]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/packet/af_packet.c
selftests: timers: freq-step: fix compile error
[mirror_ubuntu-artful-kernel.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <linux/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96 #include <net/compat.h>
97
98 #include "internal.h"
99
100 /*
101 Assumptions:
102 - if device has no dev->hard_header routine, it adds and removes ll header
103 inside itself. In this case ll header is invisible outside of device,
104 but higher levels still should reserve dev->hard_header_len.
105 Some devices are enough clever to reallocate skb, when header
106 will not fit to reserved space (tunnel), another ones are silly
107 (PPP).
108 - packet socket receives packets with pulled ll header,
109 so that SOCK_RAW should push it back.
110
111 On receive:
112 -----------
113
114 Incoming, dev->hard_header!=NULL
115 mac_header -> ll header
116 data -> data
117
118 Outgoing, dev->hard_header!=NULL
119 mac_header -> ll header
120 data -> ll header
121
122 Incoming, dev->hard_header==NULL
123 mac_header -> UNKNOWN position. It is very likely, that it points to ll
124 header. PPP makes it, that is wrong, because introduce
125 assymetry between rx and tx paths.
126 data -> data
127
128 Outgoing, dev->hard_header==NULL
129 mac_header -> data. ll header is still not built!
130 data -> data
131
132 Resume
133 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
134
135
136 On transmit:
137 ------------
138
139 dev->hard_header != NULL
140 mac_header -> ll header
141 data -> ll header
142
143 dev->hard_header == NULL (ll header is added by device, we cannot control it)
144 mac_header -> data
145 data -> data
146
147 We should set nh.raw on output to correct posistion,
148 packet classifier depends on it.
149 */
150
151 /* Private packet socket structures. */
152
153 /* identical to struct packet_mreq except it has
154 * a longer address field.
155 */
156 struct packet_mreq_max {
157 int mr_ifindex;
158 unsigned short mr_type;
159 unsigned short mr_alen;
160 unsigned char mr_address[MAX_ADDR_LEN];
161 };
162
163 union tpacket_uhdr {
164 struct tpacket_hdr *h1;
165 struct tpacket2_hdr *h2;
166 struct tpacket3_hdr *h3;
167 void *raw;
168 };
169
170 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
171 int closing, int tx_ring);
172
173 #define V3_ALIGNMENT (8)
174
175 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
176
177 #define BLK_PLUS_PRIV(sz_of_priv) \
178 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
179
180 #define PGV_FROM_VMALLOC 1
181
182 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
183 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
184 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
185 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
186 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
187 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
188 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
189
190 struct packet_sock;
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 struct packet_type *pt, struct net_device *orig_dev);
193
194 static void *packet_previous_frame(struct packet_sock *po,
195 struct packet_ring_buffer *rb,
196 int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_block_desc *);
199 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
200 struct packet_sock *);
201 static void prb_retire_current_block(struct tpacket_kbdq_core *,
202 struct packet_sock *, unsigned int status);
203 static int prb_queue_frozen(struct tpacket_kbdq_core *);
204 static void prb_open_block(struct tpacket_kbdq_core *,
205 struct tpacket_block_desc *);
206 static void prb_retire_rx_blk_timer_expired(unsigned long);
207 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
208 static void prb_init_blk_timer(struct packet_sock *,
209 struct tpacket_kbdq_core *,
210 void (*func) (unsigned long));
211 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
212 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
213 struct tpacket3_hdr *);
214 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
215 struct tpacket3_hdr *);
216 static void packet_flush_mclist(struct sock *sk);
217
218 struct packet_skb_cb {
219 union {
220 struct sockaddr_pkt pkt;
221 union {
222 /* Trick: alias skb original length with
223 * ll.sll_family and ll.protocol in order
224 * to save room.
225 */
226 unsigned int origlen;
227 struct sockaddr_ll ll;
228 };
229 } sa;
230 };
231
232 #define vio_le() virtio_legacy_is_little_endian()
233
234 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
235
236 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
237 #define GET_PBLOCK_DESC(x, bid) \
238 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
239 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
240 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
241 #define GET_NEXT_PRB_BLK_NUM(x) \
242 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
243 ((x)->kactive_blk_num+1) : 0)
244
245 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
246 static void __fanout_link(struct sock *sk, struct packet_sock *po);
247
248 static int packet_direct_xmit(struct sk_buff *skb)
249 {
250 struct net_device *dev = skb->dev;
251 struct sk_buff *orig_skb = skb;
252 struct netdev_queue *txq;
253 int ret = NETDEV_TX_BUSY;
254
255 if (unlikely(!netif_running(dev) ||
256 !netif_carrier_ok(dev)))
257 goto drop;
258
259 skb = validate_xmit_skb_list(skb, dev);
260 if (skb != orig_skb)
261 goto drop;
262
263 txq = skb_get_tx_queue(dev, skb);
264
265 local_bh_disable();
266
267 HARD_TX_LOCK(dev, txq, smp_processor_id());
268 if (!netif_xmit_frozen_or_drv_stopped(txq))
269 ret = netdev_start_xmit(skb, dev, txq, false);
270 HARD_TX_UNLOCK(dev, txq);
271
272 local_bh_enable();
273
274 if (!dev_xmit_complete(ret))
275 kfree_skb(skb);
276
277 return ret;
278 drop:
279 atomic_long_inc(&dev->tx_dropped);
280 kfree_skb_list(skb);
281 return NET_XMIT_DROP;
282 }
283
284 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
285 {
286 struct net_device *dev;
287
288 rcu_read_lock();
289 dev = rcu_dereference(po->cached_dev);
290 if (likely(dev))
291 dev_hold(dev);
292 rcu_read_unlock();
293
294 return dev;
295 }
296
297 static void packet_cached_dev_assign(struct packet_sock *po,
298 struct net_device *dev)
299 {
300 rcu_assign_pointer(po->cached_dev, dev);
301 }
302
303 static void packet_cached_dev_reset(struct packet_sock *po)
304 {
305 RCU_INIT_POINTER(po->cached_dev, NULL);
306 }
307
308 static bool packet_use_direct_xmit(const struct packet_sock *po)
309 {
310 return po->xmit == packet_direct_xmit;
311 }
312
313 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
314 {
315 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
316 }
317
318 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
319 {
320 const struct net_device_ops *ops = dev->netdev_ops;
321 u16 queue_index;
322
323 if (ops->ndo_select_queue) {
324 queue_index = ops->ndo_select_queue(dev, skb, NULL,
325 __packet_pick_tx_queue);
326 queue_index = netdev_cap_txqueue(dev, queue_index);
327 } else {
328 queue_index = __packet_pick_tx_queue(dev, skb);
329 }
330
331 skb_set_queue_mapping(skb, queue_index);
332 }
333
334 /* register_prot_hook must be invoked with the po->bind_lock held,
335 * or from a context in which asynchronous accesses to the packet
336 * socket is not possible (packet_create()).
337 */
338 static void register_prot_hook(struct sock *sk)
339 {
340 struct packet_sock *po = pkt_sk(sk);
341
342 if (!po->running) {
343 if (po->fanout)
344 __fanout_link(sk, po);
345 else
346 dev_add_pack(&po->prot_hook);
347
348 sock_hold(sk);
349 po->running = 1;
350 }
351 }
352
353 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
354 * held. If the sync parameter is true, we will temporarily drop
355 * the po->bind_lock and do a synchronize_net to make sure no
356 * asynchronous packet processing paths still refer to the elements
357 * of po->prot_hook. If the sync parameter is false, it is the
358 * callers responsibility to take care of this.
359 */
360 static void __unregister_prot_hook(struct sock *sk, bool sync)
361 {
362 struct packet_sock *po = pkt_sk(sk);
363
364 po->running = 0;
365
366 if (po->fanout)
367 __fanout_unlink(sk, po);
368 else
369 __dev_remove_pack(&po->prot_hook);
370
371 __sock_put(sk);
372
373 if (sync) {
374 spin_unlock(&po->bind_lock);
375 synchronize_net();
376 spin_lock(&po->bind_lock);
377 }
378 }
379
380 static void unregister_prot_hook(struct sock *sk, bool sync)
381 {
382 struct packet_sock *po = pkt_sk(sk);
383
384 if (po->running)
385 __unregister_prot_hook(sk, sync);
386 }
387
388 static inline struct page * __pure pgv_to_page(void *addr)
389 {
390 if (is_vmalloc_addr(addr))
391 return vmalloc_to_page(addr);
392 return virt_to_page(addr);
393 }
394
395 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
396 {
397 union tpacket_uhdr h;
398
399 h.raw = frame;
400 switch (po->tp_version) {
401 case TPACKET_V1:
402 h.h1->tp_status = status;
403 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
404 break;
405 case TPACKET_V2:
406 h.h2->tp_status = status;
407 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
408 break;
409 case TPACKET_V3:
410 h.h3->tp_status = status;
411 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
412 break;
413 default:
414 WARN(1, "TPACKET version not supported.\n");
415 BUG();
416 }
417
418 smp_wmb();
419 }
420
421 static int __packet_get_status(struct packet_sock *po, void *frame)
422 {
423 union tpacket_uhdr h;
424
425 smp_rmb();
426
427 h.raw = frame;
428 switch (po->tp_version) {
429 case TPACKET_V1:
430 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
431 return h.h1->tp_status;
432 case TPACKET_V2:
433 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
434 return h.h2->tp_status;
435 case TPACKET_V3:
436 flush_dcache_page(pgv_to_page(&h.h3->tp_status));
437 return h.h3->tp_status;
438 default:
439 WARN(1, "TPACKET version not supported.\n");
440 BUG();
441 return 0;
442 }
443 }
444
445 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
446 unsigned int flags)
447 {
448 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
449
450 if (shhwtstamps &&
451 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
452 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
453 return TP_STATUS_TS_RAW_HARDWARE;
454
455 if (ktime_to_timespec_cond(skb->tstamp, ts))
456 return TP_STATUS_TS_SOFTWARE;
457
458 return 0;
459 }
460
461 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
462 struct sk_buff *skb)
463 {
464 union tpacket_uhdr h;
465 struct timespec ts;
466 __u32 ts_status;
467
468 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
469 return 0;
470
471 h.raw = frame;
472 switch (po->tp_version) {
473 case TPACKET_V1:
474 h.h1->tp_sec = ts.tv_sec;
475 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
476 break;
477 case TPACKET_V2:
478 h.h2->tp_sec = ts.tv_sec;
479 h.h2->tp_nsec = ts.tv_nsec;
480 break;
481 case TPACKET_V3:
482 h.h3->tp_sec = ts.tv_sec;
483 h.h3->tp_nsec = ts.tv_nsec;
484 break;
485 default:
486 WARN(1, "TPACKET version not supported.\n");
487 BUG();
488 }
489
490 /* one flush is safe, as both fields always lie on the same cacheline */
491 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
492 smp_wmb();
493
494 return ts_status;
495 }
496
497 static void *packet_lookup_frame(struct packet_sock *po,
498 struct packet_ring_buffer *rb,
499 unsigned int position,
500 int status)
501 {
502 unsigned int pg_vec_pos, frame_offset;
503 union tpacket_uhdr h;
504
505 pg_vec_pos = position / rb->frames_per_block;
506 frame_offset = position % rb->frames_per_block;
507
508 h.raw = rb->pg_vec[pg_vec_pos].buffer +
509 (frame_offset * rb->frame_size);
510
511 if (status != __packet_get_status(po, h.raw))
512 return NULL;
513
514 return h.raw;
515 }
516
517 static void *packet_current_frame(struct packet_sock *po,
518 struct packet_ring_buffer *rb,
519 int status)
520 {
521 return packet_lookup_frame(po, rb, rb->head, status);
522 }
523
524 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
525 {
526 del_timer_sync(&pkc->retire_blk_timer);
527 }
528
529 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
530 struct sk_buff_head *rb_queue)
531 {
532 struct tpacket_kbdq_core *pkc;
533
534 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
535
536 spin_lock_bh(&rb_queue->lock);
537 pkc->delete_blk_timer = 1;
538 spin_unlock_bh(&rb_queue->lock);
539
540 prb_del_retire_blk_timer(pkc);
541 }
542
543 static void prb_init_blk_timer(struct packet_sock *po,
544 struct tpacket_kbdq_core *pkc,
545 void (*func) (unsigned long))
546 {
547 init_timer(&pkc->retire_blk_timer);
548 pkc->retire_blk_timer.data = (long)po;
549 pkc->retire_blk_timer.function = func;
550 pkc->retire_blk_timer.expires = jiffies;
551 }
552
553 static void prb_setup_retire_blk_timer(struct packet_sock *po)
554 {
555 struct tpacket_kbdq_core *pkc;
556
557 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
558 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
559 }
560
561 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
562 int blk_size_in_bytes)
563 {
564 struct net_device *dev;
565 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
566 struct ethtool_link_ksettings ecmd;
567 int err;
568
569 rtnl_lock();
570 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
571 if (unlikely(!dev)) {
572 rtnl_unlock();
573 return DEFAULT_PRB_RETIRE_TOV;
574 }
575 err = __ethtool_get_link_ksettings(dev, &ecmd);
576 rtnl_unlock();
577 if (!err) {
578 /*
579 * If the link speed is so slow you don't really
580 * need to worry about perf anyways
581 */
582 if (ecmd.base.speed < SPEED_1000 ||
583 ecmd.base.speed == SPEED_UNKNOWN) {
584 return DEFAULT_PRB_RETIRE_TOV;
585 } else {
586 msec = 1;
587 div = ecmd.base.speed / 1000;
588 }
589 }
590
591 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
592
593 if (div)
594 mbits /= div;
595
596 tmo = mbits * msec;
597
598 if (div)
599 return tmo+1;
600 return tmo;
601 }
602
603 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
604 union tpacket_req_u *req_u)
605 {
606 p1->feature_req_word = req_u->req3.tp_feature_req_word;
607 }
608
609 static void init_prb_bdqc(struct packet_sock *po,
610 struct packet_ring_buffer *rb,
611 struct pgv *pg_vec,
612 union tpacket_req_u *req_u)
613 {
614 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
615 struct tpacket_block_desc *pbd;
616
617 memset(p1, 0x0, sizeof(*p1));
618
619 p1->knxt_seq_num = 1;
620 p1->pkbdq = pg_vec;
621 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
622 p1->pkblk_start = pg_vec[0].buffer;
623 p1->kblk_size = req_u->req3.tp_block_size;
624 p1->knum_blocks = req_u->req3.tp_block_nr;
625 p1->hdrlen = po->tp_hdrlen;
626 p1->version = po->tp_version;
627 p1->last_kactive_blk_num = 0;
628 po->stats.stats3.tp_freeze_q_cnt = 0;
629 if (req_u->req3.tp_retire_blk_tov)
630 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
631 else
632 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
633 req_u->req3.tp_block_size);
634 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
635 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
636
637 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
638 prb_init_ft_ops(p1, req_u);
639 prb_setup_retire_blk_timer(po);
640 prb_open_block(p1, pbd);
641 }
642
643 /* Do NOT update the last_blk_num first.
644 * Assumes sk_buff_head lock is held.
645 */
646 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
647 {
648 mod_timer(&pkc->retire_blk_timer,
649 jiffies + pkc->tov_in_jiffies);
650 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
651 }
652
653 /*
654 * Timer logic:
655 * 1) We refresh the timer only when we open a block.
656 * By doing this we don't waste cycles refreshing the timer
657 * on packet-by-packet basis.
658 *
659 * With a 1MB block-size, on a 1Gbps line, it will take
660 * i) ~8 ms to fill a block + ii) memcpy etc.
661 * In this cut we are not accounting for the memcpy time.
662 *
663 * So, if the user sets the 'tmo' to 10ms then the timer
664 * will never fire while the block is still getting filled
665 * (which is what we want). However, the user could choose
666 * to close a block early and that's fine.
667 *
668 * But when the timer does fire, we check whether or not to refresh it.
669 * Since the tmo granularity is in msecs, it is not too expensive
670 * to refresh the timer, lets say every '8' msecs.
671 * Either the user can set the 'tmo' or we can derive it based on
672 * a) line-speed and b) block-size.
673 * prb_calc_retire_blk_tmo() calculates the tmo.
674 *
675 */
676 static void prb_retire_rx_blk_timer_expired(unsigned long data)
677 {
678 struct packet_sock *po = (struct packet_sock *)data;
679 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
680 unsigned int frozen;
681 struct tpacket_block_desc *pbd;
682
683 spin_lock(&po->sk.sk_receive_queue.lock);
684
685 frozen = prb_queue_frozen(pkc);
686 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
687
688 if (unlikely(pkc->delete_blk_timer))
689 goto out;
690
691 /* We only need to plug the race when the block is partially filled.
692 * tpacket_rcv:
693 * lock(); increment BLOCK_NUM_PKTS; unlock()
694 * copy_bits() is in progress ...
695 * timer fires on other cpu:
696 * we can't retire the current block because copy_bits
697 * is in progress.
698 *
699 */
700 if (BLOCK_NUM_PKTS(pbd)) {
701 while (atomic_read(&pkc->blk_fill_in_prog)) {
702 /* Waiting for skb_copy_bits to finish... */
703 cpu_relax();
704 }
705 }
706
707 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
708 if (!frozen) {
709 if (!BLOCK_NUM_PKTS(pbd)) {
710 /* An empty block. Just refresh the timer. */
711 goto refresh_timer;
712 }
713 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
714 if (!prb_dispatch_next_block(pkc, po))
715 goto refresh_timer;
716 else
717 goto out;
718 } else {
719 /* Case 1. Queue was frozen because user-space was
720 * lagging behind.
721 */
722 if (prb_curr_blk_in_use(pbd)) {
723 /*
724 * Ok, user-space is still behind.
725 * So just refresh the timer.
726 */
727 goto refresh_timer;
728 } else {
729 /* Case 2. queue was frozen,user-space caught up,
730 * now the link went idle && the timer fired.
731 * We don't have a block to close.So we open this
732 * block and restart the timer.
733 * opening a block thaws the queue,restarts timer
734 * Thawing/timer-refresh is a side effect.
735 */
736 prb_open_block(pkc, pbd);
737 goto out;
738 }
739 }
740 }
741
742 refresh_timer:
743 _prb_refresh_rx_retire_blk_timer(pkc);
744
745 out:
746 spin_unlock(&po->sk.sk_receive_queue.lock);
747 }
748
749 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
750 struct tpacket_block_desc *pbd1, __u32 status)
751 {
752 /* Flush everything minus the block header */
753
754 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
755 u8 *start, *end;
756
757 start = (u8 *)pbd1;
758
759 /* Skip the block header(we know header WILL fit in 4K) */
760 start += PAGE_SIZE;
761
762 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
763 for (; start < end; start += PAGE_SIZE)
764 flush_dcache_page(pgv_to_page(start));
765
766 smp_wmb();
767 #endif
768
769 /* Now update the block status. */
770
771 BLOCK_STATUS(pbd1) = status;
772
773 /* Flush the block header */
774
775 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
776 start = (u8 *)pbd1;
777 flush_dcache_page(pgv_to_page(start));
778
779 smp_wmb();
780 #endif
781 }
782
783 /*
784 * Side effect:
785 *
786 * 1) flush the block
787 * 2) Increment active_blk_num
788 *
789 * Note:We DONT refresh the timer on purpose.
790 * Because almost always the next block will be opened.
791 */
792 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
793 struct tpacket_block_desc *pbd1,
794 struct packet_sock *po, unsigned int stat)
795 {
796 __u32 status = TP_STATUS_USER | stat;
797
798 struct tpacket3_hdr *last_pkt;
799 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
800 struct sock *sk = &po->sk;
801
802 if (po->stats.stats3.tp_drops)
803 status |= TP_STATUS_LOSING;
804
805 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
806 last_pkt->tp_next_offset = 0;
807
808 /* Get the ts of the last pkt */
809 if (BLOCK_NUM_PKTS(pbd1)) {
810 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
811 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
812 } else {
813 /* Ok, we tmo'd - so get the current time.
814 *
815 * It shouldn't really happen as we don't close empty
816 * blocks. See prb_retire_rx_blk_timer_expired().
817 */
818 struct timespec ts;
819 getnstimeofday(&ts);
820 h1->ts_last_pkt.ts_sec = ts.tv_sec;
821 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
822 }
823
824 smp_wmb();
825
826 /* Flush the block */
827 prb_flush_block(pkc1, pbd1, status);
828
829 sk->sk_data_ready(sk);
830
831 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
832 }
833
834 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
835 {
836 pkc->reset_pending_on_curr_blk = 0;
837 }
838
839 /*
840 * Side effect of opening a block:
841 *
842 * 1) prb_queue is thawed.
843 * 2) retire_blk_timer is refreshed.
844 *
845 */
846 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
847 struct tpacket_block_desc *pbd1)
848 {
849 struct timespec ts;
850 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
851
852 smp_rmb();
853
854 /* We could have just memset this but we will lose the
855 * flexibility of making the priv area sticky
856 */
857
858 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
859 BLOCK_NUM_PKTS(pbd1) = 0;
860 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
861
862 getnstimeofday(&ts);
863
864 h1->ts_first_pkt.ts_sec = ts.tv_sec;
865 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
866
867 pkc1->pkblk_start = (char *)pbd1;
868 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
869
870 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
871 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
872
873 pbd1->version = pkc1->version;
874 pkc1->prev = pkc1->nxt_offset;
875 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
876
877 prb_thaw_queue(pkc1);
878 _prb_refresh_rx_retire_blk_timer(pkc1);
879
880 smp_wmb();
881 }
882
883 /*
884 * Queue freeze logic:
885 * 1) Assume tp_block_nr = 8 blocks.
886 * 2) At time 't0', user opens Rx ring.
887 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
888 * 4) user-space is either sleeping or processing block '0'.
889 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
890 * it will close block-7,loop around and try to fill block '0'.
891 * call-flow:
892 * __packet_lookup_frame_in_block
893 * prb_retire_current_block()
894 * prb_dispatch_next_block()
895 * |->(BLOCK_STATUS == USER) evaluates to true
896 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
897 * 6) Now there are two cases:
898 * 6.1) Link goes idle right after the queue is frozen.
899 * But remember, the last open_block() refreshed the timer.
900 * When this timer expires,it will refresh itself so that we can
901 * re-open block-0 in near future.
902 * 6.2) Link is busy and keeps on receiving packets. This is a simple
903 * case and __packet_lookup_frame_in_block will check if block-0
904 * is free and can now be re-used.
905 */
906 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
907 struct packet_sock *po)
908 {
909 pkc->reset_pending_on_curr_blk = 1;
910 po->stats.stats3.tp_freeze_q_cnt++;
911 }
912
913 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
914
915 /*
916 * If the next block is free then we will dispatch it
917 * and return a good offset.
918 * Else, we will freeze the queue.
919 * So, caller must check the return value.
920 */
921 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
922 struct packet_sock *po)
923 {
924 struct tpacket_block_desc *pbd;
925
926 smp_rmb();
927
928 /* 1. Get current block num */
929 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
930
931 /* 2. If this block is currently in_use then freeze the queue */
932 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
933 prb_freeze_queue(pkc, po);
934 return NULL;
935 }
936
937 /*
938 * 3.
939 * open this block and return the offset where the first packet
940 * needs to get stored.
941 */
942 prb_open_block(pkc, pbd);
943 return (void *)pkc->nxt_offset;
944 }
945
946 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
947 struct packet_sock *po, unsigned int status)
948 {
949 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
950
951 /* retire/close the current block */
952 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
953 /*
954 * Plug the case where copy_bits() is in progress on
955 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
956 * have space to copy the pkt in the current block and
957 * called prb_retire_current_block()
958 *
959 * We don't need to worry about the TMO case because
960 * the timer-handler already handled this case.
961 */
962 if (!(status & TP_STATUS_BLK_TMO)) {
963 while (atomic_read(&pkc->blk_fill_in_prog)) {
964 /* Waiting for skb_copy_bits to finish... */
965 cpu_relax();
966 }
967 }
968 prb_close_block(pkc, pbd, po, status);
969 return;
970 }
971 }
972
973 static int prb_curr_blk_in_use(struct tpacket_block_desc *pbd)
974 {
975 return TP_STATUS_USER & BLOCK_STATUS(pbd);
976 }
977
978 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
979 {
980 return pkc->reset_pending_on_curr_blk;
981 }
982
983 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
984 {
985 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
986 atomic_dec(&pkc->blk_fill_in_prog);
987 }
988
989 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
990 struct tpacket3_hdr *ppd)
991 {
992 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
993 }
994
995 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
996 struct tpacket3_hdr *ppd)
997 {
998 ppd->hv1.tp_rxhash = 0;
999 }
1000
1001 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
1002 struct tpacket3_hdr *ppd)
1003 {
1004 if (skb_vlan_tag_present(pkc->skb)) {
1005 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1006 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1007 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1008 } else {
1009 ppd->hv1.tp_vlan_tci = 0;
1010 ppd->hv1.tp_vlan_tpid = 0;
1011 ppd->tp_status = TP_STATUS_AVAILABLE;
1012 }
1013 }
1014
1015 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1016 struct tpacket3_hdr *ppd)
1017 {
1018 ppd->hv1.tp_padding = 0;
1019 prb_fill_vlan_info(pkc, ppd);
1020
1021 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1022 prb_fill_rxhash(pkc, ppd);
1023 else
1024 prb_clear_rxhash(pkc, ppd);
1025 }
1026
1027 static void prb_fill_curr_block(char *curr,
1028 struct tpacket_kbdq_core *pkc,
1029 struct tpacket_block_desc *pbd,
1030 unsigned int len)
1031 {
1032 struct tpacket3_hdr *ppd;
1033
1034 ppd = (struct tpacket3_hdr *)curr;
1035 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1036 pkc->prev = curr;
1037 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1038 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1039 BLOCK_NUM_PKTS(pbd) += 1;
1040 atomic_inc(&pkc->blk_fill_in_prog);
1041 prb_run_all_ft_ops(pkc, ppd);
1042 }
1043
1044 /* Assumes caller has the sk->rx_queue.lock */
1045 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1046 struct sk_buff *skb,
1047 int status,
1048 unsigned int len
1049 )
1050 {
1051 struct tpacket_kbdq_core *pkc;
1052 struct tpacket_block_desc *pbd;
1053 char *curr, *end;
1054
1055 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1056 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1057
1058 /* Queue is frozen when user space is lagging behind */
1059 if (prb_queue_frozen(pkc)) {
1060 /*
1061 * Check if that last block which caused the queue to freeze,
1062 * is still in_use by user-space.
1063 */
1064 if (prb_curr_blk_in_use(pbd)) {
1065 /* Can't record this packet */
1066 return NULL;
1067 } else {
1068 /*
1069 * Ok, the block was released by user-space.
1070 * Now let's open that block.
1071 * opening a block also thaws the queue.
1072 * Thawing is a side effect.
1073 */
1074 prb_open_block(pkc, pbd);
1075 }
1076 }
1077
1078 smp_mb();
1079 curr = pkc->nxt_offset;
1080 pkc->skb = skb;
1081 end = (char *)pbd + pkc->kblk_size;
1082
1083 /* first try the current block */
1084 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1085 prb_fill_curr_block(curr, pkc, pbd, len);
1086 return (void *)curr;
1087 }
1088
1089 /* Ok, close the current block */
1090 prb_retire_current_block(pkc, po, 0);
1091
1092 /* Now, try to dispatch the next block */
1093 curr = (char *)prb_dispatch_next_block(pkc, po);
1094 if (curr) {
1095 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1096 prb_fill_curr_block(curr, pkc, pbd, len);
1097 return (void *)curr;
1098 }
1099
1100 /*
1101 * No free blocks are available.user_space hasn't caught up yet.
1102 * Queue was just frozen and now this packet will get dropped.
1103 */
1104 return NULL;
1105 }
1106
1107 static void *packet_current_rx_frame(struct packet_sock *po,
1108 struct sk_buff *skb,
1109 int status, unsigned int len)
1110 {
1111 char *curr = NULL;
1112 switch (po->tp_version) {
1113 case TPACKET_V1:
1114 case TPACKET_V2:
1115 curr = packet_lookup_frame(po, &po->rx_ring,
1116 po->rx_ring.head, status);
1117 return curr;
1118 case TPACKET_V3:
1119 return __packet_lookup_frame_in_block(po, skb, status, len);
1120 default:
1121 WARN(1, "TPACKET version not supported\n");
1122 BUG();
1123 return NULL;
1124 }
1125 }
1126
1127 static void *prb_lookup_block(struct packet_sock *po,
1128 struct packet_ring_buffer *rb,
1129 unsigned int idx,
1130 int status)
1131 {
1132 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1133 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1134
1135 if (status != BLOCK_STATUS(pbd))
1136 return NULL;
1137 return pbd;
1138 }
1139
1140 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1141 {
1142 unsigned int prev;
1143 if (rb->prb_bdqc.kactive_blk_num)
1144 prev = rb->prb_bdqc.kactive_blk_num-1;
1145 else
1146 prev = rb->prb_bdqc.knum_blocks-1;
1147 return prev;
1148 }
1149
1150 /* Assumes caller has held the rx_queue.lock */
1151 static void *__prb_previous_block(struct packet_sock *po,
1152 struct packet_ring_buffer *rb,
1153 int status)
1154 {
1155 unsigned int previous = prb_previous_blk_num(rb);
1156 return prb_lookup_block(po, rb, previous, status);
1157 }
1158
1159 static void *packet_previous_rx_frame(struct packet_sock *po,
1160 struct packet_ring_buffer *rb,
1161 int status)
1162 {
1163 if (po->tp_version <= TPACKET_V2)
1164 return packet_previous_frame(po, rb, status);
1165
1166 return __prb_previous_block(po, rb, status);
1167 }
1168
1169 static void packet_increment_rx_head(struct packet_sock *po,
1170 struct packet_ring_buffer *rb)
1171 {
1172 switch (po->tp_version) {
1173 case TPACKET_V1:
1174 case TPACKET_V2:
1175 return packet_increment_head(rb);
1176 case TPACKET_V3:
1177 default:
1178 WARN(1, "TPACKET version not supported.\n");
1179 BUG();
1180 return;
1181 }
1182 }
1183
1184 static void *packet_previous_frame(struct packet_sock *po,
1185 struct packet_ring_buffer *rb,
1186 int status)
1187 {
1188 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1189 return packet_lookup_frame(po, rb, previous, status);
1190 }
1191
1192 static void packet_increment_head(struct packet_ring_buffer *buff)
1193 {
1194 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1195 }
1196
1197 static void packet_inc_pending(struct packet_ring_buffer *rb)
1198 {
1199 this_cpu_inc(*rb->pending_refcnt);
1200 }
1201
1202 static void packet_dec_pending(struct packet_ring_buffer *rb)
1203 {
1204 this_cpu_dec(*rb->pending_refcnt);
1205 }
1206
1207 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1208 {
1209 unsigned int refcnt = 0;
1210 int cpu;
1211
1212 /* We don't use pending refcount in rx_ring. */
1213 if (rb->pending_refcnt == NULL)
1214 return 0;
1215
1216 for_each_possible_cpu(cpu)
1217 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1218
1219 return refcnt;
1220 }
1221
1222 static int packet_alloc_pending(struct packet_sock *po)
1223 {
1224 po->rx_ring.pending_refcnt = NULL;
1225
1226 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1227 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1228 return -ENOBUFS;
1229
1230 return 0;
1231 }
1232
1233 static void packet_free_pending(struct packet_sock *po)
1234 {
1235 free_percpu(po->tx_ring.pending_refcnt);
1236 }
1237
1238 #define ROOM_POW_OFF 2
1239 #define ROOM_NONE 0x0
1240 #define ROOM_LOW 0x1
1241 #define ROOM_NORMAL 0x2
1242
1243 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1244 {
1245 int idx, len;
1246
1247 len = po->rx_ring.frame_max + 1;
1248 idx = po->rx_ring.head;
1249 if (pow_off)
1250 idx += len >> pow_off;
1251 if (idx >= len)
1252 idx -= len;
1253 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1254 }
1255
1256 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1257 {
1258 int idx, len;
1259
1260 len = po->rx_ring.prb_bdqc.knum_blocks;
1261 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1262 if (pow_off)
1263 idx += len >> pow_off;
1264 if (idx >= len)
1265 idx -= len;
1266 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1267 }
1268
1269 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1270 {
1271 struct sock *sk = &po->sk;
1272 int ret = ROOM_NONE;
1273
1274 if (po->prot_hook.func != tpacket_rcv) {
1275 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1276 - (skb ? skb->truesize : 0);
1277 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1278 return ROOM_NORMAL;
1279 else if (avail > 0)
1280 return ROOM_LOW;
1281 else
1282 return ROOM_NONE;
1283 }
1284
1285 if (po->tp_version == TPACKET_V3) {
1286 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1287 ret = ROOM_NORMAL;
1288 else if (__tpacket_v3_has_room(po, 0))
1289 ret = ROOM_LOW;
1290 } else {
1291 if (__tpacket_has_room(po, ROOM_POW_OFF))
1292 ret = ROOM_NORMAL;
1293 else if (__tpacket_has_room(po, 0))
1294 ret = ROOM_LOW;
1295 }
1296
1297 return ret;
1298 }
1299
1300 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1301 {
1302 int ret;
1303 bool has_room;
1304
1305 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1306 ret = __packet_rcv_has_room(po, skb);
1307 has_room = ret == ROOM_NORMAL;
1308 if (po->pressure == has_room)
1309 po->pressure = !has_room;
1310 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1311
1312 return ret;
1313 }
1314
1315 static void packet_sock_destruct(struct sock *sk)
1316 {
1317 skb_queue_purge(&sk->sk_error_queue);
1318
1319 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1320 WARN_ON(refcount_read(&sk->sk_wmem_alloc));
1321
1322 if (!sock_flag(sk, SOCK_DEAD)) {
1323 pr_err("Attempt to release alive packet socket: %p\n", sk);
1324 return;
1325 }
1326
1327 sk_refcnt_debug_dec(sk);
1328 }
1329
1330 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1331 {
1332 u32 rxhash;
1333 int i, count = 0;
1334
1335 rxhash = skb_get_hash(skb);
1336 for (i = 0; i < ROLLOVER_HLEN; i++)
1337 if (po->rollover->history[i] == rxhash)
1338 count++;
1339
1340 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1341 return count > (ROLLOVER_HLEN >> 1);
1342 }
1343
1344 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1345 struct sk_buff *skb,
1346 unsigned int num)
1347 {
1348 return reciprocal_scale(__skb_get_hash_symmetric(skb), num);
1349 }
1350
1351 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1352 struct sk_buff *skb,
1353 unsigned int num)
1354 {
1355 unsigned int val = atomic_inc_return(&f->rr_cur);
1356
1357 return val % num;
1358 }
1359
1360 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1361 struct sk_buff *skb,
1362 unsigned int num)
1363 {
1364 return smp_processor_id() % num;
1365 }
1366
1367 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1368 struct sk_buff *skb,
1369 unsigned int num)
1370 {
1371 return prandom_u32_max(num);
1372 }
1373
1374 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1375 struct sk_buff *skb,
1376 unsigned int idx, bool try_self,
1377 unsigned int num)
1378 {
1379 struct packet_sock *po, *po_next, *po_skip = NULL;
1380 unsigned int i, j, room = ROOM_NONE;
1381
1382 po = pkt_sk(f->arr[idx]);
1383
1384 if (try_self) {
1385 room = packet_rcv_has_room(po, skb);
1386 if (room == ROOM_NORMAL ||
1387 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1388 return idx;
1389 po_skip = po;
1390 }
1391
1392 i = j = min_t(int, po->rollover->sock, num - 1);
1393 do {
1394 po_next = pkt_sk(f->arr[i]);
1395 if (po_next != po_skip && !po_next->pressure &&
1396 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1397 if (i != j)
1398 po->rollover->sock = i;
1399 atomic_long_inc(&po->rollover->num);
1400 if (room == ROOM_LOW)
1401 atomic_long_inc(&po->rollover->num_huge);
1402 return i;
1403 }
1404
1405 if (++i == num)
1406 i = 0;
1407 } while (i != j);
1408
1409 atomic_long_inc(&po->rollover->num_failed);
1410 return idx;
1411 }
1412
1413 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1414 struct sk_buff *skb,
1415 unsigned int num)
1416 {
1417 return skb_get_queue_mapping(skb) % num;
1418 }
1419
1420 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1421 struct sk_buff *skb,
1422 unsigned int num)
1423 {
1424 struct bpf_prog *prog;
1425 unsigned int ret = 0;
1426
1427 rcu_read_lock();
1428 prog = rcu_dereference(f->bpf_prog);
1429 if (prog)
1430 ret = bpf_prog_run_clear_cb(prog, skb) % num;
1431 rcu_read_unlock();
1432
1433 return ret;
1434 }
1435
1436 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1437 {
1438 return f->flags & (flag >> 8);
1439 }
1440
1441 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1442 struct packet_type *pt, struct net_device *orig_dev)
1443 {
1444 struct packet_fanout *f = pt->af_packet_priv;
1445 unsigned int num = READ_ONCE(f->num_members);
1446 struct net *net = read_pnet(&f->net);
1447 struct packet_sock *po;
1448 unsigned int idx;
1449
1450 if (!net_eq(dev_net(dev), net) || !num) {
1451 kfree_skb(skb);
1452 return 0;
1453 }
1454
1455 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1456 skb = ip_check_defrag(net, skb, IP_DEFRAG_AF_PACKET);
1457 if (!skb)
1458 return 0;
1459 }
1460 switch (f->type) {
1461 case PACKET_FANOUT_HASH:
1462 default:
1463 idx = fanout_demux_hash(f, skb, num);
1464 break;
1465 case PACKET_FANOUT_LB:
1466 idx = fanout_demux_lb(f, skb, num);
1467 break;
1468 case PACKET_FANOUT_CPU:
1469 idx = fanout_demux_cpu(f, skb, num);
1470 break;
1471 case PACKET_FANOUT_RND:
1472 idx = fanout_demux_rnd(f, skb, num);
1473 break;
1474 case PACKET_FANOUT_QM:
1475 idx = fanout_demux_qm(f, skb, num);
1476 break;
1477 case PACKET_FANOUT_ROLLOVER:
1478 idx = fanout_demux_rollover(f, skb, 0, false, num);
1479 break;
1480 case PACKET_FANOUT_CBPF:
1481 case PACKET_FANOUT_EBPF:
1482 idx = fanout_demux_bpf(f, skb, num);
1483 break;
1484 }
1485
1486 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1487 idx = fanout_demux_rollover(f, skb, idx, true, num);
1488
1489 po = pkt_sk(f->arr[idx]);
1490 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1491 }
1492
1493 DEFINE_MUTEX(fanout_mutex);
1494 EXPORT_SYMBOL_GPL(fanout_mutex);
1495 static LIST_HEAD(fanout_list);
1496 static u16 fanout_next_id;
1497
1498 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1499 {
1500 struct packet_fanout *f = po->fanout;
1501
1502 spin_lock(&f->lock);
1503 f->arr[f->num_members] = sk;
1504 smp_wmb();
1505 f->num_members++;
1506 if (f->num_members == 1)
1507 dev_add_pack(&f->prot_hook);
1508 spin_unlock(&f->lock);
1509 }
1510
1511 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1512 {
1513 struct packet_fanout *f = po->fanout;
1514 int i;
1515
1516 spin_lock(&f->lock);
1517 for (i = 0; i < f->num_members; i++) {
1518 if (f->arr[i] == sk)
1519 break;
1520 }
1521 BUG_ON(i >= f->num_members);
1522 f->arr[i] = f->arr[f->num_members - 1];
1523 f->num_members--;
1524 if (f->num_members == 0)
1525 __dev_remove_pack(&f->prot_hook);
1526 spin_unlock(&f->lock);
1527 }
1528
1529 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1530 {
1531 if (sk->sk_family != PF_PACKET)
1532 return false;
1533
1534 return ptype->af_packet_priv == pkt_sk(sk)->fanout;
1535 }
1536
1537 static void fanout_init_data(struct packet_fanout *f)
1538 {
1539 switch (f->type) {
1540 case PACKET_FANOUT_LB:
1541 atomic_set(&f->rr_cur, 0);
1542 break;
1543 case PACKET_FANOUT_CBPF:
1544 case PACKET_FANOUT_EBPF:
1545 RCU_INIT_POINTER(f->bpf_prog, NULL);
1546 break;
1547 }
1548 }
1549
1550 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1551 {
1552 struct bpf_prog *old;
1553
1554 spin_lock(&f->lock);
1555 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1556 rcu_assign_pointer(f->bpf_prog, new);
1557 spin_unlock(&f->lock);
1558
1559 if (old) {
1560 synchronize_net();
1561 bpf_prog_destroy(old);
1562 }
1563 }
1564
1565 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1566 unsigned int len)
1567 {
1568 struct bpf_prog *new;
1569 struct sock_fprog fprog;
1570 int ret;
1571
1572 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1573 return -EPERM;
1574 if (len != sizeof(fprog))
1575 return -EINVAL;
1576 if (copy_from_user(&fprog, data, len))
1577 return -EFAULT;
1578
1579 ret = bpf_prog_create_from_user(&new, &fprog, NULL, false);
1580 if (ret)
1581 return ret;
1582
1583 __fanout_set_data_bpf(po->fanout, new);
1584 return 0;
1585 }
1586
1587 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1588 unsigned int len)
1589 {
1590 struct bpf_prog *new;
1591 u32 fd;
1592
1593 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1594 return -EPERM;
1595 if (len != sizeof(fd))
1596 return -EINVAL;
1597 if (copy_from_user(&fd, data, len))
1598 return -EFAULT;
1599
1600 new = bpf_prog_get_type(fd, BPF_PROG_TYPE_SOCKET_FILTER);
1601 if (IS_ERR(new))
1602 return PTR_ERR(new);
1603
1604 __fanout_set_data_bpf(po->fanout, new);
1605 return 0;
1606 }
1607
1608 static int fanout_set_data(struct packet_sock *po, char __user *data,
1609 unsigned int len)
1610 {
1611 switch (po->fanout->type) {
1612 case PACKET_FANOUT_CBPF:
1613 return fanout_set_data_cbpf(po, data, len);
1614 case PACKET_FANOUT_EBPF:
1615 return fanout_set_data_ebpf(po, data, len);
1616 default:
1617 return -EINVAL;
1618 };
1619 }
1620
1621 static void fanout_release_data(struct packet_fanout *f)
1622 {
1623 switch (f->type) {
1624 case PACKET_FANOUT_CBPF:
1625 case PACKET_FANOUT_EBPF:
1626 __fanout_set_data_bpf(f, NULL);
1627 };
1628 }
1629
1630 static bool __fanout_id_is_free(struct sock *sk, u16 candidate_id)
1631 {
1632 struct packet_fanout *f;
1633
1634 list_for_each_entry(f, &fanout_list, list) {
1635 if (f->id == candidate_id &&
1636 read_pnet(&f->net) == sock_net(sk)) {
1637 return false;
1638 }
1639 }
1640 return true;
1641 }
1642
1643 static bool fanout_find_new_id(struct sock *sk, u16 *new_id)
1644 {
1645 u16 id = fanout_next_id;
1646
1647 do {
1648 if (__fanout_id_is_free(sk, id)) {
1649 *new_id = id;
1650 fanout_next_id = id + 1;
1651 return true;
1652 }
1653
1654 id++;
1655 } while (id != fanout_next_id);
1656
1657 return false;
1658 }
1659
1660 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1661 {
1662 struct packet_rollover *rollover = NULL;
1663 struct packet_sock *po = pkt_sk(sk);
1664 struct packet_fanout *f, *match;
1665 u8 type = type_flags & 0xff;
1666 u8 flags = type_flags >> 8;
1667 int err;
1668
1669 switch (type) {
1670 case PACKET_FANOUT_ROLLOVER:
1671 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1672 return -EINVAL;
1673 case PACKET_FANOUT_HASH:
1674 case PACKET_FANOUT_LB:
1675 case PACKET_FANOUT_CPU:
1676 case PACKET_FANOUT_RND:
1677 case PACKET_FANOUT_QM:
1678 case PACKET_FANOUT_CBPF:
1679 case PACKET_FANOUT_EBPF:
1680 break;
1681 default:
1682 return -EINVAL;
1683 }
1684
1685 mutex_lock(&fanout_mutex);
1686
1687 err = -EINVAL;
1688 if (!po->running)
1689 goto out;
1690
1691 err = -EALREADY;
1692 if (po->fanout)
1693 goto out;
1694
1695 if (type == PACKET_FANOUT_ROLLOVER ||
1696 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1697 err = -ENOMEM;
1698 rollover = kzalloc(sizeof(*rollover), GFP_KERNEL);
1699 if (!rollover)
1700 goto out;
1701 atomic_long_set(&rollover->num, 0);
1702 atomic_long_set(&rollover->num_huge, 0);
1703 atomic_long_set(&rollover->num_failed, 0);
1704 po->rollover = rollover;
1705 }
1706
1707 if (type_flags & PACKET_FANOUT_FLAG_UNIQUEID) {
1708 if (id != 0) {
1709 err = -EINVAL;
1710 goto out;
1711 }
1712 if (!fanout_find_new_id(sk, &id)) {
1713 err = -ENOMEM;
1714 goto out;
1715 }
1716 /* ephemeral flag for the first socket in the group: drop it */
1717 flags &= ~(PACKET_FANOUT_FLAG_UNIQUEID >> 8);
1718 }
1719
1720 match = NULL;
1721 list_for_each_entry(f, &fanout_list, list) {
1722 if (f->id == id &&
1723 read_pnet(&f->net) == sock_net(sk)) {
1724 match = f;
1725 break;
1726 }
1727 }
1728 err = -EINVAL;
1729 if (match && match->flags != flags)
1730 goto out;
1731 if (!match) {
1732 err = -ENOMEM;
1733 match = kzalloc(sizeof(*match), GFP_KERNEL);
1734 if (!match)
1735 goto out;
1736 write_pnet(&match->net, sock_net(sk));
1737 match->id = id;
1738 match->type = type;
1739 match->flags = flags;
1740 INIT_LIST_HEAD(&match->list);
1741 spin_lock_init(&match->lock);
1742 refcount_set(&match->sk_ref, 0);
1743 fanout_init_data(match);
1744 match->prot_hook.type = po->prot_hook.type;
1745 match->prot_hook.dev = po->prot_hook.dev;
1746 match->prot_hook.func = packet_rcv_fanout;
1747 match->prot_hook.af_packet_priv = match;
1748 match->prot_hook.id_match = match_fanout_group;
1749 list_add(&match->list, &fanout_list);
1750 }
1751 err = -EINVAL;
1752 if (match->type == type &&
1753 match->prot_hook.type == po->prot_hook.type &&
1754 match->prot_hook.dev == po->prot_hook.dev) {
1755 err = -ENOSPC;
1756 if (refcount_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1757 __dev_remove_pack(&po->prot_hook);
1758 po->fanout = match;
1759 refcount_set(&match->sk_ref, refcount_read(&match->sk_ref) + 1);
1760 __fanout_link(sk, po);
1761 err = 0;
1762 }
1763 }
1764 out:
1765 if (err && rollover) {
1766 kfree(rollover);
1767 po->rollover = NULL;
1768 }
1769 mutex_unlock(&fanout_mutex);
1770 return err;
1771 }
1772
1773 /* If pkt_sk(sk)->fanout->sk_ref is zero, this function removes
1774 * pkt_sk(sk)->fanout from fanout_list and returns pkt_sk(sk)->fanout.
1775 * It is the responsibility of the caller to call fanout_release_data() and
1776 * free the returned packet_fanout (after synchronize_net())
1777 */
1778 static struct packet_fanout *fanout_release(struct sock *sk)
1779 {
1780 struct packet_sock *po = pkt_sk(sk);
1781 struct packet_fanout *f;
1782
1783 mutex_lock(&fanout_mutex);
1784 f = po->fanout;
1785 if (f) {
1786 po->fanout = NULL;
1787
1788 if (refcount_dec_and_test(&f->sk_ref))
1789 list_del(&f->list);
1790 else
1791 f = NULL;
1792
1793 if (po->rollover)
1794 kfree_rcu(po->rollover, rcu);
1795 }
1796 mutex_unlock(&fanout_mutex);
1797
1798 return f;
1799 }
1800
1801 static bool packet_extra_vlan_len_allowed(const struct net_device *dev,
1802 struct sk_buff *skb)
1803 {
1804 /* Earlier code assumed this would be a VLAN pkt, double-check
1805 * this now that we have the actual packet in hand. We can only
1806 * do this check on Ethernet devices.
1807 */
1808 if (unlikely(dev->type != ARPHRD_ETHER))
1809 return false;
1810
1811 skb_reset_mac_header(skb);
1812 return likely(eth_hdr(skb)->h_proto == htons(ETH_P_8021Q));
1813 }
1814
1815 static const struct proto_ops packet_ops;
1816
1817 static const struct proto_ops packet_ops_spkt;
1818
1819 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1820 struct packet_type *pt, struct net_device *orig_dev)
1821 {
1822 struct sock *sk;
1823 struct sockaddr_pkt *spkt;
1824
1825 /*
1826 * When we registered the protocol we saved the socket in the data
1827 * field for just this event.
1828 */
1829
1830 sk = pt->af_packet_priv;
1831
1832 /*
1833 * Yank back the headers [hope the device set this
1834 * right or kerboom...]
1835 *
1836 * Incoming packets have ll header pulled,
1837 * push it back.
1838 *
1839 * For outgoing ones skb->data == skb_mac_header(skb)
1840 * so that this procedure is noop.
1841 */
1842
1843 if (skb->pkt_type == PACKET_LOOPBACK)
1844 goto out;
1845
1846 if (!net_eq(dev_net(dev), sock_net(sk)))
1847 goto out;
1848
1849 skb = skb_share_check(skb, GFP_ATOMIC);
1850 if (skb == NULL)
1851 goto oom;
1852
1853 /* drop any routing info */
1854 skb_dst_drop(skb);
1855
1856 /* drop conntrack reference */
1857 nf_reset(skb);
1858
1859 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1860
1861 skb_push(skb, skb->data - skb_mac_header(skb));
1862
1863 /*
1864 * The SOCK_PACKET socket receives _all_ frames.
1865 */
1866
1867 spkt->spkt_family = dev->type;
1868 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1869 spkt->spkt_protocol = skb->protocol;
1870
1871 /*
1872 * Charge the memory to the socket. This is done specifically
1873 * to prevent sockets using all the memory up.
1874 */
1875
1876 if (sock_queue_rcv_skb(sk, skb) == 0)
1877 return 0;
1878
1879 out:
1880 kfree_skb(skb);
1881 oom:
1882 return 0;
1883 }
1884
1885
1886 /*
1887 * Output a raw packet to a device layer. This bypasses all the other
1888 * protocol layers and you must therefore supply it with a complete frame
1889 */
1890
1891 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1892 size_t len)
1893 {
1894 struct sock *sk = sock->sk;
1895 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1896 struct sk_buff *skb = NULL;
1897 struct net_device *dev;
1898 struct sockcm_cookie sockc;
1899 __be16 proto = 0;
1900 int err;
1901 int extra_len = 0;
1902
1903 /*
1904 * Get and verify the address.
1905 */
1906
1907 if (saddr) {
1908 if (msg->msg_namelen < sizeof(struct sockaddr))
1909 return -EINVAL;
1910 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1911 proto = saddr->spkt_protocol;
1912 } else
1913 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1914
1915 /*
1916 * Find the device first to size check it
1917 */
1918
1919 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1920 retry:
1921 rcu_read_lock();
1922 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1923 err = -ENODEV;
1924 if (dev == NULL)
1925 goto out_unlock;
1926
1927 err = -ENETDOWN;
1928 if (!(dev->flags & IFF_UP))
1929 goto out_unlock;
1930
1931 /*
1932 * You may not queue a frame bigger than the mtu. This is the lowest level
1933 * raw protocol and you must do your own fragmentation at this level.
1934 */
1935
1936 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1937 if (!netif_supports_nofcs(dev)) {
1938 err = -EPROTONOSUPPORT;
1939 goto out_unlock;
1940 }
1941 extra_len = 4; /* We're doing our own CRC */
1942 }
1943
1944 err = -EMSGSIZE;
1945 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1946 goto out_unlock;
1947
1948 if (!skb) {
1949 size_t reserved = LL_RESERVED_SPACE(dev);
1950 int tlen = dev->needed_tailroom;
1951 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1952
1953 rcu_read_unlock();
1954 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1955 if (skb == NULL)
1956 return -ENOBUFS;
1957 /* FIXME: Save some space for broken drivers that write a hard
1958 * header at transmission time by themselves. PPP is the notable
1959 * one here. This should really be fixed at the driver level.
1960 */
1961 skb_reserve(skb, reserved);
1962 skb_reset_network_header(skb);
1963
1964 /* Try to align data part correctly */
1965 if (hhlen) {
1966 skb->data -= hhlen;
1967 skb->tail -= hhlen;
1968 if (len < hhlen)
1969 skb_reset_network_header(skb);
1970 }
1971 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1972 if (err)
1973 goto out_free;
1974 goto retry;
1975 }
1976
1977 if (!dev_validate_header(dev, skb->data, len)) {
1978 err = -EINVAL;
1979 goto out_unlock;
1980 }
1981 if (len > (dev->mtu + dev->hard_header_len + extra_len) &&
1982 !packet_extra_vlan_len_allowed(dev, skb)) {
1983 err = -EMSGSIZE;
1984 goto out_unlock;
1985 }
1986
1987 sockc.tsflags = sk->sk_tsflags;
1988 if (msg->msg_controllen) {
1989 err = sock_cmsg_send(sk, msg, &sockc);
1990 if (unlikely(err))
1991 goto out_unlock;
1992 }
1993
1994 skb->protocol = proto;
1995 skb->dev = dev;
1996 skb->priority = sk->sk_priority;
1997 skb->mark = sk->sk_mark;
1998
1999 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2000
2001 if (unlikely(extra_len == 4))
2002 skb->no_fcs = 1;
2003
2004 skb_probe_transport_header(skb, 0);
2005
2006 dev_queue_xmit(skb);
2007 rcu_read_unlock();
2008 return len;
2009
2010 out_unlock:
2011 rcu_read_unlock();
2012 out_free:
2013 kfree_skb(skb);
2014 return err;
2015 }
2016
2017 static unsigned int run_filter(struct sk_buff *skb,
2018 const struct sock *sk,
2019 unsigned int res)
2020 {
2021 struct sk_filter *filter;
2022
2023 rcu_read_lock();
2024 filter = rcu_dereference(sk->sk_filter);
2025 if (filter != NULL)
2026 res = bpf_prog_run_clear_cb(filter->prog, skb);
2027 rcu_read_unlock();
2028
2029 return res;
2030 }
2031
2032 static int packet_rcv_vnet(struct msghdr *msg, const struct sk_buff *skb,
2033 size_t *len)
2034 {
2035 struct virtio_net_hdr vnet_hdr;
2036
2037 if (*len < sizeof(vnet_hdr))
2038 return -EINVAL;
2039 *len -= sizeof(vnet_hdr);
2040
2041 if (virtio_net_hdr_from_skb(skb, &vnet_hdr, vio_le(), true))
2042 return -EINVAL;
2043
2044 return memcpy_to_msg(msg, (void *)&vnet_hdr, sizeof(vnet_hdr));
2045 }
2046
2047 /*
2048 * This function makes lazy skb cloning in hope that most of packets
2049 * are discarded by BPF.
2050 *
2051 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
2052 * and skb->cb are mangled. It works because (and until) packets
2053 * falling here are owned by current CPU. Output packets are cloned
2054 * by dev_queue_xmit_nit(), input packets are processed by net_bh
2055 * sequencially, so that if we return skb to original state on exit,
2056 * we will not harm anyone.
2057 */
2058
2059 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
2060 struct packet_type *pt, struct net_device *orig_dev)
2061 {
2062 struct sock *sk;
2063 struct sockaddr_ll *sll;
2064 struct packet_sock *po;
2065 u8 *skb_head = skb->data;
2066 int skb_len = skb->len;
2067 unsigned int snaplen, res;
2068 bool is_drop_n_account = false;
2069
2070 if (skb->pkt_type == PACKET_LOOPBACK)
2071 goto drop;
2072
2073 sk = pt->af_packet_priv;
2074 po = pkt_sk(sk);
2075
2076 if (!net_eq(dev_net(dev), sock_net(sk)))
2077 goto drop;
2078
2079 skb->dev = dev;
2080
2081 if (dev->header_ops) {
2082 /* The device has an explicit notion of ll header,
2083 * exported to higher levels.
2084 *
2085 * Otherwise, the device hides details of its frame
2086 * structure, so that corresponding packet head is
2087 * never delivered to user.
2088 */
2089 if (sk->sk_type != SOCK_DGRAM)
2090 skb_push(skb, skb->data - skb_mac_header(skb));
2091 else if (skb->pkt_type == PACKET_OUTGOING) {
2092 /* Special case: outgoing packets have ll header at head */
2093 skb_pull(skb, skb_network_offset(skb));
2094 }
2095 }
2096
2097 snaplen = skb->len;
2098
2099 res = run_filter(skb, sk, snaplen);
2100 if (!res)
2101 goto drop_n_restore;
2102 if (snaplen > res)
2103 snaplen = res;
2104
2105 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2106 goto drop_n_acct;
2107
2108 if (skb_shared(skb)) {
2109 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2110 if (nskb == NULL)
2111 goto drop_n_acct;
2112
2113 if (skb_head != skb->data) {
2114 skb->data = skb_head;
2115 skb->len = skb_len;
2116 }
2117 consume_skb(skb);
2118 skb = nskb;
2119 }
2120
2121 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2122
2123 sll = &PACKET_SKB_CB(skb)->sa.ll;
2124 sll->sll_hatype = dev->type;
2125 sll->sll_pkttype = skb->pkt_type;
2126 if (unlikely(po->origdev))
2127 sll->sll_ifindex = orig_dev->ifindex;
2128 else
2129 sll->sll_ifindex = dev->ifindex;
2130
2131 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2132
2133 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2134 * Use their space for storing the original skb length.
2135 */
2136 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2137
2138 if (pskb_trim(skb, snaplen))
2139 goto drop_n_acct;
2140
2141 skb_set_owner_r(skb, sk);
2142 skb->dev = NULL;
2143 skb_dst_drop(skb);
2144
2145 /* drop conntrack reference */
2146 nf_reset(skb);
2147
2148 spin_lock(&sk->sk_receive_queue.lock);
2149 po->stats.stats1.tp_packets++;
2150 sock_skb_set_dropcount(sk, skb);
2151 __skb_queue_tail(&sk->sk_receive_queue, skb);
2152 spin_unlock(&sk->sk_receive_queue.lock);
2153 sk->sk_data_ready(sk);
2154 return 0;
2155
2156 drop_n_acct:
2157 is_drop_n_account = true;
2158 spin_lock(&sk->sk_receive_queue.lock);
2159 po->stats.stats1.tp_drops++;
2160 atomic_inc(&sk->sk_drops);
2161 spin_unlock(&sk->sk_receive_queue.lock);
2162
2163 drop_n_restore:
2164 if (skb_head != skb->data && skb_shared(skb)) {
2165 skb->data = skb_head;
2166 skb->len = skb_len;
2167 }
2168 drop:
2169 if (!is_drop_n_account)
2170 consume_skb(skb);
2171 else
2172 kfree_skb(skb);
2173 return 0;
2174 }
2175
2176 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2177 struct packet_type *pt, struct net_device *orig_dev)
2178 {
2179 struct sock *sk;
2180 struct packet_sock *po;
2181 struct sockaddr_ll *sll;
2182 union tpacket_uhdr h;
2183 u8 *skb_head = skb->data;
2184 int skb_len = skb->len;
2185 unsigned int snaplen, res;
2186 unsigned long status = TP_STATUS_USER;
2187 unsigned short macoff, netoff, hdrlen;
2188 struct sk_buff *copy_skb = NULL;
2189 struct timespec ts;
2190 __u32 ts_status;
2191 bool is_drop_n_account = false;
2192
2193 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2194 * We may add members to them until current aligned size without forcing
2195 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2196 */
2197 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2198 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2199
2200 if (skb->pkt_type == PACKET_LOOPBACK)
2201 goto drop;
2202
2203 sk = pt->af_packet_priv;
2204 po = pkt_sk(sk);
2205
2206 if (!net_eq(dev_net(dev), sock_net(sk)))
2207 goto drop;
2208
2209 if (dev->header_ops) {
2210 if (sk->sk_type != SOCK_DGRAM)
2211 skb_push(skb, skb->data - skb_mac_header(skb));
2212 else if (skb->pkt_type == PACKET_OUTGOING) {
2213 /* Special case: outgoing packets have ll header at head */
2214 skb_pull(skb, skb_network_offset(skb));
2215 }
2216 }
2217
2218 snaplen = skb->len;
2219
2220 res = run_filter(skb, sk, snaplen);
2221 if (!res)
2222 goto drop_n_restore;
2223
2224 if (skb->ip_summed == CHECKSUM_PARTIAL)
2225 status |= TP_STATUS_CSUMNOTREADY;
2226 else if (skb->pkt_type != PACKET_OUTGOING &&
2227 (skb->ip_summed == CHECKSUM_COMPLETE ||
2228 skb_csum_unnecessary(skb)))
2229 status |= TP_STATUS_CSUM_VALID;
2230
2231 if (snaplen > res)
2232 snaplen = res;
2233
2234 if (sk->sk_type == SOCK_DGRAM) {
2235 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2236 po->tp_reserve;
2237 } else {
2238 unsigned int maclen = skb_network_offset(skb);
2239 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2240 (maclen < 16 ? 16 : maclen)) +
2241 po->tp_reserve;
2242 if (po->has_vnet_hdr)
2243 netoff += sizeof(struct virtio_net_hdr);
2244 macoff = netoff - maclen;
2245 }
2246 if (po->tp_version <= TPACKET_V2) {
2247 if (macoff + snaplen > po->rx_ring.frame_size) {
2248 if (po->copy_thresh &&
2249 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2250 if (skb_shared(skb)) {
2251 copy_skb = skb_clone(skb, GFP_ATOMIC);
2252 } else {
2253 copy_skb = skb_get(skb);
2254 skb_head = skb->data;
2255 }
2256 if (copy_skb)
2257 skb_set_owner_r(copy_skb, sk);
2258 }
2259 snaplen = po->rx_ring.frame_size - macoff;
2260 if ((int)snaplen < 0)
2261 snaplen = 0;
2262 }
2263 } else if (unlikely(macoff + snaplen >
2264 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2265 u32 nval;
2266
2267 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2268 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2269 snaplen, nval, macoff);
2270 snaplen = nval;
2271 if (unlikely((int)snaplen < 0)) {
2272 snaplen = 0;
2273 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2274 }
2275 }
2276 spin_lock(&sk->sk_receive_queue.lock);
2277 h.raw = packet_current_rx_frame(po, skb,
2278 TP_STATUS_KERNEL, (macoff+snaplen));
2279 if (!h.raw)
2280 goto drop_n_account;
2281 if (po->tp_version <= TPACKET_V2) {
2282 packet_increment_rx_head(po, &po->rx_ring);
2283 /*
2284 * LOSING will be reported till you read the stats,
2285 * because it's COR - Clear On Read.
2286 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2287 * at packet level.
2288 */
2289 if (po->stats.stats1.tp_drops)
2290 status |= TP_STATUS_LOSING;
2291 }
2292 po->stats.stats1.tp_packets++;
2293 if (copy_skb) {
2294 status |= TP_STATUS_COPY;
2295 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2296 }
2297 spin_unlock(&sk->sk_receive_queue.lock);
2298
2299 if (po->has_vnet_hdr) {
2300 if (virtio_net_hdr_from_skb(skb, h.raw + macoff -
2301 sizeof(struct virtio_net_hdr),
2302 vio_le(), true)) {
2303 spin_lock(&sk->sk_receive_queue.lock);
2304 goto drop_n_account;
2305 }
2306 }
2307
2308 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2309
2310 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2311 getnstimeofday(&ts);
2312
2313 status |= ts_status;
2314
2315 switch (po->tp_version) {
2316 case TPACKET_V1:
2317 h.h1->tp_len = skb->len;
2318 h.h1->tp_snaplen = snaplen;
2319 h.h1->tp_mac = macoff;
2320 h.h1->tp_net = netoff;
2321 h.h1->tp_sec = ts.tv_sec;
2322 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2323 hdrlen = sizeof(*h.h1);
2324 break;
2325 case TPACKET_V2:
2326 h.h2->tp_len = skb->len;
2327 h.h2->tp_snaplen = snaplen;
2328 h.h2->tp_mac = macoff;
2329 h.h2->tp_net = netoff;
2330 h.h2->tp_sec = ts.tv_sec;
2331 h.h2->tp_nsec = ts.tv_nsec;
2332 if (skb_vlan_tag_present(skb)) {
2333 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2334 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2335 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2336 } else {
2337 h.h2->tp_vlan_tci = 0;
2338 h.h2->tp_vlan_tpid = 0;
2339 }
2340 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2341 hdrlen = sizeof(*h.h2);
2342 break;
2343 case TPACKET_V3:
2344 /* tp_nxt_offset,vlan are already populated above.
2345 * So DONT clear those fields here
2346 */
2347 h.h3->tp_status |= status;
2348 h.h3->tp_len = skb->len;
2349 h.h3->tp_snaplen = snaplen;
2350 h.h3->tp_mac = macoff;
2351 h.h3->tp_net = netoff;
2352 h.h3->tp_sec = ts.tv_sec;
2353 h.h3->tp_nsec = ts.tv_nsec;
2354 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2355 hdrlen = sizeof(*h.h3);
2356 break;
2357 default:
2358 BUG();
2359 }
2360
2361 sll = h.raw + TPACKET_ALIGN(hdrlen);
2362 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2363 sll->sll_family = AF_PACKET;
2364 sll->sll_hatype = dev->type;
2365 sll->sll_protocol = skb->protocol;
2366 sll->sll_pkttype = skb->pkt_type;
2367 if (unlikely(po->origdev))
2368 sll->sll_ifindex = orig_dev->ifindex;
2369 else
2370 sll->sll_ifindex = dev->ifindex;
2371
2372 smp_mb();
2373
2374 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2375 if (po->tp_version <= TPACKET_V2) {
2376 u8 *start, *end;
2377
2378 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2379 macoff + snaplen);
2380
2381 for (start = h.raw; start < end; start += PAGE_SIZE)
2382 flush_dcache_page(pgv_to_page(start));
2383 }
2384 smp_wmb();
2385 #endif
2386
2387 if (po->tp_version <= TPACKET_V2) {
2388 __packet_set_status(po, h.raw, status);
2389 sk->sk_data_ready(sk);
2390 } else {
2391 prb_clear_blk_fill_status(&po->rx_ring);
2392 }
2393
2394 drop_n_restore:
2395 if (skb_head != skb->data && skb_shared(skb)) {
2396 skb->data = skb_head;
2397 skb->len = skb_len;
2398 }
2399 drop:
2400 if (!is_drop_n_account)
2401 consume_skb(skb);
2402 else
2403 kfree_skb(skb);
2404 return 0;
2405
2406 drop_n_account:
2407 is_drop_n_account = true;
2408 po->stats.stats1.tp_drops++;
2409 spin_unlock(&sk->sk_receive_queue.lock);
2410
2411 sk->sk_data_ready(sk);
2412 kfree_skb(copy_skb);
2413 goto drop_n_restore;
2414 }
2415
2416 static void tpacket_destruct_skb(struct sk_buff *skb)
2417 {
2418 struct packet_sock *po = pkt_sk(skb->sk);
2419
2420 if (likely(po->tx_ring.pg_vec)) {
2421 void *ph;
2422 __u32 ts;
2423
2424 ph = skb_shinfo(skb)->destructor_arg;
2425 packet_dec_pending(&po->tx_ring);
2426
2427 ts = __packet_set_timestamp(po, ph, skb);
2428 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2429 }
2430
2431 sock_wfree(skb);
2432 }
2433
2434 static void tpacket_set_protocol(const struct net_device *dev,
2435 struct sk_buff *skb)
2436 {
2437 if (dev->type == ARPHRD_ETHER) {
2438 skb_reset_mac_header(skb);
2439 skb->protocol = eth_hdr(skb)->h_proto;
2440 }
2441 }
2442
2443 static int __packet_snd_vnet_parse(struct virtio_net_hdr *vnet_hdr, size_t len)
2444 {
2445 if ((vnet_hdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2446 (__virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2447 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2 >
2448 __virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len)))
2449 vnet_hdr->hdr_len = __cpu_to_virtio16(vio_le(),
2450 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_start) +
2451 __virtio16_to_cpu(vio_le(), vnet_hdr->csum_offset) + 2);
2452
2453 if (__virtio16_to_cpu(vio_le(), vnet_hdr->hdr_len) > len)
2454 return -EINVAL;
2455
2456 return 0;
2457 }
2458
2459 static int packet_snd_vnet_parse(struct msghdr *msg, size_t *len,
2460 struct virtio_net_hdr *vnet_hdr)
2461 {
2462 if (*len < sizeof(*vnet_hdr))
2463 return -EINVAL;
2464 *len -= sizeof(*vnet_hdr);
2465
2466 if (!copy_from_iter_full(vnet_hdr, sizeof(*vnet_hdr), &msg->msg_iter))
2467 return -EFAULT;
2468
2469 return __packet_snd_vnet_parse(vnet_hdr, *len);
2470 }
2471
2472 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2473 void *frame, struct net_device *dev, void *data, int tp_len,
2474 __be16 proto, unsigned char *addr, int hlen, int copylen,
2475 const struct sockcm_cookie *sockc)
2476 {
2477 union tpacket_uhdr ph;
2478 int to_write, offset, len, nr_frags, len_max;
2479 struct socket *sock = po->sk.sk_socket;
2480 struct page *page;
2481 int err;
2482
2483 ph.raw = frame;
2484
2485 skb->protocol = proto;
2486 skb->dev = dev;
2487 skb->priority = po->sk.sk_priority;
2488 skb->mark = po->sk.sk_mark;
2489 sock_tx_timestamp(&po->sk, sockc->tsflags, &skb_shinfo(skb)->tx_flags);
2490 skb_shinfo(skb)->destructor_arg = ph.raw;
2491
2492 skb_reserve(skb, hlen);
2493 skb_reset_network_header(skb);
2494
2495 to_write = tp_len;
2496
2497 if (sock->type == SOCK_DGRAM) {
2498 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2499 NULL, tp_len);
2500 if (unlikely(err < 0))
2501 return -EINVAL;
2502 } else if (copylen) {
2503 int hdrlen = min_t(int, copylen, tp_len);
2504
2505 skb_push(skb, dev->hard_header_len);
2506 skb_put(skb, copylen - dev->hard_header_len);
2507 err = skb_store_bits(skb, 0, data, hdrlen);
2508 if (unlikely(err))
2509 return err;
2510 if (!dev_validate_header(dev, skb->data, hdrlen))
2511 return -EINVAL;
2512 if (!skb->protocol)
2513 tpacket_set_protocol(dev, skb);
2514
2515 data += hdrlen;
2516 to_write -= hdrlen;
2517 }
2518
2519 offset = offset_in_page(data);
2520 len_max = PAGE_SIZE - offset;
2521 len = ((to_write > len_max) ? len_max : to_write);
2522
2523 skb->data_len = to_write;
2524 skb->len += to_write;
2525 skb->truesize += to_write;
2526 refcount_add(to_write, &po->sk.sk_wmem_alloc);
2527
2528 while (likely(to_write)) {
2529 nr_frags = skb_shinfo(skb)->nr_frags;
2530
2531 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2532 pr_err("Packet exceed the number of skb frags(%lu)\n",
2533 MAX_SKB_FRAGS);
2534 return -EFAULT;
2535 }
2536
2537 page = pgv_to_page(data);
2538 data += len;
2539 flush_dcache_page(page);
2540 get_page(page);
2541 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2542 to_write -= len;
2543 offset = 0;
2544 len_max = PAGE_SIZE;
2545 len = ((to_write > len_max) ? len_max : to_write);
2546 }
2547
2548 skb_probe_transport_header(skb, 0);
2549
2550 return tp_len;
2551 }
2552
2553 static int tpacket_parse_header(struct packet_sock *po, void *frame,
2554 int size_max, void **data)
2555 {
2556 union tpacket_uhdr ph;
2557 int tp_len, off;
2558
2559 ph.raw = frame;
2560
2561 switch (po->tp_version) {
2562 case TPACKET_V3:
2563 if (ph.h3->tp_next_offset != 0) {
2564 pr_warn_once("variable sized slot not supported");
2565 return -EINVAL;
2566 }
2567 tp_len = ph.h3->tp_len;
2568 break;
2569 case TPACKET_V2:
2570 tp_len = ph.h2->tp_len;
2571 break;
2572 default:
2573 tp_len = ph.h1->tp_len;
2574 break;
2575 }
2576 if (unlikely(tp_len > size_max)) {
2577 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2578 return -EMSGSIZE;
2579 }
2580
2581 if (unlikely(po->tp_tx_has_off)) {
2582 int off_min, off_max;
2583
2584 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2585 off_max = po->tx_ring.frame_size - tp_len;
2586 if (po->sk.sk_type == SOCK_DGRAM) {
2587 switch (po->tp_version) {
2588 case TPACKET_V3:
2589 off = ph.h3->tp_net;
2590 break;
2591 case TPACKET_V2:
2592 off = ph.h2->tp_net;
2593 break;
2594 default:
2595 off = ph.h1->tp_net;
2596 break;
2597 }
2598 } else {
2599 switch (po->tp_version) {
2600 case TPACKET_V3:
2601 off = ph.h3->tp_mac;
2602 break;
2603 case TPACKET_V2:
2604 off = ph.h2->tp_mac;
2605 break;
2606 default:
2607 off = ph.h1->tp_mac;
2608 break;
2609 }
2610 }
2611 if (unlikely((off < off_min) || (off_max < off)))
2612 return -EINVAL;
2613 } else {
2614 off = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2615 }
2616
2617 *data = frame + off;
2618 return tp_len;
2619 }
2620
2621 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2622 {
2623 struct sk_buff *skb;
2624 struct net_device *dev;
2625 struct virtio_net_hdr *vnet_hdr = NULL;
2626 struct sockcm_cookie sockc;
2627 __be16 proto;
2628 int err, reserve = 0;
2629 void *ph;
2630 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2631 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2632 int tp_len, size_max;
2633 unsigned char *addr;
2634 void *data;
2635 int len_sum = 0;
2636 int status = TP_STATUS_AVAILABLE;
2637 int hlen, tlen, copylen = 0;
2638
2639 mutex_lock(&po->pg_vec_lock);
2640
2641 if (likely(saddr == NULL)) {
2642 dev = packet_cached_dev_get(po);
2643 proto = po->num;
2644 addr = NULL;
2645 } else {
2646 err = -EINVAL;
2647 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2648 goto out;
2649 if (msg->msg_namelen < (saddr->sll_halen
2650 + offsetof(struct sockaddr_ll,
2651 sll_addr)))
2652 goto out;
2653 proto = saddr->sll_protocol;
2654 addr = saddr->sll_addr;
2655 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2656 }
2657
2658 err = -ENXIO;
2659 if (unlikely(dev == NULL))
2660 goto out;
2661 err = -ENETDOWN;
2662 if (unlikely(!(dev->flags & IFF_UP)))
2663 goto out_put;
2664
2665 sockc.tsflags = po->sk.sk_tsflags;
2666 if (msg->msg_controllen) {
2667 err = sock_cmsg_send(&po->sk, msg, &sockc);
2668 if (unlikely(err))
2669 goto out_put;
2670 }
2671
2672 if (po->sk.sk_socket->type == SOCK_RAW)
2673 reserve = dev->hard_header_len;
2674 size_max = po->tx_ring.frame_size
2675 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2676
2677 if ((size_max > dev->mtu + reserve + VLAN_HLEN) && !po->has_vnet_hdr)
2678 size_max = dev->mtu + reserve + VLAN_HLEN;
2679
2680 do {
2681 ph = packet_current_frame(po, &po->tx_ring,
2682 TP_STATUS_SEND_REQUEST);
2683 if (unlikely(ph == NULL)) {
2684 if (need_wait && need_resched())
2685 schedule();
2686 continue;
2687 }
2688
2689 skb = NULL;
2690 tp_len = tpacket_parse_header(po, ph, size_max, &data);
2691 if (tp_len < 0)
2692 goto tpacket_error;
2693
2694 status = TP_STATUS_SEND_REQUEST;
2695 hlen = LL_RESERVED_SPACE(dev);
2696 tlen = dev->needed_tailroom;
2697 if (po->has_vnet_hdr) {
2698 vnet_hdr = data;
2699 data += sizeof(*vnet_hdr);
2700 tp_len -= sizeof(*vnet_hdr);
2701 if (tp_len < 0 ||
2702 __packet_snd_vnet_parse(vnet_hdr, tp_len)) {
2703 tp_len = -EINVAL;
2704 goto tpacket_error;
2705 }
2706 copylen = __virtio16_to_cpu(vio_le(),
2707 vnet_hdr->hdr_len);
2708 }
2709 copylen = max_t(int, copylen, dev->hard_header_len);
2710 skb = sock_alloc_send_skb(&po->sk,
2711 hlen + tlen + sizeof(struct sockaddr_ll) +
2712 (copylen - dev->hard_header_len),
2713 !need_wait, &err);
2714
2715 if (unlikely(skb == NULL)) {
2716 /* we assume the socket was initially writeable ... */
2717 if (likely(len_sum > 0))
2718 err = len_sum;
2719 goto out_status;
2720 }
2721 tp_len = tpacket_fill_skb(po, skb, ph, dev, data, tp_len, proto,
2722 addr, hlen, copylen, &sockc);
2723 if (likely(tp_len >= 0) &&
2724 tp_len > dev->mtu + reserve &&
2725 !po->has_vnet_hdr &&
2726 !packet_extra_vlan_len_allowed(dev, skb))
2727 tp_len = -EMSGSIZE;
2728
2729 if (unlikely(tp_len < 0)) {
2730 tpacket_error:
2731 if (po->tp_loss) {
2732 __packet_set_status(po, ph,
2733 TP_STATUS_AVAILABLE);
2734 packet_increment_head(&po->tx_ring);
2735 kfree_skb(skb);
2736 continue;
2737 } else {
2738 status = TP_STATUS_WRONG_FORMAT;
2739 err = tp_len;
2740 goto out_status;
2741 }
2742 }
2743
2744 if (po->has_vnet_hdr && virtio_net_hdr_to_skb(skb, vnet_hdr,
2745 vio_le())) {
2746 tp_len = -EINVAL;
2747 goto tpacket_error;
2748 }
2749
2750 packet_pick_tx_queue(dev, skb);
2751
2752 skb->destructor = tpacket_destruct_skb;
2753 __packet_set_status(po, ph, TP_STATUS_SENDING);
2754 packet_inc_pending(&po->tx_ring);
2755
2756 status = TP_STATUS_SEND_REQUEST;
2757 err = po->xmit(skb);
2758 if (unlikely(err > 0)) {
2759 err = net_xmit_errno(err);
2760 if (err && __packet_get_status(po, ph) ==
2761 TP_STATUS_AVAILABLE) {
2762 /* skb was destructed already */
2763 skb = NULL;
2764 goto out_status;
2765 }
2766 /*
2767 * skb was dropped but not destructed yet;
2768 * let's treat it like congestion or err < 0
2769 */
2770 err = 0;
2771 }
2772 packet_increment_head(&po->tx_ring);
2773 len_sum += tp_len;
2774 } while (likely((ph != NULL) ||
2775 /* Note: packet_read_pending() might be slow if we have
2776 * to call it as it's per_cpu variable, but in fast-path
2777 * we already short-circuit the loop with the first
2778 * condition, and luckily don't have to go that path
2779 * anyway.
2780 */
2781 (need_wait && packet_read_pending(&po->tx_ring))));
2782
2783 err = len_sum;
2784 goto out_put;
2785
2786 out_status:
2787 __packet_set_status(po, ph, status);
2788 kfree_skb(skb);
2789 out_put:
2790 dev_put(dev);
2791 out:
2792 mutex_unlock(&po->pg_vec_lock);
2793 return err;
2794 }
2795
2796 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2797 size_t reserve, size_t len,
2798 size_t linear, int noblock,
2799 int *err)
2800 {
2801 struct sk_buff *skb;
2802
2803 /* Under a page? Don't bother with paged skb. */
2804 if (prepad + len < PAGE_SIZE || !linear)
2805 linear = len;
2806
2807 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2808 err, 0);
2809 if (!skb)
2810 return NULL;
2811
2812 skb_reserve(skb, reserve);
2813 skb_put(skb, linear);
2814 skb->data_len = len - linear;
2815 skb->len += len - linear;
2816
2817 return skb;
2818 }
2819
2820 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2821 {
2822 struct sock *sk = sock->sk;
2823 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2824 struct sk_buff *skb;
2825 struct net_device *dev;
2826 __be16 proto;
2827 unsigned char *addr;
2828 int err, reserve = 0;
2829 struct sockcm_cookie sockc;
2830 struct virtio_net_hdr vnet_hdr = { 0 };
2831 int offset = 0;
2832 struct packet_sock *po = pkt_sk(sk);
2833 int hlen, tlen, linear;
2834 int extra_len = 0;
2835
2836 /*
2837 * Get and verify the address.
2838 */
2839
2840 if (likely(saddr == NULL)) {
2841 dev = packet_cached_dev_get(po);
2842 proto = po->num;
2843 addr = NULL;
2844 } else {
2845 err = -EINVAL;
2846 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2847 goto out;
2848 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2849 goto out;
2850 proto = saddr->sll_protocol;
2851 addr = saddr->sll_addr;
2852 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2853 }
2854
2855 err = -ENXIO;
2856 if (unlikely(dev == NULL))
2857 goto out_unlock;
2858 err = -ENETDOWN;
2859 if (unlikely(!(dev->flags & IFF_UP)))
2860 goto out_unlock;
2861
2862 sockc.tsflags = sk->sk_tsflags;
2863 sockc.mark = sk->sk_mark;
2864 if (msg->msg_controllen) {
2865 err = sock_cmsg_send(sk, msg, &sockc);
2866 if (unlikely(err))
2867 goto out_unlock;
2868 }
2869
2870 if (sock->type == SOCK_RAW)
2871 reserve = dev->hard_header_len;
2872 if (po->has_vnet_hdr) {
2873 err = packet_snd_vnet_parse(msg, &len, &vnet_hdr);
2874 if (err)
2875 goto out_unlock;
2876 }
2877
2878 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2879 if (!netif_supports_nofcs(dev)) {
2880 err = -EPROTONOSUPPORT;
2881 goto out_unlock;
2882 }
2883 extra_len = 4; /* We're doing our own CRC */
2884 }
2885
2886 err = -EMSGSIZE;
2887 if (!vnet_hdr.gso_type &&
2888 (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2889 goto out_unlock;
2890
2891 err = -ENOBUFS;
2892 hlen = LL_RESERVED_SPACE(dev);
2893 tlen = dev->needed_tailroom;
2894 linear = __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len);
2895 linear = max(linear, min_t(int, len, dev->hard_header_len));
2896 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len, linear,
2897 msg->msg_flags & MSG_DONTWAIT, &err);
2898 if (skb == NULL)
2899 goto out_unlock;
2900
2901 skb_set_network_header(skb, reserve);
2902
2903 err = -EINVAL;
2904 if (sock->type == SOCK_DGRAM) {
2905 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2906 if (unlikely(offset < 0))
2907 goto out_free;
2908 }
2909
2910 /* Returns -EFAULT on error */
2911 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2912 if (err)
2913 goto out_free;
2914
2915 if (sock->type == SOCK_RAW &&
2916 !dev_validate_header(dev, skb->data, len)) {
2917 err = -EINVAL;
2918 goto out_free;
2919 }
2920
2921 sock_tx_timestamp(sk, sockc.tsflags, &skb_shinfo(skb)->tx_flags);
2922
2923 if (!vnet_hdr.gso_type && (len > dev->mtu + reserve + extra_len) &&
2924 !packet_extra_vlan_len_allowed(dev, skb)) {
2925 err = -EMSGSIZE;
2926 goto out_free;
2927 }
2928
2929 skb->protocol = proto;
2930 skb->dev = dev;
2931 skb->priority = sk->sk_priority;
2932 skb->mark = sockc.mark;
2933
2934 packet_pick_tx_queue(dev, skb);
2935
2936 if (po->has_vnet_hdr) {
2937 err = virtio_net_hdr_to_skb(skb, &vnet_hdr, vio_le());
2938 if (err)
2939 goto out_free;
2940 len += sizeof(vnet_hdr);
2941 }
2942
2943 skb_probe_transport_header(skb, reserve);
2944
2945 if (unlikely(extra_len == 4))
2946 skb->no_fcs = 1;
2947
2948 err = po->xmit(skb);
2949 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2950 goto out_unlock;
2951
2952 dev_put(dev);
2953
2954 return len;
2955
2956 out_free:
2957 kfree_skb(skb);
2958 out_unlock:
2959 if (dev)
2960 dev_put(dev);
2961 out:
2962 return err;
2963 }
2964
2965 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2966 {
2967 struct sock *sk = sock->sk;
2968 struct packet_sock *po = pkt_sk(sk);
2969
2970 if (po->tx_ring.pg_vec)
2971 return tpacket_snd(po, msg);
2972 else
2973 return packet_snd(sock, msg, len);
2974 }
2975
2976 /*
2977 * Close a PACKET socket. This is fairly simple. We immediately go
2978 * to 'closed' state and remove our protocol entry in the device list.
2979 */
2980
2981 static int packet_release(struct socket *sock)
2982 {
2983 struct sock *sk = sock->sk;
2984 struct packet_sock *po;
2985 struct packet_fanout *f;
2986 struct net *net;
2987 union tpacket_req_u req_u;
2988
2989 if (!sk)
2990 return 0;
2991
2992 net = sock_net(sk);
2993 po = pkt_sk(sk);
2994
2995 mutex_lock(&net->packet.sklist_lock);
2996 sk_del_node_init_rcu(sk);
2997 mutex_unlock(&net->packet.sklist_lock);
2998
2999 preempt_disable();
3000 sock_prot_inuse_add(net, sk->sk_prot, -1);
3001 preempt_enable();
3002
3003 spin_lock(&po->bind_lock);
3004 unregister_prot_hook(sk, false);
3005 packet_cached_dev_reset(po);
3006
3007 if (po->prot_hook.dev) {
3008 dev_put(po->prot_hook.dev);
3009 po->prot_hook.dev = NULL;
3010 }
3011 spin_unlock(&po->bind_lock);
3012
3013 packet_flush_mclist(sk);
3014
3015 if (po->rx_ring.pg_vec) {
3016 memset(&req_u, 0, sizeof(req_u));
3017 packet_set_ring(sk, &req_u, 1, 0);
3018 }
3019
3020 if (po->tx_ring.pg_vec) {
3021 memset(&req_u, 0, sizeof(req_u));
3022 packet_set_ring(sk, &req_u, 1, 1);
3023 }
3024
3025 f = fanout_release(sk);
3026
3027 synchronize_net();
3028
3029 if (f) {
3030 fanout_release_data(f);
3031 kfree(f);
3032 }
3033 /*
3034 * Now the socket is dead. No more input will appear.
3035 */
3036 sock_orphan(sk);
3037 sock->sk = NULL;
3038
3039 /* Purge queues */
3040
3041 skb_queue_purge(&sk->sk_receive_queue);
3042 packet_free_pending(po);
3043 sk_refcnt_debug_release(sk);
3044
3045 sock_put(sk);
3046 return 0;
3047 }
3048
3049 /*
3050 * Attach a packet hook.
3051 */
3052
3053 static int packet_do_bind(struct sock *sk, const char *name, int ifindex,
3054 __be16 proto)
3055 {
3056 struct packet_sock *po = pkt_sk(sk);
3057 struct net_device *dev_curr;
3058 __be16 proto_curr;
3059 bool need_rehook;
3060 struct net_device *dev = NULL;
3061 int ret = 0;
3062 bool unlisted = false;
3063
3064 if (po->fanout)
3065 return -EINVAL;
3066
3067 lock_sock(sk);
3068 spin_lock(&po->bind_lock);
3069 rcu_read_lock();
3070
3071 if (name) {
3072 dev = dev_get_by_name_rcu(sock_net(sk), name);
3073 if (!dev) {
3074 ret = -ENODEV;
3075 goto out_unlock;
3076 }
3077 } else if (ifindex) {
3078 dev = dev_get_by_index_rcu(sock_net(sk), ifindex);
3079 if (!dev) {
3080 ret = -ENODEV;
3081 goto out_unlock;
3082 }
3083 }
3084
3085 if (dev)
3086 dev_hold(dev);
3087
3088 proto_curr = po->prot_hook.type;
3089 dev_curr = po->prot_hook.dev;
3090
3091 need_rehook = proto_curr != proto || dev_curr != dev;
3092
3093 if (need_rehook) {
3094 if (po->running) {
3095 rcu_read_unlock();
3096 __unregister_prot_hook(sk, true);
3097 rcu_read_lock();
3098 dev_curr = po->prot_hook.dev;
3099 if (dev)
3100 unlisted = !dev_get_by_index_rcu(sock_net(sk),
3101 dev->ifindex);
3102 }
3103
3104 po->num = proto;
3105 po->prot_hook.type = proto;
3106
3107 if (unlikely(unlisted)) {
3108 dev_put(dev);
3109 po->prot_hook.dev = NULL;
3110 po->ifindex = -1;
3111 packet_cached_dev_reset(po);
3112 } else {
3113 po->prot_hook.dev = dev;
3114 po->ifindex = dev ? dev->ifindex : 0;
3115 packet_cached_dev_assign(po, dev);
3116 }
3117 }
3118 if (dev_curr)
3119 dev_put(dev_curr);
3120
3121 if (proto == 0 || !need_rehook)
3122 goto out_unlock;
3123
3124 if (!unlisted && (!dev || (dev->flags & IFF_UP))) {
3125 register_prot_hook(sk);
3126 } else {
3127 sk->sk_err = ENETDOWN;
3128 if (!sock_flag(sk, SOCK_DEAD))
3129 sk->sk_error_report(sk);
3130 }
3131
3132 out_unlock:
3133 rcu_read_unlock();
3134 spin_unlock(&po->bind_lock);
3135 release_sock(sk);
3136 return ret;
3137 }
3138
3139 /*
3140 * Bind a packet socket to a device
3141 */
3142
3143 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
3144 int addr_len)
3145 {
3146 struct sock *sk = sock->sk;
3147 char name[sizeof(uaddr->sa_data) + 1];
3148
3149 /*
3150 * Check legality
3151 */
3152
3153 if (addr_len != sizeof(struct sockaddr))
3154 return -EINVAL;
3155 /* uaddr->sa_data comes from the userspace, it's not guaranteed to be
3156 * zero-terminated.
3157 */
3158 memcpy(name, uaddr->sa_data, sizeof(uaddr->sa_data));
3159 name[sizeof(uaddr->sa_data)] = 0;
3160
3161 return packet_do_bind(sk, name, 0, pkt_sk(sk)->num);
3162 }
3163
3164 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
3165 {
3166 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
3167 struct sock *sk = sock->sk;
3168
3169 /*
3170 * Check legality
3171 */
3172
3173 if (addr_len < sizeof(struct sockaddr_ll))
3174 return -EINVAL;
3175 if (sll->sll_family != AF_PACKET)
3176 return -EINVAL;
3177
3178 return packet_do_bind(sk, NULL, sll->sll_ifindex,
3179 sll->sll_protocol ? : pkt_sk(sk)->num);
3180 }
3181
3182 static struct proto packet_proto = {
3183 .name = "PACKET",
3184 .owner = THIS_MODULE,
3185 .obj_size = sizeof(struct packet_sock),
3186 };
3187
3188 /*
3189 * Create a packet of type SOCK_PACKET.
3190 */
3191
3192 static int packet_create(struct net *net, struct socket *sock, int protocol,
3193 int kern)
3194 {
3195 struct sock *sk;
3196 struct packet_sock *po;
3197 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3198 int err;
3199
3200 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3201 return -EPERM;
3202 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3203 sock->type != SOCK_PACKET)
3204 return -ESOCKTNOSUPPORT;
3205
3206 sock->state = SS_UNCONNECTED;
3207
3208 err = -ENOBUFS;
3209 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3210 if (sk == NULL)
3211 goto out;
3212
3213 sock->ops = &packet_ops;
3214 if (sock->type == SOCK_PACKET)
3215 sock->ops = &packet_ops_spkt;
3216
3217 sock_init_data(sock, sk);
3218
3219 po = pkt_sk(sk);
3220 sk->sk_family = PF_PACKET;
3221 po->num = proto;
3222 po->xmit = dev_queue_xmit;
3223
3224 err = packet_alloc_pending(po);
3225 if (err)
3226 goto out2;
3227
3228 packet_cached_dev_reset(po);
3229
3230 sk->sk_destruct = packet_sock_destruct;
3231 sk_refcnt_debug_inc(sk);
3232
3233 /*
3234 * Attach a protocol block
3235 */
3236
3237 spin_lock_init(&po->bind_lock);
3238 mutex_init(&po->pg_vec_lock);
3239 po->rollover = NULL;
3240 po->prot_hook.func = packet_rcv;
3241
3242 if (sock->type == SOCK_PACKET)
3243 po->prot_hook.func = packet_rcv_spkt;
3244
3245 po->prot_hook.af_packet_priv = sk;
3246
3247 if (proto) {
3248 po->prot_hook.type = proto;
3249 register_prot_hook(sk);
3250 }
3251
3252 mutex_lock(&net->packet.sklist_lock);
3253 sk_add_node_rcu(sk, &net->packet.sklist);
3254 mutex_unlock(&net->packet.sklist_lock);
3255
3256 preempt_disable();
3257 sock_prot_inuse_add(net, &packet_proto, 1);
3258 preempt_enable();
3259
3260 return 0;
3261 out2:
3262 sk_free(sk);
3263 out:
3264 return err;
3265 }
3266
3267 /*
3268 * Pull a packet from our receive queue and hand it to the user.
3269 * If necessary we block.
3270 */
3271
3272 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3273 int flags)
3274 {
3275 struct sock *sk = sock->sk;
3276 struct sk_buff *skb;
3277 int copied, err;
3278 int vnet_hdr_len = 0;
3279 unsigned int origlen = 0;
3280
3281 err = -EINVAL;
3282 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3283 goto out;
3284
3285 #if 0
3286 /* What error should we return now? EUNATTACH? */
3287 if (pkt_sk(sk)->ifindex < 0)
3288 return -ENODEV;
3289 #endif
3290
3291 if (flags & MSG_ERRQUEUE) {
3292 err = sock_recv_errqueue(sk, msg, len,
3293 SOL_PACKET, PACKET_TX_TIMESTAMP);
3294 goto out;
3295 }
3296
3297 /*
3298 * Call the generic datagram receiver. This handles all sorts
3299 * of horrible races and re-entrancy so we can forget about it
3300 * in the protocol layers.
3301 *
3302 * Now it will return ENETDOWN, if device have just gone down,
3303 * but then it will block.
3304 */
3305
3306 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3307
3308 /*
3309 * An error occurred so return it. Because skb_recv_datagram()
3310 * handles the blocking we don't see and worry about blocking
3311 * retries.
3312 */
3313
3314 if (skb == NULL)
3315 goto out;
3316
3317 if (pkt_sk(sk)->pressure)
3318 packet_rcv_has_room(pkt_sk(sk), NULL);
3319
3320 if (pkt_sk(sk)->has_vnet_hdr) {
3321 err = packet_rcv_vnet(msg, skb, &len);
3322 if (err)
3323 goto out_free;
3324 vnet_hdr_len = sizeof(struct virtio_net_hdr);
3325 }
3326
3327 /* You lose any data beyond the buffer you gave. If it worries
3328 * a user program they can ask the device for its MTU
3329 * anyway.
3330 */
3331 copied = skb->len;
3332 if (copied > len) {
3333 copied = len;
3334 msg->msg_flags |= MSG_TRUNC;
3335 }
3336
3337 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3338 if (err)
3339 goto out_free;
3340
3341 if (sock->type != SOCK_PACKET) {
3342 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3343
3344 /* Original length was stored in sockaddr_ll fields */
3345 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3346 sll->sll_family = AF_PACKET;
3347 sll->sll_protocol = skb->protocol;
3348 }
3349
3350 sock_recv_ts_and_drops(msg, sk, skb);
3351
3352 if (msg->msg_name) {
3353 /* If the address length field is there to be filled
3354 * in, we fill it in now.
3355 */
3356 if (sock->type == SOCK_PACKET) {
3357 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3358 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3359 } else {
3360 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3361
3362 msg->msg_namelen = sll->sll_halen +
3363 offsetof(struct sockaddr_ll, sll_addr);
3364 }
3365 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3366 msg->msg_namelen);
3367 }
3368
3369 if (pkt_sk(sk)->auxdata) {
3370 struct tpacket_auxdata aux;
3371
3372 aux.tp_status = TP_STATUS_USER;
3373 if (skb->ip_summed == CHECKSUM_PARTIAL)
3374 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3375 else if (skb->pkt_type != PACKET_OUTGOING &&
3376 (skb->ip_summed == CHECKSUM_COMPLETE ||
3377 skb_csum_unnecessary(skb)))
3378 aux.tp_status |= TP_STATUS_CSUM_VALID;
3379
3380 aux.tp_len = origlen;
3381 aux.tp_snaplen = skb->len;
3382 aux.tp_mac = 0;
3383 aux.tp_net = skb_network_offset(skb);
3384 if (skb_vlan_tag_present(skb)) {
3385 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3386 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3387 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3388 } else {
3389 aux.tp_vlan_tci = 0;
3390 aux.tp_vlan_tpid = 0;
3391 }
3392 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3393 }
3394
3395 /*
3396 * Free or return the buffer as appropriate. Again this
3397 * hides all the races and re-entrancy issues from us.
3398 */
3399 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3400
3401 out_free:
3402 skb_free_datagram(sk, skb);
3403 out:
3404 return err;
3405 }
3406
3407 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3408 int *uaddr_len, int peer)
3409 {
3410 struct net_device *dev;
3411 struct sock *sk = sock->sk;
3412
3413 if (peer)
3414 return -EOPNOTSUPP;
3415
3416 uaddr->sa_family = AF_PACKET;
3417 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3418 rcu_read_lock();
3419 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3420 if (dev)
3421 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3422 rcu_read_unlock();
3423 *uaddr_len = sizeof(*uaddr);
3424
3425 return 0;
3426 }
3427
3428 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3429 int *uaddr_len, int peer)
3430 {
3431 struct net_device *dev;
3432 struct sock *sk = sock->sk;
3433 struct packet_sock *po = pkt_sk(sk);
3434 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3435
3436 if (peer)
3437 return -EOPNOTSUPP;
3438
3439 sll->sll_family = AF_PACKET;
3440 sll->sll_ifindex = po->ifindex;
3441 sll->sll_protocol = po->num;
3442 sll->sll_pkttype = 0;
3443 rcu_read_lock();
3444 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3445 if (dev) {
3446 sll->sll_hatype = dev->type;
3447 sll->sll_halen = dev->addr_len;
3448 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3449 } else {
3450 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3451 sll->sll_halen = 0;
3452 }
3453 rcu_read_unlock();
3454 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3455
3456 return 0;
3457 }
3458
3459 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3460 int what)
3461 {
3462 switch (i->type) {
3463 case PACKET_MR_MULTICAST:
3464 if (i->alen != dev->addr_len)
3465 return -EINVAL;
3466 if (what > 0)
3467 return dev_mc_add(dev, i->addr);
3468 else
3469 return dev_mc_del(dev, i->addr);
3470 break;
3471 case PACKET_MR_PROMISC:
3472 return dev_set_promiscuity(dev, what);
3473 case PACKET_MR_ALLMULTI:
3474 return dev_set_allmulti(dev, what);
3475 case PACKET_MR_UNICAST:
3476 if (i->alen != dev->addr_len)
3477 return -EINVAL;
3478 if (what > 0)
3479 return dev_uc_add(dev, i->addr);
3480 else
3481 return dev_uc_del(dev, i->addr);
3482 break;
3483 default:
3484 break;
3485 }
3486 return 0;
3487 }
3488
3489 static void packet_dev_mclist_delete(struct net_device *dev,
3490 struct packet_mclist **mlp)
3491 {
3492 struct packet_mclist *ml;
3493
3494 while ((ml = *mlp) != NULL) {
3495 if (ml->ifindex == dev->ifindex) {
3496 packet_dev_mc(dev, ml, -1);
3497 *mlp = ml->next;
3498 kfree(ml);
3499 } else
3500 mlp = &ml->next;
3501 }
3502 }
3503
3504 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3505 {
3506 struct packet_sock *po = pkt_sk(sk);
3507 struct packet_mclist *ml, *i;
3508 struct net_device *dev;
3509 int err;
3510
3511 rtnl_lock();
3512
3513 err = -ENODEV;
3514 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3515 if (!dev)
3516 goto done;
3517
3518 err = -EINVAL;
3519 if (mreq->mr_alen > dev->addr_len)
3520 goto done;
3521
3522 err = -ENOBUFS;
3523 i = kmalloc(sizeof(*i), GFP_KERNEL);
3524 if (i == NULL)
3525 goto done;
3526
3527 err = 0;
3528 for (ml = po->mclist; ml; ml = ml->next) {
3529 if (ml->ifindex == mreq->mr_ifindex &&
3530 ml->type == mreq->mr_type &&
3531 ml->alen == mreq->mr_alen &&
3532 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3533 ml->count++;
3534 /* Free the new element ... */
3535 kfree(i);
3536 goto done;
3537 }
3538 }
3539
3540 i->type = mreq->mr_type;
3541 i->ifindex = mreq->mr_ifindex;
3542 i->alen = mreq->mr_alen;
3543 memcpy(i->addr, mreq->mr_address, i->alen);
3544 memset(i->addr + i->alen, 0, sizeof(i->addr) - i->alen);
3545 i->count = 1;
3546 i->next = po->mclist;
3547 po->mclist = i;
3548 err = packet_dev_mc(dev, i, 1);
3549 if (err) {
3550 po->mclist = i->next;
3551 kfree(i);
3552 }
3553
3554 done:
3555 rtnl_unlock();
3556 return err;
3557 }
3558
3559 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3560 {
3561 struct packet_mclist *ml, **mlp;
3562
3563 rtnl_lock();
3564
3565 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3566 if (ml->ifindex == mreq->mr_ifindex &&
3567 ml->type == mreq->mr_type &&
3568 ml->alen == mreq->mr_alen &&
3569 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3570 if (--ml->count == 0) {
3571 struct net_device *dev;
3572 *mlp = ml->next;
3573 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3574 if (dev)
3575 packet_dev_mc(dev, ml, -1);
3576 kfree(ml);
3577 }
3578 break;
3579 }
3580 }
3581 rtnl_unlock();
3582 return 0;
3583 }
3584
3585 static void packet_flush_mclist(struct sock *sk)
3586 {
3587 struct packet_sock *po = pkt_sk(sk);
3588 struct packet_mclist *ml;
3589
3590 if (!po->mclist)
3591 return;
3592
3593 rtnl_lock();
3594 while ((ml = po->mclist) != NULL) {
3595 struct net_device *dev;
3596
3597 po->mclist = ml->next;
3598 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3599 if (dev != NULL)
3600 packet_dev_mc(dev, ml, -1);
3601 kfree(ml);
3602 }
3603 rtnl_unlock();
3604 }
3605
3606 static int
3607 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3608 {
3609 struct sock *sk = sock->sk;
3610 struct packet_sock *po = pkt_sk(sk);
3611 int ret;
3612
3613 if (level != SOL_PACKET)
3614 return -ENOPROTOOPT;
3615
3616 switch (optname) {
3617 case PACKET_ADD_MEMBERSHIP:
3618 case PACKET_DROP_MEMBERSHIP:
3619 {
3620 struct packet_mreq_max mreq;
3621 int len = optlen;
3622 memset(&mreq, 0, sizeof(mreq));
3623 if (len < sizeof(struct packet_mreq))
3624 return -EINVAL;
3625 if (len > sizeof(mreq))
3626 len = sizeof(mreq);
3627 if (copy_from_user(&mreq, optval, len))
3628 return -EFAULT;
3629 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3630 return -EINVAL;
3631 if (optname == PACKET_ADD_MEMBERSHIP)
3632 ret = packet_mc_add(sk, &mreq);
3633 else
3634 ret = packet_mc_drop(sk, &mreq);
3635 return ret;
3636 }
3637
3638 case PACKET_RX_RING:
3639 case PACKET_TX_RING:
3640 {
3641 union tpacket_req_u req_u;
3642 int len;
3643
3644 switch (po->tp_version) {
3645 case TPACKET_V1:
3646 case TPACKET_V2:
3647 len = sizeof(req_u.req);
3648 break;
3649 case TPACKET_V3:
3650 default:
3651 len = sizeof(req_u.req3);
3652 break;
3653 }
3654 if (optlen < len)
3655 return -EINVAL;
3656 if (copy_from_user(&req_u.req, optval, len))
3657 return -EFAULT;
3658 return packet_set_ring(sk, &req_u, 0,
3659 optname == PACKET_TX_RING);
3660 }
3661 case PACKET_COPY_THRESH:
3662 {
3663 int val;
3664
3665 if (optlen != sizeof(val))
3666 return -EINVAL;
3667 if (copy_from_user(&val, optval, sizeof(val)))
3668 return -EFAULT;
3669
3670 pkt_sk(sk)->copy_thresh = val;
3671 return 0;
3672 }
3673 case PACKET_VERSION:
3674 {
3675 int val;
3676
3677 if (optlen != sizeof(val))
3678 return -EINVAL;
3679 if (copy_from_user(&val, optval, sizeof(val)))
3680 return -EFAULT;
3681 switch (val) {
3682 case TPACKET_V1:
3683 case TPACKET_V2:
3684 case TPACKET_V3:
3685 break;
3686 default:
3687 return -EINVAL;
3688 }
3689 lock_sock(sk);
3690 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec) {
3691 ret = -EBUSY;
3692 } else {
3693 po->tp_version = val;
3694 ret = 0;
3695 }
3696 release_sock(sk);
3697 return ret;
3698 }
3699 case PACKET_RESERVE:
3700 {
3701 unsigned int val;
3702
3703 if (optlen != sizeof(val))
3704 return -EINVAL;
3705 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3706 return -EBUSY;
3707 if (copy_from_user(&val, optval, sizeof(val)))
3708 return -EFAULT;
3709 if (val > INT_MAX)
3710 return -EINVAL;
3711 po->tp_reserve = val;
3712 return 0;
3713 }
3714 case PACKET_LOSS:
3715 {
3716 unsigned int val;
3717
3718 if (optlen != sizeof(val))
3719 return -EINVAL;
3720 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3721 return -EBUSY;
3722 if (copy_from_user(&val, optval, sizeof(val)))
3723 return -EFAULT;
3724 po->tp_loss = !!val;
3725 return 0;
3726 }
3727 case PACKET_AUXDATA:
3728 {
3729 int val;
3730
3731 if (optlen < sizeof(val))
3732 return -EINVAL;
3733 if (copy_from_user(&val, optval, sizeof(val)))
3734 return -EFAULT;
3735
3736 po->auxdata = !!val;
3737 return 0;
3738 }
3739 case PACKET_ORIGDEV:
3740 {
3741 int val;
3742
3743 if (optlen < sizeof(val))
3744 return -EINVAL;
3745 if (copy_from_user(&val, optval, sizeof(val)))
3746 return -EFAULT;
3747
3748 po->origdev = !!val;
3749 return 0;
3750 }
3751 case PACKET_VNET_HDR:
3752 {
3753 int val;
3754
3755 if (sock->type != SOCK_RAW)
3756 return -EINVAL;
3757 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3758 return -EBUSY;
3759 if (optlen < sizeof(val))
3760 return -EINVAL;
3761 if (copy_from_user(&val, optval, sizeof(val)))
3762 return -EFAULT;
3763
3764 po->has_vnet_hdr = !!val;
3765 return 0;
3766 }
3767 case PACKET_TIMESTAMP:
3768 {
3769 int val;
3770
3771 if (optlen != sizeof(val))
3772 return -EINVAL;
3773 if (copy_from_user(&val, optval, sizeof(val)))
3774 return -EFAULT;
3775
3776 po->tp_tstamp = val;
3777 return 0;
3778 }
3779 case PACKET_FANOUT:
3780 {
3781 int val;
3782
3783 if (optlen != sizeof(val))
3784 return -EINVAL;
3785 if (copy_from_user(&val, optval, sizeof(val)))
3786 return -EFAULT;
3787
3788 return fanout_add(sk, val & 0xffff, val >> 16);
3789 }
3790 case PACKET_FANOUT_DATA:
3791 {
3792 if (!po->fanout)
3793 return -EINVAL;
3794
3795 return fanout_set_data(po, optval, optlen);
3796 }
3797 case PACKET_TX_HAS_OFF:
3798 {
3799 unsigned int val;
3800
3801 if (optlen != sizeof(val))
3802 return -EINVAL;
3803 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3804 return -EBUSY;
3805 if (copy_from_user(&val, optval, sizeof(val)))
3806 return -EFAULT;
3807 po->tp_tx_has_off = !!val;
3808 return 0;
3809 }
3810 case PACKET_QDISC_BYPASS:
3811 {
3812 int val;
3813
3814 if (optlen != sizeof(val))
3815 return -EINVAL;
3816 if (copy_from_user(&val, optval, sizeof(val)))
3817 return -EFAULT;
3818
3819 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3820 return 0;
3821 }
3822 default:
3823 return -ENOPROTOOPT;
3824 }
3825 }
3826
3827 static int packet_getsockopt(struct socket *sock, int level, int optname,
3828 char __user *optval, int __user *optlen)
3829 {
3830 int len;
3831 int val, lv = sizeof(val);
3832 struct sock *sk = sock->sk;
3833 struct packet_sock *po = pkt_sk(sk);
3834 void *data = &val;
3835 union tpacket_stats_u st;
3836 struct tpacket_rollover_stats rstats;
3837
3838 if (level != SOL_PACKET)
3839 return -ENOPROTOOPT;
3840
3841 if (get_user(len, optlen))
3842 return -EFAULT;
3843
3844 if (len < 0)
3845 return -EINVAL;
3846
3847 switch (optname) {
3848 case PACKET_STATISTICS:
3849 spin_lock_bh(&sk->sk_receive_queue.lock);
3850 memcpy(&st, &po->stats, sizeof(st));
3851 memset(&po->stats, 0, sizeof(po->stats));
3852 spin_unlock_bh(&sk->sk_receive_queue.lock);
3853
3854 if (po->tp_version == TPACKET_V3) {
3855 lv = sizeof(struct tpacket_stats_v3);
3856 st.stats3.tp_packets += st.stats3.tp_drops;
3857 data = &st.stats3;
3858 } else {
3859 lv = sizeof(struct tpacket_stats);
3860 st.stats1.tp_packets += st.stats1.tp_drops;
3861 data = &st.stats1;
3862 }
3863
3864 break;
3865 case PACKET_AUXDATA:
3866 val = po->auxdata;
3867 break;
3868 case PACKET_ORIGDEV:
3869 val = po->origdev;
3870 break;
3871 case PACKET_VNET_HDR:
3872 val = po->has_vnet_hdr;
3873 break;
3874 case PACKET_VERSION:
3875 val = po->tp_version;
3876 break;
3877 case PACKET_HDRLEN:
3878 if (len > sizeof(int))
3879 len = sizeof(int);
3880 if (len < sizeof(int))
3881 return -EINVAL;
3882 if (copy_from_user(&val, optval, len))
3883 return -EFAULT;
3884 switch (val) {
3885 case TPACKET_V1:
3886 val = sizeof(struct tpacket_hdr);
3887 break;
3888 case TPACKET_V2:
3889 val = sizeof(struct tpacket2_hdr);
3890 break;
3891 case TPACKET_V3:
3892 val = sizeof(struct tpacket3_hdr);
3893 break;
3894 default:
3895 return -EINVAL;
3896 }
3897 break;
3898 case PACKET_RESERVE:
3899 val = po->tp_reserve;
3900 break;
3901 case PACKET_LOSS:
3902 val = po->tp_loss;
3903 break;
3904 case PACKET_TIMESTAMP:
3905 val = po->tp_tstamp;
3906 break;
3907 case PACKET_FANOUT:
3908 val = (po->fanout ?
3909 ((u32)po->fanout->id |
3910 ((u32)po->fanout->type << 16) |
3911 ((u32)po->fanout->flags << 24)) :
3912 0);
3913 break;
3914 case PACKET_ROLLOVER_STATS:
3915 if (!po->rollover)
3916 return -EINVAL;
3917 rstats.tp_all = atomic_long_read(&po->rollover->num);
3918 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3919 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3920 data = &rstats;
3921 lv = sizeof(rstats);
3922 break;
3923 case PACKET_TX_HAS_OFF:
3924 val = po->tp_tx_has_off;
3925 break;
3926 case PACKET_QDISC_BYPASS:
3927 val = packet_use_direct_xmit(po);
3928 break;
3929 default:
3930 return -ENOPROTOOPT;
3931 }
3932
3933 if (len > lv)
3934 len = lv;
3935 if (put_user(len, optlen))
3936 return -EFAULT;
3937 if (copy_to_user(optval, data, len))
3938 return -EFAULT;
3939 return 0;
3940 }
3941
3942
3943 #ifdef CONFIG_COMPAT
3944 static int compat_packet_setsockopt(struct socket *sock, int level, int optname,
3945 char __user *optval, unsigned int optlen)
3946 {
3947 struct packet_sock *po = pkt_sk(sock->sk);
3948
3949 if (level != SOL_PACKET)
3950 return -ENOPROTOOPT;
3951
3952 if (optname == PACKET_FANOUT_DATA &&
3953 po->fanout && po->fanout->type == PACKET_FANOUT_CBPF) {
3954 optval = (char __user *)get_compat_bpf_fprog(optval);
3955 if (!optval)
3956 return -EFAULT;
3957 optlen = sizeof(struct sock_fprog);
3958 }
3959
3960 return packet_setsockopt(sock, level, optname, optval, optlen);
3961 }
3962 #endif
3963
3964 static int packet_notifier(struct notifier_block *this,
3965 unsigned long msg, void *ptr)
3966 {
3967 struct sock *sk;
3968 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3969 struct net *net = dev_net(dev);
3970
3971 rcu_read_lock();
3972 sk_for_each_rcu(sk, &net->packet.sklist) {
3973 struct packet_sock *po = pkt_sk(sk);
3974
3975 switch (msg) {
3976 case NETDEV_UNREGISTER:
3977 if (po->mclist)
3978 packet_dev_mclist_delete(dev, &po->mclist);
3979 /* fallthrough */
3980
3981 case NETDEV_DOWN:
3982 if (dev->ifindex == po->ifindex) {
3983 spin_lock(&po->bind_lock);
3984 if (po->running) {
3985 __unregister_prot_hook(sk, false);
3986 sk->sk_err = ENETDOWN;
3987 if (!sock_flag(sk, SOCK_DEAD))
3988 sk->sk_error_report(sk);
3989 }
3990 if (msg == NETDEV_UNREGISTER) {
3991 packet_cached_dev_reset(po);
3992 po->ifindex = -1;
3993 if (po->prot_hook.dev)
3994 dev_put(po->prot_hook.dev);
3995 po->prot_hook.dev = NULL;
3996 }
3997 spin_unlock(&po->bind_lock);
3998 }
3999 break;
4000 case NETDEV_UP:
4001 if (dev->ifindex == po->ifindex) {
4002 spin_lock(&po->bind_lock);
4003 if (po->num)
4004 register_prot_hook(sk);
4005 spin_unlock(&po->bind_lock);
4006 }
4007 break;
4008 }
4009 }
4010 rcu_read_unlock();
4011 return NOTIFY_DONE;
4012 }
4013
4014
4015 static int packet_ioctl(struct socket *sock, unsigned int cmd,
4016 unsigned long arg)
4017 {
4018 struct sock *sk = sock->sk;
4019
4020 switch (cmd) {
4021 case SIOCOUTQ:
4022 {
4023 int amount = sk_wmem_alloc_get(sk);
4024
4025 return put_user(amount, (int __user *)arg);
4026 }
4027 case SIOCINQ:
4028 {
4029 struct sk_buff *skb;
4030 int amount = 0;
4031
4032 spin_lock_bh(&sk->sk_receive_queue.lock);
4033 skb = skb_peek(&sk->sk_receive_queue);
4034 if (skb)
4035 amount = skb->len;
4036 spin_unlock_bh(&sk->sk_receive_queue.lock);
4037 return put_user(amount, (int __user *)arg);
4038 }
4039 case SIOCGSTAMP:
4040 return sock_get_timestamp(sk, (struct timeval __user *)arg);
4041 case SIOCGSTAMPNS:
4042 return sock_get_timestampns(sk, (struct timespec __user *)arg);
4043
4044 #ifdef CONFIG_INET
4045 case SIOCADDRT:
4046 case SIOCDELRT:
4047 case SIOCDARP:
4048 case SIOCGARP:
4049 case SIOCSARP:
4050 case SIOCGIFADDR:
4051 case SIOCSIFADDR:
4052 case SIOCGIFBRDADDR:
4053 case SIOCSIFBRDADDR:
4054 case SIOCGIFNETMASK:
4055 case SIOCSIFNETMASK:
4056 case SIOCGIFDSTADDR:
4057 case SIOCSIFDSTADDR:
4058 case SIOCSIFFLAGS:
4059 return inet_dgram_ops.ioctl(sock, cmd, arg);
4060 #endif
4061
4062 default:
4063 return -ENOIOCTLCMD;
4064 }
4065 return 0;
4066 }
4067
4068 static unsigned int packet_poll(struct file *file, struct socket *sock,
4069 poll_table *wait)
4070 {
4071 struct sock *sk = sock->sk;
4072 struct packet_sock *po = pkt_sk(sk);
4073 unsigned int mask = datagram_poll(file, sock, wait);
4074
4075 spin_lock_bh(&sk->sk_receive_queue.lock);
4076 if (po->rx_ring.pg_vec) {
4077 if (!packet_previous_rx_frame(po, &po->rx_ring,
4078 TP_STATUS_KERNEL))
4079 mask |= POLLIN | POLLRDNORM;
4080 }
4081 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
4082 po->pressure = 0;
4083 spin_unlock_bh(&sk->sk_receive_queue.lock);
4084 spin_lock_bh(&sk->sk_write_queue.lock);
4085 if (po->tx_ring.pg_vec) {
4086 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
4087 mask |= POLLOUT | POLLWRNORM;
4088 }
4089 spin_unlock_bh(&sk->sk_write_queue.lock);
4090 return mask;
4091 }
4092
4093
4094 /* Dirty? Well, I still did not learn better way to account
4095 * for user mmaps.
4096 */
4097
4098 static void packet_mm_open(struct vm_area_struct *vma)
4099 {
4100 struct file *file = vma->vm_file;
4101 struct socket *sock = file->private_data;
4102 struct sock *sk = sock->sk;
4103
4104 if (sk)
4105 atomic_inc(&pkt_sk(sk)->mapped);
4106 }
4107
4108 static void packet_mm_close(struct vm_area_struct *vma)
4109 {
4110 struct file *file = vma->vm_file;
4111 struct socket *sock = file->private_data;
4112 struct sock *sk = sock->sk;
4113
4114 if (sk)
4115 atomic_dec(&pkt_sk(sk)->mapped);
4116 }
4117
4118 static const struct vm_operations_struct packet_mmap_ops = {
4119 .open = packet_mm_open,
4120 .close = packet_mm_close,
4121 };
4122
4123 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
4124 unsigned int len)
4125 {
4126 int i;
4127
4128 for (i = 0; i < len; i++) {
4129 if (likely(pg_vec[i].buffer)) {
4130 if (is_vmalloc_addr(pg_vec[i].buffer))
4131 vfree(pg_vec[i].buffer);
4132 else
4133 free_pages((unsigned long)pg_vec[i].buffer,
4134 order);
4135 pg_vec[i].buffer = NULL;
4136 }
4137 }
4138 kfree(pg_vec);
4139 }
4140
4141 static char *alloc_one_pg_vec_page(unsigned long order)
4142 {
4143 char *buffer;
4144 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
4145 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
4146
4147 buffer = (char *) __get_free_pages(gfp_flags, order);
4148 if (buffer)
4149 return buffer;
4150
4151 /* __get_free_pages failed, fall back to vmalloc */
4152 buffer = vzalloc((1 << order) * PAGE_SIZE);
4153 if (buffer)
4154 return buffer;
4155
4156 /* vmalloc failed, lets dig into swap here */
4157 gfp_flags &= ~__GFP_NORETRY;
4158 buffer = (char *) __get_free_pages(gfp_flags, order);
4159 if (buffer)
4160 return buffer;
4161
4162 /* complete and utter failure */
4163 return NULL;
4164 }
4165
4166 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4167 {
4168 unsigned int block_nr = req->tp_block_nr;
4169 struct pgv *pg_vec;
4170 int i;
4171
4172 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4173 if (unlikely(!pg_vec))
4174 goto out;
4175
4176 for (i = 0; i < block_nr; i++) {
4177 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4178 if (unlikely(!pg_vec[i].buffer))
4179 goto out_free_pgvec;
4180 }
4181
4182 out:
4183 return pg_vec;
4184
4185 out_free_pgvec:
4186 free_pg_vec(pg_vec, order, block_nr);
4187 pg_vec = NULL;
4188 goto out;
4189 }
4190
4191 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4192 int closing, int tx_ring)
4193 {
4194 struct pgv *pg_vec = NULL;
4195 struct packet_sock *po = pkt_sk(sk);
4196 int was_running, order = 0;
4197 struct packet_ring_buffer *rb;
4198 struct sk_buff_head *rb_queue;
4199 __be16 num;
4200 int err = -EINVAL;
4201 /* Added to avoid minimal code churn */
4202 struct tpacket_req *req = &req_u->req;
4203
4204 lock_sock(sk);
4205
4206 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4207 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4208
4209 err = -EBUSY;
4210 if (!closing) {
4211 if (atomic_read(&po->mapped))
4212 goto out;
4213 if (packet_read_pending(rb))
4214 goto out;
4215 }
4216
4217 if (req->tp_block_nr) {
4218 /* Sanity tests and some calculations */
4219 err = -EBUSY;
4220 if (unlikely(rb->pg_vec))
4221 goto out;
4222
4223 switch (po->tp_version) {
4224 case TPACKET_V1:
4225 po->tp_hdrlen = TPACKET_HDRLEN;
4226 break;
4227 case TPACKET_V2:
4228 po->tp_hdrlen = TPACKET2_HDRLEN;
4229 break;
4230 case TPACKET_V3:
4231 po->tp_hdrlen = TPACKET3_HDRLEN;
4232 break;
4233 }
4234
4235 err = -EINVAL;
4236 if (unlikely((int)req->tp_block_size <= 0))
4237 goto out;
4238 if (unlikely(!PAGE_ALIGNED(req->tp_block_size)))
4239 goto out;
4240 if (po->tp_version >= TPACKET_V3 &&
4241 req->tp_block_size <=
4242 BLK_PLUS_PRIV((u64)req_u->req3.tp_sizeof_priv))
4243 goto out;
4244 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4245 po->tp_reserve))
4246 goto out;
4247 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4248 goto out;
4249
4250 rb->frames_per_block = req->tp_block_size / req->tp_frame_size;
4251 if (unlikely(rb->frames_per_block == 0))
4252 goto out;
4253 if (unlikely(req->tp_block_size > UINT_MAX / req->tp_block_nr))
4254 goto out;
4255 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4256 req->tp_frame_nr))
4257 goto out;
4258
4259 err = -ENOMEM;
4260 order = get_order(req->tp_block_size);
4261 pg_vec = alloc_pg_vec(req, order);
4262 if (unlikely(!pg_vec))
4263 goto out;
4264 switch (po->tp_version) {
4265 case TPACKET_V3:
4266 /* Block transmit is not supported yet */
4267 if (!tx_ring) {
4268 init_prb_bdqc(po, rb, pg_vec, req_u);
4269 } else {
4270 struct tpacket_req3 *req3 = &req_u->req3;
4271
4272 if (req3->tp_retire_blk_tov ||
4273 req3->tp_sizeof_priv ||
4274 req3->tp_feature_req_word) {
4275 err = -EINVAL;
4276 goto out;
4277 }
4278 }
4279 break;
4280 default:
4281 break;
4282 }
4283 }
4284 /* Done */
4285 else {
4286 err = -EINVAL;
4287 if (unlikely(req->tp_frame_nr))
4288 goto out;
4289 }
4290
4291
4292 /* Detach socket from network */
4293 spin_lock(&po->bind_lock);
4294 was_running = po->running;
4295 num = po->num;
4296 if (was_running) {
4297 po->num = 0;
4298 __unregister_prot_hook(sk, false);
4299 }
4300 spin_unlock(&po->bind_lock);
4301
4302 synchronize_net();
4303
4304 err = -EBUSY;
4305 mutex_lock(&po->pg_vec_lock);
4306 if (closing || atomic_read(&po->mapped) == 0) {
4307 err = 0;
4308 spin_lock_bh(&rb_queue->lock);
4309 swap(rb->pg_vec, pg_vec);
4310 rb->frame_max = (req->tp_frame_nr - 1);
4311 rb->head = 0;
4312 rb->frame_size = req->tp_frame_size;
4313 spin_unlock_bh(&rb_queue->lock);
4314
4315 swap(rb->pg_vec_order, order);
4316 swap(rb->pg_vec_len, req->tp_block_nr);
4317
4318 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4319 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4320 tpacket_rcv : packet_rcv;
4321 skb_queue_purge(rb_queue);
4322 if (atomic_read(&po->mapped))
4323 pr_err("packet_mmap: vma is busy: %d\n",
4324 atomic_read(&po->mapped));
4325 }
4326 mutex_unlock(&po->pg_vec_lock);
4327
4328 spin_lock(&po->bind_lock);
4329 if (was_running) {
4330 po->num = num;
4331 register_prot_hook(sk);
4332 }
4333 spin_unlock(&po->bind_lock);
4334 if (closing && (po->tp_version > TPACKET_V2)) {
4335 /* Because we don't support block-based V3 on tx-ring */
4336 if (!tx_ring)
4337 prb_shutdown_retire_blk_timer(po, rb_queue);
4338 }
4339
4340 if (pg_vec)
4341 free_pg_vec(pg_vec, order, req->tp_block_nr);
4342 out:
4343 release_sock(sk);
4344 return err;
4345 }
4346
4347 static int packet_mmap(struct file *file, struct socket *sock,
4348 struct vm_area_struct *vma)
4349 {
4350 struct sock *sk = sock->sk;
4351 struct packet_sock *po = pkt_sk(sk);
4352 unsigned long size, expected_size;
4353 struct packet_ring_buffer *rb;
4354 unsigned long start;
4355 int err = -EINVAL;
4356 int i;
4357
4358 if (vma->vm_pgoff)
4359 return -EINVAL;
4360
4361 mutex_lock(&po->pg_vec_lock);
4362
4363 expected_size = 0;
4364 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4365 if (rb->pg_vec) {
4366 expected_size += rb->pg_vec_len
4367 * rb->pg_vec_pages
4368 * PAGE_SIZE;
4369 }
4370 }
4371
4372 if (expected_size == 0)
4373 goto out;
4374
4375 size = vma->vm_end - vma->vm_start;
4376 if (size != expected_size)
4377 goto out;
4378
4379 start = vma->vm_start;
4380 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4381 if (rb->pg_vec == NULL)
4382 continue;
4383
4384 for (i = 0; i < rb->pg_vec_len; i++) {
4385 struct page *page;
4386 void *kaddr = rb->pg_vec[i].buffer;
4387 int pg_num;
4388
4389 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4390 page = pgv_to_page(kaddr);
4391 err = vm_insert_page(vma, start, page);
4392 if (unlikely(err))
4393 goto out;
4394 start += PAGE_SIZE;
4395 kaddr += PAGE_SIZE;
4396 }
4397 }
4398 }
4399
4400 atomic_inc(&po->mapped);
4401 vma->vm_ops = &packet_mmap_ops;
4402 err = 0;
4403
4404 out:
4405 mutex_unlock(&po->pg_vec_lock);
4406 return err;
4407 }
4408
4409 static const struct proto_ops packet_ops_spkt = {
4410 .family = PF_PACKET,
4411 .owner = THIS_MODULE,
4412 .release = packet_release,
4413 .bind = packet_bind_spkt,
4414 .connect = sock_no_connect,
4415 .socketpair = sock_no_socketpair,
4416 .accept = sock_no_accept,
4417 .getname = packet_getname_spkt,
4418 .poll = datagram_poll,
4419 .ioctl = packet_ioctl,
4420 .listen = sock_no_listen,
4421 .shutdown = sock_no_shutdown,
4422 .setsockopt = sock_no_setsockopt,
4423 .getsockopt = sock_no_getsockopt,
4424 .sendmsg = packet_sendmsg_spkt,
4425 .recvmsg = packet_recvmsg,
4426 .mmap = sock_no_mmap,
4427 .sendpage = sock_no_sendpage,
4428 };
4429
4430 static const struct proto_ops packet_ops = {
4431 .family = PF_PACKET,
4432 .owner = THIS_MODULE,
4433 .release = packet_release,
4434 .bind = packet_bind,
4435 .connect = sock_no_connect,
4436 .socketpair = sock_no_socketpair,
4437 .accept = sock_no_accept,
4438 .getname = packet_getname,
4439 .poll = packet_poll,
4440 .ioctl = packet_ioctl,
4441 .listen = sock_no_listen,
4442 .shutdown = sock_no_shutdown,
4443 .setsockopt = packet_setsockopt,
4444 .getsockopt = packet_getsockopt,
4445 #ifdef CONFIG_COMPAT
4446 .compat_setsockopt = compat_packet_setsockopt,
4447 #endif
4448 .sendmsg = packet_sendmsg,
4449 .recvmsg = packet_recvmsg,
4450 .mmap = packet_mmap,
4451 .sendpage = sock_no_sendpage,
4452 };
4453
4454 static const struct net_proto_family packet_family_ops = {
4455 .family = PF_PACKET,
4456 .create = packet_create,
4457 .owner = THIS_MODULE,
4458 };
4459
4460 static struct notifier_block packet_netdev_notifier = {
4461 .notifier_call = packet_notifier,
4462 };
4463
4464 #ifdef CONFIG_PROC_FS
4465
4466 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4467 __acquires(RCU)
4468 {
4469 struct net *net = seq_file_net(seq);
4470
4471 rcu_read_lock();
4472 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4473 }
4474
4475 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4476 {
4477 struct net *net = seq_file_net(seq);
4478 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4479 }
4480
4481 static void packet_seq_stop(struct seq_file *seq, void *v)
4482 __releases(RCU)
4483 {
4484 rcu_read_unlock();
4485 }
4486
4487 static int packet_seq_show(struct seq_file *seq, void *v)
4488 {
4489 if (v == SEQ_START_TOKEN)
4490 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4491 else {
4492 struct sock *s = sk_entry(v);
4493 const struct packet_sock *po = pkt_sk(s);
4494
4495 seq_printf(seq,
4496 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4497 s,
4498 refcount_read(&s->sk_refcnt),
4499 s->sk_type,
4500 ntohs(po->num),
4501 po->ifindex,
4502 po->running,
4503 atomic_read(&s->sk_rmem_alloc),
4504 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4505 sock_i_ino(s));
4506 }
4507
4508 return 0;
4509 }
4510
4511 static const struct seq_operations packet_seq_ops = {
4512 .start = packet_seq_start,
4513 .next = packet_seq_next,
4514 .stop = packet_seq_stop,
4515 .show = packet_seq_show,
4516 };
4517
4518 static int packet_seq_open(struct inode *inode, struct file *file)
4519 {
4520 return seq_open_net(inode, file, &packet_seq_ops,
4521 sizeof(struct seq_net_private));
4522 }
4523
4524 static const struct file_operations packet_seq_fops = {
4525 .owner = THIS_MODULE,
4526 .open = packet_seq_open,
4527 .read = seq_read,
4528 .llseek = seq_lseek,
4529 .release = seq_release_net,
4530 };
4531
4532 #endif
4533
4534 static int __net_init packet_net_init(struct net *net)
4535 {
4536 mutex_init(&net->packet.sklist_lock);
4537 INIT_HLIST_HEAD(&net->packet.sklist);
4538
4539 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4540 return -ENOMEM;
4541
4542 return 0;
4543 }
4544
4545 static void __net_exit packet_net_exit(struct net *net)
4546 {
4547 remove_proc_entry("packet", net->proc_net);
4548 }
4549
4550 static struct pernet_operations packet_net_ops = {
4551 .init = packet_net_init,
4552 .exit = packet_net_exit,
4553 };
4554
4555
4556 static void __exit packet_exit(void)
4557 {
4558 unregister_netdevice_notifier(&packet_netdev_notifier);
4559 unregister_pernet_subsys(&packet_net_ops);
4560 sock_unregister(PF_PACKET);
4561 proto_unregister(&packet_proto);
4562 }
4563
4564 static int __init packet_init(void)
4565 {
4566 int rc = proto_register(&packet_proto, 0);
4567
4568 if (rc != 0)
4569 goto out;
4570
4571 sock_register(&packet_family_ops);
4572 register_pernet_subsys(&packet_net_ops);
4573 register_netdevice_notifier(&packet_netdev_notifier);
4574 out:
4575 return rc;
4576 }
4577
4578 module_init(packet_init);
4579 module_exit(packet_exit);
4580 MODULE_LICENSE("GPL");
4581 MODULE_ALIAS_NETPROTO(PF_PACKET);