]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/packet/af_packet.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97
98 #include "internal.h"
99
100 /*
101 Assumptions:
102 - if device has no dev->hard_header routine, it adds and removes ll header
103 inside itself. In this case ll header is invisible outside of device,
104 but higher levels still should reserve dev->hard_header_len.
105 Some devices are enough clever to reallocate skb, when header
106 will not fit to reserved space (tunnel), another ones are silly
107 (PPP).
108 - packet socket receives packets with pulled ll header,
109 so that SOCK_RAW should push it back.
110
111 On receive:
112 -----------
113
114 Incoming, dev->hard_header!=NULL
115 mac_header -> ll header
116 data -> data
117
118 Outgoing, dev->hard_header!=NULL
119 mac_header -> ll header
120 data -> ll header
121
122 Incoming, dev->hard_header==NULL
123 mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 header. PPP makes it, that is wrong, because introduce
125 assymetry between rx and tx paths.
126 data -> data
127
128 Outgoing, dev->hard_header==NULL
129 mac_header -> data. ll header is still not built!
130 data -> data
131
132 Resume
133 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134
135
136 On transmit:
137 ------------
138
139 dev->hard_header != NULL
140 mac_header -> ll header
141 data -> ll header
142
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144 mac_header -> data
145 data -> data
146
147 We should set nh.raw on output to correct posistion,
148 packet classifier depends on it.
149 */
150
151 /* Private packet socket structures. */
152
153 /* identical to struct packet_mreq except it has
154 * a longer address field.
155 */
156 struct packet_mreq_max {
157 int mr_ifindex;
158 unsigned short mr_type;
159 unsigned short mr_alen;
160 unsigned char mr_address[MAX_ADDR_LEN];
161 };
162
163 union tpacket_uhdr {
164 struct tpacket_hdr *h1;
165 struct tpacket2_hdr *h2;
166 struct tpacket3_hdr *h3;
167 void *raw;
168 };
169
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 int closing, int tx_ring);
172
173 #define V3_ALIGNMENT (8)
174
175 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179
180 #define PGV_FROM_VMALLOC 1
181
182 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
183 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
184 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
185 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
186 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
187 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
188 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
189
190 struct packet_sock;
191 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
192 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
193 struct packet_type *pt, struct net_device *orig_dev);
194
195 static void *packet_previous_frame(struct packet_sock *po,
196 struct packet_ring_buffer *rb,
197 int status);
198 static void packet_increment_head(struct packet_ring_buffer *buff);
199 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
200 struct tpacket_block_desc *);
201 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
202 struct packet_sock *);
203 static void prb_retire_current_block(struct tpacket_kbdq_core *,
204 struct packet_sock *, unsigned int status);
205 static int prb_queue_frozen(struct tpacket_kbdq_core *);
206 static void prb_open_block(struct tpacket_kbdq_core *,
207 struct tpacket_block_desc *);
208 static void prb_retire_rx_blk_timer_expired(unsigned long);
209 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
210 static void prb_init_blk_timer(struct packet_sock *,
211 struct tpacket_kbdq_core *,
212 void (*func) (unsigned long));
213 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
214 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
217 struct tpacket3_hdr *);
218 static void packet_flush_mclist(struct sock *sk);
219
220 struct packet_skb_cb {
221 union {
222 struct sockaddr_pkt pkt;
223 union {
224 /* Trick: alias skb original length with
225 * ll.sll_family and ll.protocol in order
226 * to save room.
227 */
228 unsigned int origlen;
229 struct sockaddr_ll ll;
230 };
231 } sa;
232 };
233
234 #define vio_le() virtio_legacy_is_little_endian()
235
236 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
237
238 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
239 #define GET_PBLOCK_DESC(x, bid) \
240 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
241 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
242 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
243 #define GET_NEXT_PRB_BLK_NUM(x) \
244 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
245 ((x)->kactive_blk_num+1) : 0)
246
247 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
248 static void __fanout_link(struct sock *sk, struct packet_sock *po);
249
250 static int packet_direct_xmit(struct sk_buff *skb)
251 {
252 struct net_device *dev = skb->dev;
253 struct sk_buff *orig_skb = skb;
254 struct netdev_queue *txq;
255 int ret = NETDEV_TX_BUSY;
256
257 if (unlikely(!netif_running(dev) ||
258 !netif_carrier_ok(dev)))
259 goto drop;
260
261 skb = validate_xmit_skb_list(skb, dev);
262 if (skb != orig_skb)
263 goto drop;
264
265 txq = skb_get_tx_queue(dev, skb);
266
267 local_bh_disable();
268
269 HARD_TX_LOCK(dev, txq, smp_processor_id());
270 if (!netif_xmit_frozen_or_drv_stopped(txq))
271 ret = netdev_start_xmit(skb, dev, txq, false);
272 HARD_TX_UNLOCK(dev, txq);
273
274 local_bh_enable();
275
276 if (!dev_xmit_complete(ret))
277 kfree_skb(skb);
278
279 return ret;
280 drop:
281 atomic_long_inc(&dev->tx_dropped);
282 kfree_skb_list(skb);
283 return NET_XMIT_DROP;
284 }
285
286 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
287 {
288 struct net_device *dev;
289
290 rcu_read_lock();
291 dev = rcu_dereference(po->cached_dev);
292 if (likely(dev))
293 dev_hold(dev);
294 rcu_read_unlock();
295
296 return dev;
297 }
298
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 struct net_device *dev)
301 {
302 rcu_assign_pointer(po->cached_dev, dev);
303 }
304
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309
310 static bool packet_use_direct_xmit(const struct packet_sock *po)
311 {
312 return po->xmit == packet_direct_xmit;
313 }
314
315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
318 }
319
320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
321 {
322 const struct net_device_ops *ops = dev->netdev_ops;
323 u16 queue_index;
324
325 if (ops->ndo_select_queue) {
326 queue_index = ops->ndo_select_queue(dev, skb, NULL,
327 __packet_pick_tx_queue);
328 queue_index = netdev_cap_txqueue(dev, queue_index);
329 } else {
330 queue_index = __packet_pick_tx_queue(dev, skb);
331 }
332
333 skb_set_queue_mapping(skb, queue_index);
334 }
335
336 /* register_prot_hook must be invoked with the po->bind_lock held,
337 * or from a context in which asynchronous accesses to the packet
338 * socket is not possible (packet_create()).
339 */
340 static void register_prot_hook(struct sock *sk)
341 {
342 struct packet_sock *po = pkt_sk(sk);
343
344 if (!po->running) {
345 if (po->fanout)
346 __fanout_link(sk, po);
347 else
348 dev_add_pack(&po->prot_hook);
349
350 sock_hold(sk);
351 po->running = 1;
352 }
353 }
354
355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
356 * held. If the sync parameter is true, we will temporarily drop
357 * the po->bind_lock and do a synchronize_net to make sure no
358 * asynchronous packet processing paths still refer to the elements
359 * of po->prot_hook. If the sync parameter is false, it is the
360 * callers responsibility to take care of this.
361 */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 struct packet_sock *po = pkt_sk(sk);
365
366 po->running = 0;
367
368 if (po->fanout)
369 __fanout_unlink(sk, po);
370 else
371 __dev_remove_pack(&po->prot_hook);
372
373 __sock_put(sk);
374
375 if (sync) {
376 spin_unlock(&po->bind_lock);
377 synchronize_net();
378 spin_lock(&po->bind_lock);
379 }
380 }
381
382 static void unregister_prot_hook(struct sock *sk, bool sync)
383 {
384 struct packet_sock *po = pkt_sk(sk);
385
386 if (po->running)
387 __unregister_prot_hook(sk, sync);
388 }
389
390 static inline struct page * __pure pgv_to_page(void *addr)
391 {
392 if (is_vmalloc_addr(addr))
393 return vmalloc_to_page(addr);
394 return virt_to_page(addr);
395 }
396
397 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
398 {
399 union tpacket_uhdr h;
400
401 h.raw = frame;
402 switch (po->tp_version) {
403 case TPACKET_V1:
404 h.h1->tp_status = status;
405 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
406 break;
407 case TPACKET_V2:
408 h.h2->tp_status = status;
409 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
410 break;
411 case TPACKET_V3:
412 h.h3->tp_status = status;
413 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
414 break;
415 default:
416 WARN(1, "TPACKET version not supported.\n");
417 BUG();
418 }
419
420 smp_wmb();
421 }
422
423 static int __packet_get_status(struct packet_sock *po, void *frame)
424 {
425 union tpacket_uhdr h;
426
427 smp_rmb();
428
429 h.raw = frame;
430 switch (po->tp_version) {
431 case TPACKET_V1:
432 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
433 return h.h1->tp_status;
434 case TPACKET_V2:
435 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
436 return h.h2->tp_status;
437 case TPACKET_V3:
438 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
439 return h.h3->tp_status;
440 default:
441 WARN(1, "TPACKET version not supported.\n");
442 BUG();
443 return 0;
444 }
445 }
446
447 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
448 unsigned int flags)
449 {
450 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
451
452 if (shhwtstamps &&
453 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
454 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
455 return TP_STATUS_TS_RAW_HARDWARE;
456
457 if (ktime_to_timespec_cond(skb->tstamp, ts))
458 return TP_STATUS_TS_SOFTWARE;
459
460 return 0;
461 }
462
463 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
464 struct sk_buff *skb)
465 {
466 union tpacket_uhdr h;
467 struct timespec ts;
468 __u32 ts_status;
469
470 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
471 return 0;
472
473 h.raw = frame;
474 switch (po->tp_version) {
475 case TPACKET_V1:
476 h.h1->tp_sec = ts.tv_sec;
477 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
478 break;
479 case TPACKET_V2:
480 h.h2->tp_sec = ts.tv_sec;
481 h.h2->tp_nsec = ts.tv_nsec;
482 break;
483 case TPACKET_V3:
484 h.h3->tp_sec = ts.tv_sec;
485 h.h3->tp_nsec = ts.tv_nsec;
486 break;
487 default:
488 WARN(1, "TPACKET version not supported.\n");
489 BUG();
490 }
491
492 /* one flush is safe, as both fields always lie on the same cacheline */
493 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
494 smp_wmb();
495
496 return ts_status;
497 }
498
499 static void *packet_lookup_frame(struct packet_sock *po,
500 struct packet_ring_buffer *rb,
501 unsigned int position,
502 int status)
503 {
504 unsigned int pg_vec_pos, frame_offset;
505 union tpacket_uhdr h;
506
507 pg_vec_pos = position / rb->frames_per_block;
508 frame_offset = position % rb->frames_per_block;
509
510 h.raw = rb->pg_vec[pg_vec_pos].buffer +
511 (frame_offset * rb->frame_size);
512
513 if (status != __packet_get_status(po, h.raw))
514 return NULL;
515
516 return h.raw;
517 }
518
519 static void *packet_current_frame(struct packet_sock *po,
520 struct packet_ring_buffer *rb,
521 int status)
522 {
523 return packet_lookup_frame(po, rb, rb->head, status);
524 }
525
526 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
527 {
528 del_timer_sync(&pkc->retire_blk_timer);
529 }
530
531 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
532 struct sk_buff_head *rb_queue)
533 {
534 struct tpacket_kbdq_core *pkc;
535
536 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
537
538 spin_lock_bh(&rb_queue->lock);
539 pkc->delete_blk_timer = 1;
540 spin_unlock_bh(&rb_queue->lock);
541
542 prb_del_retire_blk_timer(pkc);
543 }
544
545 static void prb_init_blk_timer(struct packet_sock *po,
546 struct tpacket_kbdq_core *pkc,
547 void (*func) (unsigned long))
548 {
549 init_timer(&pkc->retire_blk_timer);
550 pkc->retire_blk_timer.data = (long)po;
551 pkc->retire_blk_timer.function = func;
552 pkc->retire_blk_timer.expires = jiffies;
553 }
554
555 static void prb_setup_retire_blk_timer(struct packet_sock *po)
556 {
557 struct tpacket_kbdq_core *pkc;
558
559 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
560 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
561 }
562
563 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
564 int blk_size_in_bytes)
565 {
566 struct net_device *dev;
567 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
568 struct ethtool_link_ksettings ecmd;
569 int err;
570
571 rtnl_lock();
572 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
573 if (unlikely(!dev)) {
574 rtnl_unlock();
575 return DEFAULT_PRB_RETIRE_TOV;
576 }
577 err = __ethtool_get_link_ksettings(dev, &ecmd);
578 rtnl_unlock();
579 if (!err) {
580 /*
581 * If the link speed is so slow you don't really
582 * need to worry about perf anyways
583 */
584 if (ecmd.base.speed < SPEED_1000 ||
585 ecmd.base.speed == SPEED_UNKNOWN) {
586 return DEFAULT_PRB_RETIRE_TOV;
587 } else {
588 msec = 1;
589 div = ecmd.base.speed / 1000;
590 }
591 }
592
593 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
594
595 if (div)
596 mbits /= div;
597
598 tmo = mbits * msec;
599
600 if (div)
601 return tmo+1;
602 return tmo;
603 }
604
605 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
606 union tpacket_req_u *req_u)
607 {
608 p1->feature_req_word = req_u->req3.tp_feature_req_word;
609 }
610
611 static void init_prb_bdqc(struct packet_sock *po,
612 struct packet_ring_buffer *rb,
613 struct pgv *pg_vec,
614 union tpacket_req_u *req_u)
615 {
616 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
617 struct tpacket_block_desc *pbd;
618
619 memset(p1, 0x0, sizeof(*p1));
620
621 p1->knxt_seq_num = 1;
622 p1->pkbdq = pg_vec;
623 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
624 p1->pkblk_start = pg_vec[0].buffer;
625 p1->kblk_size = req_u->req3.tp_block_size;
626 p1->knum_blocks = req_u->req3.tp_block_nr;
627 p1->hdrlen = po->tp_hdrlen;
628 p1->version = po->tp_version;
629 p1->last_kactive_blk_num = 0;
630 po->stats.stats3.tp_freeze_q_cnt = 0;
631 if (req_u->req3.tp_retire_blk_tov)
632 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
633 else
634 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
635 req_u->req3.tp_block_size);
636 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
637 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
638
639 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
640 prb_init_ft_ops(p1, req_u);
641 prb_setup_retire_blk_timer(po);
642 prb_open_block(p1, pbd);
643 }
644
645 /* Do NOT update the last_blk_num first.
646 * Assumes sk_buff_head lock is held.
647 */
648 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
649 {
650 mod_timer(&pkc->retire_blk_timer,
651 jiffies + pkc->tov_in_jiffies);
652 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
653 }
654
655 /*
656 * Timer logic:
657 * 1) We refresh the timer only when we open a block.
658 * By doing this we don't waste cycles refreshing the timer
659 * on packet-by-packet basis.
660 *
661 * With a 1MB block-size, on a 1Gbps line, it will take
662 * i) ~8 ms to fill a block + ii) memcpy etc.
663 * In this cut we are not accounting for the memcpy time.
664 *
665 * So, if the user sets the 'tmo' to 10ms then the timer
666 * will never fire while the block is still getting filled
667 * (which is what we want). However, the user could choose
668 * to close a block early and that's fine.
669 *
670 * But when the timer does fire, we check whether or not to refresh it.
671 * Since the tmo granularity is in msecs, it is not too expensive
672 * to refresh the timer, lets say every '8' msecs.
673 * Either the user can set the 'tmo' or we can derive it based on
674 * a) line-speed and b) block-size.
675 * prb_calc_retire_blk_tmo() calculates the tmo.
676 *
677 */
678 static void prb_retire_rx_blk_timer_expired(unsigned long data)
679 {
680 struct packet_sock *po = (struct packet_sock *)data;
681 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
682 unsigned int frozen;
683 struct tpacket_block_desc *pbd;
684
685 spin_lock(&po->sk.sk_receive_queue.lock);
686
687 frozen = prb_queue_frozen(pkc);
688 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
689
690 if (unlikely(pkc->delete_blk_timer))
691 goto out;
692
693 /* We only need to plug the race when the block is partially filled.
694 * tpacket_rcv:
695 * lock(); increment BLOCK_NUM_PKTS; unlock()
696 * copy_bits() is in progress ...
697 * timer fires on other cpu:
698 * we can't retire the current block because copy_bits
699 * is in progress.
700 *
701 */
702 if (BLOCK_NUM_PKTS(pbd)) {
703 while (atomic_read(&pkc->blk_fill_in_prog)) {
704 /* Waiting for skb_copy_bits to finish... */
705 cpu_relax();
706 }
707 }
708
709 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
710 if (!frozen) {
711 if (!BLOCK_NUM_PKTS(pbd)) {
712 /* An empty block. Just refresh the timer. */
713 goto refresh_timer;
714 }
715 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
716 if (!prb_dispatch_next_block(pkc, po))
717 goto refresh_timer;
718 else
719 goto out;
720 } else {
721 /* Case 1. Queue was frozen because user-space was
722 * lagging behind.
723 */
724 if (prb_curr_blk_in_use(pkc, pbd)) {
725 /*
726 * Ok, user-space is still behind.
727 * So just refresh the timer.
728 */
729 goto refresh_timer;
730 } else {
731 /* Case 2. queue was frozen,user-space caught up,
732 * now the link went idle && the timer fired.
733 * We don't have a block to close.So we open this
734 * block and restart the timer.
735 * opening a block thaws the queue,restarts timer
736 * Thawing/timer-refresh is a side effect.
737 */
738 prb_open_block(pkc, pbd);
739 goto out;
740 }
741 }
742 }
743
744 refresh_timer:
745 _prb_refresh_rx_retire_blk_timer(pkc);
746
747 out:
748 spin_unlock(&po->sk.sk_receive_queue.lock);
749 }
750
751 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
752 struct tpacket_block_desc *pbd1, __u32 status)
753 {
754 /* Flush everything minus the block header */
755
756 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
757 u8 *start, *end;
758
759 start = (u8 *)pbd1;
760
761 /* Skip the block header(we know header WILL fit in 4K) */
762 start += PAGE_SIZE;
763
764 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
765 for (; start < end; start += PAGE_SIZE)
766 flush_dcache_page(pgv_to_page(start));
767
768 smp_wmb();
769 #endif
770
771 /* Now update the block status. */
772
773 BLOCK_STATUS(pbd1) = status;
774
775 /* Flush the block header */
776
777 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
778 start = (u8 *)pbd1;
779 flush_dcache_page(pgv_to_page(start));
780
781 smp_wmb();
782 #endif
783 }
784
785 /*
786 * Side effect:
787 *
788 * 1) flush the block
789 * 2) Increment active_blk_num
790 *
791 * Note:We DONT refresh the timer on purpose.
792 * Because almost always the next block will be opened.
793 */
794 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
795 struct tpacket_block_desc *pbd1,
796 struct packet_sock *po, unsigned int stat)
797 {
798 __u32 status = TP_STATUS_USER | stat;
799
800 struct tpacket3_hdr *last_pkt;
801 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
802 struct sock *sk = &po->sk;
803
804 if (po->stats.stats3.tp_drops)
805 status |= TP_STATUS_LOSING;
806
807 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
808 last_pkt->tp_next_offset = 0;
809
810 /* Get the ts of the last pkt */
811 if (BLOCK_NUM_PKTS(pbd1)) {
812 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
813 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
814 } else {
815 /* Ok, we tmo'd - so get the current time.
816 *
817 * It shouldn't really happen as we don't close empty
818 * blocks. See prb_retire_rx_blk_timer_expired().
819 */
820 struct timespec ts;
821 getnstimeofday(&ts);
822 h1->ts_last_pkt.ts_sec = ts.tv_sec;
823 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
824 }
825
826 smp_wmb();
827
828 /* Flush the block */
829 prb_flush_block(pkc1, pbd1, status);
830
831 sk->sk_data_ready(sk);
832
833 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
834 }
835
836 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
837 {
838 pkc->reset_pending_on_curr_blk = 0;
839 }
840
841 /*
842 * Side effect of opening a block:
843 *
844 * 1) prb_queue is thawed.
845 * 2) retire_blk_timer is refreshed.
846 *
847 */
848 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
849 struct tpacket_block_desc *pbd1)
850 {
851 struct timespec ts;
852 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
853
854 smp_rmb();
855
856 /* We could have just memset this but we will lose the
857 * flexibility of making the priv area sticky
858 */
859
860 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
861 BLOCK_NUM_PKTS(pbd1) = 0;
862 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
863
864 getnstimeofday(&ts);
865
866 h1->ts_first_pkt.ts_sec = ts.tv_sec;
867 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
868
869 pkc1->pkblk_start = (char *)pbd1;
870 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
871
872 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
873 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
874
875 pbd1->version = pkc1->version;
876 pkc1->prev = pkc1->nxt_offset;
877 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
878
879 prb_thaw_queue(pkc1);
880 _prb_refresh_rx_retire_blk_timer(pkc1);
881
882 smp_wmb();
883 }
884
885 /*
886 * Queue freeze logic:
887 * 1) Assume tp_block_nr = 8 blocks.
888 * 2) At time 't0', user opens Rx ring.
889 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
890 * 4) user-space is either sleeping or processing block '0'.
891 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
892 * it will close block-7,loop around and try to fill block '0'.
893 * call-flow:
894 * __packet_lookup_frame_in_block
895 * prb_retire_current_block()
896 * prb_dispatch_next_block()
897 * |->(BLOCK_STATUS == USER) evaluates to true
898 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
899 * 6) Now there are two cases:
900 * 6.1) Link goes idle right after the queue is frozen.
901 * But remember, the last open_block() refreshed the timer.
902 * When this timer expires,it will refresh itself so that we can
903 * re-open block-0 in near future.
904 * 6.2) Link is busy and keeps on receiving packets. This is a simple
905 * case and __packet_lookup_frame_in_block will check if block-0
906 * is free and can now be re-used.
907 */
908 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
909 struct packet_sock *po)
910 {
911 pkc->reset_pending_on_curr_blk = 1;
912 po->stats.stats3.tp_freeze_q_cnt++;
913 }
914
915 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
916
917 /*
918 * If the next block is free then we will dispatch it
919 * and return a good offset.
920 * Else, we will freeze the queue.
921 * So, caller must check the return value.
922 */
923 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
924 struct packet_sock *po)
925 {
926 struct tpacket_block_desc *pbd;
927
928 smp_rmb();
929
930 /* 1. Get current block num */
931 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
932
933 /* 2. If this block is currently in_use then freeze the queue */
934 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
935 prb_freeze_queue(pkc, po);
936 return NULL;
937 }
938
939 /*
940 * 3.
941 * open this block and return the offset where the first packet
942 * needs to get stored.
943 */
944 prb_open_block(pkc, pbd);
945 return (void *)pkc->nxt_offset;
946 }
947
948 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
949 struct packet_sock *po, unsigned int status)
950 {
951 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
952
953 /* retire/close the current block */
954 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
955 /*
956 * Plug the case where copy_bits() is in progress on
957 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
958 * have space to copy the pkt in the current block and
959 * called prb_retire_current_block()
960 *
961 * We don't need to worry about the TMO case because
962 * the timer-handler already handled this case.
963 */
964 if (!(status & TP_STATUS_BLK_TMO)) {
965 while (atomic_read(&pkc->blk_fill_in_prog)) {
966 /* Waiting for skb_copy_bits to finish... */
967 cpu_relax();
968 }
969 }
970 prb_close_block(pkc, pbd, po, status);
971 return;
972 }
973 }
974
975 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
976 struct tpacket_block_desc *pbd)
977 {
978 return TP_STATUS_USER & BLOCK_STATUS(pbd);
979 }
980
981 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
982 {
983 return pkc->reset_pending_on_curr_blk;
984 }
985
986 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
987 {
988 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
989 atomic_dec(&pkc->blk_fill_in_prog);
990 }
991
992 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
993 struct tpacket3_hdr *ppd)
994 {
995 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
996 }
997
998 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
999 struct tpacket3_hdr *ppd)
1000 {
1001 ppd->hv1.tp_rxhash = 0;
1002 }
1003
1004 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1005 struct tpacket3_hdr *ppd)
1006 {
1007 if (skb_vlan_tag_present(pkc->skb)) {
1008 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1009 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1010 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1011 } else {
1012 ppd->hv1.tp_vlan_tci = 0;
1013 ppd->hv1.tp_vlan_tpid = 0;
1014 ppd->tp_status = TP_STATUS_AVAILABLE;
1015 }
1016 }
1017
1018 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1019 struct tpacket3_hdr *ppd)
1020 {
1021 ppd->hv1.tp_padding = 0;
1022 prb_fill_vlan_info(pkc, ppd);
1023
1024 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1025 prb_fill_rxhash(pkc, ppd);
1026 else
1027 prb_clear_rxhash(pkc, ppd);
1028 }
1029
1030 static void prb_fill_curr_block(char *curr,
1031 struct tpacket_kbdq_core *pkc,
1032 struct tpacket_block_desc *pbd,
1033 unsigned int len)
1034 {
1035 struct tpacket3_hdr *ppd;
1036
1037 ppd = (struct tpacket3_hdr *)curr;
1038 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1039 pkc->prev = curr;
1040 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1041 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1042 BLOCK_NUM_PKTS(pbd) += 1;
1043 atomic_inc(&pkc->blk_fill_in_prog);
1044 prb_run_all_ft_ops(pkc, ppd);
1045 }
1046
1047 /* Assumes caller has the sk->rx_queue.lock */
1048 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1049 struct sk_buff *skb,
1050 int status,
1051 unsigned int len
1052 )
1053 {
1054 struct tpacket_kbdq_core *pkc;
1055 struct tpacket_block_desc *pbd;
1056 char *curr, *end;
1057
1058 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1059 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1060
1061 /* Queue is frozen when user space is lagging behind */
1062 if (prb_queue_frozen(pkc)) {
1063 /*
1064 * Check if that last block which caused the queue to freeze,
1065 * is still in_use by user-space.
1066 */
1067 if (prb_curr_blk_in_use(pkc, pbd)) {
1068 /* Can't record this packet */
1069 return NULL;
1070 } else {
1071 /*
1072 * Ok, the block was released by user-space.
1073 * Now let's open that block.
1074 * opening a block also thaws the queue.
1075 * Thawing is a side effect.
1076 */
1077 prb_open_block(pkc, pbd);
1078 }
1079 }
1080
1081 smp_mb();
1082 curr = pkc->nxt_offset;
1083 pkc->skb = skb;
1084 end = (char *)pbd + pkc->kblk_size;
1085
1086 /* first try the current block */
1087 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1088 prb_fill_curr_block(curr, pkc, pbd, len);
1089 return (void *)curr;
1090 }
1091
1092 /* Ok, close the current block */
1093 prb_retire_current_block(pkc, po, 0);
1094
1095 /* Now, try to dispatch the next block */
1096 curr = (char *)prb_dispatch_next_block(pkc, po);
1097 if (curr) {
1098 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1099 prb_fill_curr_block(curr, pkc, pbd, len);
1100 return (void *)curr;
1101 }
1102
1103 /*
1104 * No free blocks are available.user_space hasn't caught up yet.
1105 * Queue was just frozen and now this packet will get dropped.
1106 */
1107 return NULL;
1108 }
1109
1110 static void *packet_current_rx_frame(struct packet_sock *po,
1111 struct sk_buff *skb,
1112 int status, unsigned int len)
1113 {
1114 char *curr = NULL;
1115 switch (po->tp_version) {
1116 case TPACKET_V1:
1117 case TPACKET_V2:
1118 curr = packet_lookup_frame(po, &po->rx_ring,
1119 po->rx_ring.head, status);
1120 return curr;
1121 case TPACKET_V3:
1122 return __packet_lookup_frame_in_block(po, skb, status, len);
1123 default:
1124 WARN(1, "TPACKET version not supported\n");
1125 BUG();
1126 return NULL;
1127 }
1128 }
1129
1130 static void *prb_lookup_block(struct packet_sock *po,
1131 struct packet_ring_buffer *rb,
1132 unsigned int idx,
1133 int status)
1134 {
1135 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1136 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1137
1138 if (status != BLOCK_STATUS(pbd))
1139 return NULL;
1140 return pbd;
1141 }
1142
1143 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1144 {
1145 unsigned int prev;
1146 if (rb->prb_bdqc.kactive_blk_num)
1147 prev = rb->prb_bdqc.kactive_blk_num-1;
1148 else
1149 prev = rb->prb_bdqc.knum_blocks-1;
1150 return prev;
1151 }
1152
1153 /* Assumes caller has held the rx_queue.lock */
1154 static void *__prb_previous_block(struct packet_sock *po,
1155 struct packet_ring_buffer *rb,
1156 int status)
1157 {
1158 unsigned int previous = prb_previous_blk_num(rb);
1159 return prb_lookup_block(po, rb, previous, status);
1160 }
1161
1162 static void *packet_previous_rx_frame(struct packet_sock *po,
1163 struct packet_ring_buffer *rb,
1164 int status)
1165 {
1166 if (po->tp_version <= TPACKET_V2)
1167 return packet_previous_frame(po, rb, status);
1168
1169 return __prb_previous_block(po, rb, status);
1170 }
1171
1172 static void packet_increment_rx_head(struct packet_sock *po,
1173 struct packet_ring_buffer *rb)
1174 {
1175 switch (po->tp_version) {
1176 case TPACKET_V1:
1177 case TPACKET_V2:
1178 return packet_increment_head(rb);
1179 case TPACKET_V3:
1180 default:
1181 WARN(1, "TPACKET version not supported.\n");
1182 BUG();
1183 return;
1184 }
1185 }
1186
1187 static void *packet_previous_frame(struct packet_sock *po,
1188 struct packet_ring_buffer *rb,
1189 int status)
1190 {
1191 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1192 return packet_lookup_frame(po, rb, previous, status);
1193 }
1194
1195 static void packet_increment_head(struct packet_ring_buffer *buff)
1196 {
1197 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1198 }
1199
1200 static void packet_inc_pending(struct packet_ring_buffer *rb)
1201 {
1202 this_cpu_inc(*rb->pending_refcnt);
1203 }
1204
1205 static void packet_dec_pending(struct packet_ring_buffer *rb)
1206 {
1207 this_cpu_dec(*rb->pending_refcnt);
1208 }
1209
1210 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1211 {
1212 unsigned int refcnt = 0;
1213 int cpu;
1214
1215 /* We don't use pending refcount in rx_ring. */
1216 if (rb->pending_refcnt == NULL)
1217 return 0;
1218
1219 for_each_possible_cpu(cpu)
1220 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1221
1222 return refcnt;
1223 }
1224
1225 static int packet_alloc_pending(struct packet_sock *po)
1226 {
1227 po->rx_ring.pending_refcnt = NULL;
1228
1229 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1230 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1231 return -ENOBUFS;
1232
1233 return 0;
1234 }
1235
1236 static void packet_free_pending(struct packet_sock *po)
1237 {
1238 free_percpu(po->tx_ring.pending_refcnt);
1239 }
1240
1241 #define ROOM_POW_OFF 2
1242 #define ROOM_NONE 0x0
1243 #define ROOM_LOW 0x1
1244 #define ROOM_NORMAL 0x2
1245
1246 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1247 {
1248 int idx, len;
1249
1250 len = po->rx_ring.frame_max + 1;
1251 idx = po->rx_ring.head;
1252 if (pow_off)
1253 idx += len >> pow_off;
1254 if (idx >= len)
1255 idx -= len;
1256 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1257 }
1258
1259 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1260 {
1261 int idx, len;
1262
1263 len = po->rx_ring.prb_bdqc.knum_blocks;
1264 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1265 if (pow_off)
1266 idx += len >> pow_off;
1267 if (idx >= len)
1268 idx -= len;
1269 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1270 }
1271
1272 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1273 {
1274 struct sock *sk = &po->sk;
1275 int ret = ROOM_NONE;
1276
1277 if (po->prot_hook.func != tpacket_rcv) {
1278 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1279 - (skb ? skb->truesize : 0);
1280 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1281 return ROOM_NORMAL;
1282 else if (avail > 0)
1283 return ROOM_LOW;
1284 else
1285 return ROOM_NONE;
1286 }
1287
1288 if (po->tp_version == TPACKET_V3) {
1289 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1290 ret = ROOM_NORMAL;
1291 else if (__tpacket_v3_has_room(po, 0))
1292 ret = ROOM_LOW;
1293 } else {
1294 if (__tpacket_has_room(po, ROOM_POW_OFF))
1295 ret = ROOM_NORMAL;
1296 else if (__tpacket_has_room(po, 0))
1297 ret = ROOM_LOW;
1298 }
1299
1300 return ret;
1301 }
1302
1303 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1304 {
1305 int ret;
1306 bool has_room;
1307
1308 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1309 ret = __packet_rcv_has_room(po, skb);
1310 has_room = ret == ROOM_NORMAL;
1311 if (po->pressure == has_room)
1312 po->pressure = !has_room;
1313 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1314
1315 return ret;
1316 }
1317
1318 static void packet_sock_destruct(struct sock *sk)
1319 {
1320 skb_queue_purge(&sk->sk_error_queue);
1321
1322 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1323 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1324
1325 if (!sock_flag(sk, SOCK_DEAD)) {
1326 pr_err("Attempt to release alive packet socket: %p\n", sk);
1327 return;
1328 }
1329
1330 sk_refcnt_debug_dec(sk);
1331 }
1332
1333 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1334 {
1335 u32 rxhash;
1336 int i, count = 0;
1337
1338 rxhash = skb_get_hash(skb);
1339 for (i = 0; i < ROLLOVER_HLEN; i++)
1340 if (po->rollover->history[i] == rxhash)
1341 count++;
1342
1343 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1344 return count > (ROLLOVER_HLEN >> 1);
1345 }
1346
1347 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1348 struct sk_buff *skb,
1349 unsigned int num)
1350 {
1351 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1352 }
1353
1354 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1355 struct sk_buff *skb,
1356 unsigned int num)
1357 {
1358 unsigned int val = atomic_inc_return(&f->rr_cur);
1359
1360 return val % num;
1361 }
1362
1363 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1364 struct sk_buff *skb,
1365 unsigned int num)
1366 {
1367 return smp_processor_id() % num;
1368 }
1369
1370 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1371 struct sk_buff *skb,
1372 unsigned int num)
1373 {
1374 return prandom_u32_max(num);
1375 }
1376
1377 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1378 struct sk_buff *skb,
1379 unsigned int idx, bool try_self,
1380 unsigned int num)
1381 {
1382 struct packet_sock *po, *po_next, *po_skip = NULL;
1383 unsigned int i, j, room = ROOM_NONE;
1384
1385 po = pkt_sk(f->arr[idx]);
1386
1387 if (try_self) {
1388 room = packet_rcv_has_room(po, skb);
1389 if (room == ROOM_NORMAL ||
1390 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1391 return idx;
1392 po_skip = po;
1393 }
1394
1395 i = j = min_t(int, po->rollover->sock, num - 1);
1396 do {
1397 po_next = pkt_sk(f->arr[i]);
1398 if (po_next != po_skip && !po_next->pressure &&
1399 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1400 if (i != j)
1401 po->rollover->sock = i;
1402 atomic_long_inc(&po->rollover->num);
1403 if (room == ROOM_LOW)
1404 atomic_long_inc(&po->rollover->num_huge);
1405 return i;
1406 }
1407
1408 if (++i == num)
1409 i = 0;
1410 } while (i != j);
1411
1412 atomic_long_inc(&po->rollover->num_failed);
1413 return idx;
1414 }
1415
1416 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1417 struct sk_buff *skb,
1418 unsigned int num)
1419 {
1420 return skb_get_queue_mapping(skb) % num;
1421 }
1422
1423 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1424 struct sk_buff *skb,
1425 unsigned int num)
1426 {
1427 struct bpf_prog *prog;
1428 unsigned int ret = 0;
1429
1430 rcu_read_lock();
1431 prog = rcu_dereference(f->bpf_prog);
1432 if (prog)
1433 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1434 rcu_read_unlock();
1435
1436 return ret;
1437 }
1438
1439 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1440 {
1441 return f->flags & (flag >> 8);
1442 }
1443
1444 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1445 struct packet_type *pt, struct net_device *orig_dev)
1446 {
1447 struct packet_fanout *f = pt->af_packet_priv;
1448 unsigned int num = READ_ONCE(f->num_members);
1449 struct net *net = read_pnet(&f->net);
1450 struct packet_sock *po;
1451 unsigned int idx;
1452
1453 if (!net_eq(dev_net(dev), net) || !num) {
1454 kfree_skb(skb);
1455 return 0;
1456 }
1457
1458 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1459 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1460 if (!skb)
1461 return 0;
1462 }
1463 switch (f->type) {
1464 case PACKET_FANOUT_HASH:
1465 default:
1466 idx = fanout_demux_hash(f, skb, num);
1467 break;
1468 case PACKET_FANOUT_LB:
1469 idx = fanout_demux_lb(f, skb, num);
1470 break;
1471 case PACKET_FANOUT_CPU:
1472 idx = fanout_demux_cpu(f, skb, num);
1473 break;
1474 case PACKET_FANOUT_RND:
1475 idx = fanout_demux_rnd(f, skb, num);
1476 break;
1477 case PACKET_FANOUT_QM:
1478 idx = fanout_demux_qm(f, skb, num);
1479 break;
1480 case PACKET_FANOUT_ROLLOVER:
1481 idx = fanout_demux_rollover(f, skb, 0, false, num);
1482 break;
1483 case PACKET_FANOUT_CBPF:
1484 case PACKET_FANOUT_EBPF:
1485 idx = fanout_demux_bpf(f, skb, num);
1486 break;
1487 }
1488
1489 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1490 idx = fanout_demux_rollover(f, skb, idx, true, num);
1491
1492 po = pkt_sk(f->arr[idx]);
1493 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1494 }
1495
1496 DEFINE_MUTEX(fanout_mutex);
1497 EXPORT_SYMBOL_GPL(fanout_mutex);
1498 static LIST_HEAD(fanout_list);
1499
1500 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1501 {
1502 struct packet_fanout *f = po->fanout;
1503
1504 spin_lock(&f->lock);
1505 f->arr[f->num_members] = sk;
1506 smp_wmb();
1507 f->num_members++;
1508 if (f->num_members == 1)
1509 dev_add_pack(&f->prot_hook);
1510 spin_unlock(&f->lock);
1511 }
1512
1513 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1514 {
1515 struct packet_fanout *f = po->fanout;
1516 int i;
1517
1518 spin_lock(&f->lock);
1519 for (i = 0; i < f->num_members; i++) {
1520 if (f->arr[i] == sk)
1521 break;
1522 }
1523 BUG_ON(i >= f->num_members);
1524 f->arr[i] = f->arr[f->num_members - 1];
1525 f->num_members--;
1526 if (f->num_members == 0)
1527 __dev_remove_pack(&f->prot_hook);
1528 spin_unlock(&f->lock);
1529 }
1530
1531 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1532 {
1533 if (sk->sk_family != PF_PACKET)
1534 return false;
1535
1536 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1537 }
1538
1539 static void fanout_init_data(struct packet_fanout *f)
1540 {
1541 switch (f->type) {
1542 case PACKET_FANOUT_LB:
1543 atomic_set(&f->rr_cur, 0);
1544 break;
1545 case PACKET_FANOUT_CBPF:
1546 case PACKET_FANOUT_EBPF:
1547 RCU_INIT_POINTER(f->bpf_prog, NULL);
1548 break;
1549 }
1550 }
1551
1552 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1553 {
1554 struct bpf_prog *old;
1555
1556 spin_lock(&f->lock);
1557 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1558 rcu_assign_pointer(f->bpf_prog, new);
1559 spin_unlock(&f->lock);
1560
1561 if (old) {
1562 synchronize_net();
1563 bpf_prog_destroy(old);
1564 }
1565 }
1566
1567 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1568 unsigned int len)
1569 {
1570 struct bpf_prog *new;
1571 struct sock_fprog fprog;
1572 int ret;
1573
1574 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1575 return -EPERM;
1576 if (len != sizeof(fprog))
1577 return -EINVAL;
1578 if (copy_from_user(&fprog, data, len))
1579 return -EFAULT;
1580
1581 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1582 if (ret)
1583 return ret;
1584
1585 __fanout_set_data_bpf(po->fanout, new);
1586 return 0;
1587 }
1588
1589 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1590 unsigned int len)
1591 {
1592 struct bpf_prog *new;
1593 u32 fd;
1594
1595 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1596 return -EPERM;
1597 if (len != sizeof(fd))
1598 return -EINVAL;
1599 if (copy_from_user(&fd, data, len))
1600 return -EFAULT;
1601
1602 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1603 if (IS_ERR(new))
1604 return PTR_ERR(new);
1605
1606 __fanout_set_data_bpf(po->fanout, new);
1607 return 0;
1608 }
1609
1610 static int fanout_set_data(struct packet_sock *po, char __user *data,
1611 unsigned int len)
1612 {
1613 switch (po->fanout->type) {
1614 case PACKET_FANOUT_CBPF:
1615 return fanout_set_data_cbpf(po, data, len);
1616 case PACKET_FANOUT_EBPF:
1617 return fanout_set_data_ebpf(po, data, len);
1618 default:
1619 return -EINVAL;
1620 };
1621 }
1622
1623 static void fanout_release_data(struct packet_fanout *f)
1624 {
1625 switch (f->type) {
1626 case PACKET_FANOUT_CBPF:
1627 case PACKET_FANOUT_EBPF:
1628 __fanout_set_data_bpf(f, NULL);
1629 };
1630 }
1631
1632 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1633 {
1634 struct packet_rollover *rollover = NULL;
1635 struct packet_sock *po = pkt_sk(sk);
1636 struct packet_fanout *f, *match;
1637 u8 type = type_flags & 0xff;
1638 u8 flags = type_flags >> 8;
1639 int err;
1640
1641 switch (type) {
1642 case PACKET_FANOUT_ROLLOVER:
1643 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1644 return -EINVAL;
1645 case PACKET_FANOUT_HASH:
1646 case PACKET_FANOUT_LB:
1647 case PACKET_FANOUT_CPU:
1648 case PACKET_FANOUT_RND:
1649 case PACKET_FANOUT_QM:
1650 case PACKET_FANOUT_CBPF:
1651 case PACKET_FANOUT_EBPF:
1652 break;
1653 default:
1654 return -EINVAL;
1655 }
1656
1657 mutex_lock(&fanout_mutex);
1658
1659 err = -EINVAL;
1660 if (!po->running)
1661 goto out;
1662
1663 err = -EALREADY;
1664 if (po->fanout)
1665 goto out;
1666
1667 if (type == PACKET_FANOUT_ROLLOVER ||
1668 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1669 err = -ENOMEM;
1670 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1671 if (!rollover)
1672 goto out;
1673 atomic_long_set(&rollover->num, 0);
1674 atomic_long_set(&rollover->num_huge, 0);
1675 atomic_long_set(&rollover->num_failed, 0);
1676 po->rollover = rollover;
1677 }
1678
1679 match = NULL;
1680 list_for_each_entry(f, &fanout_list, list) {
1681 if (f->id == id &&
1682 read_pnet(&f->net) == sock_net(sk)) {
1683 match = f;
1684 break;
1685 }
1686 }
1687 err = -EINVAL;
1688 if (match && match->flags != flags)
1689 goto out;
1690 if (!match) {
1691 err = -ENOMEM;
1692 match = kzalloc(sizeof(*match), GFP_KERNEL);
1693 if (!match)
1694 goto out;
1695 write_pnet(&match->net, sock_net(sk));
1696 match->id = id;
1697 match->type = type;
1698 match->flags = flags;
1699 INIT_LIST_HEAD(&match->list);
1700 spin_lock_init(&match->lock);
1701 atomic_set(&match->sk_ref, 0);
1702 fanout_init_data(match);
1703 match->prot_hook.type = po->prot_hook.type;
1704 match->prot_hook.dev = po->prot_hook.dev;
1705 match->prot_hook.func = packet_rcv_fanout;
1706 match->prot_hook.af_packet_priv = match;
1707 match->prot_hook.id_match = match_fanout_group;
1708 list_add(&match->list, &fanout_list);
1709 }
1710 err = -EINVAL;
1711 if (match->type == type &&
1712 match->prot_hook.type == po->prot_hook.type &&
1713 match->prot_hook.dev == po->prot_hook.dev) {
1714 err = -ENOSPC;
1715 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1716 __dev_remove_pack(&po->prot_hook);
1717 po->fanout = match;
1718 atomic_inc(&match->sk_ref);
1719 __fanout_link(sk, po);
1720 err = 0;
1721 }
1722 }
1723 out:
1724 if (err && rollover) {
1725 kfree(rollover);
1726 po->rollover = NULL;
1727 }
1728 mutex_unlock(&fanout_mutex);
1729 return err;
1730 }
1731
1732 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1733 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1734 * It is the responsibility of the caller to call fanout_release_data() and
1735 * free the returned packet_fanout (after synchronize_net())
1736 */
1737 static struct packet_fanout *fanout_release(struct sock *sk)
1738 {
1739 struct packet_sock *po = pkt_sk(sk);
1740 struct packet_fanout *f;
1741
1742 mutex_lock(&fanout_mutex);
1743 f = po->fanout;
1744 if (f) {
1745 po->fanout = NULL;
1746
1747 if (atomic_dec_and_test(&f->sk_ref))
1748 list_del(&f->list);
1749 else
1750 f = NULL;
1751
1752 if (po->rollover)
1753 kfree_rcu(po->rollover, rcu);
1754 }
1755 mutex_unlock(&fanout_mutex);
1756
1757 return f;
1758 }
1759
1760 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1761 struct sk_buff *skb)
1762 {
1763 /* Earlier code assumed this would be a VLAN pkt, double-check
1764 * this now that we have the actual packet in hand. We can only
1765 * do this check on Ethernet devices.
1766 */
1767 if (unlikely(dev->type != ARPHRD_ETHER))
1768 return false;
1769
1770 skb_reset_mac_header(skb);
1771 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1772 }
1773
1774 static const struct proto_ops packet_ops;
1775
1776 static const struct proto_ops packet_ops_spkt;
1777
1778 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1779 struct packet_type *pt, struct net_device *orig_dev)
1780 {
1781 struct sock *sk;
1782 struct sockaddr_pkt *spkt;
1783
1784 /*
1785 * When we registered the protocol we saved the socket in the data
1786 * field for just this event.
1787 */
1788
1789 sk = pt->af_packet_priv;
1790
1791 /*
1792 * Yank back the headers [hope the device set this
1793 * right or kerboom...]
1794 *
1795 * Incoming packets have ll header pulled,
1796 * push it back.
1797 *
1798 * For outgoing ones skb->data == skb_mac_header(skb)
1799 * so that this procedure is noop.
1800 */
1801
1802 if (skb->pkt_type == PACKET_LOOPBACK)
1803 goto out;
1804
1805 if (!net_eq(dev_net(dev), sock_net(sk)))
1806 goto out;
1807
1808 skb = skb_share_check(skb, GFP_ATOMIC);
1809 if (skb == NULL)
1810 goto oom;
1811
1812 /* drop any routing info */
1813 skb_dst_drop(skb);
1814
1815 /* drop conntrack reference */
1816 nf_reset(skb);
1817
1818 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1819
1820 skb_push(skb, skb->data - skb_mac_header(skb));
1821
1822 /*
1823 * The SOCK_PACKET socket receives _all_ frames.
1824 */
1825
1826 spkt->spkt_family = dev->type;
1827 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1828 spkt->spkt_protocol = skb->protocol;
1829
1830 /*
1831 * Charge the memory to the socket. This is done specifically
1832 * to prevent sockets using all the memory up.
1833 */
1834
1835 if (sock_queue_rcv_skb(sk, skb) == 0)
1836 return 0;
1837
1838 out:
1839 kfree_skb(skb);
1840 oom:
1841 return 0;
1842 }
1843
1844
1845 /*
1846 * Output a raw packet to a device layer. This bypasses all the other
1847 * protocol layers and you must therefore supply it with a complete frame
1848 */
1849
1850 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1851 size_t len)
1852 {
1853 struct sock *sk = sock->sk;
1854 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1855 struct sk_buff *skb = NULL;
1856 struct net_device *dev;
1857 struct sockcm_cookie sockc;
1858 __be16 proto = 0;
1859 int err;
1860 int extra_len = 0;
1861
1862 /*
1863 * Get and verify the address.
1864 */
1865
1866 if (saddr) {
1867 if (msg->msg_namelen < sizeof(struct sockaddr))
1868 return -EINVAL;
1869 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1870 proto = saddr->spkt_protocol;
1871 } else
1872 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1873
1874 /*
1875 * Find the device first to size check it
1876 */
1877
1878 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1879 retry:
1880 rcu_read_lock();
1881 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1882 err = -ENODEV;
1883 if (dev == NULL)
1884 goto out_unlock;
1885
1886 err = -ENETDOWN;
1887 if (!(dev->flags & IFF_UP))
1888 goto out_unlock;
1889
1890 /*
1891 * You may not queue a frame bigger than the mtu. This is the lowest level
1892 * raw protocol and you must do your own fragmentation at this level.
1893 */
1894
1895 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1896 if (!netif_supports_nofcs(dev)) {
1897 err = -EPROTONOSUPPORT;
1898 goto out_unlock;
1899 }
1900 extra_len = 4; /* We're doing our own CRC */
1901 }
1902
1903 err = -EMSGSIZE;
1904 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1905 goto out_unlock;
1906
1907 if (!skb) {
1908 size_t reserved = LL_RESERVED_SPACE(dev);
1909 int tlen = dev->needed_tailroom;
1910 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1911
1912 rcu_read_unlock();
1913 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1914 if (skb == NULL)
1915 return -ENOBUFS;
1916 /* FIXME: Save some space for broken drivers that write a hard
1917 * header at transmission time by themselves. PPP is the notable
1918 * one here. This should really be fixed at the driver level.
1919 */
1920 skb_reserve(skb, reserved);
1921 skb_reset_network_header(skb);
1922
1923 /* Try to align data part correctly */
1924 if (hhlen) {
1925 skb->data -= hhlen;
1926 skb->tail -= hhlen;
1927 if (len < hhlen)
1928 skb_reset_network_header(skb);
1929 }
1930 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1931 if (err)
1932 goto out_free;
1933 goto retry;
1934 }
1935
1936 if (!dev_validate_header(dev, skb->data, len)) {
1937 err = -EINVAL;
1938 goto out_unlock;
1939 }
1940 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1941 !packet_extra_vlan_len_allowed(dev, skb)) {
1942 err = -EMSGSIZE;
1943 goto out_unlock;
1944 }
1945
1946 sockc.tsflags = sk->sk_tsflags;
1947 if (msg->msg_controllen) {
1948 err = sock_cmsg_send(sk, msg, &sockc);
1949 if (unlikely(err))
1950 goto out_unlock;
1951 }
1952
1953 skb->protocol = proto;
1954 skb->dev = dev;
1955 skb->priority = sk->sk_priority;
1956 skb->mark = sk->sk_mark;
1957
1958 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
1959
1960 if (unlikely(extra_len == 4))
1961 skb->no_fcs = 1;
1962
1963 skb_probe_transport_header(skb, 0);
1964
1965 dev_queue_xmit(skb);
1966 rcu_read_unlock();
1967 return len;
1968
1969 out_unlock:
1970 rcu_read_unlock();
1971 out_free:
1972 kfree_skb(skb);
1973 return err;
1974 }
1975
1976 static unsigned int run_filter(struct sk_buff *skb,
1977 const struct sock *sk,
1978 unsigned int res)
1979 {
1980 struct sk_filter *filter;
1981
1982 rcu_read_lock();
1983 filter = rcu_dereference(sk->sk_filter);
1984 if (filter != NULL)
1985 res = bpf_prog_run_clear_cb(filter->prog, skb);
1986 rcu_read_unlock();
1987
1988 return res;
1989 }
1990
1991 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
1992 size_t *len)
1993 {
1994 struct virtio_net_hdr vnet_hdr;
1995
1996 if (*len < sizeof(vnet_hdr))
1997 return -EINVAL;
1998 *len -= sizeof(vnet_hdr);
1999
2000 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
2001 return -EINVAL;
2002
2003 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2004 }
2005
2006 /*
2007 * This function makes lazy skb cloning in hope that most of packets
2008 * are discarded by BPF.
2009 *
2010 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2011 * and skb->cb are mangled. It works because (and until) packets
2012 * falling here are owned by current CPU. Output packets are cloned
2013 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2014 * sequencially, so that if we return skb to original state on exit,
2015 * we will not harm anyone.
2016 */
2017
2018 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2019 struct packet_type *pt, struct net_device *orig_dev)
2020 {
2021 struct sock *sk;
2022 struct sockaddr_ll *sll;
2023 struct packet_sock *po;
2024 u8 *skb_head = skb->data;
2025 int skb_len = skb->len;
2026 unsigned int snaplen, res;
2027 bool is_drop_n_account = false;
2028
2029 if (skb->pkt_type == PACKET_LOOPBACK)
2030 goto drop;
2031
2032 sk = pt->af_packet_priv;
2033 po = pkt_sk(sk);
2034
2035 if (!net_eq(dev_net(dev), sock_net(sk)))
2036 goto drop;
2037
2038 skb->dev = dev;
2039
2040 if (dev->header_ops) {
2041 /* The device has an explicit notion of ll header,
2042 * exported to higher levels.
2043 *
2044 * Otherwise, the device hides details of its frame
2045 * structure, so that corresponding packet head is
2046 * never delivered to user.
2047 */
2048 if (sk->sk_type != SOCK_DGRAM)
2049 skb_push(skb, skb->data - skb_mac_header(skb));
2050 else if (skb->pkt_type == PACKET_OUTGOING) {
2051 /* Special case: outgoing packets have ll header at head */
2052 skb_pull(skb, skb_network_offset(skb));
2053 }
2054 }
2055
2056 snaplen = skb->len;
2057
2058 res = run_filter(skb, sk, snaplen);
2059 if (!res)
2060 goto drop_n_restore;
2061 if (snaplen > res)
2062 snaplen = res;
2063
2064 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2065 goto drop_n_acct;
2066
2067 if (skb_shared(skb)) {
2068 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2069 if (nskb == NULL)
2070 goto drop_n_acct;
2071
2072 if (skb_head != skb->data) {
2073 skb->data = skb_head;
2074 skb->len = skb_len;
2075 }
2076 consume_skb(skb);
2077 skb = nskb;
2078 }
2079
2080 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2081
2082 sll = &PACKET_SKB_CB(skb)->sa.ll;
2083 sll->sll_hatype = dev->type;
2084 sll->sll_pkttype = skb->pkt_type;
2085 if (unlikely(po->origdev))
2086 sll->sll_ifindex = orig_dev->ifindex;
2087 else
2088 sll->sll_ifindex = dev->ifindex;
2089
2090 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2091
2092 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2093 * Use their space for storing the original skb length.
2094 */
2095 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2096
2097 if (pskb_trim(skb, snaplen))
2098 goto drop_n_acct;
2099
2100 skb_set_owner_r(skb, sk);
2101 skb->dev = NULL;
2102 skb_dst_drop(skb);
2103
2104 /* drop conntrack reference */
2105 nf_reset(skb);
2106
2107 spin_lock(&sk->sk_receive_queue.lock);
2108 po->stats.stats1.tp_packets++;
2109 sock_skb_set_dropcount(sk, skb);
2110 __skb_queue_tail(&sk->sk_receive_queue, skb);
2111 spin_unlock(&sk->sk_receive_queue.lock);
2112 sk->sk_data_ready(sk);
2113 return 0;
2114
2115 drop_n_acct:
2116 is_drop_n_account = true;
2117 spin_lock(&sk->sk_receive_queue.lock);
2118 po->stats.stats1.tp_drops++;
2119 atomic_inc(&sk->sk_drops);
2120 spin_unlock(&sk->sk_receive_queue.lock);
2121
2122 drop_n_restore:
2123 if (skb_head != skb->data && skb_shared(skb)) {
2124 skb->data = skb_head;
2125 skb->len = skb_len;
2126 }
2127 drop:
2128 if (!is_drop_n_account)
2129 consume_skb(skb);
2130 else
2131 kfree_skb(skb);
2132 return 0;
2133 }
2134
2135 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2136 struct packet_type *pt, struct net_device *orig_dev)
2137 {
2138 struct sock *sk;
2139 struct packet_sock *po;
2140 struct sockaddr_ll *sll;
2141 union tpacket_uhdr h;
2142 u8 *skb_head = skb->data;
2143 int skb_len = skb->len;
2144 unsigned int snaplen, res;
2145 unsigned long status = TP_STATUS_USER;
2146 unsigned short macoff, netoff, hdrlen;
2147 struct sk_buff *copy_skb = NULL;
2148 struct timespec ts;
2149 __u32 ts_status;
2150 bool is_drop_n_account = false;
2151
2152 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2153 * We may add members to them until current aligned size without forcing
2154 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2155 */
2156 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2157 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2158
2159 if (skb->pkt_type == PACKET_LOOPBACK)
2160 goto drop;
2161
2162 sk = pt->af_packet_priv;
2163 po = pkt_sk(sk);
2164
2165 if (!net_eq(dev_net(dev), sock_net(sk)))
2166 goto drop;
2167
2168 if (dev->header_ops) {
2169 if (sk->sk_type != SOCK_DGRAM)
2170 skb_push(skb, skb->data - skb_mac_header(skb));
2171 else if (skb->pkt_type == PACKET_OUTGOING) {
2172 /* Special case: outgoing packets have ll header at head */
2173 skb_pull(skb, skb_network_offset(skb));
2174 }
2175 }
2176
2177 snaplen = skb->len;
2178
2179 res = run_filter(skb, sk, snaplen);
2180 if (!res)
2181 goto drop_n_restore;
2182
2183 if (skb->ip_summed == CHECKSUM_PARTIAL)
2184 status |= TP_STATUS_CSUMNOTREADY;
2185 else if (skb->pkt_type != PACKET_OUTGOING &&
2186 (skb->ip_summed == CHECKSUM_COMPLETE ||
2187 skb_csum_unnecessary(skb)))
2188 status |= TP_STATUS_CSUM_VALID;
2189
2190 if (snaplen > res)
2191 snaplen = res;
2192
2193 if (sk->sk_type == SOCK_DGRAM) {
2194 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2195 po->tp_reserve;
2196 } else {
2197 unsigned int maclen = skb_network_offset(skb);
2198 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2199 (maclen < 16 ? 16 : maclen)) +
2200 po->tp_reserve;
2201 if (po->has_vnet_hdr)
2202 netoff += sizeof(struct virtio_net_hdr);
2203 macoff = netoff - maclen;
2204 }
2205 if (po->tp_version <= TPACKET_V2) {
2206 if (macoff + snaplen > po->rx_ring.frame_size) {
2207 if (po->copy_thresh &&
2208 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2209 if (skb_shared(skb)) {
2210 copy_skb = skb_clone(skb, GFP_ATOMIC);
2211 } else {
2212 copy_skb = skb_get(skb);
2213 skb_head = skb->data;
2214 }
2215 if (copy_skb)
2216 skb_set_owner_r(copy_skb, sk);
2217 }
2218 snaplen = po->rx_ring.frame_size - macoff;
2219 if ((int)snaplen < 0)
2220 snaplen = 0;
2221 }
2222 } else if (unlikely(macoff + snaplen >
2223 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2224 u32 nval;
2225
2226 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2227 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2228 snaplen, nval, macoff);
2229 snaplen = nval;
2230 if (unlikely((int)snaplen < 0)) {
2231 snaplen = 0;
2232 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2233 }
2234 }
2235 spin_lock(&sk->sk_receive_queue.lock);
2236 h.raw = packet_current_rx_frame(po, skb,
2237 TP_STATUS_KERNEL, (macoff+snaplen));
2238 if (!h.raw)
2239 goto drop_n_account;
2240 if (po->tp_version <= TPACKET_V2) {
2241 packet_increment_rx_head(po, &po->rx_ring);
2242 /*
2243 * LOSING will be reported till you read the stats,
2244 * because it's COR - Clear On Read.
2245 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2246 * at packet level.
2247 */
2248 if (po->stats.stats1.tp_drops)
2249 status |= TP_STATUS_LOSING;
2250 }
2251 po->stats.stats1.tp_packets++;
2252 if (copy_skb) {
2253 status |= TP_STATUS_COPY;
2254 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2255 }
2256 spin_unlock(&sk->sk_receive_queue.lock);
2257
2258 if (po->has_vnet_hdr) {
2259 if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2260 sizeof(struct virtio_net_hdr),
2261 vio_le(), true)) {
2262 spin_lock(&sk->sk_receive_queue.lock);
2263 goto drop_n_account;
2264 }
2265 }
2266
2267 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2268
2269 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2270 getnstimeofday(&ts);
2271
2272 status |= ts_status;
2273
2274 switch (po->tp_version) {
2275 case TPACKET_V1:
2276 h.h1->tp_len = skb->len;
2277 h.h1->tp_snaplen = snaplen;
2278 h.h1->tp_mac = macoff;
2279 h.h1->tp_net = netoff;
2280 h.h1->tp_sec = ts.tv_sec;
2281 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2282 hdrlen = sizeof(*h.h1);
2283 break;
2284 case TPACKET_V2:
2285 h.h2->tp_len = skb->len;
2286 h.h2->tp_snaplen = snaplen;
2287 h.h2->tp_mac = macoff;
2288 h.h2->tp_net = netoff;
2289 h.h2->tp_sec = ts.tv_sec;
2290 h.h2->tp_nsec = ts.tv_nsec;
2291 if (skb_vlan_tag_present(skb)) {
2292 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2293 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2294 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2295 } else {
2296 h.h2->tp_vlan_tci = 0;
2297 h.h2->tp_vlan_tpid = 0;
2298 }
2299 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2300 hdrlen = sizeof(*h.h2);
2301 break;
2302 case TPACKET_V3:
2303 /* tp_nxt_offset,vlan are already populated above.
2304 * So DONT clear those fields here
2305 */
2306 h.h3->tp_status |= status;
2307 h.h3->tp_len = skb->len;
2308 h.h3->tp_snaplen = snaplen;
2309 h.h3->tp_mac = macoff;
2310 h.h3->tp_net = netoff;
2311 h.h3->tp_sec = ts.tv_sec;
2312 h.h3->tp_nsec = ts.tv_nsec;
2313 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2314 hdrlen = sizeof(*h.h3);
2315 break;
2316 default:
2317 BUG();
2318 }
2319
2320 sll = h.raw + TPACKET_ALIGN(hdrlen);
2321 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2322 sll->sll_family = AF_PACKET;
2323 sll->sll_hatype = dev->type;
2324 sll->sll_protocol = skb->protocol;
2325 sll->sll_pkttype = skb->pkt_type;
2326 if (unlikely(po->origdev))
2327 sll->sll_ifindex = orig_dev->ifindex;
2328 else
2329 sll->sll_ifindex = dev->ifindex;
2330
2331 smp_mb();
2332
2333 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2334 if (po->tp_version <= TPACKET_V2) {
2335 u8 *start, *end;
2336
2337 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2338 macoff + snaplen);
2339
2340 for (start = h.raw; start < end; start += PAGE_SIZE)
2341 flush_dcache_page(pgv_to_page(start));
2342 }
2343 smp_wmb();
2344 #endif
2345
2346 if (po->tp_version <= TPACKET_V2) {
2347 __packet_set_status(po, h.raw, status);
2348 sk->sk_data_ready(sk);
2349 } else {
2350 prb_clear_blk_fill_status(&po->rx_ring);
2351 }
2352
2353 drop_n_restore:
2354 if (skb_head != skb->data && skb_shared(skb)) {
2355 skb->data = skb_head;
2356 skb->len = skb_len;
2357 }
2358 drop:
2359 if (!is_drop_n_account)
2360 consume_skb(skb);
2361 else
2362 kfree_skb(skb);
2363 return 0;
2364
2365 drop_n_account:
2366 is_drop_n_account = true;
2367 po->stats.stats1.tp_drops++;
2368 spin_unlock(&sk->sk_receive_queue.lock);
2369
2370 sk->sk_data_ready(sk);
2371 kfree_skb(copy_skb);
2372 goto drop_n_restore;
2373 }
2374
2375 static void tpacket_destruct_skb(struct sk_buff *skb)
2376 {
2377 struct packet_sock *po = pkt_sk(skb->sk);
2378
2379 if (likely(po->tx_ring.pg_vec)) {
2380 void *ph;
2381 __u32 ts;
2382
2383 ph = skb_shinfo(skb)->destructor_arg;
2384 packet_dec_pending(&po->tx_ring);
2385
2386 ts = __packet_set_timestamp(po, ph, skb);
2387 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2388 }
2389
2390 sock_wfree(skb);
2391 }
2392
2393 static void tpacket_set_protocol(const struct net_device *dev,
2394 struct sk_buff *skb)
2395 {
2396 if (dev->type == ARPHRD_ETHER) {
2397 skb_reset_mac_header(skb);
2398 skb->protocol = eth_hdr(skb)->h_proto;
2399 }
2400 }
2401
2402 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2403 {
2404 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2405 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2406 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2407 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2408 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2409 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2410 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2411
2412 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2413 return -EINVAL;
2414
2415 return 0;
2416 }
2417
2418 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2419 struct virtio_net_hdr *vnet_hdr)
2420 {
2421 if (*len < sizeof(*vnet_hdr))
2422 return -EINVAL;
2423 *len -= sizeof(*vnet_hdr);
2424
2425 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2426 return -EFAULT;
2427
2428 return __packet_snd_vnet_parse(vnet_hdr, *len);
2429 }
2430
2431 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2432 void *frame, struct net_device *dev, void *data, int tp_len,
2433 __be16 proto, unsigned char *addr, int hlen, int copylen,
2434 const struct sockcm_cookie *sockc)
2435 {
2436 union tpacket_uhdr ph;
2437 int to_write, offset, len, nr_frags, len_max;
2438 struct socket *sock = po->sk.sk_socket;
2439 struct page *page;
2440 int err;
2441
2442 ph.raw = frame;
2443
2444 skb->protocol = proto;
2445 skb->dev = dev;
2446 skb->priority = po->sk.sk_priority;
2447 skb->mark = po->sk.sk_mark;
2448 sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2449 skb_shinfo(skb)->destructor_arg = ph.raw;
2450
2451 skb_reserve(skb, hlen);
2452 skb_reset_network_header(skb);
2453
2454 to_write = tp_len;
2455
2456 if (sock->type == SOCK_DGRAM) {
2457 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2458 NULL, tp_len);
2459 if (unlikely(err < 0))
2460 return -EINVAL;
2461 } else if (copylen) {
2462 int hdrlen = min_t(int, copylen, tp_len);
2463
2464 skb_push(skb, dev->hard_header_len);
2465 skb_put(skb, copylen - dev->hard_header_len);
2466 err = skb_store_bits(skb, 0, data, hdrlen);
2467 if (unlikely(err))
2468 return err;
2469 if (!dev_validate_header(dev, skb->data, hdrlen))
2470 return -EINVAL;
2471 if (!skb->protocol)
2472 tpacket_set_protocol(dev, skb);
2473
2474 data += hdrlen;
2475 to_write -= hdrlen;
2476 }
2477
2478 offset = offset_in_page(data);
2479 len_max = PAGE_SIZE - offset;
2480 len = ((to_write > len_max) ? len_max : to_write);
2481
2482 skb->data_len = to_write;
2483 skb->len += to_write;
2484 skb->truesize += to_write;
2485 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2486
2487 while (likely(to_write)) {
2488 nr_frags = skb_shinfo(skb)->nr_frags;
2489
2490 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2491 pr_err("Packet exceed the number of skb frags(%lu)\n",
2492 MAX_SKB_FRAGS);
2493 return -EFAULT;
2494 }
2495
2496 page = pgv_to_page(data);
2497 data += len;
2498 flush_dcache_page(page);
2499 get_page(page);
2500 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2501 to_write -= len;
2502 offset = 0;
2503 len_max = PAGE_SIZE;
2504 len = ((to_write > len_max) ? len_max : to_write);
2505 }
2506
2507 skb_probe_transport_header(skb, 0);
2508
2509 return tp_len;
2510 }
2511
2512 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2513 int size_max, void **data)
2514 {
2515 union tpacket_uhdr ph;
2516 int tp_len, off;
2517
2518 ph.raw = frame;
2519
2520 switch (po->tp_version) {
2521 case TPACKET_V3:
2522 if (ph.h3->tp_next_offset != 0) {
2523 pr_warn_once("variable sized slot not supported");
2524 return -EINVAL;
2525 }
2526 tp_len = ph.h3->tp_len;
2527 break;
2528 case TPACKET_V2:
2529 tp_len = ph.h2->tp_len;
2530 break;
2531 default:
2532 tp_len = ph.h1->tp_len;
2533 break;
2534 }
2535 if (unlikely(tp_len > size_max)) {
2536 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2537 return -EMSGSIZE;
2538 }
2539
2540 if (unlikely(po->tp_tx_has_off)) {
2541 int off_min, off_max;
2542
2543 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2544 off_max = po->tx_ring.frame_size - tp_len;
2545 if (po->sk.sk_type == SOCK_DGRAM) {
2546 switch (po->tp_version) {
2547 case TPACKET_V3:
2548 off = ph.h3->tp_net;
2549 break;
2550 case TPACKET_V2:
2551 off = ph.h2->tp_net;
2552 break;
2553 default:
2554 off = ph.h1->tp_net;
2555 break;
2556 }
2557 } else {
2558 switch (po->tp_version) {
2559 case TPACKET_V3:
2560 off = ph.h3->tp_mac;
2561 break;
2562 case TPACKET_V2:
2563 off = ph.h2->tp_mac;
2564 break;
2565 default:
2566 off = ph.h1->tp_mac;
2567 break;
2568 }
2569 }
2570 if (unlikely((off < off_min) || (off_max < off)))
2571 return -EINVAL;
2572 } else {
2573 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2574 }
2575
2576 *data = frame + off;
2577 return tp_len;
2578 }
2579
2580 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2581 {
2582 struct sk_buff *skb;
2583 struct net_device *dev;
2584 struct virtio_net_hdr *vnet_hdr = NULL;
2585 struct sockcm_cookie sockc;
2586 __be16 proto;
2587 int err, reserve = 0;
2588 void *ph;
2589 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2590 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2591 int tp_len, size_max;
2592 unsigned char *addr;
2593 void *data;
2594 int len_sum = 0;
2595 int status = TP_STATUS_AVAILABLE;
2596 int hlen, tlen, copylen = 0;
2597
2598 mutex_lock(&po->pg_vec_lock);
2599
2600 if (likely(saddr == NULL)) {
2601 dev = packet_cached_dev_get(po);
2602 proto = po->num;
2603 addr = NULL;
2604 } else {
2605 err = -EINVAL;
2606 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2607 goto out;
2608 if (msg->msg_namelen < (saddr->sll_halen
2609 + offsetof(struct sockaddr_ll,
2610 sll_addr)))
2611 goto out;
2612 proto = saddr->sll_protocol;
2613 addr = saddr->sll_addr;
2614 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2615 }
2616
2617 sockc.tsflags = po->sk.sk_tsflags;
2618 if (msg->msg_controllen) {
2619 err = sock_cmsg_send(&po->sk, msg, &sockc);
2620 if (unlikely(err))
2621 goto out;
2622 }
2623
2624 err = -ENXIO;
2625 if (unlikely(dev == NULL))
2626 goto out;
2627 err = -ENETDOWN;
2628 if (unlikely(!(dev->flags & IFF_UP)))
2629 goto out_put;
2630
2631 if (po->sk.sk_socket->type == SOCK_RAW)
2632 reserve = dev->hard_header_len;
2633 size_max = po->tx_ring.frame_size
2634 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2635
2636 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2637 size_max = dev->mtu + reserve + VLAN_HLEN;
2638
2639 do {
2640 ph = packet_current_frame(po, &po->tx_ring,
2641 TP_STATUS_SEND_REQUEST);
2642 if (unlikely(ph == NULL)) {
2643 if (need_wait && need_resched())
2644 schedule();
2645 continue;
2646 }
2647
2648 skb = NULL;
2649 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2650 if (tp_len < 0)
2651 goto tpacket_error;
2652
2653 status = TP_STATUS_SEND_REQUEST;
2654 hlen = LL_RESERVED_SPACE(dev);
2655 tlen = dev->needed_tailroom;
2656 if (po->has_vnet_hdr) {
2657 vnet_hdr = data;
2658 data += sizeof(*vnet_hdr);
2659 tp_len -= sizeof(*vnet_hdr);
2660 if (tp_len < 0 ||
2661 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2662 tp_len = -EINVAL;
2663 goto tpacket_error;
2664 }
2665 copylen = __virtio16_to_cpu(vio_le(),
2666 vnet_hdr->hdr_len);
2667 }
2668 copylen = max_t(int, copylen, dev->hard_header_len);
2669 skb = sock_alloc_send_skb(&po->sk,
2670 hlen + tlen + sizeof(struct sockaddr_ll) +
2671 (copylen - dev->hard_header_len),
2672 !need_wait, &err);
2673
2674 if (unlikely(skb == NULL)) {
2675 /* we assume the socket was initially writeable ... */
2676 if (likely(len_sum > 0))
2677 err = len_sum;
2678 goto out_status;
2679 }
2680 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2681 addr, hlen, copylen, &sockc);
2682 if (likely(tp_len >= 0) &&
2683 tp_len > dev->mtu + reserve &&
2684 !po->has_vnet_hdr &&
2685 !packet_extra_vlan_len_allowed(dev, skb))
2686 tp_len = -EMSGSIZE;
2687
2688 if (unlikely(tp_len < 0)) {
2689 tpacket_error:
2690 if (po->tp_loss) {
2691 __packet_set_status(po, ph,
2692 TP_STATUS_AVAILABLE);
2693 packet_increment_head(&po->tx_ring);
2694 kfree_skb(skb);
2695 continue;
2696 } else {
2697 status = TP_STATUS_WRONG_FORMAT;
2698 err = tp_len;
2699 goto out_status;
2700 }
2701 }
2702
2703 if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2704 vio_le())) {
2705 tp_len = -EINVAL;
2706 goto tpacket_error;
2707 }
2708
2709 packet_pick_tx_queue(dev, skb);
2710
2711 skb->destructor = tpacket_destruct_skb;
2712 __packet_set_status(po, ph, TP_STATUS_SENDING);
2713 packet_inc_pending(&po->tx_ring);
2714
2715 status = TP_STATUS_SEND_REQUEST;
2716 err = po->xmit(skb);
2717 if (unlikely(err > 0)) {
2718 err = net_xmit_errno(err);
2719 if (err && __packet_get_status(po, ph) ==
2720 TP_STATUS_AVAILABLE) {
2721 /* skb was destructed already */
2722 skb = NULL;
2723 goto out_status;
2724 }
2725 /*
2726 * skb was dropped but not destructed yet;
2727 * let's treat it like congestion or err < 0
2728 */
2729 err = 0;
2730 }
2731 packet_increment_head(&po->tx_ring);
2732 len_sum += tp_len;
2733 } while (likely((ph != NULL) ||
2734 /* Note: packet_read_pending() might be slow if we have
2735 * to call it as it's per_cpu variable, but in fast-path
2736 * we already short-circuit the loop with the first
2737 * condition, and luckily don't have to go that path
2738 * anyway.
2739 */
2740 (need_wait && packet_read_pending(&po->tx_ring))));
2741
2742 err = len_sum;
2743 goto out_put;
2744
2745 out_status:
2746 __packet_set_status(po, ph, status);
2747 kfree_skb(skb);
2748 out_put:
2749 dev_put(dev);
2750 out:
2751 mutex_unlock(&po->pg_vec_lock);
2752 return err;
2753 }
2754
2755 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2756 size_t reserve, size_t len,
2757 size_t linear, int noblock,
2758 int *err)
2759 {
2760 struct sk_buff *skb;
2761
2762 /* Under a page? Don't bother with paged skb. */
2763 if (prepad + len < PAGE_SIZE || !linear)
2764 linear = len;
2765
2766 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2767 err, 0);
2768 if (!skb)
2769 return NULL;
2770
2771 skb_reserve(skb, reserve);
2772 skb_put(skb, linear);
2773 skb->data_len = len - linear;
2774 skb->len += len - linear;
2775
2776 return skb;
2777 }
2778
2779 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2780 {
2781 struct sock *sk = sock->sk;
2782 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2783 struct sk_buff *skb;
2784 struct net_device *dev;
2785 __be16 proto;
2786 unsigned char *addr;
2787 int err, reserve = 0;
2788 struct sockcm_cookie sockc;
2789 struct virtio_net_hdr vnet_hdr = { 0 };
2790 int offset = 0;
2791 struct packet_sock *po = pkt_sk(sk);
2792 int hlen, tlen, linear;
2793 int extra_len = 0;
2794
2795 /*
2796 * Get and verify the address.
2797 */
2798
2799 if (likely(saddr == NULL)) {
2800 dev = packet_cached_dev_get(po);
2801 proto = po->num;
2802 addr = NULL;
2803 } else {
2804 err = -EINVAL;
2805 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2806 goto out;
2807 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2808 goto out;
2809 proto = saddr->sll_protocol;
2810 addr = saddr->sll_addr;
2811 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2812 }
2813
2814 err = -ENXIO;
2815 if (unlikely(dev == NULL))
2816 goto out_unlock;
2817 err = -ENETDOWN;
2818 if (unlikely(!(dev->flags & IFF_UP)))
2819 goto out_unlock;
2820
2821 sockc.tsflags = sk->sk_tsflags;
2822 sockc.mark = sk->sk_mark;
2823 if (msg->msg_controllen) {
2824 err = sock_cmsg_send(sk, msg, &sockc);
2825 if (unlikely(err))
2826 goto out_unlock;
2827 }
2828
2829 if (sock->type == SOCK_RAW)
2830 reserve = dev->hard_header_len;
2831 if (po->has_vnet_hdr) {
2832 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2833 if (err)
2834 goto out_unlock;
2835 }
2836
2837 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2838 if (!netif_supports_nofcs(dev)) {
2839 err = -EPROTONOSUPPORT;
2840 goto out_unlock;
2841 }
2842 extra_len = 4; /* We're doing our own CRC */
2843 }
2844
2845 err = -EMSGSIZE;
2846 if (!vnet_hdr.gso_type &&
2847 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2848 goto out_unlock;
2849
2850 err = -ENOBUFS;
2851 hlen = LL_RESERVED_SPACE(dev);
2852 tlen = dev->needed_tailroom;
2853 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2854 linear = max(linear, min_t(int, len, dev->hard_header_len));
2855 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2856 msg->msg_flags & MSG_DONTWAIT, &err);
2857 if (skb == NULL)
2858 goto out_unlock;
2859
2860 skb_set_network_header(skb, reserve);
2861
2862 err = -EINVAL;
2863 if (sock->type == SOCK_DGRAM) {
2864 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2865 if (unlikely(offset < 0))
2866 goto out_free;
2867 }
2868
2869 /* Returns -EFAULT on error */
2870 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2871 if (err)
2872 goto out_free;
2873
2874 if (sock->type == SOCK_RAW &&
2875 !dev_validate_header(dev, skb->data, len)) {
2876 err = -EINVAL;
2877 goto out_free;
2878 }
2879
2880 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2881
2882 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2883 !packet_extra_vlan_len_allowed(dev, skb)) {
2884 err = -EMSGSIZE;
2885 goto out_free;
2886 }
2887
2888 skb->protocol = proto;
2889 skb->dev = dev;
2890 skb->priority = sk->sk_priority;
2891 skb->mark = sockc.mark;
2892
2893 packet_pick_tx_queue(dev, skb);
2894
2895 if (po->has_vnet_hdr) {
2896 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2897 if (err)
2898 goto out_free;
2899 len += sizeof(vnet_hdr);
2900 }
2901
2902 skb_probe_transport_header(skb, reserve);
2903
2904 if (unlikely(extra_len == 4))
2905 skb->no_fcs = 1;
2906
2907 err = po->xmit(skb);
2908 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2909 goto out_unlock;
2910
2911 dev_put(dev);
2912
2913 return len;
2914
2915 out_free:
2916 kfree_skb(skb);
2917 out_unlock:
2918 if (dev)
2919 dev_put(dev);
2920 out:
2921 return err;
2922 }
2923
2924 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2925 {
2926 struct sock *sk = sock->sk;
2927 struct packet_sock *po = pkt_sk(sk);
2928
2929 if (po->tx_ring.pg_vec)
2930 return tpacket_snd(po, msg);
2931 else
2932 return packet_snd(sock, msg, len);
2933 }
2934
2935 /*
2936 * Close a PACKET socket. This is fairly simple. We immediately go
2937 * to 'closed' state and remove our protocol entry in the device list.
2938 */
2939
2940 static int packet_release(struct socket *sock)
2941 {
2942 struct sock *sk = sock->sk;
2943 struct packet_sock *po;
2944 struct packet_fanout *f;
2945 struct net *net;
2946 union tpacket_req_u req_u;
2947
2948 if (!sk)
2949 return 0;
2950
2951 net = sock_net(sk);
2952 po = pkt_sk(sk);
2953
2954 mutex_lock(&net->packet.sklist_lock);
2955 sk_del_node_init_rcu(sk);
2956 mutex_unlock(&net->packet.sklist_lock);
2957
2958 preempt_disable();
2959 sock_prot_inuse_add(net, sk->sk_prot, -1);
2960 preempt_enable();
2961
2962 spin_lock(&po->bind_lock);
2963 unregister_prot_hook(sk, false);
2964 packet_cached_dev_reset(po);
2965
2966 if (po->prot_hook.dev) {
2967 dev_put(po->prot_hook.dev);
2968 po->prot_hook.dev = NULL;
2969 }
2970 spin_unlock(&po->bind_lock);
2971
2972 packet_flush_mclist(sk);
2973
2974 if (po->rx_ring.pg_vec) {
2975 memset(&req_u, 0, sizeof(req_u));
2976 packet_set_ring(sk, &req_u, 1, 0);
2977 }
2978
2979 if (po->tx_ring.pg_vec) {
2980 memset(&req_u, 0, sizeof(req_u));
2981 packet_set_ring(sk, &req_u, 1, 1);
2982 }
2983
2984 f = fanout_release(sk);
2985
2986 synchronize_net();
2987
2988 if (f) {
2989 fanout_release_data(f);
2990 kfree(f);
2991 }
2992 /*
2993 * Now the socket is dead. No more input will appear.
2994 */
2995 sock_orphan(sk);
2996 sock->sk = NULL;
2997
2998 /* Purge queues */
2999
3000 skb_queue_purge(&sk->sk_receive_queue);
3001 packet_free_pending(po);
3002 sk_refcnt_debug_release(sk);
3003
3004 sock_put(sk);
3005 return 0;
3006 }
3007
3008 /*
3009 * Attach a packet hook.
3010 */
3011
3012 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3013 __be16 proto)
3014 {
3015 struct packet_sock *po = pkt_sk(sk);
3016 struct net_device *dev_curr;
3017 __be16 proto_curr;
3018 bool need_rehook;
3019 struct net_device *dev = NULL;
3020 int ret = 0;
3021 bool unlisted = false;
3022
3023 if (po->fanout)
3024 return -EINVAL;
3025
3026 lock_sock(sk);
3027 spin_lock(&po->bind_lock);
3028 rcu_read_lock();
3029
3030 if (name) {
3031 dev = dev_get_by_name_rcu(sock_net(sk), name);
3032 if (!dev) {
3033 ret = -ENODEV;
3034 goto out_unlock;
3035 }
3036 } else if (ifindex) {
3037 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3038 if (!dev) {
3039 ret = -ENODEV;
3040 goto out_unlock;
3041 }
3042 }
3043
3044 if (dev)
3045 dev_hold(dev);
3046
3047 proto_curr = po->prot_hook.type;
3048 dev_curr = po->prot_hook.dev;
3049
3050 need_rehook = proto_curr != proto || dev_curr != dev;
3051
3052 if (need_rehook) {
3053 if (po->running) {
3054 rcu_read_unlock();
3055 __unregister_prot_hook(sk, true);
3056 rcu_read_lock();
3057 dev_curr = po->prot_hook.dev;
3058 if (dev)
3059 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3060 dev->ifindex);
3061 }
3062
3063 po->num = proto;
3064 po->prot_hook.type = proto;
3065
3066 if (unlikely(unlisted)) {
3067 dev_put(dev);
3068 po->prot_hook.dev = NULL;
3069 po->ifindex = -1;
3070 packet_cached_dev_reset(po);
3071 } else {
3072 po->prot_hook.dev = dev;
3073 po->ifindex = dev ? dev->ifindex : 0;
3074 packet_cached_dev_assign(po, dev);
3075 }
3076 }
3077 if (dev_curr)
3078 dev_put(dev_curr);
3079
3080 if (proto == 0 || !need_rehook)
3081 goto out_unlock;
3082
3083 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3084 register_prot_hook(sk);
3085 } else {
3086 sk->sk_err = ENETDOWN;
3087 if (!sock_flag(sk, SOCK_DEAD))
3088 sk->sk_error_report(sk);
3089 }
3090
3091 out_unlock:
3092 rcu_read_unlock();
3093 spin_unlock(&po->bind_lock);
3094 release_sock(sk);
3095 return ret;
3096 }
3097
3098 /*
3099 * Bind a packet socket to a device
3100 */
3101
3102 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3103 int addr_len)
3104 {
3105 struct sock *sk = sock->sk;
3106 char name[sizeof(uaddr->sa_data) + 1];
3107
3108 /*
3109 * Check legality
3110 */
3111
3112 if (addr_len != sizeof(struct sockaddr))
3113 return -EINVAL;
3114 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3115 * zero-terminated.
3116 */
3117 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3118 name[sizeof(uaddr->sa_data)] = 0;
3119
3120 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3121 }
3122
3123 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3124 {
3125 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3126 struct sock *sk = sock->sk;
3127
3128 /*
3129 * Check legality
3130 */
3131
3132 if (addr_len < sizeof(struct sockaddr_ll))
3133 return -EINVAL;
3134 if (sll->sll_family != AF_PACKET)
3135 return -EINVAL;
3136
3137 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3138 sll->sll_protocol ? : pkt_sk(sk)->num);
3139 }
3140
3141 static struct proto packet_proto = {
3142 .name = "PACKET",
3143 .owner = THIS_MODULE,
3144 .obj_size = sizeof(struct packet_sock),
3145 };
3146
3147 /*
3148 * Create a packet of type SOCK_PACKET.
3149 */
3150
3151 static int packet_create(struct net *net, struct socket *sock, int protocol,
3152 int kern)
3153 {
3154 struct sock *sk;
3155 struct packet_sock *po;
3156 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3157 int err;
3158
3159 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3160 return -EPERM;
3161 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3162 sock->type != SOCK_PACKET)
3163 return -ESOCKTNOSUPPORT;
3164
3165 sock->state = SS_UNCONNECTED;
3166
3167 err = -ENOBUFS;
3168 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3169 if (sk == NULL)
3170 goto out;
3171
3172 sock->ops = &packet_ops;
3173 if (sock->type == SOCK_PACKET)
3174 sock->ops = &packet_ops_spkt;
3175
3176 sock_init_data(sock, sk);
3177
3178 po = pkt_sk(sk);
3179 sk->sk_family = PF_PACKET;
3180 po->num = proto;
3181 po->xmit = dev_queue_xmit;
3182
3183 err = packet_alloc_pending(po);
3184 if (err)
3185 goto out2;
3186
3187 packet_cached_dev_reset(po);
3188
3189 sk->sk_destruct = packet_sock_destruct;
3190 sk_refcnt_debug_inc(sk);
3191
3192 /*
3193 * Attach a protocol block
3194 */
3195
3196 spin_lock_init(&po->bind_lock);
3197 mutex_init(&po->pg_vec_lock);
3198 po->rollover = NULL;
3199 po->prot_hook.func = packet_rcv;
3200
3201 if (sock->type == SOCK_PACKET)
3202 po->prot_hook.func = packet_rcv_spkt;
3203
3204 po->prot_hook.af_packet_priv = sk;
3205
3206 if (proto) {
3207 po->prot_hook.type = proto;
3208 register_prot_hook(sk);
3209 }
3210
3211 mutex_lock(&net->packet.sklist_lock);
3212 sk_add_node_rcu(sk, &net->packet.sklist);
3213 mutex_unlock(&net->packet.sklist_lock);
3214
3215 preempt_disable();
3216 sock_prot_inuse_add(net, &packet_proto, 1);
3217 preempt_enable();
3218
3219 return 0;
3220 out2:
3221 sk_free(sk);
3222 out:
3223 return err;
3224 }
3225
3226 /*
3227 * Pull a packet from our receive queue and hand it to the user.
3228 * If necessary we block.
3229 */
3230
3231 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3232 int flags)
3233 {
3234 struct sock *sk = sock->sk;
3235 struct sk_buff *skb;
3236 int copied, err;
3237 int vnet_hdr_len = 0;
3238 unsigned int origlen = 0;
3239
3240 err = -EINVAL;
3241 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3242 goto out;
3243
3244 #if 0
3245 /* What error should we return now? EUNATTACH? */
3246 if (pkt_sk(sk)->ifindex < 0)
3247 return -ENODEV;
3248 #endif
3249
3250 if (flags & MSG_ERRQUEUE) {
3251 err = sock_recv_errqueue(sk, msg, len,
3252 SOL_PACKET, PACKET_TX_TIMESTAMP);
3253 goto out;
3254 }
3255
3256 /*
3257 * Call the generic datagram receiver. This handles all sorts
3258 * of horrible races and re-entrancy so we can forget about it
3259 * in the protocol layers.
3260 *
3261 * Now it will return ENETDOWN, if device have just gone down,
3262 * but then it will block.
3263 */
3264
3265 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3266
3267 /*
3268 * An error occurred so return it. Because skb_recv_datagram()
3269 * handles the blocking we don't see and worry about blocking
3270 * retries.
3271 */
3272
3273 if (skb == NULL)
3274 goto out;
3275
3276 if (pkt_sk(sk)->pressure)
3277 packet_rcv_has_room(pkt_sk(sk), NULL);
3278
3279 if (pkt_sk(sk)->has_vnet_hdr) {
3280 err = packet_rcv_vnet(msg, skb, &len);
3281 if (err)
3282 goto out_free;
3283 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3284 }
3285
3286 /* You lose any data beyond the buffer you gave. If it worries
3287 * a user program they can ask the device for its MTU
3288 * anyway.
3289 */
3290 copied = skb->len;
3291 if (copied > len) {
3292 copied = len;
3293 msg->msg_flags |= MSG_TRUNC;
3294 }
3295
3296 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3297 if (err)
3298 goto out_free;
3299
3300 if (sock->type != SOCK_PACKET) {
3301 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3302
3303 /* Original length was stored in sockaddr_ll fields */
3304 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3305 sll->sll_family = AF_PACKET;
3306 sll->sll_protocol = skb->protocol;
3307 }
3308
3309 sock_recv_ts_and_drops(msg, sk, skb);
3310
3311 if (msg->msg_name) {
3312 /* If the address length field is there to be filled
3313 * in, we fill it in now.
3314 */
3315 if (sock->type == SOCK_PACKET) {
3316 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3317 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3318 } else {
3319 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3320
3321 msg->msg_namelen = sll->sll_halen +
3322 offsetof(struct sockaddr_ll, sll_addr);
3323 }
3324 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3325 msg->msg_namelen);
3326 }
3327
3328 if (pkt_sk(sk)->auxdata) {
3329 struct tpacket_auxdata aux;
3330
3331 aux.tp_status = TP_STATUS_USER;
3332 if (skb->ip_summed == CHECKSUM_PARTIAL)
3333 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3334 else if (skb->pkt_type != PACKET_OUTGOING &&
3335 (skb->ip_summed == CHECKSUM_COMPLETE ||
3336 skb_csum_unnecessary(skb)))
3337 aux.tp_status |= TP_STATUS_CSUM_VALID;
3338
3339 aux.tp_len = origlen;
3340 aux.tp_snaplen = skb->len;
3341 aux.tp_mac = 0;
3342 aux.tp_net = skb_network_offset(skb);
3343 if (skb_vlan_tag_present(skb)) {
3344 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3345 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3346 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3347 } else {
3348 aux.tp_vlan_tci = 0;
3349 aux.tp_vlan_tpid = 0;
3350 }
3351 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3352 }
3353
3354 /*
3355 * Free or return the buffer as appropriate. Again this
3356 * hides all the races and re-entrancy issues from us.
3357 */
3358 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3359
3360 out_free:
3361 skb_free_datagram(sk, skb);
3362 out:
3363 return err;
3364 }
3365
3366 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3367 int *uaddr_len, int peer)
3368 {
3369 struct net_device *dev;
3370 struct sock *sk = sock->sk;
3371
3372 if (peer)
3373 return -EOPNOTSUPP;
3374
3375 uaddr->sa_family = AF_PACKET;
3376 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3377 rcu_read_lock();
3378 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3379 if (dev)
3380 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3381 rcu_read_unlock();
3382 *uaddr_len = sizeof(*uaddr);
3383
3384 return 0;
3385 }
3386
3387 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3388 int *uaddr_len, int peer)
3389 {
3390 struct net_device *dev;
3391 struct sock *sk = sock->sk;
3392 struct packet_sock *po = pkt_sk(sk);
3393 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3394
3395 if (peer)
3396 return -EOPNOTSUPP;
3397
3398 sll->sll_family = AF_PACKET;
3399 sll->sll_ifindex = po->ifindex;
3400 sll->sll_protocol = po->num;
3401 sll->sll_pkttype = 0;
3402 rcu_read_lock();
3403 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3404 if (dev) {
3405 sll->sll_hatype = dev->type;
3406 sll->sll_halen = dev->addr_len;
3407 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3408 } else {
3409 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3410 sll->sll_halen = 0;
3411 }
3412 rcu_read_unlock();
3413 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3414
3415 return 0;
3416 }
3417
3418 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3419 int what)
3420 {
3421 switch (i->type) {
3422 case PACKET_MR_MULTICAST:
3423 if (i->alen != dev->addr_len)
3424 return -EINVAL;
3425 if (what > 0)
3426 return dev_mc_add(dev, i->addr);
3427 else
3428 return dev_mc_del(dev, i->addr);
3429 break;
3430 case PACKET_MR_PROMISC:
3431 return dev_set_promiscuity(dev, what);
3432 case PACKET_MR_ALLMULTI:
3433 return dev_set_allmulti(dev, what);
3434 case PACKET_MR_UNICAST:
3435 if (i->alen != dev->addr_len)
3436 return -EINVAL;
3437 if (what > 0)
3438 return dev_uc_add(dev, i->addr);
3439 else
3440 return dev_uc_del(dev, i->addr);
3441 break;
3442 default:
3443 break;
3444 }
3445 return 0;
3446 }
3447
3448 static void packet_dev_mclist_delete(struct net_device *dev,
3449 struct packet_mclist **mlp)
3450 {
3451 struct packet_mclist *ml;
3452
3453 while ((ml = *mlp) != NULL) {
3454 if (ml->ifindex == dev->ifindex) {
3455 packet_dev_mc(dev, ml, -1);
3456 *mlp = ml->next;
3457 kfree(ml);
3458 } else
3459 mlp = &ml->next;
3460 }
3461 }
3462
3463 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3464 {
3465 struct packet_sock *po = pkt_sk(sk);
3466 struct packet_mclist *ml, *i;
3467 struct net_device *dev;
3468 int err;
3469
3470 rtnl_lock();
3471
3472 err = -ENODEV;
3473 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3474 if (!dev)
3475 goto done;
3476
3477 err = -EINVAL;
3478 if (mreq->mr_alen > dev->addr_len)
3479 goto done;
3480
3481 err = -ENOBUFS;
3482 i = kmalloc(sizeof(*i), GFP_KERNEL);
3483 if (i == NULL)
3484 goto done;
3485
3486 err = 0;
3487 for (ml = po->mclist; ml; ml = ml->next) {
3488 if (ml->ifindex == mreq->mr_ifindex &&
3489 ml->type == mreq->mr_type &&
3490 ml->alen == mreq->mr_alen &&
3491 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3492 ml->count++;
3493 /* Free the new element ... */
3494 kfree(i);
3495 goto done;
3496 }
3497 }
3498
3499 i->type = mreq->mr_type;
3500 i->ifindex = mreq->mr_ifindex;
3501 i->alen = mreq->mr_alen;
3502 memcpy(i->addr, mreq->mr_address, i->alen);
3503 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3504 i->count = 1;
3505 i->next = po->mclist;
3506 po->mclist = i;
3507 err = packet_dev_mc(dev, i, 1);
3508 if (err) {
3509 po->mclist = i->next;
3510 kfree(i);
3511 }
3512
3513 done:
3514 rtnl_unlock();
3515 return err;
3516 }
3517
3518 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3519 {
3520 struct packet_mclist *ml, **mlp;
3521
3522 rtnl_lock();
3523
3524 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3525 if (ml->ifindex == mreq->mr_ifindex &&
3526 ml->type == mreq->mr_type &&
3527 ml->alen == mreq->mr_alen &&
3528 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3529 if (--ml->count == 0) {
3530 struct net_device *dev;
3531 *mlp = ml->next;
3532 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3533 if (dev)
3534 packet_dev_mc(dev, ml, -1);
3535 kfree(ml);
3536 }
3537 break;
3538 }
3539 }
3540 rtnl_unlock();
3541 return 0;
3542 }
3543
3544 static void packet_flush_mclist(struct sock *sk)
3545 {
3546 struct packet_sock *po = pkt_sk(sk);
3547 struct packet_mclist *ml;
3548
3549 if (!po->mclist)
3550 return;
3551
3552 rtnl_lock();
3553 while ((ml = po->mclist) != NULL) {
3554 struct net_device *dev;
3555
3556 po->mclist = ml->next;
3557 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3558 if (dev != NULL)
3559 packet_dev_mc(dev, ml, -1);
3560 kfree(ml);
3561 }
3562 rtnl_unlock();
3563 }
3564
3565 static int
3566 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3567 {
3568 struct sock *sk = sock->sk;
3569 struct packet_sock *po = pkt_sk(sk);
3570 int ret;
3571
3572 if (level != SOL_PACKET)
3573 return -ENOPROTOOPT;
3574
3575 switch (optname) {
3576 case PACKET_ADD_MEMBERSHIP:
3577 case PACKET_DROP_MEMBERSHIP:
3578 {
3579 struct packet_mreq_max mreq;
3580 int len = optlen;
3581 memset(&mreq, 0, sizeof(mreq));
3582 if (len < sizeof(struct packet_mreq))
3583 return -EINVAL;
3584 if (len > sizeof(mreq))
3585 len = sizeof(mreq);
3586 if (copy_from_user(&mreq, optval, len))
3587 return -EFAULT;
3588 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3589 return -EINVAL;
3590 if (optname == PACKET_ADD_MEMBERSHIP)
3591 ret = packet_mc_add(sk, &mreq);
3592 else
3593 ret = packet_mc_drop(sk, &mreq);
3594 return ret;
3595 }
3596
3597 case PACKET_RX_RING:
3598 case PACKET_TX_RING:
3599 {
3600 union tpacket_req_u req_u;
3601 int len;
3602
3603 switch (po->tp_version) {
3604 case TPACKET_V1:
3605 case TPACKET_V2:
3606 len = sizeof(req_u.req);
3607 break;
3608 case TPACKET_V3:
3609 default:
3610 len = sizeof(req_u.req3);
3611 break;
3612 }
3613 if (optlen < len)
3614 return -EINVAL;
3615 if (copy_from_user(&req_u.req, optval, len))
3616 return -EFAULT;
3617 return packet_set_ring(sk, &req_u, 0,
3618 optname == PACKET_TX_RING);
3619 }
3620 case PACKET_COPY_THRESH:
3621 {
3622 int val;
3623
3624 if (optlen != sizeof(val))
3625 return -EINVAL;
3626 if (copy_from_user(&val, optval, sizeof(val)))
3627 return -EFAULT;
3628
3629 pkt_sk(sk)->copy_thresh = val;
3630 return 0;
3631 }
3632 case PACKET_VERSION:
3633 {
3634 int val;
3635
3636 if (optlen != sizeof(val))
3637 return -EINVAL;
3638 if (copy_from_user(&val, optval, sizeof(val)))
3639 return -EFAULT;
3640 switch (val) {
3641 case TPACKET_V1:
3642 case TPACKET_V2:
3643 case TPACKET_V3:
3644 break;
3645 default:
3646 return -EINVAL;
3647 }
3648 lock_sock(sk);
3649 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3650 ret = -EBUSY;
3651 } else {
3652 po->tp_version = val;
3653 ret = 0;
3654 }
3655 release_sock(sk);
3656 return ret;
3657 }
3658 case PACKET_RESERVE:
3659 {
3660 unsigned int val;
3661
3662 if (optlen != sizeof(val))
3663 return -EINVAL;
3664 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3665 return -EBUSY;
3666 if (copy_from_user(&val, optval, sizeof(val)))
3667 return -EFAULT;
3668 po->tp_reserve = val;
3669 return 0;
3670 }
3671 case PACKET_LOSS:
3672 {
3673 unsigned int val;
3674
3675 if (optlen != sizeof(val))
3676 return -EINVAL;
3677 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3678 return -EBUSY;
3679 if (copy_from_user(&val, optval, sizeof(val)))
3680 return -EFAULT;
3681 po->tp_loss = !!val;
3682 return 0;
3683 }
3684 case PACKET_AUXDATA:
3685 {
3686 int val;
3687
3688 if (optlen < sizeof(val))
3689 return -EINVAL;
3690 if (copy_from_user(&val, optval, sizeof(val)))
3691 return -EFAULT;
3692
3693 po->auxdata = !!val;
3694 return 0;
3695 }
3696 case PACKET_ORIGDEV:
3697 {
3698 int val;
3699
3700 if (optlen < sizeof(val))
3701 return -EINVAL;
3702 if (copy_from_user(&val, optval, sizeof(val)))
3703 return -EFAULT;
3704
3705 po->origdev = !!val;
3706 return 0;
3707 }
3708 case PACKET_VNET_HDR:
3709 {
3710 int val;
3711
3712 if (sock->type != SOCK_RAW)
3713 return -EINVAL;
3714 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3715 return -EBUSY;
3716 if (optlen < sizeof(val))
3717 return -EINVAL;
3718 if (copy_from_user(&val, optval, sizeof(val)))
3719 return -EFAULT;
3720
3721 po->has_vnet_hdr = !!val;
3722 return 0;
3723 }
3724 case PACKET_TIMESTAMP:
3725 {
3726 int val;
3727
3728 if (optlen != sizeof(val))
3729 return -EINVAL;
3730 if (copy_from_user(&val, optval, sizeof(val)))
3731 return -EFAULT;
3732
3733 po->tp_tstamp = val;
3734 return 0;
3735 }
3736 case PACKET_FANOUT:
3737 {
3738 int val;
3739
3740 if (optlen != sizeof(val))
3741 return -EINVAL;
3742 if (copy_from_user(&val, optval, sizeof(val)))
3743 return -EFAULT;
3744
3745 return fanout_add(sk, val & 0xffff, val >> 16);
3746 }
3747 case PACKET_FANOUT_DATA:
3748 {
3749 if (!po->fanout)
3750 return -EINVAL;
3751
3752 return fanout_set_data(po, optval, optlen);
3753 }
3754 case PACKET_TX_HAS_OFF:
3755 {
3756 unsigned int val;
3757
3758 if (optlen != sizeof(val))
3759 return -EINVAL;
3760 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3761 return -EBUSY;
3762 if (copy_from_user(&val, optval, sizeof(val)))
3763 return -EFAULT;
3764 po->tp_tx_has_off = !!val;
3765 return 0;
3766 }
3767 case PACKET_QDISC_BYPASS:
3768 {
3769 int val;
3770
3771 if (optlen != sizeof(val))
3772 return -EINVAL;
3773 if (copy_from_user(&val, optval, sizeof(val)))
3774 return -EFAULT;
3775
3776 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3777 return 0;
3778 }
3779 default:
3780 return -ENOPROTOOPT;
3781 }
3782 }
3783
3784 static int packet_getsockopt(struct socket *sock, int level, int optname,
3785 char __user *optval, int __user *optlen)
3786 {
3787 int len;
3788 int val, lv = sizeof(val);
3789 struct sock *sk = sock->sk;
3790 struct packet_sock *po = pkt_sk(sk);
3791 void *data = &val;
3792 union tpacket_stats_u st;
3793 struct tpacket_rollover_stats rstats;
3794
3795 if (level != SOL_PACKET)
3796 return -ENOPROTOOPT;
3797
3798 if (get_user(len, optlen))
3799 return -EFAULT;
3800
3801 if (len < 0)
3802 return -EINVAL;
3803
3804 switch (optname) {
3805 case PACKET_STATISTICS:
3806 spin_lock_bh(&sk->sk_receive_queue.lock);
3807 memcpy(&st, &po->stats, sizeof(st));
3808 memset(&po->stats, 0, sizeof(po->stats));
3809 spin_unlock_bh(&sk->sk_receive_queue.lock);
3810
3811 if (po->tp_version == TPACKET_V3) {
3812 lv = sizeof(struct tpacket_stats_v3);
3813 st.stats3.tp_packets += st.stats3.tp_drops;
3814 data = &st.stats3;
3815 } else {
3816 lv = sizeof(struct tpacket_stats);
3817 st.stats1.tp_packets += st.stats1.tp_drops;
3818 data = &st.stats1;
3819 }
3820
3821 break;
3822 case PACKET_AUXDATA:
3823 val = po->auxdata;
3824 break;
3825 case PACKET_ORIGDEV:
3826 val = po->origdev;
3827 break;
3828 case PACKET_VNET_HDR:
3829 val = po->has_vnet_hdr;
3830 break;
3831 case PACKET_VERSION:
3832 val = po->tp_version;
3833 break;
3834 case PACKET_HDRLEN:
3835 if (len > sizeof(int))
3836 len = sizeof(int);
3837 if (copy_from_user(&val, optval, len))
3838 return -EFAULT;
3839 switch (val) {
3840 case TPACKET_V1:
3841 val = sizeof(struct tpacket_hdr);
3842 break;
3843 case TPACKET_V2:
3844 val = sizeof(struct tpacket2_hdr);
3845 break;
3846 case TPACKET_V3:
3847 val = sizeof(struct tpacket3_hdr);
3848 break;
3849 default:
3850 return -EINVAL;
3851 }
3852 break;
3853 case PACKET_RESERVE:
3854 val = po->tp_reserve;
3855 break;
3856 case PACKET_LOSS:
3857 val = po->tp_loss;
3858 break;
3859 case PACKET_TIMESTAMP:
3860 val = po->tp_tstamp;
3861 break;
3862 case PACKET_FANOUT:
3863 val = (po->fanout ?
3864 ((u32)po->fanout->id |
3865 ((u32)po->fanout->type << 16) |
3866 ((u32)po->fanout->flags << 24)) :
3867 0);
3868 break;
3869 case PACKET_ROLLOVER_STATS:
3870 if (!po->rollover)
3871 return -EINVAL;
3872 rstats.tp_all = atomic_long_read(&po->rollover->num);
3873 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3874 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3875 data = &rstats;
3876 lv = sizeof(rstats);
3877 break;
3878 case PACKET_TX_HAS_OFF:
3879 val = po->tp_tx_has_off;
3880 break;
3881 case PACKET_QDISC_BYPASS:
3882 val = packet_use_direct_xmit(po);
3883 break;
3884 default:
3885 return -ENOPROTOOPT;
3886 }
3887
3888 if (len > lv)
3889 len = lv;
3890 if (put_user(len, optlen))
3891 return -EFAULT;
3892 if (copy_to_user(optval, data, len))
3893 return -EFAULT;
3894 return 0;
3895 }
3896
3897
3898 #ifdef CONFIG_COMPAT
3899 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3900 char __user *optval, unsigned int optlen)
3901 {
3902 struct packet_sock *po = pkt_sk(sock->sk);
3903
3904 if (level != SOL_PACKET)
3905 return -ENOPROTOOPT;
3906
3907 if (optname == PACKET_FANOUT_DATA &&
3908 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3909 optval = (char __user *)get_compat_bpf_fprog(optval);
3910 if (!optval)
3911 return -EFAULT;
3912 optlen = sizeof(struct sock_fprog);
3913 }
3914
3915 return packet_setsockopt(sock, level, optname, optval, optlen);
3916 }
3917 #endif
3918
3919 static int packet_notifier(struct notifier_block *this,
3920 unsigned long msg, void *ptr)
3921 {
3922 struct sock *sk;
3923 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3924 struct net *net = dev_net(dev);
3925
3926 rcu_read_lock();
3927 sk_for_each_rcu(sk, &net->packet.sklist) {
3928 struct packet_sock *po = pkt_sk(sk);
3929
3930 switch (msg) {
3931 case NETDEV_UNREGISTER:
3932 if (po->mclist)
3933 packet_dev_mclist_delete(dev, &po->mclist);
3934 /* fallthrough */
3935
3936 case NETDEV_DOWN:
3937 if (dev->ifindex == po->ifindex) {
3938 spin_lock(&po->bind_lock);
3939 if (po->running) {
3940 __unregister_prot_hook(sk, false);
3941 sk->sk_err = ENETDOWN;
3942 if (!sock_flag(sk, SOCK_DEAD))
3943 sk->sk_error_report(sk);
3944 }
3945 if (msg == NETDEV_UNREGISTER) {
3946 packet_cached_dev_reset(po);
3947 po->ifindex = -1;
3948 if (po->prot_hook.dev)
3949 dev_put(po->prot_hook.dev);
3950 po->prot_hook.dev = NULL;
3951 }
3952 spin_unlock(&po->bind_lock);
3953 }
3954 break;
3955 case NETDEV_UP:
3956 if (dev->ifindex == po->ifindex) {
3957 spin_lock(&po->bind_lock);
3958 if (po->num)
3959 register_prot_hook(sk);
3960 spin_unlock(&po->bind_lock);
3961 }
3962 break;
3963 }
3964 }
3965 rcu_read_unlock();
3966 return NOTIFY_DONE;
3967 }
3968
3969
3970 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3971 unsigned long arg)
3972 {
3973 struct sock *sk = sock->sk;
3974
3975 switch (cmd) {
3976 case SIOCOUTQ:
3977 {
3978 int amount = sk_wmem_alloc_get(sk);
3979
3980 return put_user(amount, (int __user *)arg);
3981 }
3982 case SIOCINQ:
3983 {
3984 struct sk_buff *skb;
3985 int amount = 0;
3986
3987 spin_lock_bh(&sk->sk_receive_queue.lock);
3988 skb = skb_peek(&sk->sk_receive_queue);
3989 if (skb)
3990 amount = skb->len;
3991 spin_unlock_bh(&sk->sk_receive_queue.lock);
3992 return put_user(amount, (int __user *)arg);
3993 }
3994 case SIOCGSTAMP:
3995 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3996 case SIOCGSTAMPNS:
3997 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3998
3999 #ifdef CONFIG_INET
4000 case SIOCADDRT:
4001 case SIOCDELRT:
4002 case SIOCDARP:
4003 case SIOCGARP:
4004 case SIOCSARP:
4005 case SIOCGIFADDR:
4006 case SIOCSIFADDR:
4007 case SIOCGIFBRDADDR:
4008 case SIOCSIFBRDADDR:
4009 case SIOCGIFNETMASK:
4010 case SIOCSIFNETMASK:
4011 case SIOCGIFDSTADDR:
4012 case SIOCSIFDSTADDR:
4013 case SIOCSIFFLAGS:
4014 return inet_dgram_ops.ioctl(sock, cmd, arg);
4015 #endif
4016
4017 default:
4018 return -ENOIOCTLCMD;
4019 }
4020 return 0;
4021 }
4022
4023 static unsigned int packet_poll(struct file *file, struct socket *sock,
4024 poll_table *wait)
4025 {
4026 struct sock *sk = sock->sk;
4027 struct packet_sock *po = pkt_sk(sk);
4028 unsigned int mask = datagram_poll(file, sock, wait);
4029
4030 spin_lock_bh(&sk->sk_receive_queue.lock);
4031 if (po->rx_ring.pg_vec) {
4032 if (!packet_previous_rx_frame(po, &po->rx_ring,
4033 TP_STATUS_KERNEL))
4034 mask |= POLLIN | POLLRDNORM;
4035 }
4036 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4037 po->pressure = 0;
4038 spin_unlock_bh(&sk->sk_receive_queue.lock);
4039 spin_lock_bh(&sk->sk_write_queue.lock);
4040 if (po->tx_ring.pg_vec) {
4041 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4042 mask |= POLLOUT | POLLWRNORM;
4043 }
4044 spin_unlock_bh(&sk->sk_write_queue.lock);
4045 return mask;
4046 }
4047
4048
4049 /* Dirty? Well, I still did not learn better way to account
4050 * for user mmaps.
4051 */
4052
4053 static void packet_mm_open(struct vm_area_struct *vma)
4054 {
4055 struct file *file = vma->vm_file;
4056 struct socket *sock = file->private_data;
4057 struct sock *sk = sock->sk;
4058
4059 if (sk)
4060 atomic_inc(&pkt_sk(sk)->mapped);
4061 }
4062
4063 static void packet_mm_close(struct vm_area_struct *vma)
4064 {
4065 struct file *file = vma->vm_file;
4066 struct socket *sock = file->private_data;
4067 struct sock *sk = sock->sk;
4068
4069 if (sk)
4070 atomic_dec(&pkt_sk(sk)->mapped);
4071 }
4072
4073 static const struct vm_operations_struct packet_mmap_ops = {
4074 .open = packet_mm_open,
4075 .close = packet_mm_close,
4076 };
4077
4078 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4079 unsigned int len)
4080 {
4081 int i;
4082
4083 for (i = 0; i < len; i++) {
4084 if (likely(pg_vec[i].buffer)) {
4085 if (is_vmalloc_addr(pg_vec[i].buffer))
4086 vfree(pg_vec[i].buffer);
4087 else
4088 free_pages((unsigned long)pg_vec[i].buffer,
4089 order);
4090 pg_vec[i].buffer = NULL;
4091 }
4092 }
4093 kfree(pg_vec);
4094 }
4095
4096 static char *alloc_one_pg_vec_page(unsigned long order)
4097 {
4098 char *buffer;
4099 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4100 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4101
4102 buffer = (char *) __get_free_pages(gfp_flags, order);
4103 if (buffer)
4104 return buffer;
4105
4106 /* __get_free_pages failed, fall back to vmalloc */
4107 buffer = vzalloc((1 << order) * PAGE_SIZE);
4108 if (buffer)
4109 return buffer;
4110
4111 /* vmalloc failed, lets dig into swap here */
4112 gfp_flags &= ~__GFP_NORETRY;
4113 buffer = (char *) __get_free_pages(gfp_flags, order);
4114 if (buffer)
4115 return buffer;
4116
4117 /* complete and utter failure */
4118 return NULL;
4119 }
4120
4121 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4122 {
4123 unsigned int block_nr = req->tp_block_nr;
4124 struct pgv *pg_vec;
4125 int i;
4126
4127 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4128 if (unlikely(!pg_vec))
4129 goto out;
4130
4131 for (i = 0; i < block_nr; i++) {
4132 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4133 if (unlikely(!pg_vec[i].buffer))
4134 goto out_free_pgvec;
4135 }
4136
4137 out:
4138 return pg_vec;
4139
4140 out_free_pgvec:
4141 free_pg_vec(pg_vec, order, block_nr);
4142 pg_vec = NULL;
4143 goto out;
4144 }
4145
4146 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4147 int closing, int tx_ring)
4148 {
4149 struct pgv *pg_vec = NULL;
4150 struct packet_sock *po = pkt_sk(sk);
4151 int was_running, order = 0;
4152 struct packet_ring_buffer *rb;
4153 struct sk_buff_head *rb_queue;
4154 __be16 num;
4155 int err = -EINVAL;
4156 /* Added to avoid minimal code churn */
4157 struct tpacket_req *req = &req_u->req;
4158
4159 lock_sock(sk);
4160
4161 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4162 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4163
4164 err = -EBUSY;
4165 if (!closing) {
4166 if (atomic_read(&po->mapped))
4167 goto out;
4168 if (packet_read_pending(rb))
4169 goto out;
4170 }
4171
4172 if (req->tp_block_nr) {
4173 /* Sanity tests and some calculations */
4174 err = -EBUSY;
4175 if (unlikely(rb->pg_vec))
4176 goto out;
4177
4178 switch (po->tp_version) {
4179 case TPACKET_V1:
4180 po->tp_hdrlen = TPACKET_HDRLEN;
4181 break;
4182 case TPACKET_V2:
4183 po->tp_hdrlen = TPACKET2_HDRLEN;
4184 break;
4185 case TPACKET_V3:
4186 po->tp_hdrlen = TPACKET3_HDRLEN;
4187 break;
4188 }
4189
4190 err = -EINVAL;
4191 if (unlikely((int)req->tp_block_size <= 0))
4192 goto out;
4193 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4194 goto out;
4195 if (po->tp_version >= TPACKET_V3 &&
4196 (int)(req->tp_block_size -
4197 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
4198 goto out;
4199 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4200 po->tp_reserve))
4201 goto out;
4202 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4203 goto out;
4204
4205 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4206 if (unlikely(rb->frames_per_block == 0))
4207 goto out;
4208 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4209 req->tp_frame_nr))
4210 goto out;
4211
4212 err = -ENOMEM;
4213 order = get_order(req->tp_block_size);
4214 pg_vec = alloc_pg_vec(req, order);
4215 if (unlikely(!pg_vec))
4216 goto out;
4217 switch (po->tp_version) {
4218 case TPACKET_V3:
4219 /* Block transmit is not supported yet */
4220 if (!tx_ring) {
4221 init_prb_bdqc(po, rb, pg_vec, req_u);
4222 } else {
4223 struct tpacket_req3 *req3 = &req_u->req3;
4224
4225 if (req3->tp_retire_blk_tov ||
4226 req3->tp_sizeof_priv ||
4227 req3->tp_feature_req_word) {
4228 err = -EINVAL;
4229 goto out;
4230 }
4231 }
4232 break;
4233 default:
4234 break;
4235 }
4236 }
4237 /* Done */
4238 else {
4239 err = -EINVAL;
4240 if (unlikely(req->tp_frame_nr))
4241 goto out;
4242 }
4243
4244
4245 /* Detach socket from network */
4246 spin_lock(&po->bind_lock);
4247 was_running = po->running;
4248 num = po->num;
4249 if (was_running) {
4250 po->num = 0;
4251 __unregister_prot_hook(sk, false);
4252 }
4253 spin_unlock(&po->bind_lock);
4254
4255 synchronize_net();
4256
4257 err = -EBUSY;
4258 mutex_lock(&po->pg_vec_lock);
4259 if (closing || atomic_read(&po->mapped) == 0) {
4260 err = 0;
4261 spin_lock_bh(&rb_queue->lock);
4262 swap(rb->pg_vec, pg_vec);
4263 rb->frame_max = (req->tp_frame_nr - 1);
4264 rb->head = 0;
4265 rb->frame_size = req->tp_frame_size;
4266 spin_unlock_bh(&rb_queue->lock);
4267
4268 swap(rb->pg_vec_order, order);
4269 swap(rb->pg_vec_len, req->tp_block_nr);
4270
4271 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4272 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4273 tpacket_rcv : packet_rcv;
4274 skb_queue_purge(rb_queue);
4275 if (atomic_read(&po->mapped))
4276 pr_err("packet_mmap: vma is busy: %d\n",
4277 atomic_read(&po->mapped));
4278 }
4279 mutex_unlock(&po->pg_vec_lock);
4280
4281 spin_lock(&po->bind_lock);
4282 if (was_running) {
4283 po->num = num;
4284 register_prot_hook(sk);
4285 }
4286 spin_unlock(&po->bind_lock);
4287 if (closing && (po->tp_version > TPACKET_V2)) {
4288 /* Because we don't support block-based V3 on tx-ring */
4289 if (!tx_ring)
4290 prb_shutdown_retire_blk_timer(po, rb_queue);
4291 }
4292
4293 if (pg_vec)
4294 free_pg_vec(pg_vec, order, req->tp_block_nr);
4295 out:
4296 release_sock(sk);
4297 return err;
4298 }
4299
4300 static int packet_mmap(struct file *file, struct socket *sock,
4301 struct vm_area_struct *vma)
4302 {
4303 struct sock *sk = sock->sk;
4304 struct packet_sock *po = pkt_sk(sk);
4305 unsigned long size, expected_size;
4306 struct packet_ring_buffer *rb;
4307 unsigned long start;
4308 int err = -EINVAL;
4309 int i;
4310
4311 if (vma->vm_pgoff)
4312 return -EINVAL;
4313
4314 mutex_lock(&po->pg_vec_lock);
4315
4316 expected_size = 0;
4317 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4318 if (rb->pg_vec) {
4319 expected_size += rb->pg_vec_len
4320 * rb->pg_vec_pages
4321 * PAGE_SIZE;
4322 }
4323 }
4324
4325 if (expected_size == 0)
4326 goto out;
4327
4328 size = vma->vm_end - vma->vm_start;
4329 if (size != expected_size)
4330 goto out;
4331
4332 start = vma->vm_start;
4333 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4334 if (rb->pg_vec == NULL)
4335 continue;
4336
4337 for (i = 0; i < rb->pg_vec_len; i++) {
4338 struct page *page;
4339 void *kaddr = rb->pg_vec[i].buffer;
4340 int pg_num;
4341
4342 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4343 page = pgv_to_page(kaddr);
4344 err = vm_insert_page(vma, start, page);
4345 if (unlikely(err))
4346 goto out;
4347 start += PAGE_SIZE;
4348 kaddr += PAGE_SIZE;
4349 }
4350 }
4351 }
4352
4353 atomic_inc(&po->mapped);
4354 vma->vm_ops = &packet_mmap_ops;
4355 err = 0;
4356
4357 out:
4358 mutex_unlock(&po->pg_vec_lock);
4359 return err;
4360 }
4361
4362 static const struct proto_ops packet_ops_spkt = {
4363 .family = PF_PACKET,
4364 .owner = THIS_MODULE,
4365 .release = packet_release,
4366 .bind = packet_bind_spkt,
4367 .connect = sock_no_connect,
4368 .socketpair = sock_no_socketpair,
4369 .accept = sock_no_accept,
4370 .getname = packet_getname_spkt,
4371 .poll = datagram_poll,
4372 .ioctl = packet_ioctl,
4373 .listen = sock_no_listen,
4374 .shutdown = sock_no_shutdown,
4375 .setsockopt = sock_no_setsockopt,
4376 .getsockopt = sock_no_getsockopt,
4377 .sendmsg = packet_sendmsg_spkt,
4378 .recvmsg = packet_recvmsg,
4379 .mmap = sock_no_mmap,
4380 .sendpage = sock_no_sendpage,
4381 };
4382
4383 static const struct proto_ops packet_ops = {
4384 .family = PF_PACKET,
4385 .owner = THIS_MODULE,
4386 .release = packet_release,
4387 .bind = packet_bind,
4388 .connect = sock_no_connect,
4389 .socketpair = sock_no_socketpair,
4390 .accept = sock_no_accept,
4391 .getname = packet_getname,
4392 .poll = packet_poll,
4393 .ioctl = packet_ioctl,
4394 .listen = sock_no_listen,
4395 .shutdown = sock_no_shutdown,
4396 .setsockopt = packet_setsockopt,
4397 .getsockopt = packet_getsockopt,
4398 #ifdef CONFIG_COMPAT
4399 .compat_setsockopt = compat_packet_setsockopt,
4400 #endif
4401 .sendmsg = packet_sendmsg,
4402 .recvmsg = packet_recvmsg,
4403 .mmap = packet_mmap,
4404 .sendpage = sock_no_sendpage,
4405 };
4406
4407 static const struct net_proto_family packet_family_ops = {
4408 .family = PF_PACKET,
4409 .create = packet_create,
4410 .owner = THIS_MODULE,
4411 };
4412
4413 static struct notifier_block packet_netdev_notifier = {
4414 .notifier_call = packet_notifier,
4415 };
4416
4417 #ifdef CONFIG_PROC_FS
4418
4419 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4420 __acquires(RCU)
4421 {
4422 struct net *net = seq_file_net(seq);
4423
4424 rcu_read_lock();
4425 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4426 }
4427
4428 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4429 {
4430 struct net *net = seq_file_net(seq);
4431 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4432 }
4433
4434 static void packet_seq_stop(struct seq_file *seq, void *v)
4435 __releases(RCU)
4436 {
4437 rcu_read_unlock();
4438 }
4439
4440 static int packet_seq_show(struct seq_file *seq, void *v)
4441 {
4442 if (v == SEQ_START_TOKEN)
4443 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4444 else {
4445 struct sock *s = sk_entry(v);
4446 const struct packet_sock *po = pkt_sk(s);
4447
4448 seq_printf(seq,
4449 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4450 s,
4451 atomic_read(&s->sk_refcnt),
4452 s->sk_type,
4453 ntohs(po->num),
4454 po->ifindex,
4455 po->running,
4456 atomic_read(&s->sk_rmem_alloc),
4457 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4458 sock_i_ino(s));
4459 }
4460
4461 return 0;
4462 }
4463
4464 static const struct seq_operations packet_seq_ops = {
4465 .start = packet_seq_start,
4466 .next = packet_seq_next,
4467 .stop = packet_seq_stop,
4468 .show = packet_seq_show,
4469 };
4470
4471 static int packet_seq_open(struct inode *inode, struct file *file)
4472 {
4473 return seq_open_net(inode, file, &packet_seq_ops,
4474 sizeof(struct seq_net_private));
4475 }
4476
4477 static const struct file_operations packet_seq_fops = {
4478 .owner = THIS_MODULE,
4479 .open = packet_seq_open,
4480 .read = seq_read,
4481 .llseek = seq_lseek,
4482 .release = seq_release_net,
4483 };
4484
4485 #endif
4486
4487 static int __net_init packet_net_init(struct net *net)
4488 {
4489 mutex_init(&net->packet.sklist_lock);
4490 INIT_HLIST_HEAD(&net->packet.sklist);
4491
4492 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4493 return -ENOMEM;
4494
4495 return 0;
4496 }
4497
4498 static void __net_exit packet_net_exit(struct net *net)
4499 {
4500 remove_proc_entry("packet", net->proc_net);
4501 }
4502
4503 static struct pernet_operations packet_net_ops = {
4504 .init = packet_net_init,
4505 .exit = packet_net_exit,
4506 };
4507
4508
4509 static void __exit packet_exit(void)
4510 {
4511 unregister_netdevice_notifier(&packet_netdev_notifier);
4512 unregister_pernet_subsys(&packet_net_ops);
4513 sock_unregister(PF_PACKET);
4514 proto_unregister(&packet_proto);
4515 }
4516
4517 static int __init packet_init(void)
4518 {
4519 int rc = proto_register(&packet_proto, 0);
4520
4521 if (rc != 0)
4522 goto out;
4523
4524 sock_register(&packet_family_ops);
4525 register_pernet_subsys(&packet_net_ops);
4526 register_netdevice_notifier(&packet_netdev_notifier);
4527 out:
4528 return rc;
4529 }
4530
4531 module_init(packet_init);
4532 module_exit(packet_exit);
4533 MODULE_LICENSE("GPL");
4534 MODULE_ALIAS_NETPROTO(PF_PACKET);