 sk_add_node_rcu(sk, &net->packet.sklist);
3252 mutex_unlock(&net->packet.sklist_lock);
3253
3254 preempt_disable();
3255 sock_prot_inuse_add(net, &packet_proto, 1);
3256 preempt_enable();
3257
3258 return 0;
3259 out2:
3260 sk_free(sk);
3261 out:
3262 return err;
3263 }
3264
3265 /*
3266 * Pull a packet from our receive queue and hand it to the user.
3267 * If necessary we block.
3268 */
3269
3270 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3271 int flags)
3272 {
3273 struct sock *sk = sock->sk;
3274 struct sk_buff *skb;
3275 int copied, err;
3276 int vnet_hdr_len = 0;
3277 unsigned int origlen = 0;
3278
3279 err = -EINVAL;
3280 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3281 goto out;
3282
3283 #if 0
3284 /* What error should we return now? EUNATTACH? */
3285 if (pkt_sk(sk)->ifindex < 0)
3286 return -ENODEV;
3287 #endif
3288
3289 if (flags & MSG_ERRQUEUE) {
3290 err = sock_recv_errqueue(sk, msg, len,
3291 SOL_PACKET, PACKET_TX_TIMESTAMP);
3292 goto out;
3293 }
3294
3295 /*
3296 * Call the generic datagram receiver. This handles all sorts
3297 * of horrible races and re-entrancy so we can forget about it
3298 * in the protocol layers.
3299 *
3300 * Now it will return ENETDOWN, if device have just gone down,
3301 * but then it will block.
3302 */
3303
3304 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3305
3306 /*
3307 * An error occurred so return it. Because skb_recv_datagram()
3308 * handles the blocking we don't see and worry about blocking
3309 * retries.
3310 */
3311
3312 if (skb == NULL)
3313 goto out;
3314
3315 if (pkt_sk(sk)->pressure)
3316 packet_rcv_has_room(pkt_sk(sk), NULL);
3317
3318 if (pkt_sk(sk)->has_vnet_hdr) {
3319 err = packet_rcv_vnet(msg, skb, &len);
3320 if (err)
3321 goto out_free;
3322 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3323 }
3324
3325 /* You lose any data beyond the buffer you gave. If it worries
3326 * a user program they can ask the device for its MTU
3327 * anyway.
3328 */
3329 copied = skb->len;
3330 if (copied > len) {
3331 copied = len;
3332 msg->msg_flags |= MSG_TRUNC;
3333 }
3334
3335 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3336 if (err)
3337 goto out_free;
3338
3339 if (sock->type != SOCK_PACKET) {
3340 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3341
3342 /* Original length was stored in sockaddr_ll fields */
3343 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3344 sll->sll_family = AF_PACKET;
3345 sll->sll_protocol = skb->protocol;
3346 }
3347
3348 sock_recv_ts_and_drops(msg, sk, skb);
3349
3350 if (msg->msg_name) {
3351 /* If the address length field is there to be filled
3352 * in, we fill it in now.
3353 */
3354 if (sock->type == SOCK_PACKET) {
3355 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3356 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3357 } else {
3358 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3359
3360 msg->msg_namelen = sll->sll_halen +
3361 offsetof(struct sockaddr_ll, sll_addr);
3362 }
3363 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3364 msg->msg_namelen);
3365 }
3366
3367 if (pkt_sk(sk)->auxdata) {
3368 struct tpacket_auxdata aux;
3369
3370 aux.tp_status = TP_STATUS_USER;
3371 if (skb->ip_summed == CHECKSUM_PARTIAL)
3372 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3373 else if (skb->pkt_type != PACKET_OUTGOING &&
3374 (skb->ip_summed == CHECKSUM_COMPLETE ||
3375 skb_csum_unnecessary(skb)))
3376 aux.tp_status |= TP_STATUS_CSUM_VALID;
3377
3378 aux.tp_len = origlen;
3379 aux.tp_snaplen = skb->len;
3380 aux.tp_mac = 0;
3381 aux.tp_net = skb_network_offset(skb);
3382 if (skb_vlan_tag_present(skb)) {
3383 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3384 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3385 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3386 } else {
3387 aux.tp_vlan_tci = 0;
3388 aux.tp_vlan_tpid = 0;
3389 }
3390 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3391 }
3392
3393 /*
3394 * Free or return the buffer as appropriate. Again this
3395 * hides all the races and re-entrancy issues from us.
3396 */
3397 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3398
3399 out_free:
3400 skb_free_datagram(sk, skb);
3401 out:
3402 return err;
3403 }
3404
3405 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3406 int *uaddr_len, int peer)
3407 {
3408 struct net_device *dev;
3409 struct sock *sk = sock->sk;
3410
3411 if (peer)
3412 return -EOPNOTSUPP;
3413
3414 uaddr->sa_family = AF_PACKET;
3415 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3416 rcu_read_lock();
3417 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3418 if (dev)
3419 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3420 rcu_read_unlock();
3421 *uaddr_len = sizeof(*uaddr);
3422
3423 return 0;
3424 }
3425
3426 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3427 int *uaddr_len, int peer)
3428 {
3429 struct net_device *dev;
3430 struct sock *sk = sock->sk;
3431 struct packet_sock *po = pkt_sk(sk);
3432 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3433
3434 if (peer)
3435 return -EOPNOTSUPP;
3436
3437 sll->sll_family = AF_PACKET;
3438 sll->sll_ifindex = po->ifindex;
3439 sll->sll_protocol = po->num;
3440 sll->sll_pkttype = 0;
3441 rcu_read_lock();
3442 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3443 if (dev) {
3444 sll->sll_hatype = dev->type;
3445 sll->sll_halen = dev->addr_len;
3446 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3447 } else {
3448 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3449 sll->sll_halen = 0;
3450 }
3451 rcu_read_unlock();
3452 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3453
3454 return 0;
3455 }
3456
3457 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3458 int what)
3459 {
3460 switch (i->type) {
3461 case PACKET_MR_MULTICAST:
3462 if (i->alen != dev->addr_len)
3463 return -EINVAL;
3464 if (what > 0)
3465 return dev_mc_add(dev, i->addr);
3466 else
3467 return dev_mc_del(dev, i->addr);
3468 break;
3469 case PACKET_MR_PROMISC:
3470 return dev_set_promiscuity(dev, what);
3471 case PACKET_MR_ALLMULTI:
3472 return dev_set_allmulti(dev, what);
3473 case PACKET_MR_UNICAST:
3474 if (i->alen != dev->addr_len)
3475 return -EINVAL;
3476 if (what > 0)
3477 return dev_uc_add(dev, i->addr);
3478 else
3479 return dev_uc_del(dev, i->addr);
3480 break;
3481 default:
3482 break;
3483 }
3484 return 0;
3485 }
3486
3487 static void packet_dev_mclist_delete(struct net_device *dev,
3488 struct packet_mclist **mlp)
3489 {
3490 struct packet_mclist *ml;
3491
3492 while ((ml = *mlp) != NULL) {
3493 if (ml->ifindex == dev->ifindex) {
3494 packet_dev_mc(dev, ml, -1);
3495 *mlp = ml->next;
3496 kfree(ml);
3497 } else
3498 mlp = &ml->next;
3499 }
3500 }
3501
3502 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3503 {
3504 struct packet_sock *po = pkt_sk(sk);
3505 struct packet_mclist *ml, *i;
3506 struct net_device *dev;
3507 int err;
3508
3509 rtnl_lock();
3510
3511 err = -ENODEV;
3512 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3513 if (!dev)
3514 goto done;
3515
3516 err = -EINVAL;
3517 if (mreq->mr_alen > dev->addr_len)
3518 goto done;
3519
3520 err = -ENOBUFS;
3521 i = kmalloc(sizeof(*i), GFP_KERNEL);
3522 if (i == NULL)
3523 goto done;
3524
3525 err = 0;
3526 for (ml = po->mclist; ml; ml = ml->next) {
3527 if (ml->ifindex == mreq->mr_ifindex &&
3528 ml->type == mreq->mr_type &&
3529 ml->alen == mreq->mr_alen &&
3530 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3531 ml->count++;
3532 /* Free the new element ... */
3533 kfree(i);
3534 goto done;
3535 }
3536 }
3537
3538 i->type = mreq->mr_type;
3539 i->ifindex = mreq->mr_ifindex;
3540 i->alen = mreq->mr_alen;
3541 memcpy(i->addr, mreq->mr_address, i->alen);
3542 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3543 i->count = 1;
3544 i->next = po->mclist;
3545 po->mclist = i;
3546 err = packet_dev_mc(dev, i, 1);
3547 if (err) {
3548 po->mclist = i->next;
3549 kfree(i);
3550 }
3551
3552 done:
3553 rtnl_unlock();
3554 return err;
3555 }
3556
3557 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3558 {
3559 struct packet_mclist *ml, **mlp;
3560
3561 rtnl_lock();
3562
3563 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3564 if (ml->ifindex == mreq->mr_ifindex &&
3565 ml->type == mreq->mr_type &&
3566 ml->alen == mreq->mr_alen &&
3567 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3568 if (--ml->count == 0) {
3569 struct net_device *dev;
3570 *mlp = ml->next;
3571 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3572 if (dev)
3573 packet_dev_mc(dev, ml, -1);
3574 kfree(ml);
3575 }
3576 break;
3577 }
3578 }
3579 rtnl_unlock();
3580 return 0;
3581 }
3582
3583 static void packet_flush_mclist(struct sock *sk)
3584 {
3585 struct packet_sock *po = pkt_sk(sk);
3586 struct packet_mclist *ml;
3587
3588 if (!po->mclist)
3589 return;
3590
3591 rtnl_lock();
3592 while ((ml = po->mclist) != NULL) {
3593 struct net_device *dev;
3594
3595 po->mclist = ml->next;
3596 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3597 if (dev != NULL)
3598 packet_dev_mc(dev, ml, -1);
3599 kfree(ml);
3600 }
3601 rtnl_unlock();
3602 }
3603
3604 static int
3605 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3606 {
3607 struct sock *sk = sock->sk;
3608 struct packet_sock *po = pkt_sk(sk);
3609 int ret;
3610
3611 if (level != SOL_PACKET)
3612 return -ENOPROTOOPT;
3613
3614 switch (optname) {
3615 case PACKET_ADD_MEMBERSHIP:
3616 case PACKET_DROP_MEMBERSHIP:
3617 {
3618 struct packet_mreq_max mreq;
3619 int len = optlen;
3620 memset(&mreq, 0, sizeof(mreq));
3621 if (len < sizeof(struct packet_mreq))
3622 return -EINVAL;
3623 if (len > sizeof(mreq))
3624 len = sizeof(mreq);
3625 if (copy_from_user(&mreq, optval, len))
3626 return -EFAULT;
3627 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3628 return -EINVAL;
3629 if (optname == PACKET_ADD_MEMBERSHIP)
3630 ret = packet_mc_add(sk, &mreq);
3631 else
3632 ret = packet_mc_drop(sk, &mreq);
3633 return ret;
3634 }
3635
3636 case PACKET_RX_RING:
3637 case PACKET_TX_RING:
3638 {
3639 union tpacket_req_u req_u;
3640 int len;
3641
3642 switch (po->tp_version) {
3643 case TPACKET_V1:
3644 case TPACKET_V2:
3645 len = sizeof(req_u.req);
3646 break;
3647 case TPACKET_V3:
3648 default:
3649 len = sizeof(req_u.req3);
3650 break;
3651 }
3652 if (optlen < len)
3653 return -EINVAL;
3654 if (copy_from_user(&req_u.req, optval, len))
3655 return -EFAULT;
3656 return packet_set_ring(sk, &req_u, 0,
3657 optname == PACKET_TX_RING);
3658 }
3659 case PACKET_COPY_THRESH:
3660 {
3661 int val;
3662
3663 if (optlen != sizeof(val))
3664 return -EINVAL;
3665 if (copy_from_user(&val, optval, sizeof(val)))
3666 return -EFAULT;
3667
3668 pkt_sk(sk)->copy_thresh = val;
3669 return 0;
3670 }
3671 case PACKET_VERSION:
3672 {
3673 int val;
3674
3675 if (optlen != sizeof(val))
3676 return -EINVAL;
3677 if (copy_from_user(&val, optval, sizeof(val)))
3678 return -EFAULT;
3679 switch (val) {
3680 case TPACKET_V1:
3681 case TPACKET_V2:
3682 case TPACKET_V3:
3683 break;
3684 default:
3685 return -EINVAL;
3686 }
3687 lock_sock(sk);
3688 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3689 ret = -EBUSY;
3690 } else {
3691 po->tp_version = val;
3692 ret = 0;
3693 }
3694 release_sock(sk);
3695 return ret;
3696 }
3697 case PACKET_RESERVE:
3698 {
3699 unsigned int val;
3700
3701 if (optlen != sizeof(val))
3702 return -EINVAL;
3703 if (copy_from_user(&val, optval, sizeof(val)))
3704 return -EFAULT;
3705 if (val > INT_MAX)
3706 return -EINVAL;
3707 lock_sock(sk);
3708 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3709 ret = -EBUSY;
3710 } else {
3711 po->tp_reserve = val;
3712 ret = 0;
3713 }
3714 release_sock(sk);
3715 return ret;
3716 }
3717 case PACKET_LOSS:
3718 {
3719 unsigned int val;
3720
3721 if (optlen != sizeof(val))
3722 return -EINVAL;
3723 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3724 return -EBUSY;
3725 if (copy_from_user(&val, optval, sizeof(val)))
3726 return -EFAULT;
3727 po->tp_loss = !!val;
3728 return 0;
3729 }
3730 case PACKET_AUXDATA:
3731 {
3732 int val;
3733
3734 if (optlen < sizeof(val))
3735 return -EINVAL;
3736 if (copy_from_user(&val, optval, sizeof(val)))
3737 return -EFAULT;
3738
3739 po->auxdata = !!val;
3740 return 0;
3741 }
3742 case PACKET_ORIGDEV:
3743 {
3744 int val;
3745
3746 if (optlen < sizeof(val))
3747 return -EINVAL;
3748 if (copy_from_user(&val, optval, sizeof(val)))
3749 return -EFAULT;
3750
3751 po->origdev = !!val;
3752 return 0;
3753 }
3754 case PACKET_VNET_HDR:
3755 {
3756 int val;
3757
3758 if (sock->type != SOCK_RAW)
3759 return -EINVAL;
3760 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3761 return -EBUSY;
3762 if (optlen < sizeof(val))
3763 return -EINVAL;
3764 if (copy_from_user(&val, optval, sizeof(val)))
3765 return -EFAULT;
3766
3767 po->has_vnet_hdr = !!val;
3768 return 0;
3769 }
3770 case PACKET_TIMESTAMP:
3771 {
3772 int val;
3773
3774 if (optlen != sizeof(val))
3775 return -EINVAL;
3776 if (copy_from_user(&val, optval, sizeof(val)))
3777 return -EFAULT;
3778
3779 po->tp_tstamp = val;
3780 return 0;
3781 }
3782 case PACKET_FANOUT:
3783 {
3784 int val;
3785
3786 if (optlen != sizeof(val))
3787 return -EINVAL;
3788 if (copy_from_user(&val, optval, sizeof(val)))
3789 return -EFAULT;
3790
3791 return fanout_add(sk, val & 0xffff, val >> 16);
3792 }
3793 case PACKET_FANOUT_DATA:
3794 {
3795 if (!po->fanout)
3796 return -EINVAL;
3797
3798 return fanout_set_data(po, optval, optlen);
3799 }
3800 case PACKET_TX_HAS_OFF:
3801 {
3802 unsigned int val;
3803
3804 if (optlen != sizeof(val))
3805 return -EINVAL;
3806 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3807 return -EBUSY;
3808 if (copy_from_user(&val, optval, sizeof(val)))
3809 return -EFAULT;
3810 po->tp_tx_has_off = !!val;
3811 return 0;
3812 }
3813 case PACKET_QDISC_BYPASS:
3814 {
3815 int val;
3816
3817 if (optlen != sizeof(val))
3818 return -EINVAL;
3819 if (copy_from_user(&val, optval, sizeof(val)))
3820 return -EFAULT;
3821
3822 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3823 return 0;
3824 }
3825 default:
3826 return -ENOPROTOOPT;
3827 }
3828 }
3829
3830 static int packet_getsockopt(struct socket *sock, int level, int optname,
3831 char __user *optval, int __user *optlen)
3832 {
3833 int len;
3834 int val, lv = sizeof(val);
3835 struct sock *sk = sock->sk;
3836 struct packet_sock *po = pkt_sk(sk);
3837 void *data = &val;
3838 union tpacket_stats_u st;
3839 struct tpacket_rollover_stats rstats;
3840
3841 if (level != SOL_PACKET)
3842 return -ENOPROTOOPT;
3843
3844 if (get_user(len, optlen))
3845 return -EFAULT;
3846
3847 if (len < 0)
3848 return -EINVAL;
3849
3850 switch (optname) {
3851 case PACKET_STATISTICS:
3852 spin_lock_bh(&sk->sk_receive_queue.lock);
3853 memcpy(&st, &po->stats, sizeof(st));
3854 memset(&po->stats, 0, sizeof(po->stats));
3855 spin_unlock_bh(&sk->sk_receive_queue.lock);
3856
3857 if (po->tp_version == TPACKET_V3) {
3858 lv = sizeof(struct tpacket_stats_v3);
3859 st.stats3.tp_packets += st.stats3.tp_drops;
3860 data = &st.stats3;
3861 } else {
3862 lv = sizeof(struct tpacket_stats);
3863 st.stats1.tp_packets += st.stats1.tp_drops;
3864 data = &st.stats1;
3865 }
3866
3867 break;
3868 case PACKET_AUXDATA:
3869 val = po->auxdata;
3870 break;
3871 case PACKET_ORIGDEV:
3872 val = po->origdev;
3873 break;
3874 case PACKET_VNET_HDR:
3875 val = po->has_vnet_hdr;
3876 break;
3877 case PACKET_VERSION:
3878 val = po->tp_version;
3879 break;
3880 case PACKET_HDRLEN:
3881 if (len > sizeof(int))
3882 len = sizeof(int);
3883 if (len < sizeof(int))
3884 return -EINVAL;
3885 if (copy_from_user(&val, optval, len))
3886 return -EFAULT;
3887 switch (val) {
3888 case TPACKET_V1:
3889 val = sizeof(struct tpacket_hdr);
3890 break;
3891 case TPACKET_V2:
3892 val = sizeof(struct tpacket2_hdr);
3893 break;
3894 case TPACKET_V3:
3895 val = sizeof(struct tpacket3_hdr);
3896 break;
3897 default:
3898 return -EINVAL;
3899 }
3900 break;
3901 case PACKET_RESERVE:
3902 val = po->tp_reserve;
3903 break;
3904 case PACKET_LOSS:
3905 val = po->tp_loss;
3906 break;
3907 case PACKET_TIMESTAMP:
3908 val = po->tp_tstamp;
3909 break;
3910 case PACKET_FANOUT:
3911 val = (po->fanout ?
3912 ((u32)po->fanout->id |
3913 ((u32)po->fanout->type << 16) |
3914 ((u32)po->fanout->flags << 24)) :
3915 0);
3916 break;
3917 case PACKET_ROLLOVER_STATS:
3918 if (!po->rollover)
3919 return -EINVAL;
3920 rstats.tp_all = atomic_long_read(&po->rollover->num);
3921 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3922 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3923 data = &rstats;
3924 lv = sizeof(rstats);
3925 break;
3926 case PACKET_TX_HAS_OFF:
3927 val = po->tp_tx_has_off;
3928 break;
3929 case PACKET_QDISC_BYPASS:
3930 val = packet_use_direct_xmit(po);
3931 break;
3932 default:
3933 return -ENOPROTOOPT;
3934 }
3935
3936 if (len > lv)
3937 len = lv;
3938 if (put_user(len, optlen))
3939 return -EFAULT;
3940 if (copy_to_user(optval, data, len))
3941 return -EFAULT;
3942 return 0;
3943 }
3944
3945
3946 #ifdef CONFIG_COMPAT
3947 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3948 char __user *optval, unsigned int optlen)
3949 {
3950 struct packet_sock *po = pkt_sk(sock->sk);
3951
3952 if (level != SOL_PACKET)
3953 return -ENOPROTOOPT;
3954
3955 if (optname == PACKET_FANOUT_DATA &&
3956 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3957 optval = (char __user *)get_compat_bpf_fprog(optval);
3958 if (!optval)
3959 return -EFAULT;
3960 optlen = sizeof(struct sock_fprog);
3961 }
3962
3963 return packet_setsockopt(sock, level, optname, optval, optlen);
3964 }
3965 #endif
3966
3967 static int packet_notifier(struct notifier_block *this,
3968 unsigned long msg, void *ptr)
3969 {
3970 struct sock *sk;
3971 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3972 struct net *net = dev_net(dev);
3973
3974 rcu_read_lock();
3975 sk_for_each_rcu(sk, &net->packet.sklist) {
3976 struct packet_sock *po = pkt_sk(sk);
3977
3978 switch (msg) {
3979 case NETDEV_UNREGISTER:
3980 if (po->mclist)
3981 packet_dev_mclist_delete(dev, &po->mclist);
3982 /* fallthrough */
3983
3984 case NETDEV_DOWN:
3985 if (dev->ifindex == po->ifindex) {
3986 spin_lock(&po->bind_lock);
3987 if (po->running) {
3988 __unregister_prot_hook(sk, false);
3989 sk->sk_err = ENETDOWN;
3990 if (!sock_flag(sk, SOCK_DEAD))
3991 sk->sk_error_report(sk);
3992 }
3993 if (msg == NETDEV_UNREGISTER) {
3994 packet_cached_dev_reset(po);
3995 po->ifindex = -1;
3996 if (po->prot_hook.dev)
3997 dev_put(po->prot_hook.dev);
3998 po->prot_hook.dev = NULL;
3999 }
4000 spin_unlock(&po->bind_lock);
4001 }
4002 break;
4003 case NETDEV_UP:
4004 if (dev->ifindex == po->ifindex) {
4005 spin_lock(&po->bind_lock);
4006 if (po->num)
4007 register_prot_hook(sk);
4008 spin_unlock(&po->bind_lock);
4009 }
4010 break;
4011 }
4012 }
4013 rcu_read_unlock();
4014 return NOTIFY_DONE;
4015 }
4016
4017
4018 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4019 unsigned long arg)
4020 {
4021 struct sock *sk = sock->sk;
4022
4023 switch (cmd) {
4024 case SIOCOUTQ:
4025 {
4026 int amount = sk_wmem_alloc_get(sk);
4027
4028 return put_user(amount, (int __user *)arg);
4029 }
4030 case SIOCINQ:
4031 {
4032 struct sk_buff *skb;
4033 int amount = 0;
4034
4035 spin_lock_bh(&sk->sk_receive_queue.lock);
4036 skb = skb_peek(&sk->sk_receive_queue);
4037 if (skb)
4038 amount = skb->len;
4039 spin_unlock_bh(&sk->sk_receive_queue.lock);
4040 return put_user(amount, (int __user *)arg);
4041 }
4042 case SIOCGSTAMP:
4043 return sock_get_timestamp(sk, (struct timeval __user *)arg);
4044 case SIOCGSTAMPNS:
4045 return sock_get_timestampns(sk, (struct timespec __user *)arg);
4046
4047 #ifdef CONFIG_INET
4048 case SIOCADDRT:
4049 case SIOCDELRT:
4050 case SIOCDARP:
4051 case SIOCGARP:
4052 case SIOCSARP:
4053 case SIOCGIFADDR:
4054 case SIOCSIFADDR:
4055 case SIOCGIFBRDADDR:
4056 case SIOCSIFBRDADDR:
4057 case SIOCGIFNETMASK:
4058 case SIOCSIFNETMASK:
4059 case SIOCGIFDSTADDR:
4060 case SIOCSIFDSTADDR:
4061 case SIOCSIFFLAGS:
4062 return inet_dgram_ops.ioctl(sock, cmd, arg);
4063 #endif
4064
4065 default:
4066 return -ENOIOCTLCMD;
4067 }
4068 return 0;
4069 }
4070
4071 static unsigned int packet_poll(struct file *file, struct socket *sock,
4072 poll_table *wait)
4073 {
4074 struct sock *sk = sock->sk;
4075 struct packet_sock *po = pkt_sk(sk);
4076 unsigned int mask = datagram_poll(file, sock, wait);
4077
4078 spin_lock_bh(&sk->sk_receive_queue.lock);
4079 if (po->rx_ring.pg_vec) {
4080 if (!packet_previous_rx_frame(po, &po->rx_ring,
4081 TP_STATUS_KERNEL))
4082 mask |= POLLIN | POLLRDNORM;
4083 }
4084 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4085 po->pressure = 0;
4086 spin_unlock_bh(&sk->sk_receive_queue.lock);
4087 spin_lock_bh(&sk->sk_write_queue.lock);
4088 if (po->tx_ring.pg_vec) {
4089 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4090 mask |= POLLOUT | POLLWRNORM;
4091 }
4092 spin_unlock_bh(&sk->sk_write_queue.lock);
4093 return mask;
4094 }
4095
4096
4097 /* Dirty? Well, I still did not learn better way to account
4098 * for user mmaps.
4099 */
4100
4101 static void packet_mm_open(struct vm_area_struct *vma)
4102 {
4103 struct file *file = vma->vm_file;
4104 struct socket *sock = file->private_data;
4105 struct sock *sk = sock->sk;
4106
4107 if (sk)
4108 atomic_inc(&pkt_sk(sk)->mapped);
4109 }
4110
4111 static void packet_mm_close(struct vm_area_struct *vma)
4112 {
4113 struct file *file = vma->vm_file;
4114 struct socket *sock = file->private_data;
4115 struct sock *sk = sock->sk;
4116
4117 if (sk)
4118 atomic_dec(&pkt_sk(sk)->mapped);
4119 }
4120
4121 static const struct vm_operations_struct packet_mmap_ops = {
4122 .open = packet_mm_open,
4123 .close = packet_mm_close,
4124 };
4125
4126 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4127 unsigned int len)
4128 {
4129 int i;
4130
4131 for (i = 0; i < len; i++) {
4132 if (likely(pg_vec[i].buffer)) {
4133 if (is_vmalloc_addr(pg_vec[i].buffer))
4134 vfree(pg_vec[i].buffer);
4135 else
4136 free_pages((unsigned long)pg_vec[i].buffer,
4137 order);
4138 pg_vec[i].buffer = NULL;
4139 }
4140 }
4141 kfree(pg_vec);
4142 }
4143
4144 static char *alloc_one_pg_vec_page(unsigned long order)
4145 {
4146 char *buffer;
4147 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4148 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4149
4150 buffer = (char *) __get_free_pages(gfp_flags, order);
4151 if (buffer)
4152 return buffer;
4153
4154 /* __get_free_pages failed, fall back to vmalloc */
4155 buffer = vzalloc((1 << order) * PAGE_SIZE);
4156 if (buffer)
4157 return buffer;
4158
4159 /* vmalloc failed, lets dig into swap here */
4160 gfp_flags &= ~__GFP_NORETRY;
4161 buffer = (char *) __get_free_pages(gfp_flags, order);
4162 if (buffer)
4163 return buffer;
4164
4165 /* complete and utter failure */
4166 return NULL;
4167 }
4168
4169 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4170 {
4171 unsigned int block_nr = req->tp_block_nr;
4172 struct pgv *pg_vec;
4173 int i;
4174
4175 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4176 if (unlikely(!pg_vec))
4177 goto out;
4178
4179 for (i = 0; i < block_nr; i++) {
4180 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4181 if (unlikely(!pg_vec[i].buffer))
4182 goto out_free_pgvec;
4183 }
4184
4185 out:
4186 return pg_vec;
4187
4188 out_free_pgvec:
4189 free_pg_vec(pg_vec, order, block_nr);
4190 pg_vec = NULL;
4191 goto out;
4192 }
4193
4194 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4195 int closing, int tx_ring)
4196 {
4197 struct pgv *pg_vec = NULL;
4198 struct packet_sock *po = pkt_sk(sk);
4199 int was_running, order = 0;
4200 struct packet_ring_buffer *rb;
4201 struct sk_buff_head *rb_queue;
4202 __be16 num;
4203 int err = -EINVAL;
4204 /* Added to avoid minimal code churn */
4205 struct tpacket_req *req = &req_u->req;
4206
4207 lock_sock(sk);
4208
4209 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4210 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4211
4212 err = -EBUSY;
4213 if (!closing) {
4214 if (atomic_read(&po->mapped))
4215 goto out;
4216 if (packet_read_pending(rb))
4217 goto out;
4218 }
4219
4220 if (req->tp_block_nr) {
4221 /* Sanity tests and some calculations */
4222 err = -EBUSY;
4223 if (unlikely(rb->pg_vec))
4224 goto out;
4225
4226 switch (po->tp_version) {
4227 case TPACKET_V1:
4228 po->tp_hdrlen = TPACKET_HDRLEN;
4229 break;
4230 case TPACKET_V2:
4231 po->tp_hdrlen = TPACKET2_HDRLEN;
4232 break;
4233 case TPACKET_V3:
4234 po->tp_hdrlen = TPACKET3_HDRLEN;
4235 break;
4236 }
4237
4238 err = -EINVAL;
4239 if (unlikely((int)req->tp_block_size <= 0))
4240 goto out;
4241 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4242 goto out;
4243 if (po->tp_version >= TPACKET_V3 &&
4244 req->tp_block_size <=
4245 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv))
4246 goto out;
4247 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4248 po->tp_reserve))
4249 goto out;
4250 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4251 goto out;
4252
4253 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4254 if (unlikely(rb->frames_per_block == 0))
4255 goto out;
4256 if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4257 goto out;
4258 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4259 req->tp_frame_nr))
4260 goto out;
4261
4262 err = -ENOMEM;
4263 order = get_order(req->tp_block_size);
4264 pg_vec = alloc_pg_vec(req, order);
4265 if (unlikely(!pg_vec))
4266 goto out;
4267 switch (po->tp_version) {
4268 case TPACKET_V3:
4269 /* Block transmit is not supported yet */
4270 if (!tx_ring) {
4271 init_prb_bdqc(po, rb, pg_vec, req_u);
4272 } else {
4273 struct tpacket_req3 *req3 = &req_u->req3;
4274
4275 if (req3->tp_retire_blk_tov ||
4276 req3->tp_sizeof_priv ||
4277 req3->tp_feature_req_word) {
4278 err = -EINVAL;
4279 goto out;
4280 }
4281 }
4282 break;
4283 default:
4284 break;
4285 }
4286 }
4287 /* Done */
4288 else {
4289 err = -EINVAL;
4290 if (unlikely(req->tp_frame_nr))
4291 goto out;
4292 }
4293
4294
4295 /* Detach socket from network */
4296 spin_lock(&po->bind_lock);
4297 was_running = po->running;
4298 num = po->num;
4299 if (was_running) {
4300 po->num = 0;
4301 __unregister_prot_hook(sk, false);
4302 }
4303 spin_unlock(&po->bind_lock);
4304
4305 synchronize_net();
4306
4307 err = -EBUSY;
4308 mutex_lock(&po->pg_vec_lock);
4309 if (closing || atomic_read(&po->mapped) == 0) {
4310 err = 0;
4311 spin_lock_bh(&rb_queue->lock);
4312 swap(rb->pg_vec, pg_vec);
4313 rb->frame_max = (req->tp_frame_nr - 1);
4314 rb->head = 0;
4315 rb->frame_size = req->tp_frame_size;
4316 spin_unlock_bh(&rb_queue->lock);
4317
4318 swap(rb->pg_vec_order, order);
4319 swap(rb->pg_vec_len, req->tp_block_nr);
4320
4321 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4322 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4323 tpacket_rcv : packet_rcv;
4324 skb_queue_purge(rb_queue);
4325 if (atomic_read(&po->mapped))
4326 pr_err("packet_mmap: vma is busy: %d\n",
4327 atomic_read(&po->mapped));
4328 }
4329 mutex_unlock(&po->pg_vec_lock);
4330
4331 spin_lock(&po->bind_lock);
4332 if (was_running) {
4333 po->num = num;
4334 register_prot_hook(sk);
4335 }
4336 spin_unlock(&po->bind_lock);
4337 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4338 /* Because we don't support block-based V3 on tx-ring */
4339 if (!tx_ring)
4340 prb_shutdown_retire_blk_timer(po, rb_queue);
4341 }
4342
4343 if (pg_vec)
4344 free_pg_vec(pg_vec, order, req->tp_block_nr);
4345 out:
4346 release_sock(sk);
4347 return err;
4348 }
4349
4350 static int packet_mmap(struct file *file, struct socket *sock,
4351 struct vm_area_struct *vma)
4352 {
4353 struct sock *sk = sock->sk;
4354 struct packet_sock *po = pkt_sk(sk);
4355 unsigned long size, expected_size;
4356 struct packet_ring_buffer *rb;
4357 unsigned long start;
4358 int err = -EINVAL;
4359 int i;
4360
4361 if (vma->vm_pgoff)
4362 return -EINVAL;
4363
4364 mutex_lock(&po->pg_vec_lock);
4365
4366 expected_size = 0;
4367 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4368 if (rb->pg_vec) {
4369 expected_size += rb->pg_vec_len
4370 * rb->pg_vec_pages
4371 * PAGE_SIZE;
4372 }
4373 }
4374
4375 if (expected_size == 0)
4376 goto out;
4377
4378 size = vma->vm_end - vma->vm_start;
4379 if (size != expected_size)
4380 goto out;
4381
4382 start = vma->vm_start;
4383 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4384 if (rb->pg_vec == NULL)
4385 continue;
4386
4387 for (i = 0; i < rb->pg_vec_len; i++) {
4388 struct page *page;
4389 void *kaddr = rb->pg_vec[i].buffer;
4390 int pg_num;
4391
4392 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4393 page = pgv_to_page(kaddr);
4394 err = vm_insert_page(vma, start, page);
4395 if (unlikely(err))
4396 goto out;
4397 start += PAGE_SIZE;
4398 kaddr += PAGE_SIZE;
4399 }
4400 }
4401 }
4402
4403 atomic_inc(&po->mapped);
4404 vma->vm_ops = &packet_mmap_ops;
4405 err = 0;
4406
4407 out:
4408 mutex_unlock(&po->pg_vec_lock);
4409 return err;
4410 }
4411
4412 static const struct proto_ops packet_ops_spkt = {
4413 .family = PF_PACKET,
4414 .owner = THIS_MODULE,
4415 .release = packet_release,
4416 .bind = packet_bind_spkt,
4417 .connect = sock_no_connect,
4418 .socketpair = sock_no_socketpair,
4419 .accept = sock_no_accept,
4420 .getname = packet_getname_spkt,
4421 .poll = datagram_poll,
4422 .ioctl = packet_ioctl,
4423 .listen = sock_no_listen,
4424 .shutdown = sock_no_shutdown,
4425 .setsockopt = sock_no_setsockopt,
4426 .getsockopt = sock_no_getsockopt,
4427 .sendmsg = packet_sendmsg_spkt,
4428 .recvmsg = packet_recvmsg,
4429 .mmap = sock_no_mmap,
4430 .sendpage = sock_no_sendpage,
4431 };
4432
4433 static const struct proto_ops packet_ops = {
4434 .family = PF_PACKET,
4435 .owner = THIS_MODULE,
4436 .release = packet_release,
4437 .bind = packet_bind,
4438 .connect = sock_no_connect,
4439 .socketpair = sock_no_socketpair,
4440 .accept = sock_no_accept,
4441 .getname = packet_getname,
4442 .poll = packet_poll,
4443 .ioctl = packet_ioctl,
4444 .listen = sock_no_listen,
4445 .shutdown = sock_no_shutdown,
4446 .setsockopt = packet_setsockopt,
4447 .getsockopt = packet_getsockopt,
4448 #ifdef CONFIG_COMPAT
4449 .compat_setsockopt = compat_packet_setsockopt,
4450 #endif
4451 .sendmsg = packet_sendmsg,
4452 .recvmsg = packet_recvmsg,
4453 .mmap = packet_mmap,
4454 .sendpage = sock_no_sendpage,
4455 };
4456
4457 static const struct net_proto_family packet_family_ops = {
4458 .family = PF_PACKET,
4459 .create = packet_create,
4460 .owner = THIS_MODULE,
4461 };
4462
4463 static struct notifier_block packet_netdev_notifier = {
4464 .notifier_call = packet_notifier,
4465 };
4466
4467 #ifdef CONFIG_PROC_FS
4468
4469 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4470 __acquires(RCU)
4471 {
4472 struct net *net = seq_file_net(seq);
4473
4474 rcu_read_lock();
4475 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4476 }
4477
4478 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4479 {
4480 struct net *net = seq_file_net(seq);
4481 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4482 }
4483
4484 static void packet_seq_stop(struct seq_file *seq, void *v)
4485 __releases(RCU)
4486 {
4487 rcu_read_unlock();
4488 }
4489
4490 static int packet_seq_show(struct seq_file *seq, void *v)
4491 {
4492 if (v == SEQ_START_TOKEN)
4493 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4494 else {
4495 struct sock *s = sk_entry(v);
4496 const struct packet_sock *po = pkt_sk(s);
4497
4498 seq_printf(seq,
4499 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4500 s,
4501 refcount_read(&s->sk_refcnt),
4502 s->sk_type,
4503 ntohs(po->num),
4504 po->ifindex,
4505 po->running,
4506 atomic_read(&s->sk_rmem_alloc),
4507 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4508 sock_i_ino(s));
4509 }
4510
4511 return 0;
4512 }
4513
4514 static const struct seq_operations packet_seq_ops = {
4515 .start = packet_seq_start,
4516 .next = packet_seq_next,
4517 .stop = packet_seq_stop,
4518 .show = packet_seq_show,
4519 };
4520
4521 static int packet_seq_open(struct inode *inode, struct file *file)
4522 {
4523 return seq_open_net(inode, file, &packet_seq_ops,
4524 sizeof(struct seq_net_private));
4525 }
4526
4527 static const struct file_operations packet_seq_fops = {
4528 .owner = THIS_MODULE,
4529 .open = packet_seq_open,
4530 .read = seq_read,
4531 .llseek = seq_lseek,
4532 .release = seq_release_net,
4533 };
4534
4535 #endif
4536
4537 static int __net_init packet_net_init(struct net *net)
4538 {
4539 mutex_init(&net->packet.sklist_lock);
4540 INIT_HLIST_HEAD(&net->packet.sklist);
4541
4542 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4543 return -ENOMEM;
4544
4545 return 0;
4546 }
4547
4548 static void __net_exit packet_net_exit(struct net *net)
4549 {
4550 remove_proc_entry("packet", net->proc_net);
4551 }
4552
4553 static struct pernet_operations packet_net_ops = {
4554 .init = packet_net_init,
4555 .exit = packet_net_exit,
4556 };
4557
4558
4559 static void __exit packet_exit(void)
4560 {
4561 unregister_netdevice_notifier(&packet_netdev_notifier);
4562 unregister_pernet_subsys(&packet_net_ops);
4563 sock_unregister(PF_PACKET);
4564 proto_unregister(&packet_proto);
4565 }
4566
4567 static int __init packet_init(void)
4568 {
4569 int rc = proto_register(&packet_proto, 0);
4570
4571 if (rc != 0)
4572 goto out;
4573
4574 sock_register(&packet_family_ops);
4575 register_pernet_subsys(&packet_net_ops);
4576 register_netdevice_notifier(&packet_netdev_notifier);
4577 out:
4578 return rc;
4579 }
4580
4581 module_init(packet_init);
4582 module_exit(packet_exit);
4583 MODULE_LICENSE("GPL");
4584 MODULE_ALIAS_NETPROTO(PF_PACKET);