]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/packet/af_packet.c
net: simplify cBPF setsockopt compat handling
[mirror_ubuntu-hirsute-kernel.git] / net / packet / af_packet.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * PACKET - implements raw packet sockets.
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Alan Cox, <gw4pts@gw4pts.ampr.org>
12 *
13 * Fixes:
14 * Alan Cox : verify_area() now used correctly
15 * Alan Cox : new skbuff lists, look ma no backlogs!
16 * Alan Cox : tidied skbuff lists.
17 * Alan Cox : Now uses generic datagram routines I
18 * added. Also fixed the peek/read crash
19 * from all old Linux datagram code.
20 * Alan Cox : Uses the improved datagram code.
21 * Alan Cox : Added NULL's for socket options.
22 * Alan Cox : Re-commented the code.
23 * Alan Cox : Use new kernel side addressing
24 * Rob Janssen : Correct MTU usage.
25 * Dave Platt : Counter leaks caused by incorrect
26 * interrupt locking and some slightly
27 * dubious gcc output. Can you read
28 * compiler: it said _VOLATILE_
29 * Richard Kooijman : Timestamp fixes.
30 * Alan Cox : New buffers. Use sk->mac.raw.
31 * Alan Cox : sendmsg/recvmsg support.
32 * Alan Cox : Protocol setting support
33 * Alexey Kuznetsov : Untied from IPv4 stack.
34 * Cyrus Durgin : Fixed kerneld for kmod.
35 * Michal Ostrowski : Module initialization cleanup.
36 * Ulises Alonso : Frame number limit removal and
37 * packet_set_ring memory leak.
38 * Eric Biederman : Allow for > 8 byte hardware addresses.
39 * The convention is that longer addresses
40 * will simply extend the hardware address
41 * byte arrays at the end of sockaddr_ll
42 * and packet_mreq.
43 * Johann Baudy : Added TX RING.
44 * Chetan Loke : Implemented TPACKET_V3 block abstraction
45 * layer.
46 * Copyright (C) 2011, <lokec@ccs.neu.edu>
47 */
48
49 #include <linux/types.h>
50 #include <linux/mm.h>
51 #include <linux/capability.h>
52 #include <linux/fcntl.h>
53 #include <linux/socket.h>
54 #include <linux/in.h>
55 #include <linux/inet.h>
56 #include <linux/netdevice.h>
57 #include <linux/if_packet.h>
58 #include <linux/wireless.h>
59 #include <linux/kernel.h>
60 #include <linux/kmod.h>
61 #include <linux/slab.h>
62 #include <linux/vmalloc.h>
63 #include <net/net_namespace.h>
64 #include <net/ip.h>
65 #include <net/protocol.h>
66 #include <linux/skbuff.h>
67 #include <net/sock.h>
68 #include <linux/errno.h>
69 #include <linux/timer.h>
70 #include <linux/uaccess.h>
71 #include <asm/ioctls.h>
72 #include <asm/page.h>
73 #include <asm/cacheflush.h>
74 #include <asm/io.h>
75 #include <linux/proc_fs.h>
76 #include <linux/seq_file.h>
77 #include <linux/poll.h>
78 #include <linux/module.h>
79 #include <linux/init.h>
80 #include <linux/mutex.h>
81 #include <linux/if_vlan.h>
82 #include <linux/virtio_net.h>
83 #include <linux/errqueue.h>
84 #include <linux/net_tstamp.h>
85 #include <linux/percpu.h>
86 #ifdef CONFIG_INET
87 #include <net/inet_common.h>
88 #endif
89 #include <linux/bpf.h>
90 #include <net/compat.h>
91
92 #include "internal.h"
93
94 /*
95 Assumptions:
96 - if device has no dev->hard_header routine, it adds and removes ll header
97 inside itself. In this case ll header is invisible outside of device,
98 but higher levels still should reserve dev->hard_header_len.
99 Some devices are enough clever to reallocate skb, when header
100 will not fit to reserved space (tunnel), another ones are silly
101 (PPP).
102 - packet socket receives packets with pulled ll header,
103 so that SOCK_RAW should push it back.
104
105 On receive:
106 -----------
107
108 Incoming, dev->hard_header!=NULL
109 mac_header -> ll header
110 data -> data
111
112 Outgoing, dev->hard_header!=NULL
113 mac_header -> ll header
114 data -> ll header
115
116 Incoming, dev->hard_header==NULL
117 mac_header -> UNKNOWN position. It is very likely, that it points to ll
118 header. PPP makes it, that is wrong, because introduce
119 assymetry between rx and tx paths.
120 data -> data
121
122 Outgoing, dev->hard_header==NULL
123 mac_header -> data. ll header is still not built!
124 data -> data
125
126 Resume
127 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
128
129
130 On transmit:
131 ------------
132
133 dev->hard_header != NULL
134 mac_header -> ll header
135 data -> ll header
136
137 dev->hard_header == NULL (ll header is added by device, we cannot control it)
138 mac_header -> data
139 data -> data
140
141 We should set nh.raw on output to correct posistion,
142 packet classifier depends on it.
143 */
144
145 /* Private packet socket structures. */
146
147 /* identical to struct packet_mreq except it has
148 * a longer address field.
149 */
150 struct packet_mreq_max {
151 int mr_ifindex;
152 unsigned short mr_type;
153 unsigned short mr_alen;
154 unsigned char mr_address[MAX_ADDR_LEN];
155 };
156
157 union tpacket_uhdr {
158 struct tpacket_hdr *h1;
159 struct tpacket2_hdr *h2;
160 struct tpacket3_hdr *h3;
161 void *raw;
162 };
163
164 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
165 int closing, int tx_ring);
166
167 #define V3_ALIGNMENT (8)
168
169 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
170
171 #define BLK_PLUS_PRIV(sz_of_priv) \
172 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
173
174 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
175 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
176 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
177 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
178 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
179 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
180 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
181
182 struct packet_sock;
183 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
184 struct packet_type *pt, struct net_device *orig_dev);
185
186 static void *packet_previous_frame(struct packet_sock *po,
187 struct packet_ring_buffer *rb,
188 int status);
189 static void packet_increment_head(struct packet_ring_buffer *buff);
190 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
191 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
192 struct packet_sock *);
193 static void prb_retire_current_block(struct tpacket_kbdq_core *,
194 struct packet_sock *, unsigned int status);
195 static int prb_queue_frozen(struct tpacket_kbdq_core *);
196 static void prb_open_block(struct tpacket_kbdq_core *,
197 struct tpacket_block_desc *);
198 static void prb_retire_rx_blk_timer_expired(struct timer_list *);
199 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
200 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
201 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
202 struct tpacket3_hdr *);
203 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
204 struct tpacket3_hdr *);
205 static void packet_flush_mclist(struct sock *sk);
206 static u16 packet_pick_tx_queue(struct sk_buff *skb);
207
208 struct packet_skb_cb {
209 union {
210 struct sockaddr_pkt pkt;
211 union {
212 /* Trick: alias skb original length with
213 * ll.sll_family and ll.protocol in order
214 * to save room.
215 */
216 unsigned int origlen;
217 struct sockaddr_ll ll;
218 };
219 } sa;
220 };
221
222 #define vio_le() virtio_legacy_is_little_endian()
223
224 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
225
226 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
227 #define GET_PBLOCK_DESC(x, bid) \
228 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
229 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
230 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
231 #define GET_NEXT_PRB_BLK_NUM(x) \
232 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
233 ((x)->kactive_blk_num+1) : 0)
234
235 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
236 static void __fanout_link(struct sock *sk, struct packet_sock *po);
237
238 static int packet_direct_xmit(struct sk_buff *skb)
239 {
240 return dev_direct_xmit(skb, packet_pick_tx_queue(skb));
241 }
242
243 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
244 {
245 struct net_device *dev;
246
247 rcu_read_lock();
248 dev = rcu_dereference(po->cached_dev);
249 if (likely(dev))
250 dev_hold(dev);
251 rcu_read_unlock();
252
253 return dev;
254 }
255
256 static void packet_cached_dev_assign(struct packet_sock *po,
257 struct net_device *dev)
258 {
259 rcu_assign_pointer(po->cached_dev, dev);
260 }
261
262 static void packet_cached_dev_reset(struct packet_sock *po)
263 {
264 RCU_INIT_POINTER(po->cached_dev, NULL);
265 }
266
267 static bool packet_use_direct_xmit(const struct packet_sock *po)
268 {
269 return po->xmit == packet_direct_xmit;
270 }
271
272 static u16 packet_pick_tx_queue(struct sk_buff *skb)
273 {
274 struct net_device *dev = skb->dev;
275 const struct net_device_ops *ops = dev->netdev_ops;
276 int cpu = raw_smp_processor_id();
277 u16 queue_index;
278
279 #ifdef CONFIG_XPS
280 skb->sender_cpu = cpu + 1;
281 #endif
282 skb_record_rx_queue(skb, cpu % dev->real_num_tx_queues);
283 if (ops->ndo_select_queue) {
284 queue_index = ops->ndo_select_queue(dev, skb, NULL);
285 queue_index = netdev_cap_txqueue(dev, queue_index);
286 } else {
287 queue_index = netdev_pick_tx(dev, skb, NULL);
288 }
289
290 return queue_index;
291 }
292
293 /* __register_prot_hook must be invoked through register_prot_hook
294 * or from a context in which asynchronous accesses to the packet
295 * socket is not possible (packet_create()).
296 */
297 static void __register_prot_hook(struct sock *sk)
298 {
299 struct packet_sock *po = pkt_sk(sk);
300
301 if (!po->running) {
302 if (po->fanout)
303 __fanout_link(sk, po);
304 else
305 dev_add_pack(&po->prot_hook);
306
307 sock_hold(sk);
308 po->running = 1;
309 }
310 }
311
312 static void register_prot_hook(struct sock *sk)
313 {
314 lockdep_assert_held_once(&pkt_sk(sk)->bind_lock);
315 __register_prot_hook(sk);
316 }
317
318 /* If the sync parameter is true, we will temporarily drop
319 * the po->bind_lock and do a synchronize_net to make sure no
320 * asynchronous packet processing paths still refer to the elements
321 * of po->prot_hook. If the sync parameter is false, it is the
322 * callers responsibility to take care of this.
323 */
324 static void __unregister_prot_hook(struct sock *sk, bool sync)
325 {
326 struct packet_sock *po = pkt_sk(sk);
327
328 lockdep_assert_held_once(&po->bind_lock);
329
330 po->running = 0;
331
332 if (po->fanout)
333 __fanout_unlink(sk, po);
334 else
335 __dev_remove_pack(&po->prot_hook);
336
337 __sock_put(sk);
338
339 if (sync) {
340 spin_unlock(&po->bind_lock);
341 synchronize_net();
342 spin_lock(&po->bind_lock);
343 }
344 }
345
346 static void unregister_prot_hook(struct sock *sk, bool sync)
347 {
348 struct packet_sock *po = pkt_sk(sk);
349
350 if (po->running)
351 __unregister_prot_hook(sk, sync);
352 }
353
354 static inline struct page * __pure pgv_to_page(void *addr)
355 {
356 if (is_vmalloc_addr(addr))
357 return vmalloc_to_page(addr);
358 return virt_to_page(addr);
359 }
360
361 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
362 {
363 union tpacket_uhdr h;
364
365 h.raw = frame;
366 switch (po->tp_version) {
367 case TPACKET_V1:
368 h.h1->tp_status = status;
369 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
370 break;
371 case TPACKET_V2:
372 h.h2->tp_status = status;
373 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
374 break;
375 case TPACKET_V3:
376 h.h3->tp_status = status;
377 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
378 break;
379 default:
380 WARN(1, "TPACKET version not supported.\n");
381 BUG();
382 }
383
384 smp_wmb();
385 }
386
387 static int __packet_get_status(const struct packet_sock *po, void *frame)
388 {
389 union tpacket_uhdr h;
390
391 smp_rmb();
392
393 h.raw = frame;
394 switch (po->tp_version) {
395 case TPACKET_V1:
396 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
397 return h.h1->tp_status;
398 case TPACKET_V2:
399 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
400 return h.h2->tp_status;
401 case TPACKET_V3:
402 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
403 return h.h3->tp_status;
404 default:
405 WARN(1, "TPACKET version not supported.\n");
406 BUG();
407 return 0;
408 }
409 }
410
411 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec64 *ts,
412 unsigned int flags)
413 {
414 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
415
416 if (shhwtstamps &&
417 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
418 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, ts))
419 return TP_STATUS_TS_RAW_HARDWARE;
420
421 if (ktime_to_timespec64_cond(skb->tstamp, ts))
422 return TP_STATUS_TS_SOFTWARE;
423
424 return 0;
425 }
426
427 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
428 struct sk_buff *skb)
429 {
430 union tpacket_uhdr h;
431 struct timespec64 ts;
432 __u32 ts_status;
433
434 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
435 return 0;
436
437 h.raw = frame;
438 /*
439 * versions 1 through 3 overflow the timestamps in y2106, since they
440 * all store the seconds in a 32-bit unsigned integer.
441 * If we create a version 4, that should have a 64-bit timestamp,
442 * either 64-bit seconds + 32-bit nanoseconds, or just 64-bit
443 * nanoseconds.
444 */
445 switch (po->tp_version) {
446 case TPACKET_V1:
447 h.h1->tp_sec = ts.tv_sec;
448 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
449 break;
450 case TPACKET_V2:
451 h.h2->tp_sec = ts.tv_sec;
452 h.h2->tp_nsec = ts.tv_nsec;
453 break;
454 case TPACKET_V3:
455 h.h3->tp_sec = ts.tv_sec;
456 h.h3->tp_nsec = ts.tv_nsec;
457 break;
458 default:
459 WARN(1, "TPACKET version not supported.\n");
460 BUG();
461 }
462
463 /* one flush is safe, as both fields always lie on the same cacheline */
464 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
465 smp_wmb();
466
467 return ts_status;
468 }
469
470 static void *packet_lookup_frame(const struct packet_sock *po,
471 const struct packet_ring_buffer *rb,
472 unsigned int position,
473 int status)
474 {
475 unsigned int pg_vec_pos, frame_offset;
476 union tpacket_uhdr h;
477
478 pg_vec_pos = position / rb->frames_per_block;
479 frame_offset = position % rb->frames_per_block;
480
481 h.raw = rb->pg_vec[pg_vec_pos].buffer +
482 (frame_offset * rb->frame_size);
483
484 if (status != __packet_get_status(po, h.raw))
485 return NULL;
486
487 return h.raw;
488 }
489
490 static void *packet_current_frame(struct packet_sock *po,
491 struct packet_ring_buffer *rb,
492 int status)
493 {
494 return packet_lookup_frame(po, rb, rb->head, status);
495 }
496
497 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
498 {
499 del_timer_sync(&pkc->retire_blk_timer);
500 }
501
502 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
503 struct sk_buff_head *rb_queue)
504 {
505 struct tpacket_kbdq_core *pkc;
506
507 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
508
509 spin_lock_bh(&rb_queue->lock);
510 pkc->delete_blk_timer = 1;
511 spin_unlock_bh(&rb_queue->lock);
512
513 prb_del_retire_blk_timer(pkc);
514 }
515
516 static void prb_setup_retire_blk_timer(struct packet_sock *po)
517 {
518 struct tpacket_kbdq_core *pkc;
519
520 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
521 timer_setup(&pkc->retire_blk_timer, prb_retire_rx_blk_timer_expired,
522 0);
523 pkc->retire_blk_timer.expires = jiffies;
524 }
525
526 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
527 int blk_size_in_bytes)
528 {
529 struct net_device *dev;
530 unsigned int mbits, div;
531 struct ethtool_link_ksettings ecmd;
532 int err;
533
534 rtnl_lock();
535 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
536 if (unlikely(!dev)) {
537 rtnl_unlock();
538 return DEFAULT_PRB_RETIRE_TOV;
539 }
540 err = __ethtool_get_link_ksettings(dev, &ecmd);
541 rtnl_unlock();
542 if (err)
543 return DEFAULT_PRB_RETIRE_TOV;
544
545 /* If the link speed is so slow you don't really
546 * need to worry about perf anyways
547 */
548 if (ecmd.base.speed < SPEED_1000 ||
549 ecmd.base.speed == SPEED_UNKNOWN)
550 return DEFAULT_PRB_RETIRE_TOV;
551
552 div = ecmd.base.speed / 1000;
553 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
554
555 if (div)
556 mbits /= div;
557
558 if (div)
559 return mbits + 1;
560 return mbits;
561 }
562
563 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
564 union tpacket_req_u *req_u)
565 {
566 p1->feature_req_word = req_u->req3.tp_feature_req_word;
567 }
568
569 static void init_prb_bdqc(struct packet_sock *po,
570 struct packet_ring_buffer *rb,
571 struct pgv *pg_vec,
572 union tpacket_req_u *req_u)
573 {
574 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
575 struct tpacket_block_desc *pbd;
576
577 memset(p1, 0x0, sizeof(*p1));
578
579 p1->knxt_seq_num = 1;
580 p1->pkbdq = pg_vec;
581 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
582 p1->pkblk_start = pg_vec[0].buffer;
583 p1->kblk_size = req_u->req3.tp_block_size;
584 p1->knum_blocks = req_u->req3.tp_block_nr;
585 p1->hdrlen = po->tp_hdrlen;
586 p1->version = po->tp_version;
587 p1->last_kactive_blk_num = 0;
588 po->stats.stats3.tp_freeze_q_cnt = 0;
589 if (req_u->req3.tp_retire_blk_tov)
590 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
591 else
592 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
593 req_u->req3.tp_block_size);
594 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
595 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
596 rwlock_init(&p1->blk_fill_in_prog_lock);
597
598 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
599 prb_init_ft_ops(p1, req_u);
600 prb_setup_retire_blk_timer(po);
601 prb_open_block(p1, pbd);
602 }
603
604 /* Do NOT update the last_blk_num first.
605 * Assumes sk_buff_head lock is held.
606 */
607 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
608 {
609 mod_timer(&pkc->retire_blk_timer,
610 jiffies + pkc->tov_in_jiffies);
611 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
612 }
613
614 /*
615 * Timer logic:
616 * 1) We refresh the timer only when we open a block.
617 * By doing this we don't waste cycles refreshing the timer
618 * on packet-by-packet basis.
619 *
620 * With a 1MB block-size, on a 1Gbps line, it will take
621 * i) ~8 ms to fill a block + ii) memcpy etc.
622 * In this cut we are not accounting for the memcpy time.
623 *
624 * So, if the user sets the 'tmo' to 10ms then the timer
625 * will never fire while the block is still getting filled
626 * (which is what we want). However, the user could choose
627 * to close a block early and that's fine.
628 *
629 * But when the timer does fire, we check whether or not to refresh it.
630 * Since the tmo granularity is in msecs, it is not too expensive
631 * to refresh the timer, lets say every '8' msecs.
632 * Either the user can set the 'tmo' or we can derive it based on
633 * a) line-speed and b) block-size.
634 * prb_calc_retire_blk_tmo() calculates the tmo.
635 *
636 */
637 static void prb_retire_rx_blk_timer_expired(struct timer_list *t)
638 {
639 struct packet_sock *po =
640 from_timer(po, t, rx_ring.prb_bdqc.retire_blk_timer);
641 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
642 unsigned int frozen;
643 struct tpacket_block_desc *pbd;
644
645 spin_lock(&po->sk.sk_receive_queue.lock);
646
647 frozen = prb_queue_frozen(pkc);
648 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
649
650 if (unlikely(pkc->delete_blk_timer))
651 goto out;
652
653 /* We only need to plug the race when the block is partially filled.
654 * tpacket_rcv:
655 * lock(); increment BLOCK_NUM_PKTS; unlock()
656 * copy_bits() is in progress ...
657 * timer fires on other cpu:
658 * we can't retire the current block because copy_bits
659 * is in progress.
660 *
661 */
662 if (BLOCK_NUM_PKTS(pbd)) {
663 /* Waiting for skb_copy_bits to finish... */
664 write_lock(&pkc->blk_fill_in_prog_lock);
665 write_unlock(&pkc->blk_fill_in_prog_lock);
666 }
667
668 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
669 if (!frozen) {
670 if (!BLOCK_NUM_PKTS(pbd)) {
671 /* An empty block. Just refresh the timer. */
672 goto refresh_timer;
673 }
674 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
675 if (!prb_dispatch_next_block(pkc, po))
676 goto refresh_timer;
677 else
678 goto out;
679 } else {
680 /* Case 1. Queue was frozen because user-space was
681 * lagging behind.
682 */
683 if (prb_curr_blk_in_use(pbd)) {
684 /*
685 * Ok, user-space is still behind.
686 * So just refresh the timer.
687 */
688 goto refresh_timer;
689 } else {
690 /* Case 2. queue was frozen,user-space caught up,
691 * now the link went idle && the timer fired.
692 * We don't have a block to close.So we open this
693 * block and restart the timer.
694 * opening a block thaws the queue,restarts timer
695 * Thawing/timer-refresh is a side effect.
696 */
697 prb_open_block(pkc, pbd);
698 goto out;
699 }
700 }
701 }
702
703 refresh_timer:
704 _prb_refresh_rx_retire_blk_timer(pkc);
705
706 out:
707 spin_unlock(&po->sk.sk_receive_queue.lock);
708 }
709
710 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
711 struct tpacket_block_desc *pbd1, __u32 status)
712 {
713 /* Flush everything minus the block header */
714
715 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
716 u8 *start, *end;
717
718 start = (u8 *)pbd1;
719
720 /* Skip the block header(we know header WILL fit in 4K) */
721 start += PAGE_SIZE;
722
723 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
724 for (; start < end; start += PAGE_SIZE)
725 flush_dcache_page(pgv_to_page(start));
726
727 smp_wmb();
728 #endif
729
730 /* Now update the block status. */
731
732 BLOCK_STATUS(pbd1) = status;
733
734 /* Flush the block header */
735
736 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
737 start = (u8 *)pbd1;
738 flush_dcache_page(pgv_to_page(start));
739
740 smp_wmb();
741 #endif
742 }
743
744 /*
745 * Side effect:
746 *
747 * 1) flush the block
748 * 2) Increment active_blk_num
749 *
750 * Note:We DONT refresh the timer on purpose.
751 * Because almost always the next block will be opened.
752 */
753 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
754 struct tpacket_block_desc *pbd1,
755 struct packet_sock *po, unsigned int stat)
756 {
757 __u32 status = TP_STATUS_USER | stat;
758
759 struct tpacket3_hdr *last_pkt;
760 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
761 struct sock *sk = &po->sk;
762
763 if (atomic_read(&po->tp_drops))
764 status |= TP_STATUS_LOSING;
765
766 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
767 last_pkt->tp_next_offset = 0;
768
769 /* Get the ts of the last pkt */
770 if (BLOCK_NUM_PKTS(pbd1)) {
771 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
772 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
773 } else {
774 /* Ok, we tmo'd - so get the current time.
775 *
776 * It shouldn't really happen as we don't close empty
777 * blocks. See prb_retire_rx_blk_timer_expired().
778 */
779 struct timespec64 ts;
780 ktime_get_real_ts64(&ts);
781 h1->ts_last_pkt.ts_sec = ts.tv_sec;
782 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
783 }
784
785 smp_wmb();
786
787 /* Flush the block */
788 prb_flush_block(pkc1, pbd1, status);
789
790 sk->sk_data_ready(sk);
791
792 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
793 }
794
795 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
796 {
797 pkc->reset_pending_on_curr_blk = 0;
798 }
799
800 /*
801 * Side effect of opening a block:
802 *
803 * 1) prb_queue is thawed.
804 * 2) retire_blk_timer is refreshed.
805 *
806 */
807 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
808 struct tpacket_block_desc *pbd1)
809 {
810 struct timespec64 ts;
811 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
812
813 smp_rmb();
814
815 /* We could have just memset this but we will lose the
816 * flexibility of making the priv area sticky
817 */
818
819 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
820 BLOCK_NUM_PKTS(pbd1) = 0;
821 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
822
823 ktime_get_real_ts64(&ts);
824
825 h1->ts_first_pkt.ts_sec = ts.tv_sec;
826 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
827
828 pkc1->pkblk_start = (char *)pbd1;
829 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
830
831 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
832 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
833
834 pbd1->version = pkc1->version;
835 pkc1->prev = pkc1->nxt_offset;
836 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
837
838 prb_thaw_queue(pkc1);
839 _prb_refresh_rx_retire_blk_timer(pkc1);
840
841 smp_wmb();
842 }
843
844 /*
845 * Queue freeze logic:
846 * 1) Assume tp_block_nr = 8 blocks.
847 * 2) At time 't0', user opens Rx ring.
848 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
849 * 4) user-space is either sleeping or processing block '0'.
850 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
851 * it will close block-7,loop around and try to fill block '0'.
852 * call-flow:
853 * __packet_lookup_frame_in_block
854 * prb_retire_current_block()
855 * prb_dispatch_next_block()
856 * |->(BLOCK_STATUS == USER) evaluates to true
857 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
858 * 6) Now there are two cases:
859 * 6.1) Link goes idle right after the queue is frozen.
860 * But remember, the last open_block() refreshed the timer.
861 * When this timer expires,it will refresh itself so that we can
862 * re-open block-0 in near future.
863 * 6.2) Link is busy and keeps on receiving packets. This is a simple
864 * case and __packet_lookup_frame_in_block will check if block-0
865 * is free and can now be re-used.
866 */
867 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
868 struct packet_sock *po)
869 {
870 pkc->reset_pending_on_curr_blk = 1;
871 po->stats.stats3.tp_freeze_q_cnt++;
872 }
873
874 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
875
876 /*
877 * If the next block is free then we will dispatch it
878 * and return a good offset.
879 * Else, we will freeze the queue.
880 * So, caller must check the return value.
881 */
882 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
883 struct packet_sock *po)
884 {
885 struct tpacket_block_desc *pbd;
886
887 smp_rmb();
888
889 /* 1. Get current block num */
890 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
891
892 /* 2. If this block is currently in_use then freeze the queue */
893 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
894 prb_freeze_queue(pkc, po);
895 return NULL;
896 }
897
898 /*
899 * 3.
900 * open this block and return the offset where the first packet
901 * needs to get stored.
902 */
903 prb_open_block(pkc, pbd);
904 return (void *)pkc->nxt_offset;
905 }
906
907 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
908 struct packet_sock *po, unsigned int status)
909 {
910 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
911
912 /* retire/close the current block */
913 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
914 /*
915 * Plug the case where copy_bits() is in progress on
916 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
917 * have space to copy the pkt in the current block and
918 * called prb_retire_current_block()
919 *
920 * We don't need to worry about the TMO case because
921 * the timer-handler already handled this case.
922 */
923 if (!(status & TP_STATUS_BLK_TMO)) {
924 /* Waiting for skb_copy_bits to finish... */
925 write_lock(&pkc->blk_fill_in_prog_lock);
926 write_unlock(&pkc->blk_fill_in_prog_lock);
927 }
928 prb_close_block(pkc, pbd, po, status);
929 return;
930 }
931 }
932
933 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
934 {
935 return TP_STATUS_USER & BLOCK_STATUS(pbd);
936 }
937
938 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
939 {
940 return pkc->reset_pending_on_curr_blk;
941 }
942
943 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
944 {
945 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
946
947 read_unlock(&pkc->blk_fill_in_prog_lock);
948 }
949
950 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
951 struct tpacket3_hdr *ppd)
952 {
953 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
954 }
955
956 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
957 struct tpacket3_hdr *ppd)
958 {
959 ppd->hv1.tp_rxhash = 0;
960 }
961
962 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
963 struct tpacket3_hdr *ppd)
964 {
965 if (skb_vlan_tag_present(pkc->skb)) {
966 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
967 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
968 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
969 } else {
970 ppd->hv1.tp_vlan_tci = 0;
971 ppd->hv1.tp_vlan_tpid = 0;
972 ppd->tp_status = TP_STATUS_AVAILABLE;
973 }
974 }
975
976 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
977 struct tpacket3_hdr *ppd)
978 {
979 ppd->hv1.tp_padding = 0;
980 prb_fill_vlan_info(pkc, ppd);
981
982 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
983 prb_fill_rxhash(pkc, ppd);
984 else
985 prb_clear_rxhash(pkc, ppd);
986 }
987
988 static void prb_fill_curr_block(char *curr,
989 struct tpacket_kbdq_core *pkc,
990 struct tpacket_block_desc *pbd,
991 unsigned int len)
992 {
993 struct tpacket3_hdr *ppd;
994
995 ppd = (struct tpacket3_hdr *)curr;
996 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
997 pkc->prev = curr;
998 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
999 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1000 BLOCK_NUM_PKTS(pbd) += 1;
1001 read_lock(&pkc->blk_fill_in_prog_lock);
1002 prb_run_all_ft_ops(pkc, ppd);
1003 }
1004
1005 /* Assumes caller has the sk->rx_queue.lock */
1006 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1007 struct sk_buff *skb,
1008 unsigned int len
1009 )
1010 {
1011 struct tpacket_kbdq_core *pkc;
1012 struct tpacket_block_desc *pbd;
1013 char *curr, *end;
1014
1015 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1016 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1017
1018 /* Queue is frozen when user space is lagging behind */
1019 if (prb_queue_frozen(pkc)) {
1020 /*
1021 * Check if that last block which caused the queue to freeze,
1022 * is still in_use by user-space.
1023 */
1024 if (prb_curr_blk_in_use(pbd)) {
1025 /* Can't record this packet */
1026 return NULL;
1027 } else {
1028 /*
1029 * Ok, the block was released by user-space.
1030 * Now let's open that block.
1031 * opening a block also thaws the queue.
1032 * Thawing is a side effect.
1033 */
1034 prb_open_block(pkc, pbd);
1035 }
1036 }
1037
1038 smp_mb();
1039 curr = pkc->nxt_offset;
1040 pkc->skb = skb;
1041 end = (char *)pbd + pkc->kblk_size;
1042
1043 /* first try the current block */
1044 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1045 prb_fill_curr_block(curr, pkc, pbd, len);
1046 return (void *)curr;
1047 }
1048
1049 /* Ok, close the current block */
1050 prb_retire_current_block(pkc, po, 0);
1051
1052 /* Now, try to dispatch the next block */
1053 curr = (char *)prb_dispatch_next_block(pkc, po);
1054 if (curr) {
1055 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1056 prb_fill_curr_block(curr, pkc, pbd, len);
1057 return (void *)curr;
1058 }
1059
1060 /*
1061 * No free blocks are available.user_space hasn't caught up yet.
1062 * Queue was just frozen and now this packet will get dropped.
1063 */
1064 return NULL;
1065 }
1066
1067 static void *packet_current_rx_frame(struct packet_sock *po,
1068 struct sk_buff *skb,
1069 int status, unsigned int len)
1070 {
1071 char *curr = NULL;
1072 switch (po->tp_version) {
1073 case TPACKET_V1:
1074 case TPACKET_V2:
1075 curr = packet_lookup_frame(po, &po->rx_ring,
1076 po->rx_ring.head, status);
1077 return curr;
1078 case TPACKET_V3:
1079 return __packet_lookup_frame_in_block(po, skb, len);
1080 default:
1081 WARN(1, "TPACKET version not supported\n");
1082 BUG();
1083 return NULL;
1084 }
1085 }
1086
1087 static void *prb_lookup_block(const struct packet_sock *po,
1088 const struct packet_ring_buffer *rb,
1089 unsigned int idx,
1090 int status)
1091 {
1092 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1093 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1094
1095 if (status != BLOCK_STATUS(pbd))
1096 return NULL;
1097 return pbd;
1098 }
1099
1100 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1101 {
1102 unsigned int prev;
1103 if (rb->prb_bdqc.kactive_blk_num)
1104 prev = rb->prb_bdqc.kactive_blk_num-1;
1105 else
1106 prev = rb->prb_bdqc.knum_blocks-1;
1107 return prev;
1108 }
1109
1110 /* Assumes caller has held the rx_queue.lock */
1111 static void *__prb_previous_block(struct packet_sock *po,
1112 struct packet_ring_buffer *rb,
1113 int status)
1114 {
1115 unsigned int previous = prb_previous_blk_num(rb);
1116 return prb_lookup_block(po, rb, previous, status);
1117 }
1118
1119 static void *packet_previous_rx_frame(struct packet_sock *po,
1120 struct packet_ring_buffer *rb,
1121 int status)
1122 {
1123 if (po->tp_version <= TPACKET_V2)
1124 return packet_previous_frame(po, rb, status);
1125
1126 return __prb_previous_block(po, rb, status);
1127 }
1128
1129 static void packet_increment_rx_head(struct packet_sock *po,
1130 struct packet_ring_buffer *rb)
1131 {
1132 switch (po->tp_version) {
1133 case TPACKET_V1:
1134 case TPACKET_V2:
1135 return packet_increment_head(rb);
1136 case TPACKET_V3:
1137 default:
1138 WARN(1, "TPACKET version not supported.\n");
1139 BUG();
1140 return;
1141 }
1142 }
1143
1144 static void *packet_previous_frame(struct packet_sock *po,
1145 struct packet_ring_buffer *rb,
1146 int status)
1147 {
1148 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1149 return packet_lookup_frame(po, rb, previous, status);
1150 }
1151
1152 static void packet_increment_head(struct packet_ring_buffer *buff)
1153 {
1154 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1155 }
1156
1157 static void packet_inc_pending(struct packet_ring_buffer *rb)
1158 {
1159 this_cpu_inc(*rb->pending_refcnt);
1160 }
1161
1162 static void packet_dec_pending(struct packet_ring_buffer *rb)
1163 {
1164 this_cpu_dec(*rb->pending_refcnt);
1165 }
1166
1167 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1168 {
1169 unsigned int refcnt = 0;
1170 int cpu;
1171
1172 /* We don't use pending refcount in rx_ring. */
1173 if (rb->pending_refcnt == NULL)
1174 return 0;
1175
1176 for_each_possible_cpu(cpu)
1177 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1178
1179 return refcnt;
1180 }
1181
1182 static int packet_alloc_pending(struct packet_sock *po)
1183 {
1184 po->rx_ring.pending_refcnt = NULL;
1185
1186 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1187 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1188 return -ENOBUFS;
1189
1190 return 0;
1191 }
1192
1193 static void packet_free_pending(struct packet_sock *po)
1194 {
1195 free_percpu(po->tx_ring.pending_refcnt);
1196 }
1197
1198 #define ROOM_POW_OFF 2
1199 #define ROOM_NONE 0x0
1200 #define ROOM_LOW 0x1
1201 #define ROOM_NORMAL 0x2
1202
1203 static bool __tpacket_has_room(const struct packet_sock *po, int pow_off)
1204 {
1205 int idx, len;
1206
1207 len = READ_ONCE(po->rx_ring.frame_max) + 1;
1208 idx = READ_ONCE(po->rx_ring.head);
1209 if (pow_off)
1210 idx += len >> pow_off;
1211 if (idx >= len)
1212 idx -= len;
1213 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1214 }
1215
1216 static bool __tpacket_v3_has_room(const struct packet_sock *po, int pow_off)
1217 {
1218 int idx, len;
1219
1220 len = READ_ONCE(po->rx_ring.prb_bdqc.knum_blocks);
1221 idx = READ_ONCE(po->rx_ring.prb_bdqc.kactive_blk_num);
1222 if (pow_off)
1223 idx += len >> pow_off;
1224 if (idx >= len)
1225 idx -= len;
1226 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1227 }
1228
1229 static int __packet_rcv_has_room(const struct packet_sock *po,
1230 const struct sk_buff *skb)
1231 {
1232 const struct sock *sk = &po->sk;
1233 int ret = ROOM_NONE;
1234
1235 if (po->prot_hook.func != tpacket_rcv) {
1236 int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1237 int avail = rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1238 - (skb ? skb->truesize : 0);
1239
1240 if (avail > (rcvbuf >> ROOM_POW_OFF))
1241 return ROOM_NORMAL;
1242 else if (avail > 0)
1243 return ROOM_LOW;
1244 else
1245 return ROOM_NONE;
1246 }
1247
1248 if (po->tp_version == TPACKET_V3) {
1249 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1250 ret = ROOM_NORMAL;
1251 else if (__tpacket_v3_has_room(po, 0))
1252 ret = ROOM_LOW;
1253 } else {
1254 if (__tpacket_has_room(po, ROOM_POW_OFF))
1255 ret = ROOM_NORMAL;
1256 else if (__tpacket_has_room(po, 0))
1257 ret = ROOM_LOW;
1258 }
1259
1260 return ret;
1261 }
1262
1263 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1264 {
1265 int pressure, ret;
1266
1267 ret = __packet_rcv_has_room(po, skb);
1268 pressure = ret != ROOM_NORMAL;
1269
1270 if (READ_ONCE(po->pressure) != pressure)
1271 WRITE_ONCE(po->pressure, pressure);
1272
1273 return ret;
1274 }
1275
1276 static void packet_rcv_try_clear_pressure(struct packet_sock *po)
1277 {
1278 if (READ_ONCE(po->pressure) &&
1279 __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
1280 WRITE_ONCE(po->pressure, 0);
1281 }
1282
1283 static void packet_sock_destruct(struct sock *sk)
1284 {
1285 skb_queue_purge(&sk->sk_error_queue);
1286
1287 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1288 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1289
1290 if (!sock_flag(sk, SOCK_DEAD)) {
1291 pr_err("Attempt to release alive packet socket: %p\n", sk);
1292 return;
1293 }
1294
1295 sk_refcnt_debug_dec(sk);
1296 }
1297
1298 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1299 {
1300 u32 *history = po->rollover->history;
1301 u32 victim, rxhash;
1302 int i, count = 0;
1303
1304 rxhash = skb_get_hash(skb);
1305 for (i = 0; i < ROLLOVER_HLEN; i++)
1306 if (READ_ONCE(history[i]) == rxhash)
1307 count++;
1308
1309 victim = prandom_u32() % ROLLOVER_HLEN;
1310
1311 /* Avoid dirtying the cache line if possible */
1312 if (READ_ONCE(history[victim]) != rxhash)
1313 WRITE_ONCE(history[victim], rxhash);
1314
1315 return count > (ROLLOVER_HLEN >> 1);
1316 }
1317
1318 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1319 struct sk_buff *skb,
1320 unsigned int num)
1321 {
1322 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1323 }
1324
1325 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1326 struct sk_buff *skb,
1327 unsigned int num)
1328 {
1329 unsigned int val = atomic_inc_return(&f->rr_cur);
1330
1331 return val % num;
1332 }
1333
1334 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1335 struct sk_buff *skb,
1336 unsigned int num)
1337 {
1338 return smp_processor_id() % num;
1339 }
1340
1341 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1342 struct sk_buff *skb,
1343 unsigned int num)
1344 {
1345 return prandom_u32_max(num);
1346 }
1347
1348 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1349 struct sk_buff *skb,
1350 unsigned int idx, bool try_self,
1351 unsigned int num)
1352 {
1353 struct packet_sock *po, *po_next, *po_skip = NULL;
1354 unsigned int i, j, room = ROOM_NONE;
1355
1356 po = pkt_sk(f->arr[idx]);
1357
1358 if (try_self) {
1359 room = packet_rcv_has_room(po, skb);
1360 if (room == ROOM_NORMAL ||
1361 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1362 return idx;
1363 po_skip = po;
1364 }
1365
1366 i = j = min_t(int, po->rollover->sock, num - 1);
1367 do {
1368 po_next = pkt_sk(f->arr[i]);
1369 if (po_next != po_skip && !READ_ONCE(po_next->pressure) &&
1370 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1371 if (i != j)
1372 po->rollover->sock = i;
1373 atomic_long_inc(&po->rollover->num);
1374 if (room == ROOM_LOW)
1375 atomic_long_inc(&po->rollover->num_huge);
1376 return i;
1377 }
1378
1379 if (++i == num)
1380 i = 0;
1381 } while (i != j);
1382
1383 atomic_long_inc(&po->rollover->num_failed);
1384 return idx;
1385 }
1386
1387 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1388 struct sk_buff *skb,
1389 unsigned int num)
1390 {
1391 return skb_get_queue_mapping(skb) % num;
1392 }
1393
1394 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1395 struct sk_buff *skb,
1396 unsigned int num)
1397 {
1398 struct bpf_prog *prog;
1399 unsigned int ret = 0;
1400
1401 rcu_read_lock();
1402 prog = rcu_dereference(f->bpf_prog);
1403 if (prog)
1404 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1405 rcu_read_unlock();
1406
1407 return ret;
1408 }
1409
1410 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1411 {
1412 return f->flags & (flag >> 8);
1413 }
1414
1415 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1416 struct packet_type *pt, struct net_device *orig_dev)
1417 {
1418 struct packet_fanout *f = pt->af_packet_priv;
1419 unsigned int num = READ_ONCE(f->num_members);
1420 struct net *net = read_pnet(&f->net);
1421 struct packet_sock *po;
1422 unsigned int idx;
1423
1424 if (!net_eq(dev_net(dev), net) || !num) {
1425 kfree_skb(skb);
1426 return 0;
1427 }
1428
1429 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1430 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1431 if (!skb)
1432 return 0;
1433 }
1434 switch (f->type) {
1435 case PACKET_FANOUT_HASH:
1436 default:
1437 idx = fanout_demux_hash(f, skb, num);
1438 break;
1439 case PACKET_FANOUT_LB:
1440 idx = fanout_demux_lb(f, skb, num);
1441 break;
1442 case PACKET_FANOUT_CPU:
1443 idx = fanout_demux_cpu(f, skb, num);
1444 break;
1445 case PACKET_FANOUT_RND:
1446 idx = fanout_demux_rnd(f, skb, num);
1447 break;
1448 case PACKET_FANOUT_QM:
1449 idx = fanout_demux_qm(f, skb, num);
1450 break;
1451 case PACKET_FANOUT_ROLLOVER:
1452 idx = fanout_demux_rollover(f, skb, 0, false, num);
1453 break;
1454 case PACKET_FANOUT_CBPF:
1455 case PACKET_FANOUT_EBPF:
1456 idx = fanout_demux_bpf(f, skb, num);
1457 break;
1458 }
1459
1460 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1461 idx = fanout_demux_rollover(f, skb, idx, true, num);
1462
1463 po = pkt_sk(f->arr[idx]);
1464 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1465 }
1466
1467 DEFINE_MUTEX(fanout_mutex);
1468 EXPORT_SYMBOL_GPL(fanout_mutex);
1469 static LIST_HEAD(fanout_list);
1470 static u16 fanout_next_id;
1471
1472 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1473 {
1474 struct packet_fanout *f = po->fanout;
1475
1476 spin_lock(&f->lock);
1477 f->arr[f->num_members] = sk;
1478 smp_wmb();
1479 f->num_members++;
1480 if (f->num_members == 1)
1481 dev_add_pack(&f->prot_hook);
1482 spin_unlock(&f->lock);
1483 }
1484
1485 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1486 {
1487 struct packet_fanout *f = po->fanout;
1488 int i;
1489
1490 spin_lock(&f->lock);
1491 for (i = 0; i < f->num_members; i++) {
1492 if (f->arr[i] == sk)
1493 break;
1494 }
1495 BUG_ON(i >= f->num_members);
1496 f->arr[i] = f->arr[f->num_members - 1];
1497 f->num_members--;
1498 if (f->num_members == 0)
1499 __dev_remove_pack(&f->prot_hook);
1500 spin_unlock(&f->lock);
1501 }
1502
1503 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1504 {
1505 if (sk->sk_family != PF_PACKET)
1506 return false;
1507
1508 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1509 }
1510
1511 static void fanout_init_data(struct packet_fanout *f)
1512 {
1513 switch (f->type) {
1514 case PACKET_FANOUT_LB:
1515 atomic_set(&f->rr_cur, 0);
1516 break;
1517 case PACKET_FANOUT_CBPF:
1518 case PACKET_FANOUT_EBPF:
1519 RCU_INIT_POINTER(f->bpf_prog, NULL);
1520 break;
1521 }
1522 }
1523
1524 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1525 {
1526 struct bpf_prog *old;
1527
1528 spin_lock(&f->lock);
1529 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1530 rcu_assign_pointer(f->bpf_prog, new);
1531 spin_unlock(&f->lock);
1532
1533 if (old) {
1534 synchronize_net();
1535 bpf_prog_destroy(old);
1536 }
1537 }
1538
1539 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1540 unsigned int len)
1541 {
1542 struct bpf_prog *new;
1543 struct sock_fprog fprog;
1544 int ret;
1545
1546 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1547 return -EPERM;
1548
1549 ret = copy_bpf_fprog_from_user(&fprog, data, len);
1550 if (ret)
1551 return ret;
1552
1553 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1554 if (ret)
1555 return ret;
1556
1557 __fanout_set_data_bpf(po->fanout, new);
1558 return 0;
1559 }
1560
1561 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1562 unsigned int len)
1563 {
1564 struct bpf_prog *new;
1565 u32 fd;
1566
1567 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1568 return -EPERM;
1569 if (len != sizeof(fd))
1570 return -EINVAL;
1571 if (copy_from_user(&fd, data, len))
1572 return -EFAULT;
1573
1574 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1575 if (IS_ERR(new))
1576 return PTR_ERR(new);
1577
1578 __fanout_set_data_bpf(po->fanout, new);
1579 return 0;
1580 }
1581
1582 static int fanout_set_data(struct packet_sock *po, char __user *data,
1583 unsigned int len)
1584 {
1585 switch (po->fanout->type) {
1586 case PACKET_FANOUT_CBPF:
1587 return fanout_set_data_cbpf(po, data, len);
1588 case PACKET_FANOUT_EBPF:
1589 return fanout_set_data_ebpf(po, data, len);
1590 default:
1591 return -EINVAL;
1592 }
1593 }
1594
1595 static void fanout_release_data(struct packet_fanout *f)
1596 {
1597 switch (f->type) {
1598 case PACKET_FANOUT_CBPF:
1599 case PACKET_FANOUT_EBPF:
1600 __fanout_set_data_bpf(f, NULL);
1601 }
1602 }
1603
1604 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1605 {
1606 struct packet_fanout *f;
1607
1608 list_for_each_entry(f, &fanout_list, list) {
1609 if (f->id == candidate_id &&
1610 read_pnet(&f->net) == sock_net(sk)) {
1611 return false;
1612 }
1613 }
1614 return true;
1615 }
1616
1617 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1618 {
1619 u16 id = fanout_next_id;
1620
1621 do {
1622 if (__fanout_id_is_free(sk, id)) {
1623 *new_id = id;
1624 fanout_next_id = id + 1;
1625 return true;
1626 }
1627
1628 id++;
1629 } while (id != fanout_next_id);
1630
1631 return false;
1632 }
1633
1634 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1635 {
1636 struct packet_rollover *rollover = NULL;
1637 struct packet_sock *po = pkt_sk(sk);
1638 struct packet_fanout *f, *match;
1639 u8 type = type_flags & 0xff;
1640 u8 flags = type_flags >> 8;
1641 int err;
1642
1643 switch (type) {
1644 case PACKET_FANOUT_ROLLOVER:
1645 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1646 return -EINVAL;
1647 case PACKET_FANOUT_HASH:
1648 case PACKET_FANOUT_LB:
1649 case PACKET_FANOUT_CPU:
1650 case PACKET_FANOUT_RND:
1651 case PACKET_FANOUT_QM:
1652 case PACKET_FANOUT_CBPF:
1653 case PACKET_FANOUT_EBPF:
1654 break;
1655 default:
1656 return -EINVAL;
1657 }
1658
1659 mutex_lock(&fanout_mutex);
1660
1661 err = -EALREADY;
1662 if (po->fanout)
1663 goto out;
1664
1665 if (type == PACKET_FANOUT_ROLLOVER ||
1666 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1667 err = -ENOMEM;
1668 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1669 if (!rollover)
1670 goto out;
1671 atomic_long_set(&rollover->num, 0);
1672 atomic_long_set(&rollover->num_huge, 0);
1673 atomic_long_set(&rollover->num_failed, 0);
1674 }
1675
1676 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1677 if (id != 0) {
1678 err = -EINVAL;
1679 goto out;
1680 }
1681 if (!fanout_find_new_id(sk, &id)) {
1682 err = -ENOMEM;
1683 goto out;
1684 }
1685 /* ephemeral flag for the first socket in the group: drop it */
1686 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1687 }
1688
1689 match = NULL;
1690 list_for_each_entry(f, &fanout_list, list) {
1691 if (f->id == id &&
1692 read_pnet(&f->net) == sock_net(sk)) {
1693 match = f;
1694 break;
1695 }
1696 }
1697 err = -EINVAL;
1698 if (match && match->flags != flags)
1699 goto out;
1700 if (!match) {
1701 err = -ENOMEM;
1702 match = kzalloc(sizeof(*match), GFP_KERNEL);
1703 if (!match)
1704 goto out;
1705 write_pnet(&match->net, sock_net(sk));
1706 match->id = id;
1707 match->type = type;
1708 match->flags = flags;
1709 INIT_LIST_HEAD(&match->list);
1710 spin_lock_init(&match->lock);
1711 refcount_set(&match->sk_ref, 0);
1712 fanout_init_data(match);
1713 match->prot_hook.type = po->prot_hook.type;
1714 match->prot_hook.dev = po->prot_hook.dev;
1715 match->prot_hook.func = packet_rcv_fanout;
1716 match->prot_hook.af_packet_priv = match;
1717 match->prot_hook.id_match = match_fanout_group;
1718 list_add(&match->list, &fanout_list);
1719 }
1720 err = -EINVAL;
1721
1722 spin_lock(&po->bind_lock);
1723 if (po->running &&
1724 match->type == type &&
1725 match->prot_hook.type == po->prot_hook.type &&
1726 match->prot_hook.dev == po->prot_hook.dev) {
1727 err = -ENOSPC;
1728 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1729 __dev_remove_pack(&po->prot_hook);
1730 po->fanout = match;
1731 po->rollover = rollover;
1732 rollover = NULL;
1733 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1734 __fanout_link(sk, po);
1735 err = 0;
1736 }
1737 }
1738 spin_unlock(&po->bind_lock);
1739
1740 if (err && !refcount_read(&match->sk_ref)) {
1741 list_del(&match->list);
1742 kfree(match);
1743 }
1744
1745 out:
1746 kfree(rollover);
1747 mutex_unlock(&fanout_mutex);
1748 return err;
1749 }
1750
1751 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1752 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1753 * It is the responsibility of the caller to call fanout_release_data() and
1754 * free the returned packet_fanout (after synchronize_net())
1755 */
1756 static struct packet_fanout *fanout_release(struct sock *sk)
1757 {
1758 struct packet_sock *po = pkt_sk(sk);
1759 struct packet_fanout *f;
1760
1761 mutex_lock(&fanout_mutex);
1762 f = po->fanout;
1763 if (f) {
1764 po->fanout = NULL;
1765
1766 if (refcount_dec_and_test(&f->sk_ref))
1767 list_del(&f->list);
1768 else
1769 f = NULL;
1770 }
1771 mutex_unlock(&fanout_mutex);
1772
1773 return f;
1774 }
1775
1776 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1777 struct sk_buff *skb)
1778 {
1779 /* Earlier code assumed this would be a VLAN pkt, double-check
1780 * this now that we have the actual packet in hand. We can only
1781 * do this check on Ethernet devices.
1782 */
1783 if (unlikely(dev->type != ARPHRD_ETHER))
1784 return false;
1785
1786 skb_reset_mac_header(skb);
1787 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1788 }
1789
1790 static const struct proto_ops packet_ops;
1791
1792 static const struct proto_ops packet_ops_spkt;
1793
1794 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1795 struct packet_type *pt, struct net_device *orig_dev)
1796 {
1797 struct sock *sk;
1798 struct sockaddr_pkt *spkt;
1799
1800 /*
1801 * When we registered the protocol we saved the socket in the data
1802 * field for just this event.
1803 */
1804
1805 sk = pt->af_packet_priv;
1806
1807 /*
1808 * Yank back the headers [hope the device set this
1809 * right or kerboom...]
1810 *
1811 * Incoming packets have ll header pulled,
1812 * push it back.
1813 *
1814 * For outgoing ones skb->data == skb_mac_header(skb)
1815 * so that this procedure is noop.
1816 */
1817
1818 if (skb->pkt_type == PACKET_LOOPBACK)
1819 goto out;
1820
1821 if (!net_eq(dev_net(dev), sock_net(sk)))
1822 goto out;
1823
1824 skb = skb_share_check(skb, GFP_ATOMIC);
1825 if (skb == NULL)
1826 goto oom;
1827
1828 /* drop any routing info */
1829 skb_dst_drop(skb);
1830
1831 /* drop conntrack reference */
1832 nf_reset_ct(skb);
1833
1834 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1835
1836 skb_push(skb, skb->data - skb_mac_header(skb));
1837
1838 /*
1839 * The SOCK_PACKET socket receives _all_ frames.
1840 */
1841
1842 spkt->spkt_family = dev->type;
1843 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1844 spkt->spkt_protocol = skb->protocol;
1845
1846 /*
1847 * Charge the memory to the socket. This is done specifically
1848 * to prevent sockets using all the memory up.
1849 */
1850
1851 if (sock_queue_rcv_skb(sk, skb) == 0)
1852 return 0;
1853
1854 out:
1855 kfree_skb(skb);
1856 oom:
1857 return 0;
1858 }
1859
1860 static void packet_parse_headers(struct sk_buff *skb, struct socket *sock)
1861 {
1862 if ((!skb->protocol || skb->protocol == htons(ETH_P_ALL)) &&
1863 sock->type == SOCK_RAW) {
1864 skb_reset_mac_header(skb);
1865 skb->protocol = dev_parse_header_protocol(skb);
1866 }
1867
1868 skb_probe_transport_header(skb);
1869 }
1870
1871 /*
1872 * Output a raw packet to a device layer. This bypasses all the other
1873 * protocol layers and you must therefore supply it with a complete frame
1874 */
1875
1876 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1877 size_t len)
1878 {
1879 struct sock *sk = sock->sk;
1880 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1881 struct sk_buff *skb = NULL;
1882 struct net_device *dev;
1883 struct sockcm_cookie sockc;
1884 __be16 proto = 0;
1885 int err;
1886 int extra_len = 0;
1887
1888 /*
1889 * Get and verify the address.
1890 */
1891
1892 if (saddr) {
1893 if (msg->msg_namelen < sizeof(struct sockaddr))
1894 return -EINVAL;
1895 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1896 proto = saddr->spkt_protocol;
1897 } else
1898 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1899
1900 /*
1901 * Find the device first to size check it
1902 */
1903
1904 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1905 retry:
1906 rcu_read_lock();
1907 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1908 err = -ENODEV;
1909 if (dev == NULL)
1910 goto out_unlock;
1911
1912 err = -ENETDOWN;
1913 if (!(dev->flags & IFF_UP))
1914 goto out_unlock;
1915
1916 /*
1917 * You may not queue a frame bigger than the mtu. This is the lowest level
1918 * raw protocol and you must do your own fragmentation at this level.
1919 */
1920
1921 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1922 if (!netif_supports_nofcs(dev)) {
1923 err = -EPROTONOSUPPORT;
1924 goto out_unlock;
1925 }
1926 extra_len = 4; /* We're doing our own CRC */
1927 }
1928
1929 err = -EMSGSIZE;
1930 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1931 goto out_unlock;
1932
1933 if (!skb) {
1934 size_t reserved = LL_RESERVED_SPACE(dev);
1935 int tlen = dev->needed_tailroom;
1936 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1937
1938 rcu_read_unlock();
1939 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1940 if (skb == NULL)
1941 return -ENOBUFS;
1942 /* FIXME: Save some space for broken drivers that write a hard
1943 * header at transmission time by themselves. PPP is the notable
1944 * one here. This should really be fixed at the driver level.
1945 */
1946 skb_reserve(skb, reserved);
1947 skb_reset_network_header(skb);
1948
1949 /* Try to align data part correctly */
1950 if (hhlen) {
1951 skb->data -= hhlen;
1952 skb->tail -= hhlen;
1953 if (len < hhlen)
1954 skb_reset_network_header(skb);
1955 }
1956 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1957 if (err)
1958 goto out_free;
1959 goto retry;
1960 }
1961
1962 if (!dev_validate_header(dev, skb->data, len)) {
1963 err = -EINVAL;
1964 goto out_unlock;
1965 }
1966 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1967 !packet_extra_vlan_len_allowed(dev, skb)) {
1968 err = -EMSGSIZE;
1969 goto out_unlock;
1970 }
1971
1972 sockcm_init(&sockc, sk);
1973 if (msg->msg_controllen) {
1974 err = sock_cmsg_send(sk, msg, &sockc);
1975 if (unlikely(err))
1976 goto out_unlock;
1977 }
1978
1979 skb->protocol = proto;
1980 skb->dev = dev;
1981 skb->priority = sk->sk_priority;
1982 skb->mark = sk->sk_mark;
1983 skb->tstamp = sockc.transmit_time;
1984
1985 skb_setup_tx_timestamp(skb, sockc.tsflags);
1986
1987 if (unlikely(extra_len == 4))
1988 skb->no_fcs = 1;
1989
1990 packet_parse_headers(skb, sock);
1991
1992 dev_queue_xmit(skb);
1993 rcu_read_unlock();
1994 return len;
1995
1996 out_unlock:
1997 rcu_read_unlock();
1998 out_free:
1999 kfree_skb(skb);
2000 return err;
2001 }
2002
2003 static unsigned int run_filter(struct sk_buff *skb,
2004 const struct sock *sk,
2005 unsigned int res)
2006 {
2007 struct sk_filter *filter;
2008
2009 rcu_read_lock();
2010 filter = rcu_dereference(sk->sk_filter);
2011 if (filter != NULL)
2012 res = bpf_prog_run_clear_cb(filter->prog, skb);
2013 rcu_read_unlock();
2014
2015 return res;
2016 }
2017
2018 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2019 size_t *len)
2020 {
2021 struct virtio_net_hdr vnet_hdr;
2022
2023 if (*len < sizeof(vnet_hdr))
2024 return -EINVAL;
2025 *len -= sizeof(vnet_hdr);
2026
2027 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true, 0))
2028 return -EINVAL;
2029
2030 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2031 }
2032
2033 /*
2034 * This function makes lazy skb cloning in hope that most of packets
2035 * are discarded by BPF.
2036 *
2037 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2038 * and skb->cb are mangled. It works because (and until) packets
2039 * falling here are owned by current CPU. Output packets are cloned
2040 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2041 * sequencially, so that if we return skb to original state on exit,
2042 * we will not harm anyone.
2043 */
2044
2045 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2046 struct packet_type *pt, struct net_device *orig_dev)
2047 {
2048 struct sock *sk;
2049 struct sockaddr_ll *sll;
2050 struct packet_sock *po;
2051 u8 *skb_head = skb->data;
2052 int skb_len = skb->len;
2053 unsigned int snaplen, res;
2054 bool is_drop_n_account = false;
2055
2056 if (skb->pkt_type == PACKET_LOOPBACK)
2057 goto drop;
2058
2059 sk = pt->af_packet_priv;
2060 po = pkt_sk(sk);
2061
2062 if (!net_eq(dev_net(dev), sock_net(sk)))
2063 goto drop;
2064
2065 skb->dev = dev;
2066
2067 if (dev->header_ops) {
2068 /* The device has an explicit notion of ll header,
2069 * exported to higher levels.
2070 *
2071 * Otherwise, the device hides details of its frame
2072 * structure, so that corresponding packet head is
2073 * never delivered to user.
2074 */
2075 if (sk->sk_type != SOCK_DGRAM)
2076 skb_push(skb, skb->data - skb_mac_header(skb));
2077 else if (skb->pkt_type == PACKET_OUTGOING) {
2078 /* Special case: outgoing packets have ll header at head */
2079 skb_pull(skb, skb_network_offset(skb));
2080 }
2081 }
2082
2083 snaplen = skb->len;
2084
2085 res = run_filter(skb, sk, snaplen);
2086 if (!res)
2087 goto drop_n_restore;
2088 if (snaplen > res)
2089 snaplen = res;
2090
2091 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2092 goto drop_n_acct;
2093
2094 if (skb_shared(skb)) {
2095 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2096 if (nskb == NULL)
2097 goto drop_n_acct;
2098
2099 if (skb_head != skb->data) {
2100 skb->data = skb_head;
2101 skb->len = skb_len;
2102 }
2103 consume_skb(skb);
2104 skb = nskb;
2105 }
2106
2107 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2108
2109 sll = &PACKET_SKB_CB(skb)->sa.ll;
2110 sll->sll_hatype = dev->type;
2111 sll->sll_pkttype = skb->pkt_type;
2112 if (unlikely(po->origdev))
2113 sll->sll_ifindex = orig_dev->ifindex;
2114 else
2115 sll->sll_ifindex = dev->ifindex;
2116
2117 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2118
2119 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2120 * Use their space for storing the original skb length.
2121 */
2122 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2123
2124 if (pskb_trim(skb, snaplen))
2125 goto drop_n_acct;
2126
2127 skb_set_owner_r(skb, sk);
2128 skb->dev = NULL;
2129 skb_dst_drop(skb);
2130
2131 /* drop conntrack reference */
2132 nf_reset_ct(skb);
2133
2134 spin_lock(&sk->sk_receive_queue.lock);
2135 po->stats.stats1.tp_packets++;
2136 sock_skb_set_dropcount(sk, skb);
2137 __skb_queue_tail(&sk->sk_receive_queue, skb);
2138 spin_unlock(&sk->sk_receive_queue.lock);
2139 sk->sk_data_ready(sk);
2140 return 0;
2141
2142 drop_n_acct:
2143 is_drop_n_account = true;
2144 atomic_inc(&po->tp_drops);
2145 atomic_inc(&sk->sk_drops);
2146
2147 drop_n_restore:
2148 if (skb_head != skb->data && skb_shared(skb)) {
2149 skb->data = skb_head;
2150 skb->len = skb_len;
2151 }
2152 drop:
2153 if (!is_drop_n_account)
2154 consume_skb(skb);
2155 else
2156 kfree_skb(skb);
2157 return 0;
2158 }
2159
2160 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2161 struct packet_type *pt, struct net_device *orig_dev)
2162 {
2163 struct sock *sk;
2164 struct packet_sock *po;
2165 struct sockaddr_ll *sll;
2166 union tpacket_uhdr h;
2167 u8 *skb_head = skb->data;
2168 int skb_len = skb->len;
2169 unsigned int snaplen, res;
2170 unsigned long status = TP_STATUS_USER;
2171 unsigned short macoff, netoff, hdrlen;
2172 struct sk_buff *copy_skb = NULL;
2173 struct timespec64 ts;
2174 __u32 ts_status;
2175 bool is_drop_n_account = false;
2176 unsigned int slot_id = 0;
2177 bool do_vnet = false;
2178
2179 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2180 * We may add members to them until current aligned size without forcing
2181 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2182 */
2183 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2184 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2185
2186 if (skb->pkt_type == PACKET_LOOPBACK)
2187 goto drop;
2188
2189 sk = pt->af_packet_priv;
2190 po = pkt_sk(sk);
2191
2192 if (!net_eq(dev_net(dev), sock_net(sk)))
2193 goto drop;
2194
2195 if (dev->header_ops) {
2196 if (sk->sk_type != SOCK_DGRAM)
2197 skb_push(skb, skb->data - skb_mac_header(skb));
2198 else if (skb->pkt_type == PACKET_OUTGOING) {
2199 /* Special case: outgoing packets have ll header at head */
2200 skb_pull(skb, skb_network_offset(skb));
2201 }
2202 }
2203
2204 snaplen = skb->len;
2205
2206 res = run_filter(skb, sk, snaplen);
2207 if (!res)
2208 goto drop_n_restore;
2209
2210 /* If we are flooded, just give up */
2211 if (__packet_rcv_has_room(po, skb) == ROOM_NONE) {
2212 atomic_inc(&po->tp_drops);
2213 goto drop_n_restore;
2214 }
2215
2216 if (skb->ip_summed == CHECKSUM_PARTIAL)
2217 status |= TP_STATUS_CSUMNOTREADY;
2218 else if (skb->pkt_type != PACKET_OUTGOING &&
2219 (skb->ip_summed == CHECKSUM_COMPLETE ||
2220 skb_csum_unnecessary(skb)))
2221 status |= TP_STATUS_CSUM_VALID;
2222
2223 if (snaplen > res)
2224 snaplen = res;
2225
2226 if (sk->sk_type == SOCK_DGRAM) {
2227 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2228 po->tp_reserve;
2229 } else {
2230 unsigned int maclen = skb_network_offset(skb);
2231 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2232 (maclen < 16 ? 16 : maclen)) +
2233 po->tp_reserve;
2234 if (po->has_vnet_hdr) {
2235 netoff += sizeof(struct virtio_net_hdr);
2236 do_vnet = true;
2237 }
2238 macoff = netoff - maclen;
2239 }
2240 if (po->tp_version <= TPACKET_V2) {
2241 if (macoff + snaplen > po->rx_ring.frame_size) {
2242 if (po->copy_thresh &&
2243 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2244 if (skb_shared(skb)) {
2245 copy_skb = skb_clone(skb, GFP_ATOMIC);
2246 } else {
2247 copy_skb = skb_get(skb);
2248 skb_head = skb->data;
2249 }
2250 if (copy_skb)
2251 skb_set_owner_r(copy_skb, sk);
2252 }
2253 snaplen = po->rx_ring.frame_size - macoff;
2254 if ((int)snaplen < 0) {
2255 snaplen = 0;
2256 do_vnet = false;
2257 }
2258 }
2259 } else if (unlikely(macoff + snaplen >
2260 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2261 u32 nval;
2262
2263 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2264 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2265 snaplen, nval, macoff);
2266 snaplen = nval;
2267 if (unlikely((int)snaplen < 0)) {
2268 snaplen = 0;
2269 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2270 do_vnet = false;
2271 }
2272 }
2273 spin_lock(&sk->sk_receive_queue.lock);
2274 h.raw = packet_current_rx_frame(po, skb,
2275 TP_STATUS_KERNEL, (macoff+snaplen));
2276 if (!h.raw)
2277 goto drop_n_account;
2278
2279 if (po->tp_version <= TPACKET_V2) {
2280 slot_id = po->rx_ring.head;
2281 if (test_bit(slot_id, po->rx_ring.rx_owner_map))
2282 goto drop_n_account;
2283 __set_bit(slot_id, po->rx_ring.rx_owner_map);
2284 }
2285
2286 if (do_vnet &&
2287 virtio_net_hdr_from_skb(skb, h.raw + macoff -
2288 sizeof(struct virtio_net_hdr),
2289 vio_le(), true, 0))
2290 goto drop_n_account;
2291
2292 if (po->tp_version <= TPACKET_V2) {
2293 packet_increment_rx_head(po, &po->rx_ring);
2294 /*
2295 * LOSING will be reported till you read the stats,
2296 * because it's COR - Clear On Read.
2297 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2298 * at packet level.
2299 */
2300 if (atomic_read(&po->tp_drops))
2301 status |= TP_STATUS_LOSING;
2302 }
2303
2304 po->stats.stats1.tp_packets++;
2305 if (copy_skb) {
2306 status |= TP_STATUS_COPY;
2307 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2308 }
2309 spin_unlock(&sk->sk_receive_queue.lock);
2310
2311 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2312
2313 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2314 ktime_get_real_ts64(&ts);
2315
2316 status |= ts_status;
2317
2318 switch (po->tp_version) {
2319 case TPACKET_V1:
2320 h.h1->tp_len = skb->len;
2321 h.h1->tp_snaplen = snaplen;
2322 h.h1->tp_mac = macoff;
2323 h.h1->tp_net = netoff;
2324 h.h1->tp_sec = ts.tv_sec;
2325 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2326 hdrlen = sizeof(*h.h1);
2327 break;
2328 case TPACKET_V2:
2329 h.h2->tp_len = skb->len;
2330 h.h2->tp_snaplen = snaplen;
2331 h.h2->tp_mac = macoff;
2332 h.h2->tp_net = netoff;
2333 h.h2->tp_sec = ts.tv_sec;
2334 h.h2->tp_nsec = ts.tv_nsec;
2335 if (skb_vlan_tag_present(skb)) {
2336 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2337 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2338 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2339 } else {
2340 h.h2->tp_vlan_tci = 0;
2341 h.h2->tp_vlan_tpid = 0;
2342 }
2343 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2344 hdrlen = sizeof(*h.h2);
2345 break;
2346 case TPACKET_V3:
2347 /* tp_nxt_offset,vlan are already populated above.
2348 * So DONT clear those fields here
2349 */
2350 h.h3->tp_status |= status;
2351 h.h3->tp_len = skb->len;
2352 h.h3->tp_snaplen = snaplen;
2353 h.h3->tp_mac = macoff;
2354 h.h3->tp_net = netoff;
2355 h.h3->tp_sec = ts.tv_sec;
2356 h.h3->tp_nsec = ts.tv_nsec;
2357 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2358 hdrlen = sizeof(*h.h3);
2359 break;
2360 default:
2361 BUG();
2362 }
2363
2364 sll = h.raw + TPACKET_ALIGN(hdrlen);
2365 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2366 sll->sll_family = AF_PACKET;
2367 sll->sll_hatype = dev->type;
2368 sll->sll_protocol = skb->protocol;
2369 sll->sll_pkttype = skb->pkt_type;
2370 if (unlikely(po->origdev))
2371 sll->sll_ifindex = orig_dev->ifindex;
2372 else
2373 sll->sll_ifindex = dev->ifindex;
2374
2375 smp_mb();
2376
2377 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2378 if (po->tp_version <= TPACKET_V2) {
2379 u8 *start, *end;
2380
2381 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2382 macoff + snaplen);
2383
2384 for (start = h.raw; start < end; start += PAGE_SIZE)
2385 flush_dcache_page(pgv_to_page(start));
2386 }
2387 smp_wmb();
2388 #endif
2389
2390 if (po->tp_version <= TPACKET_V2) {
2391 spin_lock(&sk->sk_receive_queue.lock);
2392 __packet_set_status(po, h.raw, status);
2393 __clear_bit(slot_id, po->rx_ring.rx_owner_map);
2394 spin_unlock(&sk->sk_receive_queue.lock);
2395 sk->sk_data_ready(sk);
2396 } else {
2397 prb_clear_blk_fill_status(&po->rx_ring);
2398 }
2399
2400 drop_n_restore:
2401 if (skb_head != skb->data && skb_shared(skb)) {
2402 skb->data = skb_head;
2403 skb->len = skb_len;
2404 }
2405 drop:
2406 if (!is_drop_n_account)
2407 consume_skb(skb);
2408 else
2409 kfree_skb(skb);
2410 return 0;
2411
2412 drop_n_account:
2413 spin_unlock(&sk->sk_receive_queue.lock);
2414 atomic_inc(&po->tp_drops);
2415 is_drop_n_account = true;
2416
2417 sk->sk_data_ready(sk);
2418 kfree_skb(copy_skb);
2419 goto drop_n_restore;
2420 }
2421
2422 static void tpacket_destruct_skb(struct sk_buff *skb)
2423 {
2424 struct packet_sock *po = pkt_sk(skb->sk);
2425
2426 if (likely(po->tx_ring.pg_vec)) {
2427 void *ph;
2428 __u32 ts;
2429
2430 ph = skb_zcopy_get_nouarg(skb);
2431 packet_dec_pending(&po->tx_ring);
2432
2433 ts = __packet_set_timestamp(po, ph, skb);
2434 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2435
2436 if (!packet_read_pending(&po->tx_ring))
2437 complete(&po->skb_completion);
2438 }
2439
2440 sock_wfree(skb);
2441 }
2442
2443 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2444 {
2445 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2446 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2447 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2448 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2449 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2450 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2451 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2452
2453 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2454 return -EINVAL;
2455
2456 return 0;
2457 }
2458
2459 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2460 struct virtio_net_hdr *vnet_hdr)
2461 {
2462 if (*len < sizeof(*vnet_hdr))
2463 return -EINVAL;
2464 *len -= sizeof(*vnet_hdr);
2465
2466 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2467 return -EFAULT;
2468
2469 return __packet_snd_vnet_parse(vnet_hdr, *len);
2470 }
2471
2472 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2473 void *frame, struct net_device *dev, void *data, int tp_len,
2474 __be16 proto, unsigned char *addr, int hlen, int copylen,
2475 const struct sockcm_cookie *sockc)
2476 {
2477 union tpacket_uhdr ph;
2478 int to_write, offset, len, nr_frags, len_max;
2479 struct socket *sock = po->sk.sk_socket;
2480 struct page *page;
2481 int err;
2482
2483 ph.raw = frame;
2484
2485 skb->protocol = proto;
2486 skb->dev = dev;
2487 skb->priority = po->sk.sk_priority;
2488 skb->mark = po->sk.sk_mark;
2489 skb->tstamp = sockc->transmit_time;
2490 skb_setup_tx_timestamp(skb, sockc->tsflags);
2491 skb_zcopy_set_nouarg(skb, ph.raw);
2492
2493 skb_reserve(skb, hlen);
2494 skb_reset_network_header(skb);
2495
2496 to_write = tp_len;
2497
2498 if (sock->type == SOCK_DGRAM) {
2499 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2500 NULL, tp_len);
2501 if (unlikely(err < 0))
2502 return -EINVAL;
2503 } else if (copylen) {
2504 int hdrlen = min_t(int, copylen, tp_len);
2505
2506 skb_push(skb, dev->hard_header_len);
2507 skb_put(skb, copylen - dev->hard_header_len);
2508 err = skb_store_bits(skb, 0, data, hdrlen);
2509 if (unlikely(err))
2510 return err;
2511 if (!dev_validate_header(dev, skb->data, hdrlen))
2512 return -EINVAL;
2513
2514 data += hdrlen;
2515 to_write -= hdrlen;
2516 }
2517
2518 offset = offset_in_page(data);
2519 len_max = PAGE_SIZE - offset;
2520 len = ((to_write > len_max) ? len_max : to_write);
2521
2522 skb->data_len = to_write;
2523 skb->len += to_write;
2524 skb->truesize += to_write;
2525 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2526
2527 while (likely(to_write)) {
2528 nr_frags = skb_shinfo(skb)->nr_frags;
2529
2530 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2531 pr_err("Packet exceed the number of skb frags(%lu)\n",
2532 MAX_SKB_FRAGS);
2533 return -EFAULT;
2534 }
2535
2536 page = pgv_to_page(data);
2537 data += len;
2538 flush_dcache_page(page);
2539 get_page(page);
2540 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2541 to_write -= len;
2542 offset = 0;
2543 len_max = PAGE_SIZE;
2544 len = ((to_write > len_max) ? len_max : to_write);
2545 }
2546
2547 packet_parse_headers(skb, sock);
2548
2549 return tp_len;
2550 }
2551
2552 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2553 int size_max, void **data)
2554 {
2555 union tpacket_uhdr ph;
2556 int tp_len, off;
2557
2558 ph.raw = frame;
2559
2560 switch (po->tp_version) {
2561 case TPACKET_V3:
2562 if (ph.h3->tp_next_offset != 0) {
2563 pr_warn_once("variable sized slot not supported");
2564 return -EINVAL;
2565 }
2566 tp_len = ph.h3->tp_len;
2567 break;
2568 case TPACKET_V2:
2569 tp_len = ph.h2->tp_len;
2570 break;
2571 default:
2572 tp_len = ph.h1->tp_len;
2573 break;
2574 }
2575 if (unlikely(tp_len > size_max)) {
2576 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2577 return -EMSGSIZE;
2578 }
2579
2580 if (unlikely(po->tp_tx_has_off)) {
2581 int off_min, off_max;
2582
2583 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2584 off_max = po->tx_ring.frame_size - tp_len;
2585 if (po->sk.sk_type == SOCK_DGRAM) {
2586 switch (po->tp_version) {
2587 case TPACKET_V3:
2588 off = ph.h3->tp_net;
2589 break;
2590 case TPACKET_V2:
2591 off = ph.h2->tp_net;
2592 break;
2593 default:
2594 off = ph.h1->tp_net;
2595 break;
2596 }
2597 } else {
2598 switch (po->tp_version) {
2599 case TPACKET_V3:
2600 off = ph.h3->tp_mac;
2601 break;
2602 case TPACKET_V2:
2603 off = ph.h2->tp_mac;
2604 break;
2605 default:
2606 off = ph.h1->tp_mac;
2607 break;
2608 }
2609 }
2610 if (unlikely((off < off_min) || (off_max < off)))
2611 return -EINVAL;
2612 } else {
2613 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2614 }
2615
2616 *data = frame + off;
2617 return tp_len;
2618 }
2619
2620 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2621 {
2622 struct sk_buff *skb = NULL;
2623 struct net_device *dev;
2624 struct virtio_net_hdr *vnet_hdr = NULL;
2625 struct sockcm_cookie sockc;
2626 __be16 proto;
2627 int err, reserve = 0;
2628 void *ph;
2629 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2630 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2631 unsigned char *addr = NULL;
2632 int tp_len, size_max;
2633 void *data;
2634 int len_sum = 0;
2635 int status = TP_STATUS_AVAILABLE;
2636 int hlen, tlen, copylen = 0;
2637 long timeo = 0;
2638
2639 mutex_lock(&po->pg_vec_lock);
2640
2641 /* packet_sendmsg() check on tx_ring.pg_vec was lockless,
2642 * we need to confirm it under protection of pg_vec_lock.
2643 */
2644 if (unlikely(!po->tx_ring.pg_vec)) {
2645 err = -EBUSY;
2646 goto out;
2647 }
2648 if (likely(saddr == NULL)) {
2649 dev = packet_cached_dev_get(po);
2650 proto = po->num;
2651 } else {
2652 err = -EINVAL;
2653 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2654 goto out;
2655 if (msg->msg_namelen < (saddr->sll_halen
2656 + offsetof(struct sockaddr_ll,
2657 sll_addr)))
2658 goto out;
2659 proto = saddr->sll_protocol;
2660 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2661 if (po->sk.sk_socket->type == SOCK_DGRAM) {
2662 if (dev && msg->msg_namelen < dev->addr_len +
2663 offsetof(struct sockaddr_ll, sll_addr))
2664 goto out_put;
2665 addr = saddr->sll_addr;
2666 }
2667 }
2668
2669 err = -ENXIO;
2670 if (unlikely(dev == NULL))
2671 goto out;
2672 err = -ENETDOWN;
2673 if (unlikely(!(dev->flags & IFF_UP)))
2674 goto out_put;
2675
2676 sockcm_init(&sockc, &po->sk);
2677 if (msg->msg_controllen) {
2678 err = sock_cmsg_send(&po->sk, msg, &sockc);
2679 if (unlikely(err))
2680 goto out_put;
2681 }
2682
2683 if (po->sk.sk_socket->type == SOCK_RAW)
2684 reserve = dev->hard_header_len;
2685 size_max = po->tx_ring.frame_size
2686 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2687
2688 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2689 size_max = dev->mtu + reserve + VLAN_HLEN;
2690
2691 reinit_completion(&po->skb_completion);
2692
2693 do {
2694 ph = packet_current_frame(po, &po->tx_ring,
2695 TP_STATUS_SEND_REQUEST);
2696 if (unlikely(ph == NULL)) {
2697 if (need_wait && skb) {
2698 timeo = sock_sndtimeo(&po->sk, msg->msg_flags & MSG_DONTWAIT);
2699 timeo = wait_for_completion_interruptible_timeout(&po->skb_completion, timeo);
2700 if (timeo <= 0) {
2701 err = !timeo ? -ETIMEDOUT : -ERESTARTSYS;
2702 goto out_put;
2703 }
2704 }
2705 /* check for additional frames */
2706 continue;
2707 }
2708
2709 skb = NULL;
2710 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2711 if (tp_len < 0)
2712 goto tpacket_error;
2713
2714 status = TP_STATUS_SEND_REQUEST;
2715 hlen = LL_RESERVED_SPACE(dev);
2716 tlen = dev->needed_tailroom;
2717 if (po->has_vnet_hdr) {
2718 vnet_hdr = data;
2719 data += sizeof(*vnet_hdr);
2720 tp_len -= sizeof(*vnet_hdr);
2721 if (tp_len < 0 ||
2722 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2723 tp_len = -EINVAL;
2724 goto tpacket_error;
2725 }
2726 copylen = __virtio16_to_cpu(vio_le(),
2727 vnet_hdr->hdr_len);
2728 }
2729 copylen = max_t(int, copylen, dev->hard_header_len);
2730 skb = sock_alloc_send_skb(&po->sk,
2731 hlen + tlen + sizeof(struct sockaddr_ll) +
2732 (copylen - dev->hard_header_len),
2733 !need_wait, &err);
2734
2735 if (unlikely(skb == NULL)) {
2736 /* we assume the socket was initially writeable ... */
2737 if (likely(len_sum > 0))
2738 err = len_sum;
2739 goto out_status;
2740 }
2741 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2742 addr, hlen, copylen, &sockc);
2743 if (likely(tp_len >= 0) &&
2744 tp_len > dev->mtu + reserve &&
2745 !po->has_vnet_hdr &&
2746 !packet_extra_vlan_len_allowed(dev, skb))
2747 tp_len = -EMSGSIZE;
2748
2749 if (unlikely(tp_len < 0)) {
2750 tpacket_error:
2751 if (po->tp_loss) {
2752 __packet_set_status(po, ph,
2753 TP_STATUS_AVAILABLE);
2754 packet_increment_head(&po->tx_ring);
2755 kfree_skb(skb);
2756 continue;
2757 } else {
2758 status = TP_STATUS_WRONG_FORMAT;
2759 err = tp_len;
2760 goto out_status;
2761 }
2762 }
2763
2764 if (po->has_vnet_hdr) {
2765 if (virtio_net_hdr_to_skb(skb, vnet_hdr, vio_le())) {
2766 tp_len = -EINVAL;
2767 goto tpacket_error;
2768 }
2769 virtio_net_hdr_set_proto(skb, vnet_hdr);
2770 }
2771
2772 skb->destructor = tpacket_destruct_skb;
2773 __packet_set_status(po, ph, TP_STATUS_SENDING);
2774 packet_inc_pending(&po->tx_ring);
2775
2776 status = TP_STATUS_SEND_REQUEST;
2777 err = po->xmit(skb);
2778 if (unlikely(err > 0)) {
2779 err = net_xmit_errno(err);
2780 if (err && __packet_get_status(po, ph) ==
2781 TP_STATUS_AVAILABLE) {
2782 /* skb was destructed already */
2783 skb = NULL;
2784 goto out_status;
2785 }
2786 /*
2787 * skb was dropped but not destructed yet;
2788 * let's treat it like congestion or err < 0
2789 */
2790 err = 0;
2791 }
2792 packet_increment_head(&po->tx_ring);
2793 len_sum += tp_len;
2794 } while (likely((ph != NULL) ||
2795 /* Note: packet_read_pending() might be slow if we have
2796 * to call it as it's per_cpu variable, but in fast-path
2797 * we already short-circuit the loop with the first
2798 * condition, and luckily don't have to go that path
2799 * anyway.
2800 */
2801 (need_wait && packet_read_pending(&po->tx_ring))));
2802
2803 err = len_sum;
2804 goto out_put;
2805
2806 out_status:
2807 __packet_set_status(po, ph, status);
2808 kfree_skb(skb);
2809 out_put:
2810 dev_put(dev);
2811 out:
2812 mutex_unlock(&po->pg_vec_lock);
2813 return err;
2814 }
2815
2816 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2817 size_t reserve, size_t len,
2818 size_t linear, int noblock,
2819 int *err)
2820 {
2821 struct sk_buff *skb;
2822
2823 /* Under a page? Don't bother with paged skb. */
2824 if (prepad + len < PAGE_SIZE || !linear)
2825 linear = len;
2826
2827 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2828 err, 0);
2829 if (!skb)
2830 return NULL;
2831
2832 skb_reserve(skb, reserve);
2833 skb_put(skb, linear);
2834 skb->data_len = len - linear;
2835 skb->len += len - linear;
2836
2837 return skb;
2838 }
2839
2840 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2841 {
2842 struct sock *sk = sock->sk;
2843 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2844 struct sk_buff *skb;
2845 struct net_device *dev;
2846 __be16 proto;
2847 unsigned char *addr = NULL;
2848 int err, reserve = 0;
2849 struct sockcm_cookie sockc;
2850 struct virtio_net_hdr vnet_hdr = { 0 };
2851 int offset = 0;
2852 struct packet_sock *po = pkt_sk(sk);
2853 bool has_vnet_hdr = false;
2854 int hlen, tlen, linear;
2855 int extra_len = 0;
2856
2857 /*
2858 * Get and verify the address.
2859 */
2860
2861 if (likely(saddr == NULL)) {
2862 dev = packet_cached_dev_get(po);
2863 proto = po->num;
2864 } else {
2865 err = -EINVAL;
2866 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2867 goto out;
2868 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2869 goto out;
2870 proto = saddr->sll_protocol;
2871 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2872 if (sock->type == SOCK_DGRAM) {
2873 if (dev && msg->msg_namelen < dev->addr_len +
2874 offsetof(struct sockaddr_ll, sll_addr))
2875 goto out_unlock;
2876 addr = saddr->sll_addr;
2877 }
2878 }
2879
2880 err = -ENXIO;
2881 if (unlikely(dev == NULL))
2882 goto out_unlock;
2883 err = -ENETDOWN;
2884 if (unlikely(!(dev->flags & IFF_UP)))
2885 goto out_unlock;
2886
2887 sockcm_init(&sockc, sk);
2888 sockc.mark = sk->sk_mark;
2889 if (msg->msg_controllen) {
2890 err = sock_cmsg_send(sk, msg, &sockc);
2891 if (unlikely(err))
2892 goto out_unlock;
2893 }
2894
2895 if (sock->type == SOCK_RAW)
2896 reserve = dev->hard_header_len;
2897 if (po->has_vnet_hdr) {
2898 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2899 if (err)
2900 goto out_unlock;
2901 has_vnet_hdr = true;
2902 }
2903
2904 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2905 if (!netif_supports_nofcs(dev)) {
2906 err = -EPROTONOSUPPORT;
2907 goto out_unlock;
2908 }
2909 extra_len = 4; /* We're doing our own CRC */
2910 }
2911
2912 err = -EMSGSIZE;
2913 if (!vnet_hdr.gso_type &&
2914 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2915 goto out_unlock;
2916
2917 err = -ENOBUFS;
2918 hlen = LL_RESERVED_SPACE(dev);
2919 tlen = dev->needed_tailroom;
2920 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2921 linear = max(linear, min_t(int, len, dev->hard_header_len));
2922 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2923 msg->msg_flags & MSG_DONTWAIT, &err);
2924 if (skb == NULL)
2925 goto out_unlock;
2926
2927 skb_reset_network_header(skb);
2928
2929 err = -EINVAL;
2930 if (sock->type == SOCK_DGRAM) {
2931 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2932 if (unlikely(offset < 0))
2933 goto out_free;
2934 } else if (reserve) {
2935 skb_reserve(skb, -reserve);
2936 if (len < reserve + sizeof(struct ipv6hdr) &&
2937 dev->min_header_len != dev->hard_header_len)
2938 skb_reset_network_header(skb);
2939 }
2940
2941 /* Returns -EFAULT on error */
2942 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2943 if (err)
2944 goto out_free;
2945
2946 if (sock->type == SOCK_RAW &&
2947 !dev_validate_header(dev, skb->data, len)) {
2948 err = -EINVAL;
2949 goto out_free;
2950 }
2951
2952 skb_setup_tx_timestamp(skb, sockc.tsflags);
2953
2954 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2955 !packet_extra_vlan_len_allowed(dev, skb)) {
2956 err = -EMSGSIZE;
2957 goto out_free;
2958 }
2959
2960 skb->protocol = proto;
2961 skb->dev = dev;
2962 skb->priority = sk->sk_priority;
2963 skb->mark = sockc.mark;
2964 skb->tstamp = sockc.transmit_time;
2965
2966 if (has_vnet_hdr) {
2967 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2968 if (err)
2969 goto out_free;
2970 len += sizeof(vnet_hdr);
2971 virtio_net_hdr_set_proto(skb, &vnet_hdr);
2972 }
2973
2974 packet_parse_headers(skb, sock);
2975
2976 if (unlikely(extra_len == 4))
2977 skb->no_fcs = 1;
2978
2979 err = po->xmit(skb);
2980 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2981 goto out_unlock;
2982
2983 dev_put(dev);
2984
2985 return len;
2986
2987 out_free:
2988 kfree_skb(skb);
2989 out_unlock:
2990 if (dev)
2991 dev_put(dev);
2992 out:
2993 return err;
2994 }
2995
2996 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2997 {
2998 struct sock *sk = sock->sk;
2999 struct packet_sock *po = pkt_sk(sk);
3000
3001 if (po->tx_ring.pg_vec)
3002 return tpacket_snd(po, msg);
3003 else
3004 return packet_snd(sock, msg, len);
3005 }
3006
3007 /*
3008 * Close a PACKET socket. This is fairly simple. We immediately go
3009 * to 'closed' state and remove our protocol entry in the device list.
3010 */
3011
3012 static int packet_release(struct socket *sock)
3013 {
3014 struct sock *sk = sock->sk;
3015 struct packet_sock *po;
3016 struct packet_fanout *f;
3017 struct net *net;
3018 union tpacket_req_u req_u;
3019
3020 if (!sk)
3021 return 0;
3022
3023 net = sock_net(sk);
3024 po = pkt_sk(sk);
3025
3026 mutex_lock(&net->packet.sklist_lock);
3027 sk_del_node_init_rcu(sk);
3028 mutex_unlock(&net->packet.sklist_lock);
3029
3030 preempt_disable();
3031 sock_prot_inuse_add(net, sk->sk_prot, -1);
3032 preempt_enable();
3033
3034 spin_lock(&po->bind_lock);
3035 unregister_prot_hook(sk, false);
3036 packet_cached_dev_reset(po);
3037
3038 if (po->prot_hook.dev) {
3039 dev_put(po->prot_hook.dev);
3040 po->prot_hook.dev = NULL;
3041 }
3042 spin_unlock(&po->bind_lock);
3043
3044 packet_flush_mclist(sk);
3045
3046 lock_sock(sk);
3047 if (po->rx_ring.pg_vec) {
3048 memset(&req_u, 0, sizeof(req_u));
3049 packet_set_ring(sk, &req_u, 1, 0);
3050 }
3051
3052 if (po->tx_ring.pg_vec) {
3053 memset(&req_u, 0, sizeof(req_u));
3054 packet_set_ring(sk, &req_u, 1, 1);
3055 }
3056 release_sock(sk);
3057
3058 f = fanout_release(sk);
3059
3060 synchronize_net();
3061
3062 kfree(po->rollover);
3063 if (f) {
3064 fanout_release_data(f);
3065 kfree(f);
3066 }
3067 /*
3068 * Now the socket is dead. No more input will appear.
3069 */
3070 sock_orphan(sk);
3071 sock->sk = NULL;
3072
3073 /* Purge queues */
3074
3075 skb_queue_purge(&sk->sk_receive_queue);
3076 packet_free_pending(po);
3077 sk_refcnt_debug_release(sk);
3078
3079 sock_put(sk);
3080 return 0;
3081 }
3082
3083 /*
3084 * Attach a packet hook.
3085 */
3086
3087 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3088 __be16 proto)
3089 {
3090 struct packet_sock *po = pkt_sk(sk);
3091 struct net_device *dev_curr;
3092 __be16 proto_curr;
3093 bool need_rehook;
3094 struct net_device *dev = NULL;
3095 int ret = 0;
3096 bool unlisted = false;
3097
3098 lock_sock(sk);
3099 spin_lock(&po->bind_lock);
3100 rcu_read_lock();
3101
3102 if (po->fanout) {
3103 ret = -EINVAL;
3104 goto out_unlock;
3105 }
3106
3107 if (name) {
3108 dev = dev_get_by_name_rcu(sock_net(sk), name);
3109 if (!dev) {
3110 ret = -ENODEV;
3111 goto out_unlock;
3112 }
3113 } else if (ifindex) {
3114 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3115 if (!dev) {
3116 ret = -ENODEV;
3117 goto out_unlock;
3118 }
3119 }
3120
3121 if (dev)
3122 dev_hold(dev);
3123
3124 proto_curr = po->prot_hook.type;
3125 dev_curr = po->prot_hook.dev;
3126
3127 need_rehook = proto_curr != proto || dev_curr != dev;
3128
3129 if (need_rehook) {
3130 if (po->running) {
3131 rcu_read_unlock();
3132 /* prevents packet_notifier() from calling
3133 * register_prot_hook()
3134 */
3135 po->num = 0;
3136 __unregister_prot_hook(sk, true);
3137 rcu_read_lock();
3138 dev_curr = po->prot_hook.dev;
3139 if (dev)
3140 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3141 dev->ifindex);
3142 }
3143
3144 BUG_ON(po->running);
3145 po->num = proto;
3146 po->prot_hook.type = proto;
3147
3148 if (unlikely(unlisted)) {
3149 dev_put(dev);
3150 po->prot_hook.dev = NULL;
3151 po->ifindex = -1;
3152 packet_cached_dev_reset(po);
3153 } else {
3154 po->prot_hook.dev = dev;
3155 po->ifindex = dev ? dev->ifindex : 0;
3156 packet_cached_dev_assign(po, dev);
3157 }
3158 }
3159 if (dev_curr)
3160 dev_put(dev_curr);
3161
3162 if (proto == 0 || !need_rehook)
3163 goto out_unlock;
3164
3165 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3166 register_prot_hook(sk);
3167 } else {
3168 sk->sk_err = ENETDOWN;
3169 if (!sock_flag(sk, SOCK_DEAD))
3170 sk->sk_error_report(sk);
3171 }
3172
3173 out_unlock:
3174 rcu_read_unlock();
3175 spin_unlock(&po->bind_lock);
3176 release_sock(sk);
3177 return ret;
3178 }
3179
3180 /*
3181 * Bind a packet socket to a device
3182 */
3183
3184 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3185 int addr_len)
3186 {
3187 struct sock *sk = sock->sk;
3188 char name[sizeof(uaddr->sa_data) + 1];
3189
3190 /*
3191 * Check legality
3192 */
3193
3194 if (addr_len != sizeof(struct sockaddr))
3195 return -EINVAL;
3196 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3197 * zero-terminated.
3198 */
3199 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3200 name[sizeof(uaddr->sa_data)] = 0;
3201
3202 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3203 }
3204
3205 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3206 {
3207 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3208 struct sock *sk = sock->sk;
3209
3210 /*
3211 * Check legality
3212 */
3213
3214 if (addr_len < sizeof(struct sockaddr_ll))
3215 return -EINVAL;
3216 if (sll->sll_family != AF_PACKET)
3217 return -EINVAL;
3218
3219 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3220 sll->sll_protocol ? : pkt_sk(sk)->num);
3221 }
3222
3223 static struct proto packet_proto = {
3224 .name = "PACKET",
3225 .owner = THIS_MODULE,
3226 .obj_size = sizeof(struct packet_sock),
3227 };
3228
3229 /*
3230 * Create a packet of type SOCK_PACKET.
3231 */
3232
3233 static int packet_create(struct net *net, struct socket *sock, int protocol,
3234 int kern)
3235 {
3236 struct sock *sk;
3237 struct packet_sock *po;
3238 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3239 int err;
3240
3241 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3242 return -EPERM;
3243 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3244 sock->type != SOCK_PACKET)
3245 return -ESOCKTNOSUPPORT;
3246
3247 sock->state = SS_UNCONNECTED;
3248
3249 err = -ENOBUFS;
3250 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3251 if (sk == NULL)
3252 goto out;
3253
3254 sock->ops = &packet_ops;
3255 if (sock->type == SOCK_PACKET)
3256 sock->ops = &packet_ops_spkt;
3257
3258 sock_init_data(sock, sk);
3259
3260 po = pkt_sk(sk);
3261 init_completion(&po->skb_completion);
3262 sk->sk_family = PF_PACKET;
3263 po->num = proto;
3264 po->xmit = dev_queue_xmit;
3265
3266 err = packet_alloc_pending(po);
3267 if (err)
3268 goto out2;
3269
3270 packet_cached_dev_reset(po);
3271
3272 sk->sk_destruct = packet_sock_destruct;
3273 sk_refcnt_debug_inc(sk);
3274
3275 /*
3276 * Attach a protocol block
3277 */
3278
3279 spin_lock_init(&po->bind_lock);
3280 mutex_init(&po->pg_vec_lock);
3281 po->rollover = NULL;
3282 po->prot_hook.func = packet_rcv;
3283
3284 if (sock->type == SOCK_PACKET)
3285 po->prot_hook.func = packet_rcv_spkt;
3286
3287 po->prot_hook.af_packet_priv = sk;
3288
3289 if (proto) {
3290 po->prot_hook.type = proto;
3291 __register_prot_hook(sk);
3292 }
3293
3294 mutex_lock(&net->packet.sklist_lock);
3295 sk_add_node_tail_rcu(sk, &net->packet.sklist);
3296 mutex_unlock(&net->packet.sklist_lock);
3297
3298 preempt_disable();
3299 sock_prot_inuse_add(net, &packet_proto, 1);
3300 preempt_enable();
3301
3302 return 0;
3303 out2:
3304 sk_free(sk);
3305 out:
3306 return err;
3307 }
3308
3309 /*
3310 * Pull a packet from our receive queue and hand it to the user.
3311 * If necessary we block.
3312 */
3313
3314 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3315 int flags)
3316 {
3317 struct sock *sk = sock->sk;
3318 struct sk_buff *skb;
3319 int copied, err;
3320 int vnet_hdr_len = 0;
3321 unsigned int origlen = 0;
3322
3323 err = -EINVAL;
3324 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3325 goto out;
3326
3327 #if 0
3328 /* What error should we return now? EUNATTACH? */
3329 if (pkt_sk(sk)->ifindex < 0)
3330 return -ENODEV;
3331 #endif
3332
3333 if (flags & MSG_ERRQUEUE) {
3334 err = sock_recv_errqueue(sk, msg, len,
3335 SOL_PACKET, PACKET_TX_TIMESTAMP);
3336 goto out;
3337 }
3338
3339 /*
3340 * Call the generic datagram receiver. This handles all sorts
3341 * of horrible races and re-entrancy so we can forget about it
3342 * in the protocol layers.
3343 *
3344 * Now it will return ENETDOWN, if device have just gone down,
3345 * but then it will block.
3346 */
3347
3348 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3349
3350 /*
3351 * An error occurred so return it. Because skb_recv_datagram()
3352 * handles the blocking we don't see and worry about blocking
3353 * retries.
3354 */
3355
3356 if (skb == NULL)
3357 goto out;
3358
3359 packet_rcv_try_clear_pressure(pkt_sk(sk));
3360
3361 if (pkt_sk(sk)->has_vnet_hdr) {
3362 err = packet_rcv_vnet(msg, skb, &len);
3363 if (err)
3364 goto out_free;
3365 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3366 }
3367
3368 /* You lose any data beyond the buffer you gave. If it worries
3369 * a user program they can ask the device for its MTU
3370 * anyway.
3371 */
3372 copied = skb->len;
3373 if (copied > len) {
3374 copied = len;
3375 msg->msg_flags |= MSG_TRUNC;
3376 }
3377
3378 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3379 if (err)
3380 goto out_free;
3381
3382 if (sock->type != SOCK_PACKET) {
3383 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3384
3385 /* Original length was stored in sockaddr_ll fields */
3386 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3387 sll->sll_family = AF_PACKET;
3388 sll->sll_protocol = skb->protocol;
3389 }
3390
3391 sock_recv_ts_and_drops(msg, sk, skb);
3392
3393 if (msg->msg_name) {
3394 int copy_len;
3395
3396 /* If the address length field is there to be filled
3397 * in, we fill it in now.
3398 */
3399 if (sock->type == SOCK_PACKET) {
3400 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3401 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3402 copy_len = msg->msg_namelen;
3403 } else {
3404 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3405
3406 msg->msg_namelen = sll->sll_halen +
3407 offsetof(struct sockaddr_ll, sll_addr);
3408 copy_len = msg->msg_namelen;
3409 if (msg->msg_namelen < sizeof(struct sockaddr_ll)) {
3410 memset(msg->msg_name +
3411 offsetof(struct sockaddr_ll, sll_addr),
3412 0, sizeof(sll->sll_addr));
3413 msg->msg_namelen = sizeof(struct sockaddr_ll);
3414 }
3415 }
3416 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa, copy_len);
3417 }
3418
3419 if (pkt_sk(sk)->auxdata) {
3420 struct tpacket_auxdata aux;
3421
3422 aux.tp_status = TP_STATUS_USER;
3423 if (skb->ip_summed == CHECKSUM_PARTIAL)
3424 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3425 else if (skb->pkt_type != PACKET_OUTGOING &&
3426 (skb->ip_summed == CHECKSUM_COMPLETE ||
3427 skb_csum_unnecessary(skb)))
3428 aux.tp_status |= TP_STATUS_CSUM_VALID;
3429
3430 aux.tp_len = origlen;
3431 aux.tp_snaplen = skb->len;
3432 aux.tp_mac = 0;
3433 aux.tp_net = skb_network_offset(skb);
3434 if (skb_vlan_tag_present(skb)) {
3435 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3436 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3437 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3438 } else {
3439 aux.tp_vlan_tci = 0;
3440 aux.tp_vlan_tpid = 0;
3441 }
3442 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3443 }
3444
3445 /*
3446 * Free or return the buffer as appropriate. Again this
3447 * hides all the races and re-entrancy issues from us.
3448 */
3449 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3450
3451 out_free:
3452 skb_free_datagram(sk, skb);
3453 out:
3454 return err;
3455 }
3456
3457 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3458 int peer)
3459 {
3460 struct net_device *dev;
3461 struct sock *sk = sock->sk;
3462
3463 if (peer)
3464 return -EOPNOTSUPP;
3465
3466 uaddr->sa_family = AF_PACKET;
3467 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3468 rcu_read_lock();
3469 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3470 if (dev)
3471 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3472 rcu_read_unlock();
3473
3474 return sizeof(*uaddr);
3475 }
3476
3477 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3478 int peer)
3479 {
3480 struct net_device *dev;
3481 struct sock *sk = sock->sk;
3482 struct packet_sock *po = pkt_sk(sk);
3483 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3484
3485 if (peer)
3486 return -EOPNOTSUPP;
3487
3488 sll->sll_family = AF_PACKET;
3489 sll->sll_ifindex = po->ifindex;
3490 sll->sll_protocol = po->num;
3491 sll->sll_pkttype = 0;
3492 rcu_read_lock();
3493 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3494 if (dev) {
3495 sll->sll_hatype = dev->type;
3496 sll->sll_halen = dev->addr_len;
3497 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3498 } else {
3499 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3500 sll->sll_halen = 0;
3501 }
3502 rcu_read_unlock();
3503
3504 return offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3505 }
3506
3507 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3508 int what)
3509 {
3510 switch (i->type) {
3511 case PACKET_MR_MULTICAST:
3512 if (i->alen != dev->addr_len)
3513 return -EINVAL;
3514 if (what > 0)
3515 return dev_mc_add(dev, i->addr);
3516 else
3517 return dev_mc_del(dev, i->addr);
3518 break;
3519 case PACKET_MR_PROMISC:
3520 return dev_set_promiscuity(dev, what);
3521 case PACKET_MR_ALLMULTI:
3522 return dev_set_allmulti(dev, what);
3523 case PACKET_MR_UNICAST:
3524 if (i->alen != dev->addr_len)
3525 return -EINVAL;
3526 if (what > 0)
3527 return dev_uc_add(dev, i->addr);
3528 else
3529 return dev_uc_del(dev, i->addr);
3530 break;
3531 default:
3532 break;
3533 }
3534 return 0;
3535 }
3536
3537 static void packet_dev_mclist_delete(struct net_device *dev,
3538 struct packet_mclist **mlp)
3539 {
3540 struct packet_mclist *ml;
3541
3542 while ((ml = *mlp) != NULL) {
3543 if (ml->ifindex == dev->ifindex) {
3544 packet_dev_mc(dev, ml, -1);
3545 *mlp = ml->next;
3546 kfree(ml);
3547 } else
3548 mlp = &ml->next;
3549 }
3550 }
3551
3552 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3553 {
3554 struct packet_sock *po = pkt_sk(sk);
3555 struct packet_mclist *ml, *i;
3556 struct net_device *dev;
3557 int err;
3558
3559 rtnl_lock();
3560
3561 err = -ENODEV;
3562 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3563 if (!dev)
3564 goto done;
3565
3566 err = -EINVAL;
3567 if (mreq->mr_alen > dev->addr_len)
3568 goto done;
3569
3570 err = -ENOBUFS;
3571 i = kmalloc(sizeof(*i), GFP_KERNEL);
3572 if (i == NULL)
3573 goto done;
3574
3575 err = 0;
3576 for (ml = po->mclist; ml; ml = ml->next) {
3577 if (ml->ifindex == mreq->mr_ifindex &&
3578 ml->type == mreq->mr_type &&
3579 ml->alen == mreq->mr_alen &&
3580 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3581 ml->count++;
3582 /* Free the new element ... */
3583 kfree(i);
3584 goto done;
3585 }
3586 }
3587
3588 i->type = mreq->mr_type;
3589 i->ifindex = mreq->mr_ifindex;
3590 i->alen = mreq->mr_alen;
3591 memcpy(i->addr, mreq->mr_address, i->alen);
3592 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3593 i->count = 1;
3594 i->next = po->mclist;
3595 po->mclist = i;
3596 err = packet_dev_mc(dev, i, 1);
3597 if (err) {
3598 po->mclist = i->next;
3599 kfree(i);
3600 }
3601
3602 done:
3603 rtnl_unlock();
3604 return err;
3605 }
3606
3607 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3608 {
3609 struct packet_mclist *ml, **mlp;
3610
3611 rtnl_lock();
3612
3613 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3614 if (ml->ifindex == mreq->mr_ifindex &&
3615 ml->type == mreq->mr_type &&
3616 ml->alen == mreq->mr_alen &&
3617 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3618 if (--ml->count == 0) {
3619 struct net_device *dev;
3620 *mlp = ml->next;
3621 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3622 if (dev)
3623 packet_dev_mc(dev, ml, -1);
3624 kfree(ml);
3625 }
3626 break;
3627 }
3628 }
3629 rtnl_unlock();
3630 return 0;
3631 }
3632
3633 static void packet_flush_mclist(struct sock *sk)
3634 {
3635 struct packet_sock *po = pkt_sk(sk);
3636 struct packet_mclist *ml;
3637
3638 if (!po->mclist)
3639 return;
3640
3641 rtnl_lock();
3642 while ((ml = po->mclist) != NULL) {
3643 struct net_device *dev;
3644
3645 po->mclist = ml->next;
3646 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3647 if (dev != NULL)
3648 packet_dev_mc(dev, ml, -1);
3649 kfree(ml);
3650 }
3651 rtnl_unlock();
3652 }
3653
3654 static int
3655 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3656 {
3657 struct sock *sk = sock->sk;
3658 struct packet_sock *po = pkt_sk(sk);
3659 int ret;
3660
3661 if (level != SOL_PACKET)
3662 return -ENOPROTOOPT;
3663
3664 switch (optname) {
3665 case PACKET_ADD_MEMBERSHIP:
3666 case PACKET_DROP_MEMBERSHIP:
3667 {
3668 struct packet_mreq_max mreq;
3669 int len = optlen;
3670 memset(&mreq, 0, sizeof(mreq));
3671 if (len < sizeof(struct packet_mreq))
3672 return -EINVAL;
3673 if (len > sizeof(mreq))
3674 len = sizeof(mreq);
3675 if (copy_from_user(&mreq, optval, len))
3676 return -EFAULT;
3677 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3678 return -EINVAL;
3679 if (optname == PACKET_ADD_MEMBERSHIP)
3680 ret = packet_mc_add(sk, &mreq);
3681 else
3682 ret = packet_mc_drop(sk, &mreq);
3683 return ret;
3684 }
3685
3686 case PACKET_RX_RING:
3687 case PACKET_TX_RING:
3688 {
3689 union tpacket_req_u req_u;
3690 int len;
3691
3692 lock_sock(sk);
3693 switch (po->tp_version) {
3694 case TPACKET_V1:
3695 case TPACKET_V2:
3696 len = sizeof(req_u.req);
3697 break;
3698 case TPACKET_V3:
3699 default:
3700 len = sizeof(req_u.req3);
3701 break;
3702 }
3703 if (optlen < len) {
3704 ret = -EINVAL;
3705 } else {
3706 if (copy_from_user(&req_u.req, optval, len))
3707 ret = -EFAULT;
3708 else
3709 ret = packet_set_ring(sk, &req_u, 0,
3710 optname == PACKET_TX_RING);
3711 }
3712 release_sock(sk);
3713 return ret;
3714 }
3715 case PACKET_COPY_THRESH:
3716 {
3717 int val;
3718
3719 if (optlen != sizeof(val))
3720 return -EINVAL;
3721 if (copy_from_user(&val, optval, sizeof(val)))
3722 return -EFAULT;
3723
3724 pkt_sk(sk)->copy_thresh = val;
3725 return 0;
3726 }
3727 case PACKET_VERSION:
3728 {
3729 int val;
3730
3731 if (optlen != sizeof(val))
3732 return -EINVAL;
3733 if (copy_from_user(&val, optval, sizeof(val)))
3734 return -EFAULT;
3735 switch (val) {
3736 case TPACKET_V1:
3737 case TPACKET_V2:
3738 case TPACKET_V3:
3739 break;
3740 default:
3741 return -EINVAL;
3742 }
3743 lock_sock(sk);
3744 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3745 ret = -EBUSY;
3746 } else {
3747 po->tp_version = val;
3748 ret = 0;
3749 }
3750 release_sock(sk);
3751 return ret;
3752 }
3753 case PACKET_RESERVE:
3754 {
3755 unsigned int val;
3756
3757 if (optlen != sizeof(val))
3758 return -EINVAL;
3759 if (copy_from_user(&val, optval, sizeof(val)))
3760 return -EFAULT;
3761 if (val > INT_MAX)
3762 return -EINVAL;
3763 lock_sock(sk);
3764 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3765 ret = -EBUSY;
3766 } else {
3767 po->tp_reserve = val;
3768 ret = 0;
3769 }
3770 release_sock(sk);
3771 return ret;
3772 }
3773 case PACKET_LOSS:
3774 {
3775 unsigned int val;
3776
3777 if (optlen != sizeof(val))
3778 return -EINVAL;
3779 if (copy_from_user(&val, optval, sizeof(val)))
3780 return -EFAULT;
3781
3782 lock_sock(sk);
3783 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3784 ret = -EBUSY;
3785 } else {
3786 po->tp_loss = !!val;
3787 ret = 0;
3788 }
3789 release_sock(sk);
3790 return ret;
3791 }
3792 case PACKET_AUXDATA:
3793 {
3794 int val;
3795
3796 if (optlen < sizeof(val))
3797 return -EINVAL;
3798 if (copy_from_user(&val, optval, sizeof(val)))
3799 return -EFAULT;
3800
3801 lock_sock(sk);
3802 po->auxdata = !!val;
3803 release_sock(sk);
3804 return 0;
3805 }
3806 case PACKET_ORIGDEV:
3807 {
3808 int val;
3809
3810 if (optlen < sizeof(val))
3811 return -EINVAL;
3812 if (copy_from_user(&val, optval, sizeof(val)))
3813 return -EFAULT;
3814
3815 lock_sock(sk);
3816 po->origdev = !!val;
3817 release_sock(sk);
3818 return 0;
3819 }
3820 case PACKET_VNET_HDR:
3821 {
3822 int val;
3823
3824 if (sock->type != SOCK_RAW)
3825 return -EINVAL;
3826 if (optlen < sizeof(val))
3827 return -EINVAL;
3828 if (copy_from_user(&val, optval, sizeof(val)))
3829 return -EFAULT;
3830
3831 lock_sock(sk);
3832 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3833 ret = -EBUSY;
3834 } else {
3835 po->has_vnet_hdr = !!val;
3836 ret = 0;
3837 }
3838 release_sock(sk);
3839 return ret;
3840 }
3841 case PACKET_TIMESTAMP:
3842 {
3843 int val;
3844
3845 if (optlen != sizeof(val))
3846 return -EINVAL;
3847 if (copy_from_user(&val, optval, sizeof(val)))
3848 return -EFAULT;
3849
3850 po->tp_tstamp = val;
3851 return 0;
3852 }
3853 case PACKET_FANOUT:
3854 {
3855 int val;
3856
3857 if (optlen != sizeof(val))
3858 return -EINVAL;
3859 if (copy_from_user(&val, optval, sizeof(val)))
3860 return -EFAULT;
3861
3862 return fanout_add(sk, val & 0xffff, val >> 16);
3863 }
3864 case PACKET_FANOUT_DATA:
3865 {
3866 if (!po->fanout)
3867 return -EINVAL;
3868
3869 return fanout_set_data(po, optval, optlen);
3870 }
3871 case PACKET_IGNORE_OUTGOING:
3872 {
3873 int val;
3874
3875 if (optlen != sizeof(val))
3876 return -EINVAL;
3877 if (copy_from_user(&val, optval, sizeof(val)))
3878 return -EFAULT;
3879 if (val < 0 || val > 1)
3880 return -EINVAL;
3881
3882 po->prot_hook.ignore_outgoing = !!val;
3883 return 0;
3884 }
3885 case PACKET_TX_HAS_OFF:
3886 {
3887 unsigned int val;
3888
3889 if (optlen != sizeof(val))
3890 return -EINVAL;
3891 if (copy_from_user(&val, optval, sizeof(val)))
3892 return -EFAULT;
3893
3894 lock_sock(sk);
3895 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3896 ret = -EBUSY;
3897 } else {
3898 po->tp_tx_has_off = !!val;
3899 ret = 0;
3900 }
3901 release_sock(sk);
3902 return 0;
3903 }
3904 case PACKET_QDISC_BYPASS:
3905 {
3906 int val;
3907
3908 if (optlen != sizeof(val))
3909 return -EINVAL;
3910 if (copy_from_user(&val, optval, sizeof(val)))
3911 return -EFAULT;
3912
3913 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3914 return 0;
3915 }
3916 default:
3917 return -ENOPROTOOPT;
3918 }
3919 }
3920
3921 static int packet_getsockopt(struct socket *sock, int level, int optname,
3922 char __user *optval, int __user *optlen)
3923 {
3924 int len;
3925 int val, lv = sizeof(val);
3926 struct sock *sk = sock->sk;
3927 struct packet_sock *po = pkt_sk(sk);
3928 void *data = &val;
3929 union tpacket_stats_u st;
3930 struct tpacket_rollover_stats rstats;
3931 int drops;
3932
3933 if (level != SOL_PACKET)
3934 return -ENOPROTOOPT;
3935
3936 if (get_user(len, optlen))
3937 return -EFAULT;
3938
3939 if (len < 0)
3940 return -EINVAL;
3941
3942 switch (optname) {
3943 case PACKET_STATISTICS:
3944 spin_lock_bh(&sk->sk_receive_queue.lock);
3945 memcpy(&st, &po->stats, sizeof(st));
3946 memset(&po->stats, 0, sizeof(po->stats));
3947 spin_unlock_bh(&sk->sk_receive_queue.lock);
3948 drops = atomic_xchg(&po->tp_drops, 0);
3949
3950 if (po->tp_version == TPACKET_V3) {
3951 lv = sizeof(struct tpacket_stats_v3);
3952 st.stats3.tp_drops = drops;
3953 st.stats3.tp_packets += drops;
3954 data = &st.stats3;
3955 } else {
3956 lv = sizeof(struct tpacket_stats);
3957 st.stats1.tp_drops = drops;
3958 st.stats1.tp_packets += drops;
3959 data = &st.stats1;
3960 }
3961
3962 break;
3963 case PACKET_AUXDATA:
3964 val = po->auxdata;
3965 break;
3966 case PACKET_ORIGDEV:
3967 val = po->origdev;
3968 break;
3969 case PACKET_VNET_HDR:
3970 val = po->has_vnet_hdr;
3971 break;
3972 case PACKET_VERSION:
3973 val = po->tp_version;
3974 break;
3975 case PACKET_HDRLEN:
3976 if (len > sizeof(int))
3977 len = sizeof(int);
3978 if (len < sizeof(int))
3979 return -EINVAL;
3980 if (copy_from_user(&val, optval, len))
3981 return -EFAULT;
3982 switch (val) {
3983 case TPACKET_V1:
3984 val = sizeof(struct tpacket_hdr);
3985 break;
3986 case TPACKET_V2:
3987 val = sizeof(struct tpacket2_hdr);
3988 break;
3989 case TPACKET_V3:
3990 val = sizeof(struct tpacket3_hdr);
3991 break;
3992 default:
3993 return -EINVAL;
3994 }
3995 break;
3996 case PACKET_RESERVE:
3997 val = po->tp_reserve;
3998 break;
3999 case PACKET_LOSS:
4000 val = po->tp_loss;
4001 break;
4002 case PACKET_TIMESTAMP:
4003 val = po->tp_tstamp;
4004 break;
4005 case PACKET_FANOUT:
4006 val = (po->fanout ?
4007 ((u32)po->fanout->id |
4008 ((u32)po->fanout->type << 16) |
4009 ((u32)po->fanout->flags << 24)) :
4010 0);
4011 break;
4012 case PACKET_IGNORE_OUTGOING:
4013 val = po->prot_hook.ignore_outgoing;
4014 break;
4015 case PACKET_ROLLOVER_STATS:
4016 if (!po->rollover)
4017 return -EINVAL;
4018 rstats.tp_all = atomic_long_read(&po->rollover->num);
4019 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
4020 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
4021 data = &rstats;
4022 lv = sizeof(rstats);
4023 break;
4024 case PACKET_TX_HAS_OFF:
4025 val = po->tp_tx_has_off;
4026 break;
4027 case PACKET_QDISC_BYPASS:
4028 val = packet_use_direct_xmit(po);
4029 break;
4030 default:
4031 return -ENOPROTOOPT;
4032 }
4033
4034 if (len > lv)
4035 len = lv;
4036 if (put_user(len, optlen))
4037 return -EFAULT;
4038 if (copy_to_user(optval, data, len))
4039 return -EFAULT;
4040 return 0;
4041 }
4042
4043 static int packet_notifier(struct notifier_block *this,
4044 unsigned long msg, void *ptr)
4045 {
4046 struct sock *sk;
4047 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4048 struct net *net = dev_net(dev);
4049
4050 rcu_read_lock();
4051 sk_for_each_rcu(sk, &net->packet.sklist) {
4052 struct packet_sock *po = pkt_sk(sk);
4053
4054 switch (msg) {
4055 case NETDEV_UNREGISTER:
4056 if (po->mclist)
4057 packet_dev_mclist_delete(dev, &po->mclist);
4058 /* fallthrough */
4059
4060 case NETDEV_DOWN:
4061 if (dev->ifindex == po->ifindex) {
4062 spin_lock(&po->bind_lock);
4063 if (po->running) {
4064 __unregister_prot_hook(sk, false);
4065 sk->sk_err = ENETDOWN;
4066 if (!sock_flag(sk, SOCK_DEAD))
4067 sk->sk_error_report(sk);
4068 }
4069 if (msg == NETDEV_UNREGISTER) {
4070 packet_cached_dev_reset(po);
4071 po->ifindex = -1;
4072 if (po->prot_hook.dev)
4073 dev_put(po->prot_hook.dev);
4074 po->prot_hook.dev = NULL;
4075 }
4076 spin_unlock(&po->bind_lock);
4077 }
4078 break;
4079 case NETDEV_UP:
4080 if (dev->ifindex == po->ifindex) {
4081 spin_lock(&po->bind_lock);
4082 if (po->num)
4083 register_prot_hook(sk);
4084 spin_unlock(&po->bind_lock);
4085 }
4086 break;
4087 }
4088 }
4089 rcu_read_unlock();
4090 return NOTIFY_DONE;
4091 }
4092
4093
4094 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4095 unsigned long arg)
4096 {
4097 struct sock *sk = sock->sk;
4098
4099 switch (cmd) {
4100 case SIOCOUTQ:
4101 {
4102 int amount = sk_wmem_alloc_get(sk);
4103
4104 return put_user(amount, (int __user *)arg);
4105 }
4106 case SIOCINQ:
4107 {
4108 struct sk_buff *skb;
4109 int amount = 0;
4110
4111 spin_lock_bh(&sk->sk_receive_queue.lock);
4112 skb = skb_peek(&sk->sk_receive_queue);
4113 if (skb)
4114 amount = skb->len;
4115 spin_unlock_bh(&sk->sk_receive_queue.lock);
4116 return put_user(amount, (int __user *)arg);
4117 }
4118 #ifdef CONFIG_INET
4119 case SIOCADDRT:
4120 case SIOCDELRT:
4121 case SIOCDARP:
4122 case SIOCGARP:
4123 case SIOCSARP:
4124 case SIOCGIFADDR:
4125 case SIOCSIFADDR:
4126 case SIOCGIFBRDADDR:
4127 case SIOCSIFBRDADDR:
4128 case SIOCGIFNETMASK:
4129 case SIOCSIFNETMASK:
4130 case SIOCGIFDSTADDR:
4131 case SIOCSIFDSTADDR:
4132 case SIOCSIFFLAGS:
4133 return inet_dgram_ops.ioctl(sock, cmd, arg);
4134 #endif
4135
4136 default:
4137 return -ENOIOCTLCMD;
4138 }
4139 return 0;
4140 }
4141
4142 static __poll_t packet_poll(struct file *file, struct socket *sock,
4143 poll_table *wait)
4144 {
4145 struct sock *sk = sock->sk;
4146 struct packet_sock *po = pkt_sk(sk);
4147 __poll_t mask = datagram_poll(file, sock, wait);
4148
4149 spin_lock_bh(&sk->sk_receive_queue.lock);
4150 if (po->rx_ring.pg_vec) {
4151 if (!packet_previous_rx_frame(po, &po->rx_ring,
4152 TP_STATUS_KERNEL))
4153 mask |= EPOLLIN | EPOLLRDNORM;
4154 }
4155 packet_rcv_try_clear_pressure(po);
4156 spin_unlock_bh(&sk->sk_receive_queue.lock);
4157 spin_lock_bh(&sk->sk_write_queue.lock);
4158 if (po->tx_ring.pg_vec) {
4159 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4160 mask |= EPOLLOUT | EPOLLWRNORM;
4161 }
4162 spin_unlock_bh(&sk->sk_write_queue.lock);
4163 return mask;
4164 }
4165
4166
4167 /* Dirty? Well, I still did not learn better way to account
4168 * for user mmaps.
4169 */
4170
4171 static void packet_mm_open(struct vm_area_struct *vma)
4172 {
4173 struct file *file = vma->vm_file;
4174 struct socket *sock = file->private_data;
4175 struct sock *sk = sock->sk;
4176
4177 if (sk)
4178 atomic_inc(&pkt_sk(sk)->mapped);
4179 }
4180
4181 static void packet_mm_close(struct vm_area_struct *vma)
4182 {
4183 struct file *file = vma->vm_file;
4184 struct socket *sock = file->private_data;
4185 struct sock *sk = sock->sk;
4186
4187 if (sk)
4188 atomic_dec(&pkt_sk(sk)->mapped);
4189 }
4190
4191 static const struct vm_operations_struct packet_mmap_ops = {
4192 .open = packet_mm_open,
4193 .close = packet_mm_close,
4194 };
4195
4196 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4197 unsigned int len)
4198 {
4199 int i;
4200
4201 for (i = 0; i < len; i++) {
4202 if (likely(pg_vec[i].buffer)) {
4203 if (is_vmalloc_addr(pg_vec[i].buffer))
4204 vfree(pg_vec[i].buffer);
4205 else
4206 free_pages((unsigned long)pg_vec[i].buffer,
4207 order);
4208 pg_vec[i].buffer = NULL;
4209 }
4210 }
4211 kfree(pg_vec);
4212 }
4213
4214 static char *alloc_one_pg_vec_page(unsigned long order)
4215 {
4216 char *buffer;
4217 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4218 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4219
4220 buffer = (char *) __get_free_pages(gfp_flags, order);
4221 if (buffer)
4222 return buffer;
4223
4224 /* __get_free_pages failed, fall back to vmalloc */
4225 buffer = vzalloc(array_size((1 << order), PAGE_SIZE));
4226 if (buffer)
4227 return buffer;
4228
4229 /* vmalloc failed, lets dig into swap here */
4230 gfp_flags &= ~__GFP_NORETRY;
4231 buffer = (char *) __get_free_pages(gfp_flags, order);
4232 if (buffer)
4233 return buffer;
4234
4235 /* complete and utter failure */
4236 return NULL;
4237 }
4238
4239 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4240 {
4241 unsigned int block_nr = req->tp_block_nr;
4242 struct pgv *pg_vec;
4243 int i;
4244
4245 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL | __GFP_NOWARN);
4246 if (unlikely(!pg_vec))
4247 goto out;
4248
4249 for (i = 0; i < block_nr; i++) {
4250 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4251 if (unlikely(!pg_vec[i].buffer))
4252 goto out_free_pgvec;
4253 }
4254
4255 out:
4256 return pg_vec;
4257
4258 out_free_pgvec:
4259 free_pg_vec(pg_vec, order, block_nr);
4260 pg_vec = NULL;
4261 goto out;
4262 }
4263
4264 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4265 int closing, int tx_ring)
4266 {
4267 struct pgv *pg_vec = NULL;
4268 struct packet_sock *po = pkt_sk(sk);
4269 unsigned long *rx_owner_map = NULL;
4270 int was_running, order = 0;
4271 struct packet_ring_buffer *rb;
4272 struct sk_buff_head *rb_queue;
4273 __be16 num;
4274 int err;
4275 /* Added to avoid minimal code churn */
4276 struct tpacket_req *req = &req_u->req;
4277
4278 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4279 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4280
4281 err = -EBUSY;
4282 if (!closing) {
4283 if (atomic_read(&po->mapped))
4284 goto out;
4285 if (packet_read_pending(rb))
4286 goto out;
4287 }
4288
4289 if (req->tp_block_nr) {
4290 unsigned int min_frame_size;
4291
4292 /* Sanity tests and some calculations */
4293 err = -EBUSY;
4294 if (unlikely(rb->pg_vec))
4295 goto out;
4296
4297 switch (po->tp_version) {
4298 case TPACKET_V1:
4299 po->tp_hdrlen = TPACKET_HDRLEN;
4300 break;
4301 case TPACKET_V2:
4302 po->tp_hdrlen = TPACKET2_HDRLEN;
4303 break;
4304 case TPACKET_V3:
4305 po->tp_hdrlen = TPACKET3_HDRLEN;
4306 break;
4307 }
4308
4309 err = -EINVAL;
4310 if (unlikely((int)req->tp_block_size <= 0))
4311 goto out;
4312 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4313 goto out;
4314 min_frame_size = po->tp_hdrlen + po->tp_reserve;
4315 if (po->tp_version >= TPACKET_V3 &&
4316 req->tp_block_size <
4317 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv) + min_frame_size)
4318 goto out;
4319 if (unlikely(req->tp_frame_size < min_frame_size))
4320 goto out;
4321 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4322 goto out;
4323
4324 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4325 if (unlikely(rb->frames_per_block == 0))
4326 goto out;
4327 if (unlikely(rb->frames_per_block > UINT_MAX / req->tp_block_nr))
4328 goto out;
4329 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4330 req->tp_frame_nr))
4331 goto out;
4332
4333 err = -ENOMEM;
4334 order = get_order(req->tp_block_size);
4335 pg_vec = alloc_pg_vec(req, order);
4336 if (unlikely(!pg_vec))
4337 goto out;
4338 switch (po->tp_version) {
4339 case TPACKET_V3:
4340 /* Block transmit is not supported yet */
4341 if (!tx_ring) {
4342 init_prb_bdqc(po, rb, pg_vec, req_u);
4343 } else {
4344 struct tpacket_req3 *req3 = &req_u->req3;
4345
4346 if (req3->tp_retire_blk_tov ||
4347 req3->tp_sizeof_priv ||
4348 req3->tp_feature_req_word) {
4349 err = -EINVAL;
4350 goto out_free_pg_vec;
4351 }
4352 }
4353 break;
4354 default:
4355 if (!tx_ring) {
4356 rx_owner_map = bitmap_alloc(req->tp_frame_nr,
4357 GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO);
4358 if (!rx_owner_map)
4359 goto out_free_pg_vec;
4360 }
4361 break;
4362 }
4363 }
4364 /* Done */
4365 else {
4366 err = -EINVAL;
4367 if (unlikely(req->tp_frame_nr))
4368 goto out;
4369 }
4370
4371
4372 /* Detach socket from network */
4373 spin_lock(&po->bind_lock);
4374 was_running = po->running;
4375 num = po->num;
4376 if (was_running) {
4377 po->num = 0;
4378 __unregister_prot_hook(sk, false);
4379 }
4380 spin_unlock(&po->bind_lock);
4381
4382 synchronize_net();
4383
4384 err = -EBUSY;
4385 mutex_lock(&po->pg_vec_lock);
4386 if (closing || atomic_read(&po->mapped) == 0) {
4387 err = 0;
4388 spin_lock_bh(&rb_queue->lock);
4389 swap(rb->pg_vec, pg_vec);
4390 if (po->tp_version <= TPACKET_V2)
4391 swap(rb->rx_owner_map, rx_owner_map);
4392 rb->frame_max = (req->tp_frame_nr - 1);
4393 rb->head = 0;
4394 rb->frame_size = req->tp_frame_size;
4395 spin_unlock_bh(&rb_queue->lock);
4396
4397 swap(rb->pg_vec_order, order);
4398 swap(rb->pg_vec_len, req->tp_block_nr);
4399
4400 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4401 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4402 tpacket_rcv : packet_rcv;
4403 skb_queue_purge(rb_queue);
4404 if (atomic_read(&po->mapped))
4405 pr_err("packet_mmap: vma is busy: %d\n",
4406 atomic_read(&po->mapped));
4407 }
4408 mutex_unlock(&po->pg_vec_lock);
4409
4410 spin_lock(&po->bind_lock);
4411 if (was_running) {
4412 po->num = num;
4413 register_prot_hook(sk);
4414 }
4415 spin_unlock(&po->bind_lock);
4416 if (pg_vec && (po->tp_version > TPACKET_V2)) {
4417 /* Because we don't support block-based V3 on tx-ring */
4418 if (!tx_ring)
4419 prb_shutdown_retire_blk_timer(po, rb_queue);
4420 }
4421
4422 out_free_pg_vec:
4423 bitmap_free(rx_owner_map);
4424 if (pg_vec)
4425 free_pg_vec(pg_vec, order, req->tp_block_nr);
4426 out:
4427 return err;
4428 }
4429
4430 static int packet_mmap(struct file *file, struct socket *sock,
4431 struct vm_area_struct *vma)
4432 {
4433 struct sock *sk = sock->sk;
4434 struct packet_sock *po = pkt_sk(sk);
4435 unsigned long size, expected_size;
4436 struct packet_ring_buffer *rb;
4437 unsigned long start;
4438 int err = -EINVAL;
4439 int i;
4440
4441 if (vma->vm_pgoff)
4442 return -EINVAL;
4443
4444 mutex_lock(&po->pg_vec_lock);
4445
4446 expected_size = 0;
4447 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4448 if (rb->pg_vec) {
4449 expected_size += rb->pg_vec_len
4450 * rb->pg_vec_pages
4451 * PAGE_SIZE;
4452 }
4453 }
4454
4455 if (expected_size == 0)
4456 goto out;
4457
4458 size = vma->vm_end - vma->vm_start;
4459 if (size != expected_size)
4460 goto out;
4461
4462 start = vma->vm_start;
4463 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4464 if (rb->pg_vec == NULL)
4465 continue;
4466
4467 for (i = 0; i < rb->pg_vec_len; i++) {
4468 struct page *page;
4469 void *kaddr = rb->pg_vec[i].buffer;
4470 int pg_num;
4471
4472 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4473 page = pgv_to_page(kaddr);
4474 err = vm_insert_page(vma, start, page);
4475 if (unlikely(err))
4476 goto out;
4477 start += PAGE_SIZE;
4478 kaddr += PAGE_SIZE;
4479 }
4480 }
4481 }
4482
4483 atomic_inc(&po->mapped);
4484 vma->vm_ops = &packet_mmap_ops;
4485 err = 0;
4486
4487 out:
4488 mutex_unlock(&po->pg_vec_lock);
4489 return err;
4490 }
4491
4492 static const struct proto_ops packet_ops_spkt = {
4493 .family = PF_PACKET,
4494 .owner = THIS_MODULE,
4495 .release = packet_release,
4496 .bind = packet_bind_spkt,
4497 .connect = sock_no_connect,
4498 .socketpair = sock_no_socketpair,
4499 .accept = sock_no_accept,
4500 .getname = packet_getname_spkt,
4501 .poll = datagram_poll,
4502 .ioctl = packet_ioctl,
4503 .gettstamp = sock_gettstamp,
4504 .listen = sock_no_listen,
4505 .shutdown = sock_no_shutdown,
4506 .setsockopt = sock_no_setsockopt,
4507 .getsockopt = sock_no_getsockopt,
4508 .sendmsg = packet_sendmsg_spkt,
4509 .recvmsg = packet_recvmsg,
4510 .mmap = sock_no_mmap,
4511 .sendpage = sock_no_sendpage,
4512 };
4513
4514 static const struct proto_ops packet_ops = {
4515 .family = PF_PACKET,
4516 .owner = THIS_MODULE,
4517 .release = packet_release,
4518 .bind = packet_bind,
4519 .connect = sock_no_connect,
4520 .socketpair = sock_no_socketpair,
4521 .accept = sock_no_accept,
4522 .getname = packet_getname,
4523 .poll = packet_poll,
4524 .ioctl = packet_ioctl,
4525 .gettstamp = sock_gettstamp,
4526 .listen = sock_no_listen,
4527 .shutdown = sock_no_shutdown,
4528 .setsockopt = packet_setsockopt,
4529 .getsockopt = packet_getsockopt,
4530 .sendmsg = packet_sendmsg,
4531 .recvmsg = packet_recvmsg,
4532 .mmap = packet_mmap,
4533 .sendpage = sock_no_sendpage,
4534 };
4535
4536 static const struct net_proto_family packet_family_ops = {
4537 .family = PF_PACKET,
4538 .create = packet_create,
4539 .owner = THIS_MODULE,
4540 };
4541
4542 static struct notifier_block packet_netdev_notifier = {
4543 .notifier_call = packet_notifier,
4544 };
4545
4546 #ifdef CONFIG_PROC_FS
4547
4548 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4549 __acquires(RCU)
4550 {
4551 struct net *net = seq_file_net(seq);
4552
4553 rcu_read_lock();
4554 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4555 }
4556
4557 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4558 {
4559 struct net *net = seq_file_net(seq);
4560 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4561 }
4562
4563 static void packet_seq_stop(struct seq_file *seq, void *v)
4564 __releases(RCU)
4565 {
4566 rcu_read_unlock();
4567 }
4568
4569 static int packet_seq_show(struct seq_file *seq, void *v)
4570 {
4571 if (v == SEQ_START_TOKEN)
4572 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4573 else {
4574 struct sock *s = sk_entry(v);
4575 const struct packet_sock *po = pkt_sk(s);
4576
4577 seq_printf(seq,
4578 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4579 s,
4580 refcount_read(&s->sk_refcnt),
4581 s->sk_type,
4582 ntohs(po->num),
4583 po->ifindex,
4584 po->running,
4585 atomic_read(&s->sk_rmem_alloc),
4586 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4587 sock_i_ino(s));
4588 }
4589
4590 return 0;
4591 }
4592
4593 static const struct seq_operations packet_seq_ops = {
4594 .start = packet_seq_start,
4595 .next = packet_seq_next,
4596 .stop = packet_seq_stop,
4597 .show = packet_seq_show,
4598 };
4599 #endif
4600
4601 static int __net_init packet_net_init(struct net *net)
4602 {
4603 mutex_init(&net->packet.sklist_lock);
4604 INIT_HLIST_HEAD(&net->packet.sklist);
4605
4606 if (!proc_create_net("packet", 0, net->proc_net, &packet_seq_ops,
4607 sizeof(struct seq_net_private)))
4608 return -ENOMEM;
4609
4610 return 0;
4611 }
4612
4613 static void __net_exit packet_net_exit(struct net *net)
4614 {
4615 remove_proc_entry("packet", net->proc_net);
4616 WARN_ON_ONCE(!hlist_empty(&net->packet.sklist));
4617 }
4618
4619 static struct pernet_operations packet_net_ops = {
4620 .init = packet_net_init,
4621 .exit = packet_net_exit,
4622 };
4623
4624
4625 static void __exit packet_exit(void)
4626 {
4627 unregister_netdevice_notifier(&packet_netdev_notifier);
4628 unregister_pernet_subsys(&packet_net_ops);
4629 sock_unregister(PF_PACKET);
4630 proto_unregister(&packet_proto);
4631 }
4632
4633 static int __init packet_init(void)
4634 {
4635 int rc;
4636
4637 rc = proto_register(&packet_proto, 0);
4638 if (rc)
4639 goto out;
4640 rc = sock_register(&packet_family_ops);
4641 if (rc)
4642 goto out_proto;
4643 rc = register_pernet_subsys(&packet_net_ops);
4644 if (rc)
4645 goto out_sock;
4646 rc = register_netdevice_notifier(&packet_netdev_notifier);
4647 if (rc)
4648 goto out_pernet;
4649
4650 return 0;
4651
4652 out_pernet:
4653 unregister_pernet_subsys(&packet_net_ops);
4654 out_sock:
4655 sock_unregister(PF_PACKET);
4656 out_proto:
4657 proto_unregister(&packet_proto);
4658 out:
4659 return rc;
4660 }
4661
4662 module_init(packet_init);
4663 module_exit(packet_exit);
4664 MODULE_LICENSE("GPL");
4665 MODULE_ALIAS_NETPROTO(PF_PACKET);