]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/packet/af_packet.c
Merge tag 'v4.3-rc3' into x86/urgent, before applying dependent fix
[mirror_ubuntu-zesty-kernel.git] / net / packet / af_packet.c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * PACKET - implements raw packet sockets.
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox, <gw4pts@gw4pts.ampr.org>
11 *
12 * Fixes:
13 * Alan Cox : verify_area() now used correctly
14 * Alan Cox : new skbuff lists, look ma no backlogs!
15 * Alan Cox : tidied skbuff lists.
16 * Alan Cox : Now uses generic datagram routines I
17 * added. Also fixed the peek/read crash
18 * from all old Linux datagram code.
19 * Alan Cox : Uses the improved datagram code.
20 * Alan Cox : Added NULL's for socket options.
21 * Alan Cox : Re-commented the code.
22 * Alan Cox : Use new kernel side addressing
23 * Rob Janssen : Correct MTU usage.
24 * Dave Platt : Counter leaks caused by incorrect
25 * interrupt locking and some slightly
26 * dubious gcc output. Can you read
27 * compiler: it said _VOLATILE_
28 * Richard Kooijman : Timestamp fixes.
29 * Alan Cox : New buffers. Use sk->mac.raw.
30 * Alan Cox : sendmsg/recvmsg support.
31 * Alan Cox : Protocol setting support
32 * Alexey Kuznetsov : Untied from IPv4 stack.
33 * Cyrus Durgin : Fixed kerneld for kmod.
34 * Michal Ostrowski : Module initialization cleanup.
35 * Ulises Alonso : Frame number limit removal and
36 * packet_set_ring memory leak.
37 * Eric Biederman : Allow for > 8 byte hardware addresses.
38 * The convention is that longer addresses
39 * will simply extend the hardware address
40 * byte arrays at the end of sockaddr_ll
41 * and packet_mreq.
42 * Johann Baudy : Added TX RING.
43 * Chetan Loke : Implemented TPACKET_V3 block abstraction
44 * layer.
45 * Copyright (C) 2011, <lokec@ccs.neu.edu>
46 *
47 *
48 * This program is free software; you can redistribute it and/or
49 * modify it under the terms of the GNU General Public License
50 * as published by the Free Software Foundation; either version
51 * 2 of the License, or (at your option) any later version.
52 *
53 */
54
55 #include <linux/types.h>
56 #include <linux/mm.h>
57 #include <linux/capability.h>
58 #include <linux/fcntl.h>
59 #include <linux/socket.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/if_packet.h>
64 #include <linux/wireless.h>
65 #include <linux/kernel.h>
66 #include <linux/kmod.h>
67 #include <linux/slab.h>
68 #include <linux/vmalloc.h>
69 #include <net/net_namespace.h>
70 #include <net/ip.h>
71 #include <net/protocol.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <linux/errno.h>
75 #include <linux/timer.h>
76 #include <asm/uaccess.h>
77 #include <asm/ioctls.h>
78 #include <asm/page.h>
79 #include <asm/cacheflush.h>
80 #include <asm/io.h>
81 #include <linux/proc_fs.h>
82 #include <linux/seq_file.h>
83 #include <linux/poll.h>
84 #include <linux/module.h>
85 #include <linux/init.h>
86 #include <linux/mutex.h>
87 #include <linux/if_vlan.h>
88 #include <linux/virtio_net.h>
89 #include <linux/errqueue.h>
90 #include <linux/net_tstamp.h>
91 #include <linux/percpu.h>
92 #ifdef CONFIG_INET
93 #include <net/inet_common.h>
94 #endif
95 #include <linux/bpf.h>
96
97 #include "internal.h"
98
99 /*
100 Assumptions:
101 - if device has no dev->hard_header routine, it adds and removes ll header
102 inside itself. In this case ll header is invisible outside of device,
103 but higher levels still should reserve dev->hard_header_len.
104 Some devices are enough clever to reallocate skb, when header
105 will not fit to reserved space (tunnel), another ones are silly
106 (PPP).
107 - packet socket receives packets with pulled ll header,
108 so that SOCK_RAW should push it back.
109
110 On receive:
111 -----------
112
113 Incoming, dev->hard_header!=NULL
114 mac_header -> ll header
115 data -> data
116
117 Outgoing, dev->hard_header!=NULL
118 mac_header -> ll header
119 data -> ll header
120
121 Incoming, dev->hard_header==NULL
122 mac_header -> UNKNOWN position. It is very likely, that it points to ll
123 header. PPP makes it, that is wrong, because introduce
124 assymetry between rx and tx paths.
125 data -> data
126
127 Outgoing, dev->hard_header==NULL
128 mac_header -> data. ll header is still not built!
129 data -> data
130
131 Resume
132 If dev->hard_header==NULL we are unlikely to restore sensible ll header.
133
134
135 On transmit:
136 ------------
137
138 dev->hard_header != NULL
139 mac_header -> ll header
140 data -> ll header
141
142 dev->hard_header == NULL (ll header is added by device, we cannot control it)
143 mac_header -> data
144 data -> data
145
146 We should set nh.raw on output to correct posistion,
147 packet classifier depends on it.
148 */
149
150 /* Private packet socket structures. */
151
152 /* identical to struct packet_mreq except it has
153 * a longer address field.
154 */
155 struct packet_mreq_max {
156 int mr_ifindex;
157 unsigned short mr_type;
158 unsigned short mr_alen;
159 unsigned char mr_address[MAX_ADDR_LEN];
160 };
161
162 union tpacket_uhdr {
163 struct tpacket_hdr *h1;
164 struct tpacket2_hdr *h2;
165 struct tpacket3_hdr *h3;
166 void *raw;
167 };
168
169 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
170 int closing, int tx_ring);
171
172 #define V3_ALIGNMENT (8)
173
174 #define BLK_HDR_LEN (ALIGN(sizeof(struct tpacket_block_desc), V3_ALIGNMENT))
175
176 #define BLK_PLUS_PRIV(sz_of_priv) \
177 (BLK_HDR_LEN + ALIGN((sz_of_priv), V3_ALIGNMENT))
178
179 #define PGV_FROM_VMALLOC 1
180
181 #define BLOCK_STATUS(x) ((x)->hdr.bh1.block_status)
182 #define BLOCK_NUM_PKTS(x) ((x)->hdr.bh1.num_pkts)
183 #define BLOCK_O2FP(x) ((x)->hdr.bh1.offset_to_first_pkt)
184 #define BLOCK_LEN(x) ((x)->hdr.bh1.blk_len)
185 #define BLOCK_SNUM(x) ((x)->hdr.bh1.seq_num)
186 #define BLOCK_O2PRIV(x) ((x)->offset_to_priv)
187 #define BLOCK_PRIV(x) ((void *)((char *)(x) + BLOCK_O2PRIV(x)))
188
189 struct packet_sock;
190 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg);
191 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
192 struct packet_type *pt, struct net_device *orig_dev);
193
194 static void *packet_previous_frame(struct packet_sock *po,
195 struct packet_ring_buffer *rb,
196 int status);
197 static void packet_increment_head(struct packet_ring_buffer *buff);
198 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *,
199 struct tpacket_block_desc *);
200 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *,
201 struct packet_sock *);
202 static void prb_retire_current_block(struct tpacket_kbdq_core *,
203 struct packet_sock *, unsigned int status);
204 static int prb_queue_frozen(struct tpacket_kbdq_core *);
205 static void prb_open_block(struct tpacket_kbdq_core *,
206 struct tpacket_block_desc *);
207 static void prb_retire_rx_blk_timer_expired(unsigned long);
208 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *);
209 static void prb_init_blk_timer(struct packet_sock *,
210 struct tpacket_kbdq_core *,
211 void (*func) (unsigned long));
212 static void prb_fill_rxhash(struct tpacket_kbdq_core *, struct tpacket3_hdr *);
213 static void prb_clear_rxhash(struct tpacket_kbdq_core *,
214 struct tpacket3_hdr *);
215 static void prb_fill_vlan_info(struct tpacket_kbdq_core *,
216 struct tpacket3_hdr *);
217 static void packet_flush_mclist(struct sock *sk);
218
219 struct packet_skb_cb {
220 union {
221 struct sockaddr_pkt pkt;
222 union {
223 /* Trick: alias skb original length with
224 * ll.sll_family and ll.protocol in order
225 * to save room.
226 */
227 unsigned int origlen;
228 struct sockaddr_ll ll;
229 };
230 } sa;
231 };
232
233 #define vio_le() virtio_legacy_is_little_endian()
234
235 #define PACKET_SKB_CB(__skb) ((struct packet_skb_cb *)((__skb)->cb))
236
237 #define GET_PBDQC_FROM_RB(x) ((struct tpacket_kbdq_core *)(&(x)->prb_bdqc))
238 #define GET_PBLOCK_DESC(x, bid) \
239 ((struct tpacket_block_desc *)((x)->pkbdq[(bid)].buffer))
240 #define GET_CURR_PBLOCK_DESC_FROM_CORE(x) \
241 ((struct tpacket_block_desc *)((x)->pkbdq[(x)->kactive_blk_num].buffer))
242 #define GET_NEXT_PRB_BLK_NUM(x) \
243 (((x)->kactive_blk_num < ((x)->knum_blocks-1)) ? \
244 ((x)->kactive_blk_num+1) : 0)
245
246 static void __fanout_unlink(struct sock *sk, struct packet_sock *po);
247 static void __fanout_link(struct sock *sk, struct packet_sock *po);
248
249 static int packet_direct_xmit(struct sk_buff *skb)
250 {
251 struct net_device *dev = skb->dev;
252 netdev_features_t features;
253 struct netdev_queue *txq;
254 int ret = NETDEV_TX_BUSY;
255
256 if (unlikely(!netif_running(dev) ||
257 !netif_carrier_ok(dev)))
258 goto drop;
259
260 features = netif_skb_features(skb);
261 if (skb_needs_linearize(skb, features) &&
262 __skb_linearize(skb))
263 goto drop;
264
265 txq = skb_get_tx_queue(dev, skb);
266
267 local_bh_disable();
268
269 HARD_TX_LOCK(dev, txq, smp_processor_id());
270 if (!netif_xmit_frozen_or_drv_stopped(txq))
271 ret = netdev_start_xmit(skb, dev, txq, false);
272 HARD_TX_UNLOCK(dev, txq);
273
274 local_bh_enable();
275
276 if (!dev_xmit_complete(ret))
277 kfree_skb(skb);
278
279 return ret;
280 drop:
281 atomic_long_inc(&dev->tx_dropped);
282 kfree_skb(skb);
283 return NET_XMIT_DROP;
284 }
285
286 static struct net_device *packet_cached_dev_get(struct packet_sock *po)
287 {
288 struct net_device *dev;
289
290 rcu_read_lock();
291 dev = rcu_dereference(po->cached_dev);
292 if (likely(dev))
293 dev_hold(dev);
294 rcu_read_unlock();
295
296 return dev;
297 }
298
299 static void packet_cached_dev_assign(struct packet_sock *po,
300 struct net_device *dev)
301 {
302 rcu_assign_pointer(po->cached_dev, dev);
303 }
304
305 static void packet_cached_dev_reset(struct packet_sock *po)
306 {
307 RCU_INIT_POINTER(po->cached_dev, NULL);
308 }
309
310 static bool packet_use_direct_xmit(const struct packet_sock *po)
311 {
312 return po->xmit == packet_direct_xmit;
313 }
314
315 static u16 __packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
316 {
317 return (u16) raw_smp_processor_id() % dev->real_num_tx_queues;
318 }
319
320 static void packet_pick_tx_queue(struct net_device *dev, struct sk_buff *skb)
321 {
322 const struct net_device_ops *ops = dev->netdev_ops;
323 u16 queue_index;
324
325 if (ops->ndo_select_queue) {
326 queue_index = ops->ndo_select_queue(dev, skb, NULL,
327 __packet_pick_tx_queue);
328 queue_index = netdev_cap_txqueue(dev, queue_index);
329 } else {
330 queue_index = __packet_pick_tx_queue(dev, skb);
331 }
332
333 skb_set_queue_mapping(skb, queue_index);
334 }
335
336 /* register_prot_hook must be invoked with the po->bind_lock held,
337 * or from a context in which asynchronous accesses to the packet
338 * socket is not possible (packet_create()).
339 */
340 static void register_prot_hook(struct sock *sk)
341 {
342 struct packet_sock *po = pkt_sk(sk);
343
344 if (!po->running) {
345 if (po->fanout)
346 __fanout_link(sk, po);
347 else
348 dev_add_pack(&po->prot_hook);
349
350 sock_hold(sk);
351 po->running = 1;
352 }
353 }
354
355 /* {,__}unregister_prot_hook() must be invoked with the po->bind_lock
356 * held. If the sync parameter is true, we will temporarily drop
357 * the po->bind_lock and do a synchronize_net to make sure no
358 * asynchronous packet processing paths still refer to the elements
359 * of po->prot_hook. If the sync parameter is false, it is the
360 * callers responsibility to take care of this.
361 */
362 static void __unregister_prot_hook(struct sock *sk, bool sync)
363 {
364 struct packet_sock *po = pkt_sk(sk);
365
366 po->running = 0;
367
368 if (po->fanout)
369 __fanout_unlink(sk, po);
370 else
371 __dev_remove_pack(&po->prot_hook);
372
373 __sock_put(sk);
374
375 if (sync) {
376 spin_unlock(&po->bind_lock);
377 synchronize_net();
378 spin_lock(&po->bind_lock);
379 }
380 }
381
382 static void unregister_prot_hook(struct sock *sk, bool sync)
383 {
384 struct packet_sock *po = pkt_sk(sk);
385
386 if (po->running)
387 __unregister_prot_hook(sk, sync);
388 }
389
390 static inline struct page * __pure pgv_to_page(void *addr)
391 {
392 if (is_vmalloc_addr(addr))
393 return vmalloc_to_page(addr);
394 return virt_to_page(addr);
395 }
396
397 static void __packet_set_status(struct packet_sock *po, void *frame, int status)
398 {
399 union tpacket_uhdr h;
400
401 h.raw = frame;
402 switch (po->tp_version) {
403 case TPACKET_V1:
404 h.h1->tp_status = status;
405 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
406 break;
407 case TPACKET_V2:
408 h.h2->tp_status = status;
409 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
410 break;
411 case TPACKET_V3:
412 default:
413 WARN(1, "TPACKET version not supported.\n");
414 BUG();
415 }
416
417 smp_wmb();
418 }
419
420 static int __packet_get_status(struct packet_sock *po, void *frame)
421 {
422 union tpacket_uhdr h;
423
424 smp_rmb();
425
426 h.raw = frame;
427 switch (po->tp_version) {
428 case TPACKET_V1:
429 flush_dcache_page(pgv_to_page(&h.h1->tp_status));
430 return h.h1->tp_status;
431 case TPACKET_V2:
432 flush_dcache_page(pgv_to_page(&h.h2->tp_status));
433 return h.h2->tp_status;
434 case TPACKET_V3:
435 default:
436 WARN(1, "TPACKET version not supported.\n");
437 BUG();
438 return 0;
439 }
440 }
441
442 static __u32 tpacket_get_timestamp(struct sk_buff *skb, struct timespec *ts,
443 unsigned int flags)
444 {
445 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
446
447 if (shhwtstamps &&
448 (flags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
449 ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts))
450 return TP_STATUS_TS_RAW_HARDWARE;
451
452 if (ktime_to_timespec_cond(skb->tstamp, ts))
453 return TP_STATUS_TS_SOFTWARE;
454
455 return 0;
456 }
457
458 static __u32 __packet_set_timestamp(struct packet_sock *po, void *frame,
459 struct sk_buff *skb)
460 {
461 union tpacket_uhdr h;
462 struct timespec ts;
463 __u32 ts_status;
464
465 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
466 return 0;
467
468 h.raw = frame;
469 switch (po->tp_version) {
470 case TPACKET_V1:
471 h.h1->tp_sec = ts.tv_sec;
472 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
473 break;
474 case TPACKET_V2:
475 h.h2->tp_sec = ts.tv_sec;
476 h.h2->tp_nsec = ts.tv_nsec;
477 break;
478 case TPACKET_V3:
479 default:
480 WARN(1, "TPACKET version not supported.\n");
481 BUG();
482 }
483
484 /* one flush is safe, as both fields always lie on the same cacheline */
485 flush_dcache_page(pgv_to_page(&h.h1->tp_sec));
486 smp_wmb();
487
488 return ts_status;
489 }
490
491 static void *packet_lookup_frame(struct packet_sock *po,
492 struct packet_ring_buffer *rb,
493 unsigned int position,
494 int status)
495 {
496 unsigned int pg_vec_pos, frame_offset;
497 union tpacket_uhdr h;
498
499 pg_vec_pos = position / rb->frames_per_block;
500 frame_offset = position % rb->frames_per_block;
501
502 h.raw = rb->pg_vec[pg_vec_pos].buffer +
503 (frame_offset * rb->frame_size);
504
505 if (status != __packet_get_status(po, h.raw))
506 return NULL;
507
508 return h.raw;
509 }
510
511 static void *packet_current_frame(struct packet_sock *po,
512 struct packet_ring_buffer *rb,
513 int status)
514 {
515 return packet_lookup_frame(po, rb, rb->head, status);
516 }
517
518 static void prb_del_retire_blk_timer(struct tpacket_kbdq_core *pkc)
519 {
520 del_timer_sync(&pkc->retire_blk_timer);
521 }
522
523 static void prb_shutdown_retire_blk_timer(struct packet_sock *po,
524 struct sk_buff_head *rb_queue)
525 {
526 struct tpacket_kbdq_core *pkc;
527
528 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
529
530 spin_lock_bh(&rb_queue->lock);
531 pkc->delete_blk_timer = 1;
532 spin_unlock_bh(&rb_queue->lock);
533
534 prb_del_retire_blk_timer(pkc);
535 }
536
537 static void prb_init_blk_timer(struct packet_sock *po,
538 struct tpacket_kbdq_core *pkc,
539 void (*func) (unsigned long))
540 {
541 init_timer(&pkc->retire_blk_timer);
542 pkc->retire_blk_timer.data = (long)po;
543 pkc->retire_blk_timer.function = func;
544 pkc->retire_blk_timer.expires = jiffies;
545 }
546
547 static void prb_setup_retire_blk_timer(struct packet_sock *po)
548 {
549 struct tpacket_kbdq_core *pkc;
550
551 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
552 prb_init_blk_timer(po, pkc, prb_retire_rx_blk_timer_expired);
553 }
554
555 static int prb_calc_retire_blk_tmo(struct packet_sock *po,
556 int blk_size_in_bytes)
557 {
558 struct net_device *dev;
559 unsigned int mbits = 0, msec = 0, div = 0, tmo = 0;
560 struct ethtool_cmd ecmd;
561 int err;
562 u32 speed;
563
564 rtnl_lock();
565 dev = __dev_get_by_index(sock_net(&po->sk), po->ifindex);
566 if (unlikely(!dev)) {
567 rtnl_unlock();
568 return DEFAULT_PRB_RETIRE_TOV;
569 }
570 err = __ethtool_get_settings(dev, &ecmd);
571 speed = ethtool_cmd_speed(&ecmd);
572 rtnl_unlock();
573 if (!err) {
574 /*
575 * If the link speed is so slow you don't really
576 * need to worry about perf anyways
577 */
578 if (speed < SPEED_1000 || speed == SPEED_UNKNOWN) {
579 return DEFAULT_PRB_RETIRE_TOV;
580 } else {
581 msec = 1;
582 div = speed / 1000;
583 }
584 }
585
586 mbits = (blk_size_in_bytes * 8) / (1024 * 1024);
587
588 if (div)
589 mbits /= div;
590
591 tmo = mbits * msec;
592
593 if (div)
594 return tmo+1;
595 return tmo;
596 }
597
598 static void prb_init_ft_ops(struct tpacket_kbdq_core *p1,
599 union tpacket_req_u *req_u)
600 {
601 p1->feature_req_word = req_u->req3.tp_feature_req_word;
602 }
603
604 static void init_prb_bdqc(struct packet_sock *po,
605 struct packet_ring_buffer *rb,
606 struct pgv *pg_vec,
607 union tpacket_req_u *req_u)
608 {
609 struct tpacket_kbdq_core *p1 = GET_PBDQC_FROM_RB(rb);
610 struct tpacket_block_desc *pbd;
611
612 memset(p1, 0x0, sizeof(*p1));
613
614 p1->knxt_seq_num = 1;
615 p1->pkbdq = pg_vec;
616 pbd = (struct tpacket_block_desc *)pg_vec[0].buffer;
617 p1->pkblk_start = pg_vec[0].buffer;
618 p1->kblk_size = req_u->req3.tp_block_size;
619 p1->knum_blocks = req_u->req3.tp_block_nr;
620 p1->hdrlen = po->tp_hdrlen;
621 p1->version = po->tp_version;
622 p1->last_kactive_blk_num = 0;
623 po->stats.stats3.tp_freeze_q_cnt = 0;
624 if (req_u->req3.tp_retire_blk_tov)
625 p1->retire_blk_tov = req_u->req3.tp_retire_blk_tov;
626 else
627 p1->retire_blk_tov = prb_calc_retire_blk_tmo(po,
628 req_u->req3.tp_block_size);
629 p1->tov_in_jiffies = msecs_to_jiffies(p1->retire_blk_tov);
630 p1->blk_sizeof_priv = req_u->req3.tp_sizeof_priv;
631
632 p1->max_frame_len = p1->kblk_size - BLK_PLUS_PRIV(p1->blk_sizeof_priv);
633 prb_init_ft_ops(p1, req_u);
634 prb_setup_retire_blk_timer(po);
635 prb_open_block(p1, pbd);
636 }
637
638 /* Do NOT update the last_blk_num first.
639 * Assumes sk_buff_head lock is held.
640 */
641 static void _prb_refresh_rx_retire_blk_timer(struct tpacket_kbdq_core *pkc)
642 {
643 mod_timer(&pkc->retire_blk_timer,
644 jiffies + pkc->tov_in_jiffies);
645 pkc->last_kactive_blk_num = pkc->kactive_blk_num;
646 }
647
648 /*
649 * Timer logic:
650 * 1) We refresh the timer only when we open a block.
651 * By doing this we don't waste cycles refreshing the timer
652 * on packet-by-packet basis.
653 *
654 * With a 1MB block-size, on a 1Gbps line, it will take
655 * i) ~8 ms to fill a block + ii) memcpy etc.
656 * In this cut we are not accounting for the memcpy time.
657 *
658 * So, if the user sets the 'tmo' to 10ms then the timer
659 * will never fire while the block is still getting filled
660 * (which is what we want). However, the user could choose
661 * to close a block early and that's fine.
662 *
663 * But when the timer does fire, we check whether or not to refresh it.
664 * Since the tmo granularity is in msecs, it is not too expensive
665 * to refresh the timer, lets say every '8' msecs.
666 * Either the user can set the 'tmo' or we can derive it based on
667 * a) line-speed and b) block-size.
668 * prb_calc_retire_blk_tmo() calculates the tmo.
669 *
670 */
671 static void prb_retire_rx_blk_timer_expired(unsigned long data)
672 {
673 struct packet_sock *po = (struct packet_sock *)data;
674 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
675 unsigned int frozen;
676 struct tpacket_block_desc *pbd;
677
678 spin_lock(&po->sk.sk_receive_queue.lock);
679
680 frozen = prb_queue_frozen(pkc);
681 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
682
683 if (unlikely(pkc->delete_blk_timer))
684 goto out;
685
686 /* We only need to plug the race when the block is partially filled.
687 * tpacket_rcv:
688 * lock(); increment BLOCK_NUM_PKTS; unlock()
689 * copy_bits() is in progress ...
690 * timer fires on other cpu:
691 * we can't retire the current block because copy_bits
692 * is in progress.
693 *
694 */
695 if (BLOCK_NUM_PKTS(pbd)) {
696 while (atomic_read(&pkc->blk_fill_in_prog)) {
697 /* Waiting for skb_copy_bits to finish... */
698 cpu_relax();
699 }
700 }
701
702 if (pkc->last_kactive_blk_num == pkc->kactive_blk_num) {
703 if (!frozen) {
704 if (!BLOCK_NUM_PKTS(pbd)) {
705 /* An empty block. Just refresh the timer. */
706 goto refresh_timer;
707 }
708 prb_retire_current_block(pkc, po, TP_STATUS_BLK_TMO);
709 if (!prb_dispatch_next_block(pkc, po))
710 goto refresh_timer;
711 else
712 goto out;
713 } else {
714 /* Case 1. Queue was frozen because user-space was
715 * lagging behind.
716 */
717 if (prb_curr_blk_in_use(pkc, pbd)) {
718 /*
719 * Ok, user-space is still behind.
720 * So just refresh the timer.
721 */
722 goto refresh_timer;
723 } else {
724 /* Case 2. queue was frozen,user-space caught up,
725 * now the link went idle && the timer fired.
726 * We don't have a block to close.So we open this
727 * block and restart the timer.
728 * opening a block thaws the queue,restarts timer
729 * Thawing/timer-refresh is a side effect.
730 */
731 prb_open_block(pkc, pbd);
732 goto out;
733 }
734 }
735 }
736
737 refresh_timer:
738 _prb_refresh_rx_retire_blk_timer(pkc);
739
740 out:
741 spin_unlock(&po->sk.sk_receive_queue.lock);
742 }
743
744 static void prb_flush_block(struct tpacket_kbdq_core *pkc1,
745 struct tpacket_block_desc *pbd1, __u32 status)
746 {
747 /* Flush everything minus the block header */
748
749 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
750 u8 *start, *end;
751
752 start = (u8 *)pbd1;
753
754 /* Skip the block header(we know header WILL fit in 4K) */
755 start += PAGE_SIZE;
756
757 end = (u8 *)PAGE_ALIGN((unsigned long)pkc1->pkblk_end);
758 for (; start < end; start += PAGE_SIZE)
759 flush_dcache_page(pgv_to_page(start));
760
761 smp_wmb();
762 #endif
763
764 /* Now update the block status. */
765
766 BLOCK_STATUS(pbd1) = status;
767
768 /* Flush the block header */
769
770 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
771 start = (u8 *)pbd1;
772 flush_dcache_page(pgv_to_page(start));
773
774 smp_wmb();
775 #endif
776 }
777
778 /*
779 * Side effect:
780 *
781 * 1) flush the block
782 * 2) Increment active_blk_num
783 *
784 * Note:We DONT refresh the timer on purpose.
785 * Because almost always the next block will be opened.
786 */
787 static void prb_close_block(struct tpacket_kbdq_core *pkc1,
788 struct tpacket_block_desc *pbd1,
789 struct packet_sock *po, unsigned int stat)
790 {
791 __u32 status = TP_STATUS_USER | stat;
792
793 struct tpacket3_hdr *last_pkt;
794 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
795 struct sock *sk = &po->sk;
796
797 if (po->stats.stats3.tp_drops)
798 status |= TP_STATUS_LOSING;
799
800 last_pkt = (struct tpacket3_hdr *)pkc1->prev;
801 last_pkt->tp_next_offset = 0;
802
803 /* Get the ts of the last pkt */
804 if (BLOCK_NUM_PKTS(pbd1)) {
805 h1->ts_last_pkt.ts_sec = last_pkt->tp_sec;
806 h1->ts_last_pkt.ts_nsec = last_pkt->tp_nsec;
807 } else {
808 /* Ok, we tmo'd - so get the current time.
809 *
810 * It shouldn't really happen as we don't close empty
811 * blocks. See prb_retire_rx_blk_timer_expired().
812 */
813 struct timespec ts;
814 getnstimeofday(&ts);
815 h1->ts_last_pkt.ts_sec = ts.tv_sec;
816 h1->ts_last_pkt.ts_nsec = ts.tv_nsec;
817 }
818
819 smp_wmb();
820
821 /* Flush the block */
822 prb_flush_block(pkc1, pbd1, status);
823
824 sk->sk_data_ready(sk);
825
826 pkc1->kactive_blk_num = GET_NEXT_PRB_BLK_NUM(pkc1);
827 }
828
829 static void prb_thaw_queue(struct tpacket_kbdq_core *pkc)
830 {
831 pkc->reset_pending_on_curr_blk = 0;
832 }
833
834 /*
835 * Side effect of opening a block:
836 *
837 * 1) prb_queue is thawed.
838 * 2) retire_blk_timer is refreshed.
839 *
840 */
841 static void prb_open_block(struct tpacket_kbdq_core *pkc1,
842 struct tpacket_block_desc *pbd1)
843 {
844 struct timespec ts;
845 struct tpacket_hdr_v1 *h1 = &pbd1->hdr.bh1;
846
847 smp_rmb();
848
849 /* We could have just memset this but we will lose the
850 * flexibility of making the priv area sticky
851 */
852
853 BLOCK_SNUM(pbd1) = pkc1->knxt_seq_num++;
854 BLOCK_NUM_PKTS(pbd1) = 0;
855 BLOCK_LEN(pbd1) = BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
856
857 getnstimeofday(&ts);
858
859 h1->ts_first_pkt.ts_sec = ts.tv_sec;
860 h1->ts_first_pkt.ts_nsec = ts.tv_nsec;
861
862 pkc1->pkblk_start = (char *)pbd1;
863 pkc1->nxt_offset = pkc1->pkblk_start + BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
864
865 BLOCK_O2FP(pbd1) = (__u32)BLK_PLUS_PRIV(pkc1->blk_sizeof_priv);
866 BLOCK_O2PRIV(pbd1) = BLK_HDR_LEN;
867
868 pbd1->version = pkc1->version;
869 pkc1->prev = pkc1->nxt_offset;
870 pkc1->pkblk_end = pkc1->pkblk_start + pkc1->kblk_size;
871
872 prb_thaw_queue(pkc1);
873 _prb_refresh_rx_retire_blk_timer(pkc1);
874
875 smp_wmb();
876 }
877
878 /*
879 * Queue freeze logic:
880 * 1) Assume tp_block_nr = 8 blocks.
881 * 2) At time 't0', user opens Rx ring.
882 * 3) Some time past 't0', kernel starts filling blocks starting from 0 .. 7
883 * 4) user-space is either sleeping or processing block '0'.
884 * 5) tpacket_rcv is currently filling block '7', since there is no space left,
885 * it will close block-7,loop around and try to fill block '0'.
886 * call-flow:
887 * __packet_lookup_frame_in_block
888 * prb_retire_current_block()
889 * prb_dispatch_next_block()
890 * |->(BLOCK_STATUS == USER) evaluates to true
891 * 5.1) Since block-0 is currently in-use, we just freeze the queue.
892 * 6) Now there are two cases:
893 * 6.1) Link goes idle right after the queue is frozen.
894 * But remember, the last open_block() refreshed the timer.
895 * When this timer expires,it will refresh itself so that we can
896 * re-open block-0 in near future.
897 * 6.2) Link is busy and keeps on receiving packets. This is a simple
898 * case and __packet_lookup_frame_in_block will check if block-0
899 * is free and can now be re-used.
900 */
901 static void prb_freeze_queue(struct tpacket_kbdq_core *pkc,
902 struct packet_sock *po)
903 {
904 pkc->reset_pending_on_curr_blk = 1;
905 po->stats.stats3.tp_freeze_q_cnt++;
906 }
907
908 #define TOTAL_PKT_LEN_INCL_ALIGN(length) (ALIGN((length), V3_ALIGNMENT))
909
910 /*
911 * If the next block is free then we will dispatch it
912 * and return a good offset.
913 * Else, we will freeze the queue.
914 * So, caller must check the return value.
915 */
916 static void *prb_dispatch_next_block(struct tpacket_kbdq_core *pkc,
917 struct packet_sock *po)
918 {
919 struct tpacket_block_desc *pbd;
920
921 smp_rmb();
922
923 /* 1. Get current block num */
924 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
925
926 /* 2. If this block is currently in_use then freeze the queue */
927 if (TP_STATUS_USER & BLOCK_STATUS(pbd)) {
928 prb_freeze_queue(pkc, po);
929 return NULL;
930 }
931
932 /*
933 * 3.
934 * open this block and return the offset where the first packet
935 * needs to get stored.
936 */
937 prb_open_block(pkc, pbd);
938 return (void *)pkc->nxt_offset;
939 }
940
941 static void prb_retire_current_block(struct tpacket_kbdq_core *pkc,
942 struct packet_sock *po, unsigned int status)
943 {
944 struct tpacket_block_desc *pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
945
946 /* retire/close the current block */
947 if (likely(TP_STATUS_KERNEL == BLOCK_STATUS(pbd))) {
948 /*
949 * Plug the case where copy_bits() is in progress on
950 * cpu-0 and tpacket_rcv() got invoked on cpu-1, didn't
951 * have space to copy the pkt in the current block and
952 * called prb_retire_current_block()
953 *
954 * We don't need to worry about the TMO case because
955 * the timer-handler already handled this case.
956 */
957 if (!(status & TP_STATUS_BLK_TMO)) {
958 while (atomic_read(&pkc->blk_fill_in_prog)) {
959 /* Waiting for skb_copy_bits to finish... */
960 cpu_relax();
961 }
962 }
963 prb_close_block(pkc, pbd, po, status);
964 return;
965 }
966 }
967
968 static int prb_curr_blk_in_use(struct tpacket_kbdq_core *pkc,
969 struct tpacket_block_desc *pbd)
970 {
971 return TP_STATUS_USER & BLOCK_STATUS(pbd);
972 }
973
974 static int prb_queue_frozen(struct tpacket_kbdq_core *pkc)
975 {
976 return pkc->reset_pending_on_curr_blk;
977 }
978
979 static void prb_clear_blk_fill_status(struct packet_ring_buffer *rb)
980 {
981 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
982 atomic_dec(&pkc->blk_fill_in_prog);
983 }
984
985 static void prb_fill_rxhash(struct tpacket_kbdq_core *pkc,
986 struct tpacket3_hdr *ppd)
987 {
988 ppd->hv1.tp_rxhash = skb_get_hash(pkc->skb);
989 }
990
991 static void prb_clear_rxhash(struct tpacket_kbdq_core *pkc,
992 struct tpacket3_hdr *ppd)
993 {
994 ppd->hv1.tp_rxhash = 0;
995 }
996
997 static void prb_fill_vlan_info(struct tpacket_kbdq_core *pkc,
998 struct tpacket3_hdr *ppd)
999 {
1000 if (skb_vlan_tag_present(pkc->skb)) {
1001 ppd->hv1.tp_vlan_tci = skb_vlan_tag_get(pkc->skb);
1002 ppd->hv1.tp_vlan_tpid = ntohs(pkc->skb->vlan_proto);
1003 ppd->tp_status = TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
1004 } else {
1005 ppd->hv1.tp_vlan_tci = 0;
1006 ppd->hv1.tp_vlan_tpid = 0;
1007 ppd->tp_status = TP_STATUS_AVAILABLE;
1008 }
1009 }
1010
1011 static void prb_run_all_ft_ops(struct tpacket_kbdq_core *pkc,
1012 struct tpacket3_hdr *ppd)
1013 {
1014 ppd->hv1.tp_padding = 0;
1015 prb_fill_vlan_info(pkc, ppd);
1016
1017 if (pkc->feature_req_word & TP_FT_REQ_FILL_RXHASH)
1018 prb_fill_rxhash(pkc, ppd);
1019 else
1020 prb_clear_rxhash(pkc, ppd);
1021 }
1022
1023 static void prb_fill_curr_block(char *curr,
1024 struct tpacket_kbdq_core *pkc,
1025 struct tpacket_block_desc *pbd,
1026 unsigned int len)
1027 {
1028 struct tpacket3_hdr *ppd;
1029
1030 ppd = (struct tpacket3_hdr *)curr;
1031 ppd->tp_next_offset = TOTAL_PKT_LEN_INCL_ALIGN(len);
1032 pkc->prev = curr;
1033 pkc->nxt_offset += TOTAL_PKT_LEN_INCL_ALIGN(len);
1034 BLOCK_LEN(pbd) += TOTAL_PKT_LEN_INCL_ALIGN(len);
1035 BLOCK_NUM_PKTS(pbd) += 1;
1036 atomic_inc(&pkc->blk_fill_in_prog);
1037 prb_run_all_ft_ops(pkc, ppd);
1038 }
1039
1040 /* Assumes caller has the sk->rx_queue.lock */
1041 static void *__packet_lookup_frame_in_block(struct packet_sock *po,
1042 struct sk_buff *skb,
1043 int status,
1044 unsigned int len
1045 )
1046 {
1047 struct tpacket_kbdq_core *pkc;
1048 struct tpacket_block_desc *pbd;
1049 char *curr, *end;
1050
1051 pkc = GET_PBDQC_FROM_RB(&po->rx_ring);
1052 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1053
1054 /* Queue is frozen when user space is lagging behind */
1055 if (prb_queue_frozen(pkc)) {
1056 /*
1057 * Check if that last block which caused the queue to freeze,
1058 * is still in_use by user-space.
1059 */
1060 if (prb_curr_blk_in_use(pkc, pbd)) {
1061 /* Can't record this packet */
1062 return NULL;
1063 } else {
1064 /*
1065 * Ok, the block was released by user-space.
1066 * Now let's open that block.
1067 * opening a block also thaws the queue.
1068 * Thawing is a side effect.
1069 */
1070 prb_open_block(pkc, pbd);
1071 }
1072 }
1073
1074 smp_mb();
1075 curr = pkc->nxt_offset;
1076 pkc->skb = skb;
1077 end = (char *)pbd + pkc->kblk_size;
1078
1079 /* first try the current block */
1080 if (curr+TOTAL_PKT_LEN_INCL_ALIGN(len) < end) {
1081 prb_fill_curr_block(curr, pkc, pbd, len);
1082 return (void *)curr;
1083 }
1084
1085 /* Ok, close the current block */
1086 prb_retire_current_block(pkc, po, 0);
1087
1088 /* Now, try to dispatch the next block */
1089 curr = (char *)prb_dispatch_next_block(pkc, po);
1090 if (curr) {
1091 pbd = GET_CURR_PBLOCK_DESC_FROM_CORE(pkc);
1092 prb_fill_curr_block(curr, pkc, pbd, len);
1093 return (void *)curr;
1094 }
1095
1096 /*
1097 * No free blocks are available.user_space hasn't caught up yet.
1098 * Queue was just frozen and now this packet will get dropped.
1099 */
1100 return NULL;
1101 }
1102
1103 static void *packet_current_rx_frame(struct packet_sock *po,
1104 struct sk_buff *skb,
1105 int status, unsigned int len)
1106 {
1107 char *curr = NULL;
1108 switch (po->tp_version) {
1109 case TPACKET_V1:
1110 case TPACKET_V2:
1111 curr = packet_lookup_frame(po, &po->rx_ring,
1112 po->rx_ring.head, status);
1113 return curr;
1114 case TPACKET_V3:
1115 return __packet_lookup_frame_in_block(po, skb, status, len);
1116 default:
1117 WARN(1, "TPACKET version not supported\n");
1118 BUG();
1119 return NULL;
1120 }
1121 }
1122
1123 static void *prb_lookup_block(struct packet_sock *po,
1124 struct packet_ring_buffer *rb,
1125 unsigned int idx,
1126 int status)
1127 {
1128 struct tpacket_kbdq_core *pkc = GET_PBDQC_FROM_RB(rb);
1129 struct tpacket_block_desc *pbd = GET_PBLOCK_DESC(pkc, idx);
1130
1131 if (status != BLOCK_STATUS(pbd))
1132 return NULL;
1133 return pbd;
1134 }
1135
1136 static int prb_previous_blk_num(struct packet_ring_buffer *rb)
1137 {
1138 unsigned int prev;
1139 if (rb->prb_bdqc.kactive_blk_num)
1140 prev = rb->prb_bdqc.kactive_blk_num-1;
1141 else
1142 prev = rb->prb_bdqc.knum_blocks-1;
1143 return prev;
1144 }
1145
1146 /* Assumes caller has held the rx_queue.lock */
1147 static void *__prb_previous_block(struct packet_sock *po,
1148 struct packet_ring_buffer *rb,
1149 int status)
1150 {
1151 unsigned int previous = prb_previous_blk_num(rb);
1152 return prb_lookup_block(po, rb, previous, status);
1153 }
1154
1155 static void *packet_previous_rx_frame(struct packet_sock *po,
1156 struct packet_ring_buffer *rb,
1157 int status)
1158 {
1159 if (po->tp_version <= TPACKET_V2)
1160 return packet_previous_frame(po, rb, status);
1161
1162 return __prb_previous_block(po, rb, status);
1163 }
1164
1165 static void packet_increment_rx_head(struct packet_sock *po,
1166 struct packet_ring_buffer *rb)
1167 {
1168 switch (po->tp_version) {
1169 case TPACKET_V1:
1170 case TPACKET_V2:
1171 return packet_increment_head(rb);
1172 case TPACKET_V3:
1173 default:
1174 WARN(1, "TPACKET version not supported.\n");
1175 BUG();
1176 return;
1177 }
1178 }
1179
1180 static void *packet_previous_frame(struct packet_sock *po,
1181 struct packet_ring_buffer *rb,
1182 int status)
1183 {
1184 unsigned int previous = rb->head ? rb->head - 1 : rb->frame_max;
1185 return packet_lookup_frame(po, rb, previous, status);
1186 }
1187
1188 static void packet_increment_head(struct packet_ring_buffer *buff)
1189 {
1190 buff->head = buff->head != buff->frame_max ? buff->head+1 : 0;
1191 }
1192
1193 static void packet_inc_pending(struct packet_ring_buffer *rb)
1194 {
1195 this_cpu_inc(*rb->pending_refcnt);
1196 }
1197
1198 static void packet_dec_pending(struct packet_ring_buffer *rb)
1199 {
1200 this_cpu_dec(*rb->pending_refcnt);
1201 }
1202
1203 static unsigned int packet_read_pending(const struct packet_ring_buffer *rb)
1204 {
1205 unsigned int refcnt = 0;
1206 int cpu;
1207
1208 /* We don't use pending refcount in rx_ring. */
1209 if (rb->pending_refcnt == NULL)
1210 return 0;
1211
1212 for_each_possible_cpu(cpu)
1213 refcnt += *per_cpu_ptr(rb->pending_refcnt, cpu);
1214
1215 return refcnt;
1216 }
1217
1218 static int packet_alloc_pending(struct packet_sock *po)
1219 {
1220 po->rx_ring.pending_refcnt = NULL;
1221
1222 po->tx_ring.pending_refcnt = alloc_percpu(unsigned int);
1223 if (unlikely(po->tx_ring.pending_refcnt == NULL))
1224 return -ENOBUFS;
1225
1226 return 0;
1227 }
1228
1229 static void packet_free_pending(struct packet_sock *po)
1230 {
1231 free_percpu(po->tx_ring.pending_refcnt);
1232 }
1233
1234 #define ROOM_POW_OFF 2
1235 #define ROOM_NONE 0x0
1236 #define ROOM_LOW 0x1
1237 #define ROOM_NORMAL 0x2
1238
1239 static bool __tpacket_has_room(struct packet_sock *po, int pow_off)
1240 {
1241 int idx, len;
1242
1243 len = po->rx_ring.frame_max + 1;
1244 idx = po->rx_ring.head;
1245 if (pow_off)
1246 idx += len >> pow_off;
1247 if (idx >= len)
1248 idx -= len;
1249 return packet_lookup_frame(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1250 }
1251
1252 static bool __tpacket_v3_has_room(struct packet_sock *po, int pow_off)
1253 {
1254 int idx, len;
1255
1256 len = po->rx_ring.prb_bdqc.knum_blocks;
1257 idx = po->rx_ring.prb_bdqc.kactive_blk_num;
1258 if (pow_off)
1259 idx += len >> pow_off;
1260 if (idx >= len)
1261 idx -= len;
1262 return prb_lookup_block(po, &po->rx_ring, idx, TP_STATUS_KERNEL);
1263 }
1264
1265 static int __packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1266 {
1267 struct sock *sk = &po->sk;
1268 int ret = ROOM_NONE;
1269
1270 if (po->prot_hook.func != tpacket_rcv) {
1271 int avail = sk->sk_rcvbuf - atomic_read(&sk->sk_rmem_alloc)
1272 - (skb ? skb->truesize : 0);
1273 if (avail > (sk->sk_rcvbuf >> ROOM_POW_OFF))
1274 return ROOM_NORMAL;
1275 else if (avail > 0)
1276 return ROOM_LOW;
1277 else
1278 return ROOM_NONE;
1279 }
1280
1281 if (po->tp_version == TPACKET_V3) {
1282 if (__tpacket_v3_has_room(po, ROOM_POW_OFF))
1283 ret = ROOM_NORMAL;
1284 else if (__tpacket_v3_has_room(po, 0))
1285 ret = ROOM_LOW;
1286 } else {
1287 if (__tpacket_has_room(po, ROOM_POW_OFF))
1288 ret = ROOM_NORMAL;
1289 else if (__tpacket_has_room(po, 0))
1290 ret = ROOM_LOW;
1291 }
1292
1293 return ret;
1294 }
1295
1296 static int packet_rcv_has_room(struct packet_sock *po, struct sk_buff *skb)
1297 {
1298 int ret;
1299 bool has_room;
1300
1301 spin_lock_bh(&po->sk.sk_receive_queue.lock);
1302 ret = __packet_rcv_has_room(po, skb);
1303 has_room = ret == ROOM_NORMAL;
1304 if (po->pressure == has_room)
1305 po->pressure = !has_room;
1306 spin_unlock_bh(&po->sk.sk_receive_queue.lock);
1307
1308 return ret;
1309 }
1310
1311 static void packet_sock_destruct(struct sock *sk)
1312 {
1313 skb_queue_purge(&sk->sk_error_queue);
1314
1315 WARN_ON(atomic_read(&sk->sk_rmem_alloc));
1316 WARN_ON(atomic_read(&sk->sk_wmem_alloc));
1317
1318 if (!sock_flag(sk, SOCK_DEAD)) {
1319 pr_err("Attempt to release alive packet socket: %p\n", sk);
1320 return;
1321 }
1322
1323 sk_refcnt_debug_dec(sk);
1324 }
1325
1326 static bool fanout_flow_is_huge(struct packet_sock *po, struct sk_buff *skb)
1327 {
1328 u32 rxhash;
1329 int i, count = 0;
1330
1331 rxhash = skb_get_hash(skb);
1332 for (i = 0; i < ROLLOVER_HLEN; i++)
1333 if (po->rollover->history[i] == rxhash)
1334 count++;
1335
1336 po->rollover->history[prandom_u32() % ROLLOVER_HLEN] = rxhash;
1337 return count > (ROLLOVER_HLEN >> 1);
1338 }
1339
1340 static unsigned int fanout_demux_hash(struct packet_fanout *f,
1341 struct sk_buff *skb,
1342 unsigned int num)
1343 {
1344 return reciprocal_scale(skb_get_hash(skb), num);
1345 }
1346
1347 static unsigned int fanout_demux_lb(struct packet_fanout *f,
1348 struct sk_buff *skb,
1349 unsigned int num)
1350 {
1351 unsigned int val = atomic_inc_return(&f->rr_cur);
1352
1353 return val % num;
1354 }
1355
1356 static unsigned int fanout_demux_cpu(struct packet_fanout *f,
1357 struct sk_buff *skb,
1358 unsigned int num)
1359 {
1360 return smp_processor_id() % num;
1361 }
1362
1363 static unsigned int fanout_demux_rnd(struct packet_fanout *f,
1364 struct sk_buff *skb,
1365 unsigned int num)
1366 {
1367 return prandom_u32_max(num);
1368 }
1369
1370 static unsigned int fanout_demux_rollover(struct packet_fanout *f,
1371 struct sk_buff *skb,
1372 unsigned int idx, bool try_self,
1373 unsigned int num)
1374 {
1375 struct packet_sock *po, *po_next, *po_skip = NULL;
1376 unsigned int i, j, room = ROOM_NONE;
1377
1378 po = pkt_sk(f->arr[idx]);
1379
1380 if (try_self) {
1381 room = packet_rcv_has_room(po, skb);
1382 if (room == ROOM_NORMAL ||
1383 (room == ROOM_LOW && !fanout_flow_is_huge(po, skb)))
1384 return idx;
1385 po_skip = po;
1386 }
1387
1388 i = j = min_t(int, po->rollover->sock, num - 1);
1389 do {
1390 po_next = pkt_sk(f->arr[i]);
1391 if (po_next != po_skip && !po_next->pressure &&
1392 packet_rcv_has_room(po_next, skb) == ROOM_NORMAL) {
1393 if (i != j)
1394 po->rollover->sock = i;
1395 atomic_long_inc(&po->rollover->num);
1396 if (room == ROOM_LOW)
1397 atomic_long_inc(&po->rollover->num_huge);
1398 return i;
1399 }
1400
1401 if (++i == num)
1402 i = 0;
1403 } while (i != j);
1404
1405 atomic_long_inc(&po->rollover->num_failed);
1406 return idx;
1407 }
1408
1409 static unsigned int fanout_demux_qm(struct packet_fanout *f,
1410 struct sk_buff *skb,
1411 unsigned int num)
1412 {
1413 return skb_get_queue_mapping(skb) % num;
1414 }
1415
1416 static unsigned int fanout_demux_bpf(struct packet_fanout *f,
1417 struct sk_buff *skb,
1418 unsigned int num)
1419 {
1420 struct bpf_prog *prog;
1421 unsigned int ret = 0;
1422
1423 rcu_read_lock();
1424 prog = rcu_dereference(f->bpf_prog);
1425 if (prog)
1426 ret = BPF_PROG_RUN(prog, skb) % num;
1427 rcu_read_unlock();
1428
1429 return ret;
1430 }
1431
1432 static bool fanout_has_flag(struct packet_fanout *f, u16 flag)
1433 {
1434 return f->flags & (flag >> 8);
1435 }
1436
1437 static int packet_rcv_fanout(struct sk_buff *skb, struct net_device *dev,
1438 struct packet_type *pt, struct net_device *orig_dev)
1439 {
1440 struct packet_fanout *f = pt->af_packet_priv;
1441 unsigned int num = READ_ONCE(f->num_members);
1442 struct packet_sock *po;
1443 unsigned int idx;
1444
1445 if (!net_eq(dev_net(dev), read_pnet(&f->net)) ||
1446 !num) {
1447 kfree_skb(skb);
1448 return 0;
1449 }
1450
1451 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_DEFRAG)) {
1452 skb = ip_check_defrag(skb, IP_DEFRAG_AF_PACKET);
1453 if (!skb)
1454 return 0;
1455 }
1456 switch (f->type) {
1457 case PACKET_FANOUT_HASH:
1458 default:
1459 idx = fanout_demux_hash(f, skb, num);
1460 break;
1461 case PACKET_FANOUT_LB:
1462 idx = fanout_demux_lb(f, skb, num);
1463 break;
1464 case PACKET_FANOUT_CPU:
1465 idx = fanout_demux_cpu(f, skb, num);
1466 break;
1467 case PACKET_FANOUT_RND:
1468 idx = fanout_demux_rnd(f, skb, num);
1469 break;
1470 case PACKET_FANOUT_QM:
1471 idx = fanout_demux_qm(f, skb, num);
1472 break;
1473 case PACKET_FANOUT_ROLLOVER:
1474 idx = fanout_demux_rollover(f, skb, 0, false, num);
1475 break;
1476 case PACKET_FANOUT_CBPF:
1477 case PACKET_FANOUT_EBPF:
1478 idx = fanout_demux_bpf(f, skb, num);
1479 break;
1480 }
1481
1482 if (fanout_has_flag(f, PACKET_FANOUT_FLAG_ROLLOVER))
1483 idx = fanout_demux_rollover(f, skb, idx, true, num);
1484
1485 po = pkt_sk(f->arr[idx]);
1486 return po->prot_hook.func(skb, dev, &po->prot_hook, orig_dev);
1487 }
1488
1489 DEFINE_MUTEX(fanout_mutex);
1490 EXPORT_SYMBOL_GPL(fanout_mutex);
1491 static LIST_HEAD(fanout_list);
1492
1493 static void __fanout_link(struct sock *sk, struct packet_sock *po)
1494 {
1495 struct packet_fanout *f = po->fanout;
1496
1497 spin_lock(&f->lock);
1498 f->arr[f->num_members] = sk;
1499 smp_wmb();
1500 f->num_members++;
1501 spin_unlock(&f->lock);
1502 }
1503
1504 static void __fanout_unlink(struct sock *sk, struct packet_sock *po)
1505 {
1506 struct packet_fanout *f = po->fanout;
1507 int i;
1508
1509 spin_lock(&f->lock);
1510 for (i = 0; i < f->num_members; i++) {
1511 if (f->arr[i] == sk)
1512 break;
1513 }
1514 BUG_ON(i >= f->num_members);
1515 f->arr[i] = f->arr[f->num_members - 1];
1516 f->num_members--;
1517 spin_unlock(&f->lock);
1518 }
1519
1520 static bool match_fanout_group(struct packet_type *ptype, struct sock *sk)
1521 {
1522 if (ptype->af_packet_priv == (void *)((struct packet_sock *)sk)->fanout)
1523 return true;
1524
1525 return false;
1526 }
1527
1528 static void fanout_init_data(struct packet_fanout *f)
1529 {
1530 switch (f->type) {
1531 case PACKET_FANOUT_LB:
1532 atomic_set(&f->rr_cur, 0);
1533 break;
1534 case PACKET_FANOUT_CBPF:
1535 case PACKET_FANOUT_EBPF:
1536 RCU_INIT_POINTER(f->bpf_prog, NULL);
1537 break;
1538 }
1539 }
1540
1541 static void __fanout_set_data_bpf(struct packet_fanout *f, struct bpf_prog *new)
1542 {
1543 struct bpf_prog *old;
1544
1545 spin_lock(&f->lock);
1546 old = rcu_dereference_protected(f->bpf_prog, lockdep_is_held(&f->lock));
1547 rcu_assign_pointer(f->bpf_prog, new);
1548 spin_unlock(&f->lock);
1549
1550 if (old) {
1551 synchronize_net();
1552 bpf_prog_destroy(old);
1553 }
1554 }
1555
1556 static int fanout_set_data_cbpf(struct packet_sock *po, char __user *data,
1557 unsigned int len)
1558 {
1559 struct bpf_prog *new;
1560 struct sock_fprog fprog;
1561 int ret;
1562
1563 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1564 return -EPERM;
1565 if (len != sizeof(fprog))
1566 return -EINVAL;
1567 if (copy_from_user(&fprog, data, len))
1568 return -EFAULT;
1569
1570 ret = bpf_prog_create_from_user(&new, &fprog, NULL);
1571 if (ret)
1572 return ret;
1573
1574 __fanout_set_data_bpf(po->fanout, new);
1575 return 0;
1576 }
1577
1578 static int fanout_set_data_ebpf(struct packet_sock *po, char __user *data,
1579 unsigned int len)
1580 {
1581 struct bpf_prog *new;
1582 u32 fd;
1583
1584 if (sock_flag(&po->sk, SOCK_FILTER_LOCKED))
1585 return -EPERM;
1586 if (len != sizeof(fd))
1587 return -EINVAL;
1588 if (copy_from_user(&fd, data, len))
1589 return -EFAULT;
1590
1591 new = bpf_prog_get(fd);
1592 if (IS_ERR(new))
1593 return PTR_ERR(new);
1594 if (new->type != BPF_PROG_TYPE_SOCKET_FILTER) {
1595 bpf_prog_put(new);
1596 return -EINVAL;
1597 }
1598
1599 __fanout_set_data_bpf(po->fanout, new);
1600 return 0;
1601 }
1602
1603 static int fanout_set_data(struct packet_sock *po, char __user *data,
1604 unsigned int len)
1605 {
1606 switch (po->fanout->type) {
1607 case PACKET_FANOUT_CBPF:
1608 return fanout_set_data_cbpf(po, data, len);
1609 case PACKET_FANOUT_EBPF:
1610 return fanout_set_data_ebpf(po, data, len);
1611 default:
1612 return -EINVAL;
1613 };
1614 }
1615
1616 static void fanout_release_data(struct packet_fanout *f)
1617 {
1618 switch (f->type) {
1619 case PACKET_FANOUT_CBPF:
1620 case PACKET_FANOUT_EBPF:
1621 __fanout_set_data_bpf(f, NULL);
1622 };
1623 }
1624
1625 static int fanout_add(struct sock *sk, u16 id, u16 type_flags)
1626 {
1627 struct packet_sock *po = pkt_sk(sk);
1628 struct packet_fanout *f, *match;
1629 u8 type = type_flags & 0xff;
1630 u8 flags = type_flags >> 8;
1631 int err;
1632
1633 switch (type) {
1634 case PACKET_FANOUT_ROLLOVER:
1635 if (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)
1636 return -EINVAL;
1637 case PACKET_FANOUT_HASH:
1638 case PACKET_FANOUT_LB:
1639 case PACKET_FANOUT_CPU:
1640 case PACKET_FANOUT_RND:
1641 case PACKET_FANOUT_QM:
1642 case PACKET_FANOUT_CBPF:
1643 case PACKET_FANOUT_EBPF:
1644 break;
1645 default:
1646 return -EINVAL;
1647 }
1648
1649 if (!po->running)
1650 return -EINVAL;
1651
1652 if (po->fanout)
1653 return -EALREADY;
1654
1655 if (type == PACKET_FANOUT_ROLLOVER ||
1656 (type_flags & PACKET_FANOUT_FLAG_ROLLOVER)) {
1657 po->rollover = kzalloc(sizeof(*po->rollover), GFP_KERNEL);
1658 if (!po->rollover)
1659 return -ENOMEM;
1660 atomic_long_set(&po->rollover->num, 0);
1661 atomic_long_set(&po->rollover->num_huge, 0);
1662 atomic_long_set(&po->rollover->num_failed, 0);
1663 }
1664
1665 mutex_lock(&fanout_mutex);
1666 match = NULL;
1667 list_for_each_entry(f, &fanout_list, list) {
1668 if (f->id == id &&
1669 read_pnet(&f->net) == sock_net(sk)) {
1670 match = f;
1671 break;
1672 }
1673 }
1674 err = -EINVAL;
1675 if (match && match->flags != flags)
1676 goto out;
1677 if (!match) {
1678 err = -ENOMEM;
1679 match = kzalloc(sizeof(*match), GFP_KERNEL);
1680 if (!match)
1681 goto out;
1682 write_pnet(&match->net, sock_net(sk));
1683 match->id = id;
1684 match->type = type;
1685 match->flags = flags;
1686 INIT_LIST_HEAD(&match->list);
1687 spin_lock_init(&match->lock);
1688 atomic_set(&match->sk_ref, 0);
1689 fanout_init_data(match);
1690 match->prot_hook.type = po->prot_hook.type;
1691 match->prot_hook.dev = po->prot_hook.dev;
1692 match->prot_hook.func = packet_rcv_fanout;
1693 match->prot_hook.af_packet_priv = match;
1694 match->prot_hook.id_match = match_fanout_group;
1695 dev_add_pack(&match->prot_hook);
1696 list_add(&match->list, &fanout_list);
1697 }
1698 err = -EINVAL;
1699 if (match->type == type &&
1700 match->prot_hook.type == po->prot_hook.type &&
1701 match->prot_hook.dev == po->prot_hook.dev) {
1702 err = -ENOSPC;
1703 if (atomic_read(&match->sk_ref) < PACKET_FANOUT_MAX) {
1704 __dev_remove_pack(&po->prot_hook);
1705 po->fanout = match;
1706 atomic_inc(&match->sk_ref);
1707 __fanout_link(sk, po);
1708 err = 0;
1709 }
1710 }
1711 out:
1712 mutex_unlock(&fanout_mutex);
1713 if (err) {
1714 kfree(po->rollover);
1715 po->rollover = NULL;
1716 }
1717 return err;
1718 }
1719
1720 static void fanout_release(struct sock *sk)
1721 {
1722 struct packet_sock *po = pkt_sk(sk);
1723 struct packet_fanout *f;
1724
1725 f = po->fanout;
1726 if (!f)
1727 return;
1728
1729 mutex_lock(&fanout_mutex);
1730 po->fanout = NULL;
1731
1732 if (atomic_dec_and_test(&f->sk_ref)) {
1733 list_del(&f->list);
1734 dev_remove_pack(&f->prot_hook);
1735 fanout_release_data(f);
1736 kfree(f);
1737 }
1738 mutex_unlock(&fanout_mutex);
1739
1740 if (po->rollover)
1741 kfree_rcu(po->rollover, rcu);
1742 }
1743
1744 static const struct proto_ops packet_ops;
1745
1746 static const struct proto_ops packet_ops_spkt;
1747
1748 static int packet_rcv_spkt(struct sk_buff *skb, struct net_device *dev,
1749 struct packet_type *pt, struct net_device *orig_dev)
1750 {
1751 struct sock *sk;
1752 struct sockaddr_pkt *spkt;
1753
1754 /*
1755 * When we registered the protocol we saved the socket in the data
1756 * field for just this event.
1757 */
1758
1759 sk = pt->af_packet_priv;
1760
1761 /*
1762 * Yank back the headers [hope the device set this
1763 * right or kerboom...]
1764 *
1765 * Incoming packets have ll header pulled,
1766 * push it back.
1767 *
1768 * For outgoing ones skb->data == skb_mac_header(skb)
1769 * so that this procedure is noop.
1770 */
1771
1772 if (skb->pkt_type == PACKET_LOOPBACK)
1773 goto out;
1774
1775 if (!net_eq(dev_net(dev), sock_net(sk)))
1776 goto out;
1777
1778 skb = skb_share_check(skb, GFP_ATOMIC);
1779 if (skb == NULL)
1780 goto oom;
1781
1782 /* drop any routing info */
1783 skb_dst_drop(skb);
1784
1785 /* drop conntrack reference */
1786 nf_reset(skb);
1787
1788 spkt = &PACKET_SKB_CB(skb)->sa.pkt;
1789
1790 skb_push(skb, skb->data - skb_mac_header(skb));
1791
1792 /*
1793 * The SOCK_PACKET socket receives _all_ frames.
1794 */
1795
1796 spkt->spkt_family = dev->type;
1797 strlcpy(spkt->spkt_device, dev->name, sizeof(spkt->spkt_device));
1798 spkt->spkt_protocol = skb->protocol;
1799
1800 /*
1801 * Charge the memory to the socket. This is done specifically
1802 * to prevent sockets using all the memory up.
1803 */
1804
1805 if (sock_queue_rcv_skb(sk, skb) == 0)
1806 return 0;
1807
1808 out:
1809 kfree_skb(skb);
1810 oom:
1811 return 0;
1812 }
1813
1814
1815 /*
1816 * Output a raw packet to a device layer. This bypasses all the other
1817 * protocol layers and you must therefore supply it with a complete frame
1818 */
1819
1820 static int packet_sendmsg_spkt(struct socket *sock, struct msghdr *msg,
1821 size_t len)
1822 {
1823 struct sock *sk = sock->sk;
1824 DECLARE_SOCKADDR(struct sockaddr_pkt *, saddr, msg->msg_name);
1825 struct sk_buff *skb = NULL;
1826 struct net_device *dev;
1827 __be16 proto = 0;
1828 int err;
1829 int extra_len = 0;
1830
1831 /*
1832 * Get and verify the address.
1833 */
1834
1835 if (saddr) {
1836 if (msg->msg_namelen < sizeof(struct sockaddr))
1837 return -EINVAL;
1838 if (msg->msg_namelen == sizeof(struct sockaddr_pkt))
1839 proto = saddr->spkt_protocol;
1840 } else
1841 return -ENOTCONN; /* SOCK_PACKET must be sent giving an address */
1842
1843 /*
1844 * Find the device first to size check it
1845 */
1846
1847 saddr->spkt_device[sizeof(saddr->spkt_device) - 1] = 0;
1848 retry:
1849 rcu_read_lock();
1850 dev = dev_get_by_name_rcu(sock_net(sk), saddr->spkt_device);
1851 err = -ENODEV;
1852 if (dev == NULL)
1853 goto out_unlock;
1854
1855 err = -ENETDOWN;
1856 if (!(dev->flags & IFF_UP))
1857 goto out_unlock;
1858
1859 /*
1860 * You may not queue a frame bigger than the mtu. This is the lowest level
1861 * raw protocol and you must do your own fragmentation at this level.
1862 */
1863
1864 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
1865 if (!netif_supports_nofcs(dev)) {
1866 err = -EPROTONOSUPPORT;
1867 goto out_unlock;
1868 }
1869 extra_len = 4; /* We're doing our own CRC */
1870 }
1871
1872 err = -EMSGSIZE;
1873 if (len > dev->mtu + dev->hard_header_len + VLAN_HLEN + extra_len)
1874 goto out_unlock;
1875
1876 if (!skb) {
1877 size_t reserved = LL_RESERVED_SPACE(dev);
1878 int tlen = dev->needed_tailroom;
1879 unsigned int hhlen = dev->header_ops ? dev->hard_header_len : 0;
1880
1881 rcu_read_unlock();
1882 skb = sock_wmalloc(sk, len + reserved + tlen, 0, GFP_KERNEL);
1883 if (skb == NULL)
1884 return -ENOBUFS;
1885 /* FIXME: Save some space for broken drivers that write a hard
1886 * header at transmission time by themselves. PPP is the notable
1887 * one here. This should really be fixed at the driver level.
1888 */
1889 skb_reserve(skb, reserved);
1890 skb_reset_network_header(skb);
1891
1892 /* Try to align data part correctly */
1893 if (hhlen) {
1894 skb->data -= hhlen;
1895 skb->tail -= hhlen;
1896 if (len < hhlen)
1897 skb_reset_network_header(skb);
1898 }
1899 err = memcpy_from_msg(skb_put(skb, len), msg, len);
1900 if (err)
1901 goto out_free;
1902 goto retry;
1903 }
1904
1905 if (len > (dev->mtu + dev->hard_header_len + extra_len)) {
1906 /* Earlier code assumed this would be a VLAN pkt,
1907 * double-check this now that we have the actual
1908 * packet in hand.
1909 */
1910 struct ethhdr *ehdr;
1911 skb_reset_mac_header(skb);
1912 ehdr = eth_hdr(skb);
1913 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
1914 err = -EMSGSIZE;
1915 goto out_unlock;
1916 }
1917 }
1918
1919 skb->protocol = proto;
1920 skb->dev = dev;
1921 skb->priority = sk->sk_priority;
1922 skb->mark = sk->sk_mark;
1923
1924 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
1925
1926 if (unlikely(extra_len == 4))
1927 skb->no_fcs = 1;
1928
1929 skb_probe_transport_header(skb, 0);
1930
1931 dev_queue_xmit(skb);
1932 rcu_read_unlock();
1933 return len;
1934
1935 out_unlock:
1936 rcu_read_unlock();
1937 out_free:
1938 kfree_skb(skb);
1939 return err;
1940 }
1941
1942 static unsigned int run_filter(const struct sk_buff *skb,
1943 const struct sock *sk,
1944 unsigned int res)
1945 {
1946 struct sk_filter *filter;
1947
1948 rcu_read_lock();
1949 filter = rcu_dereference(sk->sk_filter);
1950 if (filter != NULL)
1951 res = SK_RUN_FILTER(filter, skb);
1952 rcu_read_unlock();
1953
1954 return res;
1955 }
1956
1957 /*
1958 * This function makes lazy skb cloning in hope that most of packets
1959 * are discarded by BPF.
1960 *
1961 * Note tricky part: we DO mangle shared skb! skb->data, skb->len
1962 * and skb->cb are mangled. It works because (and until) packets
1963 * falling here are owned by current CPU. Output packets are cloned
1964 * by dev_queue_xmit_nit(), input packets are processed by net_bh
1965 * sequencially, so that if we return skb to original state on exit,
1966 * we will not harm anyone.
1967 */
1968
1969 static int packet_rcv(struct sk_buff *skb, struct net_device *dev,
1970 struct packet_type *pt, struct net_device *orig_dev)
1971 {
1972 struct sock *sk;
1973 struct sockaddr_ll *sll;
1974 struct packet_sock *po;
1975 u8 *skb_head = skb->data;
1976 int skb_len = skb->len;
1977 unsigned int snaplen, res;
1978
1979 if (skb->pkt_type == PACKET_LOOPBACK)
1980 goto drop;
1981
1982 sk = pt->af_packet_priv;
1983 po = pkt_sk(sk);
1984
1985 if (!net_eq(dev_net(dev), sock_net(sk)))
1986 goto drop;
1987
1988 skb->dev = dev;
1989
1990 if (dev->header_ops) {
1991 /* The device has an explicit notion of ll header,
1992 * exported to higher levels.
1993 *
1994 * Otherwise, the device hides details of its frame
1995 * structure, so that corresponding packet head is
1996 * never delivered to user.
1997 */
1998 if (sk->sk_type != SOCK_DGRAM)
1999 skb_push(skb, skb->data - skb_mac_header(skb));
2000 else if (skb->pkt_type == PACKET_OUTGOING) {
2001 /* Special case: outgoing packets have ll header at head */
2002 skb_pull(skb, skb_network_offset(skb));
2003 }
2004 }
2005
2006 snaplen = skb->len;
2007
2008 res = run_filter(skb, sk, snaplen);
2009 if (!res)
2010 goto drop_n_restore;
2011 if (snaplen > res)
2012 snaplen = res;
2013
2014 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
2015 goto drop_n_acct;
2016
2017 if (skb_shared(skb)) {
2018 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2019 if (nskb == NULL)
2020 goto drop_n_acct;
2021
2022 if (skb_head != skb->data) {
2023 skb->data = skb_head;
2024 skb->len = skb_len;
2025 }
2026 consume_skb(skb);
2027 skb = nskb;
2028 }
2029
2030 sock_skb_cb_check_size(sizeof(*PACKET_SKB_CB(skb)) + MAX_ADDR_LEN - 8);
2031
2032 sll = &PACKET_SKB_CB(skb)->sa.ll;
2033 sll->sll_hatype = dev->type;
2034 sll->sll_pkttype = skb->pkt_type;
2035 if (unlikely(po->origdev))
2036 sll->sll_ifindex = orig_dev->ifindex;
2037 else
2038 sll->sll_ifindex = dev->ifindex;
2039
2040 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2041
2042 /* sll->sll_family and sll->sll_protocol are set in packet_recvmsg().
2043 * Use their space for storing the original skb length.
2044 */
2045 PACKET_SKB_CB(skb)->sa.origlen = skb->len;
2046
2047 if (pskb_trim(skb, snaplen))
2048 goto drop_n_acct;
2049
2050 skb_set_owner_r(skb, sk);
2051 skb->dev = NULL;
2052 skb_dst_drop(skb);
2053
2054 /* drop conntrack reference */
2055 nf_reset(skb);
2056
2057 spin_lock(&sk->sk_receive_queue.lock);
2058 po->stats.stats1.tp_packets++;
2059 sock_skb_set_dropcount(sk, skb);
2060 __skb_queue_tail(&sk->sk_receive_queue, skb);
2061 spin_unlock(&sk->sk_receive_queue.lock);
2062 sk->sk_data_ready(sk);
2063 return 0;
2064
2065 drop_n_acct:
2066 spin_lock(&sk->sk_receive_queue.lock);
2067 po->stats.stats1.tp_drops++;
2068 atomic_inc(&sk->sk_drops);
2069 spin_unlock(&sk->sk_receive_queue.lock);
2070
2071 drop_n_restore:
2072 if (skb_head != skb->data && skb_shared(skb)) {
2073 skb->data = skb_head;
2074 skb->len = skb_len;
2075 }
2076 drop:
2077 consume_skb(skb);
2078 return 0;
2079 }
2080
2081 static int tpacket_rcv(struct sk_buff *skb, struct net_device *dev,
2082 struct packet_type *pt, struct net_device *orig_dev)
2083 {
2084 struct sock *sk;
2085 struct packet_sock *po;
2086 struct sockaddr_ll *sll;
2087 union tpacket_uhdr h;
2088 u8 *skb_head = skb->data;
2089 int skb_len = skb->len;
2090 unsigned int snaplen, res;
2091 unsigned long status = TP_STATUS_USER;
2092 unsigned short macoff, netoff, hdrlen;
2093 struct sk_buff *copy_skb = NULL;
2094 struct timespec ts;
2095 __u32 ts_status;
2096
2097 /* struct tpacket{2,3}_hdr is aligned to a multiple of TPACKET_ALIGNMENT.
2098 * We may add members to them until current aligned size without forcing
2099 * userspace to call getsockopt(..., PACKET_HDRLEN, ...).
2100 */
2101 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h2)) != 32);
2102 BUILD_BUG_ON(TPACKET_ALIGN(sizeof(*h.h3)) != 48);
2103
2104 if (skb->pkt_type == PACKET_LOOPBACK)
2105 goto drop;
2106
2107 sk = pt->af_packet_priv;
2108 po = pkt_sk(sk);
2109
2110 if (!net_eq(dev_net(dev), sock_net(sk)))
2111 goto drop;
2112
2113 if (dev->header_ops) {
2114 if (sk->sk_type != SOCK_DGRAM)
2115 skb_push(skb, skb->data - skb_mac_header(skb));
2116 else if (skb->pkt_type == PACKET_OUTGOING) {
2117 /* Special case: outgoing packets have ll header at head */
2118 skb_pull(skb, skb_network_offset(skb));
2119 }
2120 }
2121
2122 snaplen = skb->len;
2123
2124 res = run_filter(skb, sk, snaplen);
2125 if (!res)
2126 goto drop_n_restore;
2127
2128 if (skb->ip_summed == CHECKSUM_PARTIAL)
2129 status |= TP_STATUS_CSUMNOTREADY;
2130 else if (skb->pkt_type != PACKET_OUTGOING &&
2131 (skb->ip_summed == CHECKSUM_COMPLETE ||
2132 skb_csum_unnecessary(skb)))
2133 status |= TP_STATUS_CSUM_VALID;
2134
2135 if (snaplen > res)
2136 snaplen = res;
2137
2138 if (sk->sk_type == SOCK_DGRAM) {
2139 macoff = netoff = TPACKET_ALIGN(po->tp_hdrlen) + 16 +
2140 po->tp_reserve;
2141 } else {
2142 unsigned int maclen = skb_network_offset(skb);
2143 netoff = TPACKET_ALIGN(po->tp_hdrlen +
2144 (maclen < 16 ? 16 : maclen)) +
2145 po->tp_reserve;
2146 macoff = netoff - maclen;
2147 }
2148 if (po->tp_version <= TPACKET_V2) {
2149 if (macoff + snaplen > po->rx_ring.frame_size) {
2150 if (po->copy_thresh &&
2151 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
2152 if (skb_shared(skb)) {
2153 copy_skb = skb_clone(skb, GFP_ATOMIC);
2154 } else {
2155 copy_skb = skb_get(skb);
2156 skb_head = skb->data;
2157 }
2158 if (copy_skb)
2159 skb_set_owner_r(copy_skb, sk);
2160 }
2161 snaplen = po->rx_ring.frame_size - macoff;
2162 if ((int)snaplen < 0)
2163 snaplen = 0;
2164 }
2165 } else if (unlikely(macoff + snaplen >
2166 GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len)) {
2167 u32 nval;
2168
2169 nval = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len - macoff;
2170 pr_err_once("tpacket_rcv: packet too big, clamped from %u to %u. macoff=%u\n",
2171 snaplen, nval, macoff);
2172 snaplen = nval;
2173 if (unlikely((int)snaplen < 0)) {
2174 snaplen = 0;
2175 macoff = GET_PBDQC_FROM_RB(&po->rx_ring)->max_frame_len;
2176 }
2177 }
2178 spin_lock(&sk->sk_receive_queue.lock);
2179 h.raw = packet_current_rx_frame(po, skb,
2180 TP_STATUS_KERNEL, (macoff+snaplen));
2181 if (!h.raw)
2182 goto ring_is_full;
2183 if (po->tp_version <= TPACKET_V2) {
2184 packet_increment_rx_head(po, &po->rx_ring);
2185 /*
2186 * LOSING will be reported till you read the stats,
2187 * because it's COR - Clear On Read.
2188 * Anyways, moving it for V1/V2 only as V3 doesn't need this
2189 * at packet level.
2190 */
2191 if (po->stats.stats1.tp_drops)
2192 status |= TP_STATUS_LOSING;
2193 }
2194 po->stats.stats1.tp_packets++;
2195 if (copy_skb) {
2196 status |= TP_STATUS_COPY;
2197 __skb_queue_tail(&sk->sk_receive_queue, copy_skb);
2198 }
2199 spin_unlock(&sk->sk_receive_queue.lock);
2200
2201 skb_copy_bits(skb, 0, h.raw + macoff, snaplen);
2202
2203 if (!(ts_status = tpacket_get_timestamp(skb, &ts, po->tp_tstamp)))
2204 getnstimeofday(&ts);
2205
2206 status |= ts_status;
2207
2208 switch (po->tp_version) {
2209 case TPACKET_V1:
2210 h.h1->tp_len = skb->len;
2211 h.h1->tp_snaplen = snaplen;
2212 h.h1->tp_mac = macoff;
2213 h.h1->tp_net = netoff;
2214 h.h1->tp_sec = ts.tv_sec;
2215 h.h1->tp_usec = ts.tv_nsec / NSEC_PER_USEC;
2216 hdrlen = sizeof(*h.h1);
2217 break;
2218 case TPACKET_V2:
2219 h.h2->tp_len = skb->len;
2220 h.h2->tp_snaplen = snaplen;
2221 h.h2->tp_mac = macoff;
2222 h.h2->tp_net = netoff;
2223 h.h2->tp_sec = ts.tv_sec;
2224 h.h2->tp_nsec = ts.tv_nsec;
2225 if (skb_vlan_tag_present(skb)) {
2226 h.h2->tp_vlan_tci = skb_vlan_tag_get(skb);
2227 h.h2->tp_vlan_tpid = ntohs(skb->vlan_proto);
2228 status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
2229 } else {
2230 h.h2->tp_vlan_tci = 0;
2231 h.h2->tp_vlan_tpid = 0;
2232 }
2233 memset(h.h2->tp_padding, 0, sizeof(h.h2->tp_padding));
2234 hdrlen = sizeof(*h.h2);
2235 break;
2236 case TPACKET_V3:
2237 /* tp_nxt_offset,vlan are already populated above.
2238 * So DONT clear those fields here
2239 */
2240 h.h3->tp_status |= status;
2241 h.h3->tp_len = skb->len;
2242 h.h3->tp_snaplen = snaplen;
2243 h.h3->tp_mac = macoff;
2244 h.h3->tp_net = netoff;
2245 h.h3->tp_sec = ts.tv_sec;
2246 h.h3->tp_nsec = ts.tv_nsec;
2247 memset(h.h3->tp_padding, 0, sizeof(h.h3->tp_padding));
2248 hdrlen = sizeof(*h.h3);
2249 break;
2250 default:
2251 BUG();
2252 }
2253
2254 sll = h.raw + TPACKET_ALIGN(hdrlen);
2255 sll->sll_halen = dev_parse_header(skb, sll->sll_addr);
2256 sll->sll_family = AF_PACKET;
2257 sll->sll_hatype = dev->type;
2258 sll->sll_protocol = skb->protocol;
2259 sll->sll_pkttype = skb->pkt_type;
2260 if (unlikely(po->origdev))
2261 sll->sll_ifindex = orig_dev->ifindex;
2262 else
2263 sll->sll_ifindex = dev->ifindex;
2264
2265 smp_mb();
2266
2267 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE == 1
2268 if (po->tp_version <= TPACKET_V2) {
2269 u8 *start, *end;
2270
2271 end = (u8 *) PAGE_ALIGN((unsigned long) h.raw +
2272 macoff + snaplen);
2273
2274 for (start = h.raw; start < end; start += PAGE_SIZE)
2275 flush_dcache_page(pgv_to_page(start));
2276 }
2277 smp_wmb();
2278 #endif
2279
2280 if (po->tp_version <= TPACKET_V2) {
2281 __packet_set_status(po, h.raw, status);
2282 sk->sk_data_ready(sk);
2283 } else {
2284 prb_clear_blk_fill_status(&po->rx_ring);
2285 }
2286
2287 drop_n_restore:
2288 if (skb_head != skb->data && skb_shared(skb)) {
2289 skb->data = skb_head;
2290 skb->len = skb_len;
2291 }
2292 drop:
2293 kfree_skb(skb);
2294 return 0;
2295
2296 ring_is_full:
2297 po->stats.stats1.tp_drops++;
2298 spin_unlock(&sk->sk_receive_queue.lock);
2299
2300 sk->sk_data_ready(sk);
2301 kfree_skb(copy_skb);
2302 goto drop_n_restore;
2303 }
2304
2305 static void tpacket_destruct_skb(struct sk_buff *skb)
2306 {
2307 struct packet_sock *po = pkt_sk(skb->sk);
2308
2309 if (likely(po->tx_ring.pg_vec)) {
2310 void *ph;
2311 __u32 ts;
2312
2313 ph = skb_shinfo(skb)->destructor_arg;
2314 packet_dec_pending(&po->tx_ring);
2315
2316 ts = __packet_set_timestamp(po, ph, skb);
2317 __packet_set_status(po, ph, TP_STATUS_AVAILABLE | ts);
2318 }
2319
2320 sock_wfree(skb);
2321 }
2322
2323 static bool ll_header_truncated(const struct net_device *dev, int len)
2324 {
2325 /* net device doesn't like empty head */
2326 if (unlikely(len <= dev->hard_header_len)) {
2327 net_warn_ratelimited("%s: packet size is too short (%d <= %d)\n",
2328 current->comm, len, dev->hard_header_len);
2329 return true;
2330 }
2331
2332 return false;
2333 }
2334
2335 static int tpacket_fill_skb(struct packet_sock *po, struct sk_buff *skb,
2336 void *frame, struct net_device *dev, int size_max,
2337 __be16 proto, unsigned char *addr, int hlen)
2338 {
2339 union tpacket_uhdr ph;
2340 int to_write, offset, len, tp_len, nr_frags, len_max;
2341 struct socket *sock = po->sk.sk_socket;
2342 struct page *page;
2343 void *data;
2344 int err;
2345
2346 ph.raw = frame;
2347
2348 skb->protocol = proto;
2349 skb->dev = dev;
2350 skb->priority = po->sk.sk_priority;
2351 skb->mark = po->sk.sk_mark;
2352 sock_tx_timestamp(&po->sk, &skb_shinfo(skb)->tx_flags);
2353 skb_shinfo(skb)->destructor_arg = ph.raw;
2354
2355 switch (po->tp_version) {
2356 case TPACKET_V2:
2357 tp_len = ph.h2->tp_len;
2358 break;
2359 default:
2360 tp_len = ph.h1->tp_len;
2361 break;
2362 }
2363 if (unlikely(tp_len > size_max)) {
2364 pr_err("packet size is too long (%d > %d)\n", tp_len, size_max);
2365 return -EMSGSIZE;
2366 }
2367
2368 skb_reserve(skb, hlen);
2369 skb_reset_network_header(skb);
2370
2371 if (!packet_use_direct_xmit(po))
2372 skb_probe_transport_header(skb, 0);
2373 if (unlikely(po->tp_tx_has_off)) {
2374 int off_min, off_max, off;
2375 off_min = po->tp_hdrlen - sizeof(struct sockaddr_ll);
2376 off_max = po->tx_ring.frame_size - tp_len;
2377 if (sock->type == SOCK_DGRAM) {
2378 switch (po->tp_version) {
2379 case TPACKET_V2:
2380 off = ph.h2->tp_net;
2381 break;
2382 default:
2383 off = ph.h1->tp_net;
2384 break;
2385 }
2386 } else {
2387 switch (po->tp_version) {
2388 case TPACKET_V2:
2389 off = ph.h2->tp_mac;
2390 break;
2391 default:
2392 off = ph.h1->tp_mac;
2393 break;
2394 }
2395 }
2396 if (unlikely((off < off_min) || (off_max < off)))
2397 return -EINVAL;
2398 data = ph.raw + off;
2399 } else {
2400 data = ph.raw + po->tp_hdrlen - sizeof(struct sockaddr_ll);
2401 }
2402 to_write = tp_len;
2403
2404 if (sock->type == SOCK_DGRAM) {
2405 err = dev_hard_header(skb, dev, ntohs(proto), addr,
2406 NULL, tp_len);
2407 if (unlikely(err < 0))
2408 return -EINVAL;
2409 } else if (dev->hard_header_len) {
2410 if (ll_header_truncated(dev, tp_len))
2411 return -EINVAL;
2412
2413 skb_push(skb, dev->hard_header_len);
2414 err = skb_store_bits(skb, 0, data,
2415 dev->hard_header_len);
2416 if (unlikely(err))
2417 return err;
2418
2419 data += dev->hard_header_len;
2420 to_write -= dev->hard_header_len;
2421 }
2422
2423 offset = offset_in_page(data);
2424 len_max = PAGE_SIZE - offset;
2425 len = ((to_write > len_max) ? len_max : to_write);
2426
2427 skb->data_len = to_write;
2428 skb->len += to_write;
2429 skb->truesize += to_write;
2430 atomic_add(to_write, &po->sk.sk_wmem_alloc);
2431
2432 while (likely(to_write)) {
2433 nr_frags = skb_shinfo(skb)->nr_frags;
2434
2435 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2436 pr_err("Packet exceed the number of skb frags(%lu)\n",
2437 MAX_SKB_FRAGS);
2438 return -EFAULT;
2439 }
2440
2441 page = pgv_to_page(data);
2442 data += len;
2443 flush_dcache_page(page);
2444 get_page(page);
2445 skb_fill_page_desc(skb, nr_frags, page, offset, len);
2446 to_write -= len;
2447 offset = 0;
2448 len_max = PAGE_SIZE;
2449 len = ((to_write > len_max) ? len_max : to_write);
2450 }
2451
2452 return tp_len;
2453 }
2454
2455 static int tpacket_snd(struct packet_sock *po, struct msghdr *msg)
2456 {
2457 struct sk_buff *skb;
2458 struct net_device *dev;
2459 __be16 proto;
2460 int err, reserve = 0;
2461 void *ph;
2462 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2463 bool need_wait = !(msg->msg_flags & MSG_DONTWAIT);
2464 int tp_len, size_max;
2465 unsigned char *addr;
2466 int len_sum = 0;
2467 int status = TP_STATUS_AVAILABLE;
2468 int hlen, tlen;
2469
2470 mutex_lock(&po->pg_vec_lock);
2471
2472 if (likely(saddr == NULL)) {
2473 dev = packet_cached_dev_get(po);
2474 proto = po->num;
2475 addr = NULL;
2476 } else {
2477 err = -EINVAL;
2478 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2479 goto out;
2480 if (msg->msg_namelen < (saddr->sll_halen
2481 + offsetof(struct sockaddr_ll,
2482 sll_addr)))
2483 goto out;
2484 proto = saddr->sll_protocol;
2485 addr = saddr->sll_addr;
2486 dev = dev_get_by_index(sock_net(&po->sk), saddr->sll_ifindex);
2487 }
2488
2489 err = -ENXIO;
2490 if (unlikely(dev == NULL))
2491 goto out;
2492 err = -ENETDOWN;
2493 if (unlikely(!(dev->flags & IFF_UP)))
2494 goto out_put;
2495
2496 reserve = dev->hard_header_len + VLAN_HLEN;
2497 size_max = po->tx_ring.frame_size
2498 - (po->tp_hdrlen - sizeof(struct sockaddr_ll));
2499
2500 if (size_max > dev->mtu + reserve)
2501 size_max = dev->mtu + reserve;
2502
2503 do {
2504 ph = packet_current_frame(po, &po->tx_ring,
2505 TP_STATUS_SEND_REQUEST);
2506 if (unlikely(ph == NULL)) {
2507 if (need_wait && need_resched())
2508 schedule();
2509 continue;
2510 }
2511
2512 status = TP_STATUS_SEND_REQUEST;
2513 hlen = LL_RESERVED_SPACE(dev);
2514 tlen = dev->needed_tailroom;
2515 skb = sock_alloc_send_skb(&po->sk,
2516 hlen + tlen + sizeof(struct sockaddr_ll),
2517 !need_wait, &err);
2518
2519 if (unlikely(skb == NULL)) {
2520 /* we assume the socket was initially writeable ... */
2521 if (likely(len_sum > 0))
2522 err = len_sum;
2523 goto out_status;
2524 }
2525 tp_len = tpacket_fill_skb(po, skb, ph, dev, size_max, proto,
2526 addr, hlen);
2527 if (likely(tp_len >= 0) &&
2528 tp_len > dev->mtu + dev->hard_header_len) {
2529 struct ethhdr *ehdr;
2530 /* Earlier code assumed this would be a VLAN pkt,
2531 * double-check this now that we have the actual
2532 * packet in hand.
2533 */
2534
2535 skb_reset_mac_header(skb);
2536 ehdr = eth_hdr(skb);
2537 if (ehdr->h_proto != htons(ETH_P_8021Q))
2538 tp_len = -EMSGSIZE;
2539 }
2540 if (unlikely(tp_len < 0)) {
2541 if (po->tp_loss) {
2542 __packet_set_status(po, ph,
2543 TP_STATUS_AVAILABLE);
2544 packet_increment_head(&po->tx_ring);
2545 kfree_skb(skb);
2546 continue;
2547 } else {
2548 status = TP_STATUS_WRONG_FORMAT;
2549 err = tp_len;
2550 goto out_status;
2551 }
2552 }
2553
2554 packet_pick_tx_queue(dev, skb);
2555
2556 skb->destructor = tpacket_destruct_skb;
2557 __packet_set_status(po, ph, TP_STATUS_SENDING);
2558 packet_inc_pending(&po->tx_ring);
2559
2560 status = TP_STATUS_SEND_REQUEST;
2561 err = po->xmit(skb);
2562 if (unlikely(err > 0)) {
2563 err = net_xmit_errno(err);
2564 if (err && __packet_get_status(po, ph) ==
2565 TP_STATUS_AVAILABLE) {
2566 /* skb was destructed already */
2567 skb = NULL;
2568 goto out_status;
2569 }
2570 /*
2571 * skb was dropped but not destructed yet;
2572 * let's treat it like congestion or err < 0
2573 */
2574 err = 0;
2575 }
2576 packet_increment_head(&po->tx_ring);
2577 len_sum += tp_len;
2578 } while (likely((ph != NULL) ||
2579 /* Note: packet_read_pending() might be slow if we have
2580 * to call it as it's per_cpu variable, but in fast-path
2581 * we already short-circuit the loop with the first
2582 * condition, and luckily don't have to go that path
2583 * anyway.
2584 */
2585 (need_wait && packet_read_pending(&po->tx_ring))));
2586
2587 err = len_sum;
2588 goto out_put;
2589
2590 out_status:
2591 __packet_set_status(po, ph, status);
2592 kfree_skb(skb);
2593 out_put:
2594 dev_put(dev);
2595 out:
2596 mutex_unlock(&po->pg_vec_lock);
2597 return err;
2598 }
2599
2600 static struct sk_buff *packet_alloc_skb(struct sock *sk, size_t prepad,
2601 size_t reserve, size_t len,
2602 size_t linear, int noblock,
2603 int *err)
2604 {
2605 struct sk_buff *skb;
2606
2607 /* Under a page? Don't bother with paged skb. */
2608 if (prepad + len < PAGE_SIZE || !linear)
2609 linear = len;
2610
2611 skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
2612 err, 0);
2613 if (!skb)
2614 return NULL;
2615
2616 skb_reserve(skb, reserve);
2617 skb_put(skb, linear);
2618 skb->data_len = len - linear;
2619 skb->len += len - linear;
2620
2621 return skb;
2622 }
2623
2624 static int packet_snd(struct socket *sock, struct msghdr *msg, size_t len)
2625 {
2626 struct sock *sk = sock->sk;
2627 DECLARE_SOCKADDR(struct sockaddr_ll *, saddr, msg->msg_name);
2628 struct sk_buff *skb;
2629 struct net_device *dev;
2630 __be16 proto;
2631 unsigned char *addr;
2632 int err, reserve = 0;
2633 struct virtio_net_hdr vnet_hdr = { 0 };
2634 int offset = 0;
2635 int vnet_hdr_len;
2636 struct packet_sock *po = pkt_sk(sk);
2637 unsigned short gso_type = 0;
2638 int hlen, tlen;
2639 int extra_len = 0;
2640 ssize_t n;
2641
2642 /*
2643 * Get and verify the address.
2644 */
2645
2646 if (likely(saddr == NULL)) {
2647 dev = packet_cached_dev_get(po);
2648 proto = po->num;
2649 addr = NULL;
2650 } else {
2651 err = -EINVAL;
2652 if (msg->msg_namelen < sizeof(struct sockaddr_ll))
2653 goto out;
2654 if (msg->msg_namelen < (saddr->sll_halen + offsetof(struct sockaddr_ll, sll_addr)))
2655 goto out;
2656 proto = saddr->sll_protocol;
2657 addr = saddr->sll_addr;
2658 dev = dev_get_by_index(sock_net(sk), saddr->sll_ifindex);
2659 }
2660
2661 err = -ENXIO;
2662 if (unlikely(dev == NULL))
2663 goto out_unlock;
2664 err = -ENETDOWN;
2665 if (unlikely(!(dev->flags & IFF_UP)))
2666 goto out_unlock;
2667
2668 if (sock->type == SOCK_RAW)
2669 reserve = dev->hard_header_len;
2670 if (po->has_vnet_hdr) {
2671 vnet_hdr_len = sizeof(vnet_hdr);
2672
2673 err = -EINVAL;
2674 if (len < vnet_hdr_len)
2675 goto out_unlock;
2676
2677 len -= vnet_hdr_len;
2678
2679 err = -EFAULT;
2680 n = copy_from_iter(&vnet_hdr, vnet_hdr_len, &msg->msg_iter);
2681 if (n != vnet_hdr_len)
2682 goto out_unlock;
2683
2684 if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
2685 (__virtio16_to_cpu(vio_le(), vnet_hdr.csum_start) +
2686 __virtio16_to_cpu(vio_le(), vnet_hdr.csum_offset) + 2 >
2687 __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len)))
2688 vnet_hdr.hdr_len = __cpu_to_virtio16(vio_le(),
2689 __virtio16_to_cpu(vio_le(), vnet_hdr.csum_start) +
2690 __virtio16_to_cpu(vio_le(), vnet_hdr.csum_offset) + 2);
2691
2692 err = -EINVAL;
2693 if (__virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len) > len)
2694 goto out_unlock;
2695
2696 if (vnet_hdr.gso_type != VIRTIO_NET_HDR_GSO_NONE) {
2697 switch (vnet_hdr.gso_type & ~VIRTIO_NET_HDR_GSO_ECN) {
2698 case VIRTIO_NET_HDR_GSO_TCPV4:
2699 gso_type = SKB_GSO_TCPV4;
2700 break;
2701 case VIRTIO_NET_HDR_GSO_TCPV6:
2702 gso_type = SKB_GSO_TCPV6;
2703 break;
2704 case VIRTIO_NET_HDR_GSO_UDP:
2705 gso_type = SKB_GSO_UDP;
2706 break;
2707 default:
2708 goto out_unlock;
2709 }
2710
2711 if (vnet_hdr.gso_type & VIRTIO_NET_HDR_GSO_ECN)
2712 gso_type |= SKB_GSO_TCP_ECN;
2713
2714 if (vnet_hdr.gso_size == 0)
2715 goto out_unlock;
2716
2717 }
2718 }
2719
2720 if (unlikely(sock_flag(sk, SOCK_NOFCS))) {
2721 if (!netif_supports_nofcs(dev)) {
2722 err = -EPROTONOSUPPORT;
2723 goto out_unlock;
2724 }
2725 extra_len = 4; /* We're doing our own CRC */
2726 }
2727
2728 err = -EMSGSIZE;
2729 if (!gso_type && (len > dev->mtu + reserve + VLAN_HLEN + extra_len))
2730 goto out_unlock;
2731
2732 err = -ENOBUFS;
2733 hlen = LL_RESERVED_SPACE(dev);
2734 tlen = dev->needed_tailroom;
2735 skb = packet_alloc_skb(sk, hlen + tlen, hlen, len,
2736 __virtio16_to_cpu(vio_le(), vnet_hdr.hdr_len),
2737 msg->msg_flags & MSG_DONTWAIT, &err);
2738 if (skb == NULL)
2739 goto out_unlock;
2740
2741 skb_set_network_header(skb, reserve);
2742
2743 err = -EINVAL;
2744 if (sock->type == SOCK_DGRAM) {
2745 offset = dev_hard_header(skb, dev, ntohs(proto), addr, NULL, len);
2746 if (unlikely(offset < 0))
2747 goto out_free;
2748 } else {
2749 if (ll_header_truncated(dev, len))
2750 goto out_free;
2751 }
2752
2753 /* Returns -EFAULT on error */
2754 err = skb_copy_datagram_from_iter(skb, offset, &msg->msg_iter, len);
2755 if (err)
2756 goto out_free;
2757
2758 sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
2759
2760 if (!gso_type && (len > dev->mtu + reserve + extra_len)) {
2761 /* Earlier code assumed this would be a VLAN pkt,
2762 * double-check this now that we have the actual
2763 * packet in hand.
2764 */
2765 struct ethhdr *ehdr;
2766 skb_reset_mac_header(skb);
2767 ehdr = eth_hdr(skb);
2768 if (ehdr->h_proto != htons(ETH_P_8021Q)) {
2769 err = -EMSGSIZE;
2770 goto out_free;
2771 }
2772 }
2773
2774 skb->protocol = proto;
2775 skb->dev = dev;
2776 skb->priority = sk->sk_priority;
2777 skb->mark = sk->sk_mark;
2778
2779 packet_pick_tx_queue(dev, skb);
2780
2781 if (po->has_vnet_hdr) {
2782 if (vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
2783 u16 s = __virtio16_to_cpu(vio_le(), vnet_hdr.csum_start);
2784 u16 o = __virtio16_to_cpu(vio_le(), vnet_hdr.csum_offset);
2785 if (!skb_partial_csum_set(skb, s, o)) {
2786 err = -EINVAL;
2787 goto out_free;
2788 }
2789 }
2790
2791 skb_shinfo(skb)->gso_size =
2792 __virtio16_to_cpu(vio_le(), vnet_hdr.gso_size);
2793 skb_shinfo(skb)->gso_type = gso_type;
2794
2795 /* Header must be checked, and gso_segs computed. */
2796 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2797 skb_shinfo(skb)->gso_segs = 0;
2798
2799 len += vnet_hdr_len;
2800 }
2801
2802 if (!packet_use_direct_xmit(po))
2803 skb_probe_transport_header(skb, reserve);
2804 if (unlikely(extra_len == 4))
2805 skb->no_fcs = 1;
2806
2807 err = po->xmit(skb);
2808 if (err > 0 && (err = net_xmit_errno(err)) != 0)
2809 goto out_unlock;
2810
2811 dev_put(dev);
2812
2813 return len;
2814
2815 out_free:
2816 kfree_skb(skb);
2817 out_unlock:
2818 if (dev)
2819 dev_put(dev);
2820 out:
2821 return err;
2822 }
2823
2824 static int packet_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
2825 {
2826 struct sock *sk = sock->sk;
2827 struct packet_sock *po = pkt_sk(sk);
2828
2829 if (po->tx_ring.pg_vec)
2830 return tpacket_snd(po, msg);
2831 else
2832 return packet_snd(sock, msg, len);
2833 }
2834
2835 /*
2836 * Close a PACKET socket. This is fairly simple. We immediately go
2837 * to 'closed' state and remove our protocol entry in the device list.
2838 */
2839
2840 static int packet_release(struct socket *sock)
2841 {
2842 struct sock *sk = sock->sk;
2843 struct packet_sock *po;
2844 struct net *net;
2845 union tpacket_req_u req_u;
2846
2847 if (!sk)
2848 return 0;
2849
2850 net = sock_net(sk);
2851 po = pkt_sk(sk);
2852
2853 mutex_lock(&net->packet.sklist_lock);
2854 sk_del_node_init_rcu(sk);
2855 mutex_unlock(&net->packet.sklist_lock);
2856
2857 preempt_disable();
2858 sock_prot_inuse_add(net, sk->sk_prot, -1);
2859 preempt_enable();
2860
2861 spin_lock(&po->bind_lock);
2862 unregister_prot_hook(sk, false);
2863 packet_cached_dev_reset(po);
2864
2865 if (po->prot_hook.dev) {
2866 dev_put(po->prot_hook.dev);
2867 po->prot_hook.dev = NULL;
2868 }
2869 spin_unlock(&po->bind_lock);
2870
2871 packet_flush_mclist(sk);
2872
2873 if (po->rx_ring.pg_vec) {
2874 memset(&req_u, 0, sizeof(req_u));
2875 packet_set_ring(sk, &req_u, 1, 0);
2876 }
2877
2878 if (po->tx_ring.pg_vec) {
2879 memset(&req_u, 0, sizeof(req_u));
2880 packet_set_ring(sk, &req_u, 1, 1);
2881 }
2882
2883 fanout_release(sk);
2884
2885 synchronize_net();
2886 /*
2887 * Now the socket is dead. No more input will appear.
2888 */
2889 sock_orphan(sk);
2890 sock->sk = NULL;
2891
2892 /* Purge queues */
2893
2894 skb_queue_purge(&sk->sk_receive_queue);
2895 packet_free_pending(po);
2896 sk_refcnt_debug_release(sk);
2897
2898 sock_put(sk);
2899 return 0;
2900 }
2901
2902 /*
2903 * Attach a packet hook.
2904 */
2905
2906 static int packet_do_bind(struct sock *sk, struct net_device *dev, __be16 proto)
2907 {
2908 struct packet_sock *po = pkt_sk(sk);
2909 struct net_device *dev_curr;
2910 __be16 proto_curr;
2911 bool need_rehook;
2912
2913 if (po->fanout) {
2914 if (dev)
2915 dev_put(dev);
2916
2917 return -EINVAL;
2918 }
2919
2920 lock_sock(sk);
2921 spin_lock(&po->bind_lock);
2922
2923 proto_curr = po->prot_hook.type;
2924 dev_curr = po->prot_hook.dev;
2925
2926 need_rehook = proto_curr != proto || dev_curr != dev;
2927
2928 if (need_rehook) {
2929 unregister_prot_hook(sk, true);
2930
2931 po->num = proto;
2932 po->prot_hook.type = proto;
2933 po->prot_hook.dev = dev;
2934
2935 po->ifindex = dev ? dev->ifindex : 0;
2936 packet_cached_dev_assign(po, dev);
2937 }
2938 if (dev_curr)
2939 dev_put(dev_curr);
2940
2941 if (proto == 0 || !need_rehook)
2942 goto out_unlock;
2943
2944 if (!dev || (dev->flags & IFF_UP)) {
2945 register_prot_hook(sk);
2946 } else {
2947 sk->sk_err = ENETDOWN;
2948 if (!sock_flag(sk, SOCK_DEAD))
2949 sk->sk_error_report(sk);
2950 }
2951
2952 out_unlock:
2953 spin_unlock(&po->bind_lock);
2954 release_sock(sk);
2955 return 0;
2956 }
2957
2958 /*
2959 * Bind a packet socket to a device
2960 */
2961
2962 static int packet_bind_spkt(struct socket *sock, struct sockaddr *uaddr,
2963 int addr_len)
2964 {
2965 struct sock *sk = sock->sk;
2966 char name[15];
2967 struct net_device *dev;
2968 int err = -ENODEV;
2969
2970 /*
2971 * Check legality
2972 */
2973
2974 if (addr_len != sizeof(struct sockaddr))
2975 return -EINVAL;
2976 strlcpy(name, uaddr->sa_data, sizeof(name));
2977
2978 dev = dev_get_by_name(sock_net(sk), name);
2979 if (dev)
2980 err = packet_do_bind(sk, dev, pkt_sk(sk)->num);
2981 return err;
2982 }
2983
2984 static int packet_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
2985 {
2986 struct sockaddr_ll *sll = (struct sockaddr_ll *)uaddr;
2987 struct sock *sk = sock->sk;
2988 struct net_device *dev = NULL;
2989 int err;
2990
2991
2992 /*
2993 * Check legality
2994 */
2995
2996 if (addr_len < sizeof(struct sockaddr_ll))
2997 return -EINVAL;
2998 if (sll->sll_family != AF_PACKET)
2999 return -EINVAL;
3000
3001 if (sll->sll_ifindex) {
3002 err = -ENODEV;
3003 dev = dev_get_by_index(sock_net(sk), sll->sll_ifindex);
3004 if (dev == NULL)
3005 goto out;
3006 }
3007 err = packet_do_bind(sk, dev, sll->sll_protocol ? : pkt_sk(sk)->num);
3008
3009 out:
3010 return err;
3011 }
3012
3013 static struct proto packet_proto = {
3014 .name = "PACKET",
3015 .owner = THIS_MODULE,
3016 .obj_size = sizeof(struct packet_sock),
3017 };
3018
3019 /*
3020 * Create a packet of type SOCK_PACKET.
3021 */
3022
3023 static int packet_create(struct net *net, struct socket *sock, int protocol,
3024 int kern)
3025 {
3026 struct sock *sk;
3027 struct packet_sock *po;
3028 __be16 proto = (__force __be16)protocol; /* weird, but documented */
3029 int err;
3030
3031 if (!ns_capable(net->user_ns, CAP_NET_RAW))
3032 return -EPERM;
3033 if (sock->type != SOCK_DGRAM && sock->type != SOCK_RAW &&
3034 sock->type != SOCK_PACKET)
3035 return -ESOCKTNOSUPPORT;
3036
3037 sock->state = SS_UNCONNECTED;
3038
3039 err = -ENOBUFS;
3040 sk = sk_alloc(net, PF_PACKET, GFP_KERNEL, &packet_proto, kern);
3041 if (sk == NULL)
3042 goto out;
3043
3044 sock->ops = &packet_ops;
3045 if (sock->type == SOCK_PACKET)
3046 sock->ops = &packet_ops_spkt;
3047
3048 sock_init_data(sock, sk);
3049
3050 po = pkt_sk(sk);
3051 sk->sk_family = PF_PACKET;
3052 po->num = proto;
3053 po->xmit = dev_queue_xmit;
3054
3055 err = packet_alloc_pending(po);
3056 if (err)
3057 goto out2;
3058
3059 packet_cached_dev_reset(po);
3060
3061 sk->sk_destruct = packet_sock_destruct;
3062 sk_refcnt_debug_inc(sk);
3063
3064 /*
3065 * Attach a protocol block
3066 */
3067
3068 spin_lock_init(&po->bind_lock);
3069 mutex_init(&po->pg_vec_lock);
3070 po->rollover = NULL;
3071 po->prot_hook.func = packet_rcv;
3072
3073 if (sock->type == SOCK_PACKET)
3074 po->prot_hook.func = packet_rcv_spkt;
3075
3076 po->prot_hook.af_packet_priv = sk;
3077
3078 if (proto) {
3079 po->prot_hook.type = proto;
3080 register_prot_hook(sk);
3081 }
3082
3083 mutex_lock(&net->packet.sklist_lock);
3084 sk_add_node_rcu(sk, &net->packet.sklist);
3085 mutex_unlock(&net->packet.sklist_lock);
3086
3087 preempt_disable();
3088 sock_prot_inuse_add(net, &packet_proto, 1);
3089 preempt_enable();
3090
3091 return 0;
3092 out2:
3093 sk_free(sk);
3094 out:
3095 return err;
3096 }
3097
3098 /*
3099 * Pull a packet from our receive queue and hand it to the user.
3100 * If necessary we block.
3101 */
3102
3103 static int packet_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
3104 int flags)
3105 {
3106 struct sock *sk = sock->sk;
3107 struct sk_buff *skb;
3108 int copied, err;
3109 int vnet_hdr_len = 0;
3110 unsigned int origlen = 0;
3111
3112 err = -EINVAL;
3113 if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT|MSG_ERRQUEUE))
3114 goto out;
3115
3116 #if 0
3117 /* What error should we return now? EUNATTACH? */
3118 if (pkt_sk(sk)->ifindex < 0)
3119 return -ENODEV;
3120 #endif
3121
3122 if (flags & MSG_ERRQUEUE) {
3123 err = sock_recv_errqueue(sk, msg, len,
3124 SOL_PACKET, PACKET_TX_TIMESTAMP);
3125 goto out;
3126 }
3127
3128 /*
3129 * Call the generic datagram receiver. This handles all sorts
3130 * of horrible races and re-entrancy so we can forget about it
3131 * in the protocol layers.
3132 *
3133 * Now it will return ENETDOWN, if device have just gone down,
3134 * but then it will block.
3135 */
3136
3137 skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
3138
3139 /*
3140 * An error occurred so return it. Because skb_recv_datagram()
3141 * handles the blocking we don't see and worry about blocking
3142 * retries.
3143 */
3144
3145 if (skb == NULL)
3146 goto out;
3147
3148 if (pkt_sk(sk)->pressure)
3149 packet_rcv_has_room(pkt_sk(sk), NULL);
3150
3151 if (pkt_sk(sk)->has_vnet_hdr) {
3152 struct virtio_net_hdr vnet_hdr = { 0 };
3153
3154 err = -EINVAL;
3155 vnet_hdr_len = sizeof(vnet_hdr);
3156 if (len < vnet_hdr_len)
3157 goto out_free;
3158
3159 len -= vnet_hdr_len;
3160
3161 if (skb_is_gso(skb)) {
3162 struct skb_shared_info *sinfo = skb_shinfo(skb);
3163
3164 /* This is a hint as to how much should be linear. */
3165 vnet_hdr.hdr_len =
3166 __cpu_to_virtio16(vio_le(), skb_headlen(skb));
3167 vnet_hdr.gso_size =
3168 __cpu_to_virtio16(vio_le(), sinfo->gso_size);
3169 if (sinfo->gso_type & SKB_GSO_TCPV4)
3170 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV4;
3171 else if (sinfo->gso_type & SKB_GSO_TCPV6)
3172 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_TCPV6;
3173 else if (sinfo->gso_type & SKB_GSO_UDP)
3174 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_UDP;
3175 else if (sinfo->gso_type & SKB_GSO_FCOE)
3176 goto out_free;
3177 else
3178 BUG();
3179 if (sinfo->gso_type & SKB_GSO_TCP_ECN)
3180 vnet_hdr.gso_type |= VIRTIO_NET_HDR_GSO_ECN;
3181 } else
3182 vnet_hdr.gso_type = VIRTIO_NET_HDR_GSO_NONE;
3183
3184 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3185 vnet_hdr.flags = VIRTIO_NET_HDR_F_NEEDS_CSUM;
3186 vnet_hdr.csum_start = __cpu_to_virtio16(vio_le(),
3187 skb_checksum_start_offset(skb));
3188 vnet_hdr.csum_offset = __cpu_to_virtio16(vio_le(),
3189 skb->csum_offset);
3190 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3191 vnet_hdr.flags = VIRTIO_NET_HDR_F_DATA_VALID;
3192 } /* else everything is zero */
3193
3194 err = memcpy_to_msg(msg, (void *)&vnet_hdr, vnet_hdr_len);
3195 if (err < 0)
3196 goto out_free;
3197 }
3198
3199 /* You lose any data beyond the buffer you gave. If it worries
3200 * a user program they can ask the device for its MTU
3201 * anyway.
3202 */
3203 copied = skb->len;
3204 if (copied > len) {
3205 copied = len;
3206 msg->msg_flags |= MSG_TRUNC;
3207 }
3208
3209 err = skb_copy_datagram_msg(skb, 0, msg, copied);
3210 if (err)
3211 goto out_free;
3212
3213 if (sock->type != SOCK_PACKET) {
3214 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3215
3216 /* Original length was stored in sockaddr_ll fields */
3217 origlen = PACKET_SKB_CB(skb)->sa.origlen;
3218 sll->sll_family = AF_PACKET;
3219 sll->sll_protocol = skb->protocol;
3220 }
3221
3222 sock_recv_ts_and_drops(msg, sk, skb);
3223
3224 if (msg->msg_name) {
3225 /* If the address length field is there to be filled
3226 * in, we fill it in now.
3227 */
3228 if (sock->type == SOCK_PACKET) {
3229 __sockaddr_check_size(sizeof(struct sockaddr_pkt));
3230 msg->msg_namelen = sizeof(struct sockaddr_pkt);
3231 } else {
3232 struct sockaddr_ll *sll = &PACKET_SKB_CB(skb)->sa.ll;
3233
3234 msg->msg_namelen = sll->sll_halen +
3235 offsetof(struct sockaddr_ll, sll_addr);
3236 }
3237 memcpy(msg->msg_name, &PACKET_SKB_CB(skb)->sa,
3238 msg->msg_namelen);
3239 }
3240
3241 if (pkt_sk(sk)->auxdata) {
3242 struct tpacket_auxdata aux;
3243
3244 aux.tp_status = TP_STATUS_USER;
3245 if (skb->ip_summed == CHECKSUM_PARTIAL)
3246 aux.tp_status |= TP_STATUS_CSUMNOTREADY;
3247 else if (skb->pkt_type != PACKET_OUTGOING &&
3248 (skb->ip_summed == CHECKSUM_COMPLETE ||
3249 skb_csum_unnecessary(skb)))
3250 aux.tp_status |= TP_STATUS_CSUM_VALID;
3251
3252 aux.tp_len = origlen;
3253 aux.tp_snaplen = skb->len;
3254 aux.tp_mac = 0;
3255 aux.tp_net = skb_network_offset(skb);
3256 if (skb_vlan_tag_present(skb)) {
3257 aux.tp_vlan_tci = skb_vlan_tag_get(skb);
3258 aux.tp_vlan_tpid = ntohs(skb->vlan_proto);
3259 aux.tp_status |= TP_STATUS_VLAN_VALID | TP_STATUS_VLAN_TPID_VALID;
3260 } else {
3261 aux.tp_vlan_tci = 0;
3262 aux.tp_vlan_tpid = 0;
3263 }
3264 put_cmsg(msg, SOL_PACKET, PACKET_AUXDATA, sizeof(aux), &aux);
3265 }
3266
3267 /*
3268 * Free or return the buffer as appropriate. Again this
3269 * hides all the races and re-entrancy issues from us.
3270 */
3271 err = vnet_hdr_len + ((flags&MSG_TRUNC) ? skb->len : copied);
3272
3273 out_free:
3274 skb_free_datagram(sk, skb);
3275 out:
3276 return err;
3277 }
3278
3279 static int packet_getname_spkt(struct socket *sock, struct sockaddr *uaddr,
3280 int *uaddr_len, int peer)
3281 {
3282 struct net_device *dev;
3283 struct sock *sk = sock->sk;
3284
3285 if (peer)
3286 return -EOPNOTSUPP;
3287
3288 uaddr->sa_family = AF_PACKET;
3289 memset(uaddr->sa_data, 0, sizeof(uaddr->sa_data));
3290 rcu_read_lock();
3291 dev = dev_get_by_index_rcu(sock_net(sk), pkt_sk(sk)->ifindex);
3292 if (dev)
3293 strlcpy(uaddr->sa_data, dev->name, sizeof(uaddr->sa_data));
3294 rcu_read_unlock();
3295 *uaddr_len = sizeof(*uaddr);
3296
3297 return 0;
3298 }
3299
3300 static int packet_getname(struct socket *sock, struct sockaddr *uaddr,
3301 int *uaddr_len, int peer)
3302 {
3303 struct net_device *dev;
3304 struct sock *sk = sock->sk;
3305 struct packet_sock *po = pkt_sk(sk);
3306 DECLARE_SOCKADDR(struct sockaddr_ll *, sll, uaddr);
3307
3308 if (peer)
3309 return -EOPNOTSUPP;
3310
3311 sll->sll_family = AF_PACKET;
3312 sll->sll_ifindex = po->ifindex;
3313 sll->sll_protocol = po->num;
3314 sll->sll_pkttype = 0;
3315 rcu_read_lock();
3316 dev = dev_get_by_index_rcu(sock_net(sk), po->ifindex);
3317 if (dev) {
3318 sll->sll_hatype = dev->type;
3319 sll->sll_halen = dev->addr_len;
3320 memcpy(sll->sll_addr, dev->dev_addr, dev->addr_len);
3321 } else {
3322 sll->sll_hatype = 0; /* Bad: we have no ARPHRD_UNSPEC */
3323 sll->sll_halen = 0;
3324 }
3325 rcu_read_unlock();
3326 *uaddr_len = offsetof(struct sockaddr_ll, sll_addr) + sll->sll_halen;
3327
3328 return 0;
3329 }
3330
3331 static int packet_dev_mc(struct net_device *dev, struct packet_mclist *i,
3332 int what)
3333 {
3334 switch (i->type) {
3335 case PACKET_MR_MULTICAST:
3336 if (i->alen != dev->addr_len)
3337 return -EINVAL;
3338 if (what > 0)
3339 return dev_mc_add(dev, i->addr);
3340 else
3341 return dev_mc_del(dev, i->addr);
3342 break;
3343 case PACKET_MR_PROMISC:
3344 return dev_set_promiscuity(dev, what);
3345 case PACKET_MR_ALLMULTI:
3346 return dev_set_allmulti(dev, what);
3347 case PACKET_MR_UNICAST:
3348 if (i->alen != dev->addr_len)
3349 return -EINVAL;
3350 if (what > 0)
3351 return dev_uc_add(dev, i->addr);
3352 else
3353 return dev_uc_del(dev, i->addr);
3354 break;
3355 default:
3356 break;
3357 }
3358 return 0;
3359 }
3360
3361 static void packet_dev_mclist_delete(struct net_device *dev,
3362 struct packet_mclist **mlp)
3363 {
3364 struct packet_mclist *ml;
3365
3366 while ((ml = *mlp) != NULL) {
3367 if (ml->ifindex == dev->ifindex) {
3368 packet_dev_mc(dev, ml, -1);
3369 *mlp = ml->next;
3370 kfree(ml);
3371 } else
3372 mlp = &ml->next;
3373 }
3374 }
3375
3376 static int packet_mc_add(struct sock *sk, struct packet_mreq_max *mreq)
3377 {
3378 struct packet_sock *po = pkt_sk(sk);
3379 struct packet_mclist *ml, *i;
3380 struct net_device *dev;
3381 int err;
3382
3383 rtnl_lock();
3384
3385 err = -ENODEV;
3386 dev = __dev_get_by_index(sock_net(sk), mreq->mr_ifindex);
3387 if (!dev)
3388 goto done;
3389
3390 err = -EINVAL;
3391 if (mreq->mr_alen > dev->addr_len)
3392 goto done;
3393
3394 err = -ENOBUFS;
3395 i = kmalloc(sizeof(*i), GFP_KERNEL);
3396 if (i == NULL)
3397 goto done;
3398
3399 err = 0;
3400 for (ml = po->mclist; ml; ml = ml->next) {
3401 if (ml->ifindex == mreq->mr_ifindex &&
3402 ml->type == mreq->mr_type &&
3403 ml->alen == mreq->mr_alen &&
3404 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3405 ml->count++;
3406 /* Free the new element ... */
3407 kfree(i);
3408 goto done;
3409 }
3410 }
3411
3412 i->type = mreq->mr_type;
3413 i->ifindex = mreq->mr_ifindex;
3414 i->alen = mreq->mr_alen;
3415 memcpy(i->addr, mreq->mr_address, i->alen);
3416 i->count = 1;
3417 i->next = po->mclist;
3418 po->mclist = i;
3419 err = packet_dev_mc(dev, i, 1);
3420 if (err) {
3421 po->mclist = i->next;
3422 kfree(i);
3423 }
3424
3425 done:
3426 rtnl_unlock();
3427 return err;
3428 }
3429
3430 static int packet_mc_drop(struct sock *sk, struct packet_mreq_max *mreq)
3431 {
3432 struct packet_mclist *ml, **mlp;
3433
3434 rtnl_lock();
3435
3436 for (mlp = &pkt_sk(sk)->mclist; (ml = *mlp) != NULL; mlp = &ml->next) {
3437 if (ml->ifindex == mreq->mr_ifindex &&
3438 ml->type == mreq->mr_type &&
3439 ml->alen == mreq->mr_alen &&
3440 memcmp(ml->addr, mreq->mr_address, ml->alen) == 0) {
3441 if (--ml->count == 0) {
3442 struct net_device *dev;
3443 *mlp = ml->next;
3444 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3445 if (dev)
3446 packet_dev_mc(dev, ml, -1);
3447 kfree(ml);
3448 }
3449 break;
3450 }
3451 }
3452 rtnl_unlock();
3453 return 0;
3454 }
3455
3456 static void packet_flush_mclist(struct sock *sk)
3457 {
3458 struct packet_sock *po = pkt_sk(sk);
3459 struct packet_mclist *ml;
3460
3461 if (!po->mclist)
3462 return;
3463
3464 rtnl_lock();
3465 while ((ml = po->mclist) != NULL) {
3466 struct net_device *dev;
3467
3468 po->mclist = ml->next;
3469 dev = __dev_get_by_index(sock_net(sk), ml->ifindex);
3470 if (dev != NULL)
3471 packet_dev_mc(dev, ml, -1);
3472 kfree(ml);
3473 }
3474 rtnl_unlock();
3475 }
3476
3477 static int
3478 packet_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen)
3479 {
3480 struct sock *sk = sock->sk;
3481 struct packet_sock *po = pkt_sk(sk);
3482 int ret;
3483
3484 if (level != SOL_PACKET)
3485 return -ENOPROTOOPT;
3486
3487 switch (optname) {
3488 case PACKET_ADD_MEMBERSHIP:
3489 case PACKET_DROP_MEMBERSHIP:
3490 {
3491 struct packet_mreq_max mreq;
3492 int len = optlen;
3493 memset(&mreq, 0, sizeof(mreq));
3494 if (len < sizeof(struct packet_mreq))
3495 return -EINVAL;
3496 if (len > sizeof(mreq))
3497 len = sizeof(mreq);
3498 if (copy_from_user(&mreq, optval, len))
3499 return -EFAULT;
3500 if (len < (mreq.mr_alen + offsetof(struct packet_mreq, mr_address)))
3501 return -EINVAL;
3502 if (optname == PACKET_ADD_MEMBERSHIP)
3503 ret = packet_mc_add(sk, &mreq);
3504 else
3505 ret = packet_mc_drop(sk, &mreq);
3506 return ret;
3507 }
3508
3509 case PACKET_RX_RING:
3510 case PACKET_TX_RING:
3511 {
3512 union tpacket_req_u req_u;
3513 int len;
3514
3515 switch (po->tp_version) {
3516 case TPACKET_V1:
3517 case TPACKET_V2:
3518 len = sizeof(req_u.req);
3519 break;
3520 case TPACKET_V3:
3521 default:
3522 len = sizeof(req_u.req3);
3523 break;
3524 }
3525 if (optlen < len)
3526 return -EINVAL;
3527 if (pkt_sk(sk)->has_vnet_hdr)
3528 return -EINVAL;
3529 if (copy_from_user(&req_u.req, optval, len))
3530 return -EFAULT;
3531 return packet_set_ring(sk, &req_u, 0,
3532 optname == PACKET_TX_RING);
3533 }
3534 case PACKET_COPY_THRESH:
3535 {
3536 int val;
3537
3538 if (optlen != sizeof(val))
3539 return -EINVAL;
3540 if (copy_from_user(&val, optval, sizeof(val)))
3541 return -EFAULT;
3542
3543 pkt_sk(sk)->copy_thresh = val;
3544 return 0;
3545 }
3546 case PACKET_VERSION:
3547 {
3548 int val;
3549
3550 if (optlen != sizeof(val))
3551 return -EINVAL;
3552 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3553 return -EBUSY;
3554 if (copy_from_user(&val, optval, sizeof(val)))
3555 return -EFAULT;
3556 switch (val) {
3557 case TPACKET_V1:
3558 case TPACKET_V2:
3559 case TPACKET_V3:
3560 po->tp_version = val;
3561 return 0;
3562 default:
3563 return -EINVAL;
3564 }
3565 }
3566 case PACKET_RESERVE:
3567 {
3568 unsigned int val;
3569
3570 if (optlen != sizeof(val))
3571 return -EINVAL;
3572 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3573 return -EBUSY;
3574 if (copy_from_user(&val, optval, sizeof(val)))
3575 return -EFAULT;
3576 po->tp_reserve = val;
3577 return 0;
3578 }
3579 case PACKET_LOSS:
3580 {
3581 unsigned int val;
3582
3583 if (optlen != sizeof(val))
3584 return -EINVAL;
3585 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3586 return -EBUSY;
3587 if (copy_from_user(&val, optval, sizeof(val)))
3588 return -EFAULT;
3589 po->tp_loss = !!val;
3590 return 0;
3591 }
3592 case PACKET_AUXDATA:
3593 {
3594 int val;
3595
3596 if (optlen < sizeof(val))
3597 return -EINVAL;
3598 if (copy_from_user(&val, optval, sizeof(val)))
3599 return -EFAULT;
3600
3601 po->auxdata = !!val;
3602 return 0;
3603 }
3604 case PACKET_ORIGDEV:
3605 {
3606 int val;
3607
3608 if (optlen < sizeof(val))
3609 return -EINVAL;
3610 if (copy_from_user(&val, optval, sizeof(val)))
3611 return -EFAULT;
3612
3613 po->origdev = !!val;
3614 return 0;
3615 }
3616 case PACKET_VNET_HDR:
3617 {
3618 int val;
3619
3620 if (sock->type != SOCK_RAW)
3621 return -EINVAL;
3622 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3623 return -EBUSY;
3624 if (optlen < sizeof(val))
3625 return -EINVAL;
3626 if (copy_from_user(&val, optval, sizeof(val)))
3627 return -EFAULT;
3628
3629 po->has_vnet_hdr = !!val;
3630 return 0;
3631 }
3632 case PACKET_TIMESTAMP:
3633 {
3634 int val;
3635
3636 if (optlen != sizeof(val))
3637 return -EINVAL;
3638 if (copy_from_user(&val, optval, sizeof(val)))
3639 return -EFAULT;
3640
3641 po->tp_tstamp = val;
3642 return 0;
3643 }
3644 case PACKET_FANOUT:
3645 {
3646 int val;
3647
3648 if (optlen != sizeof(val))
3649 return -EINVAL;
3650 if (copy_from_user(&val, optval, sizeof(val)))
3651 return -EFAULT;
3652
3653 return fanout_add(sk, val & 0xffff, val >> 16);
3654 }
3655 case PACKET_FANOUT_DATA:
3656 {
3657 if (!po->fanout)
3658 return -EINVAL;
3659
3660 return fanout_set_data(po, optval, optlen);
3661 }
3662 case PACKET_TX_HAS_OFF:
3663 {
3664 unsigned int val;
3665
3666 if (optlen != sizeof(val))
3667 return -EINVAL;
3668 if (po->rx_ring.pg_vec || po->tx_ring.pg_vec)
3669 return -EBUSY;
3670 if (copy_from_user(&val, optval, sizeof(val)))
3671 return -EFAULT;
3672 po->tp_tx_has_off = !!val;
3673 return 0;
3674 }
3675 case PACKET_QDISC_BYPASS:
3676 {
3677 int val;
3678
3679 if (optlen != sizeof(val))
3680 return -EINVAL;
3681 if (copy_from_user(&val, optval, sizeof(val)))
3682 return -EFAULT;
3683
3684 po->xmit = val ? packet_direct_xmit : dev_queue_xmit;
3685 return 0;
3686 }
3687 default:
3688 return -ENOPROTOOPT;
3689 }
3690 }
3691
3692 static int packet_getsockopt(struct socket *sock, int level, int optname,
3693 char __user *optval, int __user *optlen)
3694 {
3695 int len;
3696 int val, lv = sizeof(val);
3697 struct sock *sk = sock->sk;
3698 struct packet_sock *po = pkt_sk(sk);
3699 void *data = &val;
3700 union tpacket_stats_u st;
3701 struct tpacket_rollover_stats rstats;
3702
3703 if (level != SOL_PACKET)
3704 return -ENOPROTOOPT;
3705
3706 if (get_user(len, optlen))
3707 return -EFAULT;
3708
3709 if (len < 0)
3710 return -EINVAL;
3711
3712 switch (optname) {
3713 case PACKET_STATISTICS:
3714 spin_lock_bh(&sk->sk_receive_queue.lock);
3715 memcpy(&st, &po->stats, sizeof(st));
3716 memset(&po->stats, 0, sizeof(po->stats));
3717 spin_unlock_bh(&sk->sk_receive_queue.lock);
3718
3719 if (po->tp_version == TPACKET_V3) {
3720 lv = sizeof(struct tpacket_stats_v3);
3721 st.stats3.tp_packets += st.stats3.tp_drops;
3722 data = &st.stats3;
3723 } else {
3724 lv = sizeof(struct tpacket_stats);
3725 st.stats1.tp_packets += st.stats1.tp_drops;
3726 data = &st.stats1;
3727 }
3728
3729 break;
3730 case PACKET_AUXDATA:
3731 val = po->auxdata;
3732 break;
3733 case PACKET_ORIGDEV:
3734 val = po->origdev;
3735 break;
3736 case PACKET_VNET_HDR:
3737 val = po->has_vnet_hdr;
3738 break;
3739 case PACKET_VERSION:
3740 val = po->tp_version;
3741 break;
3742 case PACKET_HDRLEN:
3743 if (len > sizeof(int))
3744 len = sizeof(int);
3745 if (copy_from_user(&val, optval, len))
3746 return -EFAULT;
3747 switch (val) {
3748 case TPACKET_V1:
3749 val = sizeof(struct tpacket_hdr);
3750 break;
3751 case TPACKET_V2:
3752 val = sizeof(struct tpacket2_hdr);
3753 break;
3754 case TPACKET_V3:
3755 val = sizeof(struct tpacket3_hdr);
3756 break;
3757 default:
3758 return -EINVAL;
3759 }
3760 break;
3761 case PACKET_RESERVE:
3762 val = po->tp_reserve;
3763 break;
3764 case PACKET_LOSS:
3765 val = po->tp_loss;
3766 break;
3767 case PACKET_TIMESTAMP:
3768 val = po->tp_tstamp;
3769 break;
3770 case PACKET_FANOUT:
3771 val = (po->fanout ?
3772 ((u32)po->fanout->id |
3773 ((u32)po->fanout->type << 16) |
3774 ((u32)po->fanout->flags << 24)) :
3775 0);
3776 break;
3777 case PACKET_ROLLOVER_STATS:
3778 if (!po->rollover)
3779 return -EINVAL;
3780 rstats.tp_all = atomic_long_read(&po->rollover->num);
3781 rstats.tp_huge = atomic_long_read(&po->rollover->num_huge);
3782 rstats.tp_failed = atomic_long_read(&po->rollover->num_failed);
3783 data = &rstats;
3784 lv = sizeof(rstats);
3785 break;
3786 case PACKET_TX_HAS_OFF:
3787 val = po->tp_tx_has_off;
3788 break;
3789 case PACKET_QDISC_BYPASS:
3790 val = packet_use_direct_xmit(po);
3791 break;
3792 default:
3793 return -ENOPROTOOPT;
3794 }
3795
3796 if (len > lv)
3797 len = lv;
3798 if (put_user(len, optlen))
3799 return -EFAULT;
3800 if (copy_to_user(optval, data, len))
3801 return -EFAULT;
3802 return 0;
3803 }
3804
3805
3806 static int packet_notifier(struct notifier_block *this,
3807 unsigned long msg, void *ptr)
3808 {
3809 struct sock *sk;
3810 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
3811 struct net *net = dev_net(dev);
3812
3813 rcu_read_lock();
3814 sk_for_each_rcu(sk, &net->packet.sklist) {
3815 struct packet_sock *po = pkt_sk(sk);
3816
3817 switch (msg) {
3818 case NETDEV_UNREGISTER:
3819 if (po->mclist)
3820 packet_dev_mclist_delete(dev, &po->mclist);
3821 /* fallthrough */
3822
3823 case NETDEV_DOWN:
3824 if (dev->ifindex == po->ifindex) {
3825 spin_lock(&po->bind_lock);
3826 if (po->running) {
3827 __unregister_prot_hook(sk, false);
3828 sk->sk_err = ENETDOWN;
3829 if (!sock_flag(sk, SOCK_DEAD))
3830 sk->sk_error_report(sk);
3831 }
3832 if (msg == NETDEV_UNREGISTER) {
3833 packet_cached_dev_reset(po);
3834 po->ifindex = -1;
3835 if (po->prot_hook.dev)
3836 dev_put(po->prot_hook.dev);
3837 po->prot_hook.dev = NULL;
3838 }
3839 spin_unlock(&po->bind_lock);
3840 }
3841 break;
3842 case NETDEV_UP:
3843 if (dev->ifindex == po->ifindex) {
3844 spin_lock(&po->bind_lock);
3845 if (po->num)
3846 register_prot_hook(sk);
3847 spin_unlock(&po->bind_lock);
3848 }
3849 break;
3850 }
3851 }
3852 rcu_read_unlock();
3853 return NOTIFY_DONE;
3854 }
3855
3856
3857 static int packet_ioctl(struct socket *sock, unsigned int cmd,
3858 unsigned long arg)
3859 {
3860 struct sock *sk = sock->sk;
3861
3862 switch (cmd) {
3863 case SIOCOUTQ:
3864 {
3865 int amount = sk_wmem_alloc_get(sk);
3866
3867 return put_user(amount, (int __user *)arg);
3868 }
3869 case SIOCINQ:
3870 {
3871 struct sk_buff *skb;
3872 int amount = 0;
3873
3874 spin_lock_bh(&sk->sk_receive_queue.lock);
3875 skb = skb_peek(&sk->sk_receive_queue);
3876 if (skb)
3877 amount = skb->len;
3878 spin_unlock_bh(&sk->sk_receive_queue.lock);
3879 return put_user(amount, (int __user *)arg);
3880 }
3881 case SIOCGSTAMP:
3882 return sock_get_timestamp(sk, (struct timeval __user *)arg);
3883 case SIOCGSTAMPNS:
3884 return sock_get_timestampns(sk, (struct timespec __user *)arg);
3885
3886 #ifdef CONFIG_INET
3887 case SIOCADDRT:
3888 case SIOCDELRT:
3889 case SIOCDARP:
3890 case SIOCGARP:
3891 case SIOCSARP:
3892 case SIOCGIFADDR:
3893 case SIOCSIFADDR:
3894 case SIOCGIFBRDADDR:
3895 case SIOCSIFBRDADDR:
3896 case SIOCGIFNETMASK:
3897 case SIOCSIFNETMASK:
3898 case SIOCGIFDSTADDR:
3899 case SIOCSIFDSTADDR:
3900 case SIOCSIFFLAGS:
3901 return inet_dgram_ops.ioctl(sock, cmd, arg);
3902 #endif
3903
3904 default:
3905 return -ENOIOCTLCMD;
3906 }
3907 return 0;
3908 }
3909
3910 static unsigned int packet_poll(struct file *file, struct socket *sock,
3911 poll_table *wait)
3912 {
3913 struct sock *sk = sock->sk;
3914 struct packet_sock *po = pkt_sk(sk);
3915 unsigned int mask = datagram_poll(file, sock, wait);
3916
3917 spin_lock_bh(&sk->sk_receive_queue.lock);
3918 if (po->rx_ring.pg_vec) {
3919 if (!packet_previous_rx_frame(po, &po->rx_ring,
3920 TP_STATUS_KERNEL))
3921 mask |= POLLIN | POLLRDNORM;
3922 }
3923 if (po->pressure && __packet_rcv_has_room(po, NULL) == ROOM_NORMAL)
3924 po->pressure = 0;
3925 spin_unlock_bh(&sk->sk_receive_queue.lock);
3926 spin_lock_bh(&sk->sk_write_queue.lock);
3927 if (po->tx_ring.pg_vec) {
3928 if (packet_current_frame(po, &po->tx_ring, TP_STATUS_AVAILABLE))
3929 mask |= POLLOUT | POLLWRNORM;
3930 }
3931 spin_unlock_bh(&sk->sk_write_queue.lock);
3932 return mask;
3933 }
3934
3935
3936 /* Dirty? Well, I still did not learn better way to account
3937 * for user mmaps.
3938 */
3939
3940 static void packet_mm_open(struct vm_area_struct *vma)
3941 {
3942 struct file *file = vma->vm_file;
3943 struct socket *sock = file->private_data;
3944 struct sock *sk = sock->sk;
3945
3946 if (sk)
3947 atomic_inc(&pkt_sk(sk)->mapped);
3948 }
3949
3950 static void packet_mm_close(struct vm_area_struct *vma)
3951 {
3952 struct file *file = vma->vm_file;
3953 struct socket *sock = file->private_data;
3954 struct sock *sk = sock->sk;
3955
3956 if (sk)
3957 atomic_dec(&pkt_sk(sk)->mapped);
3958 }
3959
3960 static const struct vm_operations_struct packet_mmap_ops = {
3961 .open = packet_mm_open,
3962 .close = packet_mm_close,
3963 };
3964
3965 static void free_pg_vec(struct pgv *pg_vec, unsigned int order,
3966 unsigned int len)
3967 {
3968 int i;
3969
3970 for (i = 0; i < len; i++) {
3971 if (likely(pg_vec[i].buffer)) {
3972 if (is_vmalloc_addr(pg_vec[i].buffer))
3973 vfree(pg_vec[i].buffer);
3974 else
3975 free_pages((unsigned long)pg_vec[i].buffer,
3976 order);
3977 pg_vec[i].buffer = NULL;
3978 }
3979 }
3980 kfree(pg_vec);
3981 }
3982
3983 static char *alloc_one_pg_vec_page(unsigned long order)
3984 {
3985 char *buffer;
3986 gfp_t gfp_flags = GFP_KERNEL | __GFP_COMP |
3987 __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY;
3988
3989 buffer = (char *) __get_free_pages(gfp_flags, order);
3990 if (buffer)
3991 return buffer;
3992
3993 /* __get_free_pages failed, fall back to vmalloc */
3994 buffer = vzalloc((1 << order) * PAGE_SIZE);
3995 if (buffer)
3996 return buffer;
3997
3998 /* vmalloc failed, lets dig into swap here */
3999 gfp_flags &= ~__GFP_NORETRY;
4000 buffer = (char *) __get_free_pages(gfp_flags, order);
4001 if (buffer)
4002 return buffer;
4003
4004 /* complete and utter failure */
4005 return NULL;
4006 }
4007
4008 static struct pgv *alloc_pg_vec(struct tpacket_req *req, int order)
4009 {
4010 unsigned int block_nr = req->tp_block_nr;
4011 struct pgv *pg_vec;
4012 int i;
4013
4014 pg_vec = kcalloc(block_nr, sizeof(struct pgv), GFP_KERNEL);
4015 if (unlikely(!pg_vec))
4016 goto out;
4017
4018 for (i = 0; i < block_nr; i++) {
4019 pg_vec[i].buffer = alloc_one_pg_vec_page(order);
4020 if (unlikely(!pg_vec[i].buffer))
4021 goto out_free_pgvec;
4022 }
4023
4024 out:
4025 return pg_vec;
4026
4027 out_free_pgvec:
4028 free_pg_vec(pg_vec, order, block_nr);
4029 pg_vec = NULL;
4030 goto out;
4031 }
4032
4033 static int packet_set_ring(struct sock *sk, union tpacket_req_u *req_u,
4034 int closing, int tx_ring)
4035 {
4036 struct pgv *pg_vec = NULL;
4037 struct packet_sock *po = pkt_sk(sk);
4038 int was_running, order = 0;
4039 struct packet_ring_buffer *rb;
4040 struct sk_buff_head *rb_queue;
4041 __be16 num;
4042 int err = -EINVAL;
4043 /* Added to avoid minimal code churn */
4044 struct tpacket_req *req = &req_u->req;
4045
4046 /* Opening a Tx-ring is NOT supported in TPACKET_V3 */
4047 if (!closing && tx_ring && (po->tp_version > TPACKET_V2)) {
4048 WARN(1, "Tx-ring is not supported.\n");
4049 goto out;
4050 }
4051
4052 rb = tx_ring ? &po->tx_ring : &po->rx_ring;
4053 rb_queue = tx_ring ? &sk->sk_write_queue : &sk->sk_receive_queue;
4054
4055 err = -EBUSY;
4056 if (!closing) {
4057 if (atomic_read(&po->mapped))
4058 goto out;
4059 if (packet_read_pending(rb))
4060 goto out;
4061 }
4062
4063 if (req->tp_block_nr) {
4064 /* Sanity tests and some calculations */
4065 err = -EBUSY;
4066 if (unlikely(rb->pg_vec))
4067 goto out;
4068
4069 switch (po->tp_version) {
4070 case TPACKET_V1:
4071 po->tp_hdrlen = TPACKET_HDRLEN;
4072 break;
4073 case TPACKET_V2:
4074 po->tp_hdrlen = TPACKET2_HDRLEN;
4075 break;
4076 case TPACKET_V3:
4077 po->tp_hdrlen = TPACKET3_HDRLEN;
4078 break;
4079 }
4080
4081 err = -EINVAL;
4082 if (unlikely((int)req->tp_block_size <= 0))
4083 goto out;
4084 if (unlikely(req->tp_block_size & (PAGE_SIZE - 1)))
4085 goto out;
4086 if (po->tp_version >= TPACKET_V3 &&
4087 (int)(req->tp_block_size -
4088 BLK_PLUS_PRIV(req_u->req3.tp_sizeof_priv)) <= 0)
4089 goto out;
4090 if (unlikely(req->tp_frame_size < po->tp_hdrlen +
4091 po->tp_reserve))
4092 goto out;
4093 if (unlikely(req->tp_frame_size & (TPACKET_ALIGNMENT - 1)))
4094 goto out;
4095
4096 rb->frames_per_block = req->tp_block_size/req->tp_frame_size;
4097 if (unlikely(rb->frames_per_block <= 0))
4098 goto out;
4099 if (unlikely((rb->frames_per_block * req->tp_block_nr) !=
4100 req->tp_frame_nr))
4101 goto out;
4102
4103 err = -ENOMEM;
4104 order = get_order(req->tp_block_size);
4105 pg_vec = alloc_pg_vec(req, order);
4106 if (unlikely(!pg_vec))
4107 goto out;
4108 switch (po->tp_version) {
4109 case TPACKET_V3:
4110 /* Transmit path is not supported. We checked
4111 * it above but just being paranoid
4112 */
4113 if (!tx_ring)
4114 init_prb_bdqc(po, rb, pg_vec, req_u);
4115 break;
4116 default:
4117 break;
4118 }
4119 }
4120 /* Done */
4121 else {
4122 err = -EINVAL;
4123 if (unlikely(req->tp_frame_nr))
4124 goto out;
4125 }
4126
4127 lock_sock(sk);
4128
4129 /* Detach socket from network */
4130 spin_lock(&po->bind_lock);
4131 was_running = po->running;
4132 num = po->num;
4133 if (was_running) {
4134 po->num = 0;
4135 __unregister_prot_hook(sk, false);
4136 }
4137 spin_unlock(&po->bind_lock);
4138
4139 synchronize_net();
4140
4141 err = -EBUSY;
4142 mutex_lock(&po->pg_vec_lock);
4143 if (closing || atomic_read(&po->mapped) == 0) {
4144 err = 0;
4145 spin_lock_bh(&rb_queue->lock);
4146 swap(rb->pg_vec, pg_vec);
4147 rb->frame_max = (req->tp_frame_nr - 1);
4148 rb->head = 0;
4149 rb->frame_size = req->tp_frame_size;
4150 spin_unlock_bh(&rb_queue->lock);
4151
4152 swap(rb->pg_vec_order, order);
4153 swap(rb->pg_vec_len, req->tp_block_nr);
4154
4155 rb->pg_vec_pages = req->tp_block_size/PAGE_SIZE;
4156 po->prot_hook.func = (po->rx_ring.pg_vec) ?
4157 tpacket_rcv : packet_rcv;
4158 skb_queue_purge(rb_queue);
4159 if (atomic_read(&po->mapped))
4160 pr_err("packet_mmap: vma is busy: %d\n",
4161 atomic_read(&po->mapped));
4162 }
4163 mutex_unlock(&po->pg_vec_lock);
4164
4165 spin_lock(&po->bind_lock);
4166 if (was_running) {
4167 po->num = num;
4168 register_prot_hook(sk);
4169 }
4170 spin_unlock(&po->bind_lock);
4171 if (closing && (po->tp_version > TPACKET_V2)) {
4172 /* Because we don't support block-based V3 on tx-ring */
4173 if (!tx_ring)
4174 prb_shutdown_retire_blk_timer(po, rb_queue);
4175 }
4176 release_sock(sk);
4177
4178 if (pg_vec)
4179 free_pg_vec(pg_vec, order, req->tp_block_nr);
4180 out:
4181 return err;
4182 }
4183
4184 static int packet_mmap(struct file *file, struct socket *sock,
4185 struct vm_area_struct *vma)
4186 {
4187 struct sock *sk = sock->sk;
4188 struct packet_sock *po = pkt_sk(sk);
4189 unsigned long size, expected_size;
4190 struct packet_ring_buffer *rb;
4191 unsigned long start;
4192 int err = -EINVAL;
4193 int i;
4194
4195 if (vma->vm_pgoff)
4196 return -EINVAL;
4197
4198 mutex_lock(&po->pg_vec_lock);
4199
4200 expected_size = 0;
4201 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4202 if (rb->pg_vec) {
4203 expected_size += rb->pg_vec_len
4204 * rb->pg_vec_pages
4205 * PAGE_SIZE;
4206 }
4207 }
4208
4209 if (expected_size == 0)
4210 goto out;
4211
4212 size = vma->vm_end - vma->vm_start;
4213 if (size != expected_size)
4214 goto out;
4215
4216 start = vma->vm_start;
4217 for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
4218 if (rb->pg_vec == NULL)
4219 continue;
4220
4221 for (i = 0; i < rb->pg_vec_len; i++) {
4222 struct page *page;
4223 void *kaddr = rb->pg_vec[i].buffer;
4224 int pg_num;
4225
4226 for (pg_num = 0; pg_num < rb->pg_vec_pages; pg_num++) {
4227 page = pgv_to_page(kaddr);
4228 err = vm_insert_page(vma, start, page);
4229 if (unlikely(err))
4230 goto out;
4231 start += PAGE_SIZE;
4232 kaddr += PAGE_SIZE;
4233 }
4234 }
4235 }
4236
4237 atomic_inc(&po->mapped);
4238 vma->vm_ops = &packet_mmap_ops;
4239 err = 0;
4240
4241 out:
4242 mutex_unlock(&po->pg_vec_lock);
4243 return err;
4244 }
4245
4246 static const struct proto_ops packet_ops_spkt = {
4247 .family = PF_PACKET,
4248 .owner = THIS_MODULE,
4249 .release = packet_release,
4250 .bind = packet_bind_spkt,
4251 .connect = sock_no_connect,
4252 .socketpair = sock_no_socketpair,
4253 .accept = sock_no_accept,
4254 .getname = packet_getname_spkt,
4255 .poll = datagram_poll,
4256 .ioctl = packet_ioctl,
4257 .listen = sock_no_listen,
4258 .shutdown = sock_no_shutdown,
4259 .setsockopt = sock_no_setsockopt,
4260 .getsockopt = sock_no_getsockopt,
4261 .sendmsg = packet_sendmsg_spkt,
4262 .recvmsg = packet_recvmsg,
4263 .mmap = sock_no_mmap,
4264 .sendpage = sock_no_sendpage,
4265 };
4266
4267 static const struct proto_ops packet_ops = {
4268 .family = PF_PACKET,
4269 .owner = THIS_MODULE,
4270 .release = packet_release,
4271 .bind = packet_bind,
4272 .connect = sock_no_connect,
4273 .socketpair = sock_no_socketpair,
4274 .accept = sock_no_accept,
4275 .getname = packet_getname,
4276 .poll = packet_poll,
4277 .ioctl = packet_ioctl,
4278 .listen = sock_no_listen,
4279 .shutdown = sock_no_shutdown,
4280 .setsockopt = packet_setsockopt,
4281 .getsockopt = packet_getsockopt,
4282 .sendmsg = packet_sendmsg,
4283 .recvmsg = packet_recvmsg,
4284 .mmap = packet_mmap,
4285 .sendpage = sock_no_sendpage,
4286 };
4287
4288 static const struct net_proto_family packet_family_ops = {
4289 .family = PF_PACKET,
4290 .create = packet_create,
4291 .owner = THIS_MODULE,
4292 };
4293
4294 static struct notifier_block packet_netdev_notifier = {
4295 .notifier_call = packet_notifier,
4296 };
4297
4298 #ifdef CONFIG_PROC_FS
4299
4300 static void *packet_seq_start(struct seq_file *seq, loff_t *pos)
4301 __acquires(RCU)
4302 {
4303 struct net *net = seq_file_net(seq);
4304
4305 rcu_read_lock();
4306 return seq_hlist_start_head_rcu(&net->packet.sklist, *pos);
4307 }
4308
4309 static void *packet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4310 {
4311 struct net *net = seq_file_net(seq);
4312 return seq_hlist_next_rcu(v, &net->packet.sklist, pos);
4313 }
4314
4315 static void packet_seq_stop(struct seq_file *seq, void *v)
4316 __releases(RCU)
4317 {
4318 rcu_read_unlock();
4319 }
4320
4321 static int packet_seq_show(struct seq_file *seq, void *v)
4322 {
4323 if (v == SEQ_START_TOKEN)
4324 seq_puts(seq, "sk RefCnt Type Proto Iface R Rmem User Inode\n");
4325 else {
4326 struct sock *s = sk_entry(v);
4327 const struct packet_sock *po = pkt_sk(s);
4328
4329 seq_printf(seq,
4330 "%pK %-6d %-4d %04x %-5d %1d %-6u %-6u %-6lu\n",
4331 s,
4332 atomic_read(&s->sk_refcnt),
4333 s->sk_type,
4334 ntohs(po->num),
4335 po->ifindex,
4336 po->running,
4337 atomic_read(&s->sk_rmem_alloc),
4338 from_kuid_munged(seq_user_ns(seq), sock_i_uid(s)),
4339 sock_i_ino(s));
4340 }
4341
4342 return 0;
4343 }
4344
4345 static const struct seq_operations packet_seq_ops = {
4346 .start = packet_seq_start,
4347 .next = packet_seq_next,
4348 .stop = packet_seq_stop,
4349 .show = packet_seq_show,
4350 };
4351
4352 static int packet_seq_open(struct inode *inode, struct file *file)
4353 {
4354 return seq_open_net(inode, file, &packet_seq_ops,
4355 sizeof(struct seq_net_private));
4356 }
4357
4358 static const struct file_operations packet_seq_fops = {
4359 .owner = THIS_MODULE,
4360 .open = packet_seq_open,
4361 .read = seq_read,
4362 .llseek = seq_lseek,
4363 .release = seq_release_net,
4364 };
4365
4366 #endif
4367
4368 static int __net_init packet_net_init(struct net *net)
4369 {
4370 mutex_init(&net->packet.sklist_lock);
4371 INIT_HLIST_HEAD(&net->packet.sklist);
4372
4373 if (!proc_create("packet", 0, net->proc_net, &packet_seq_fops))
4374 return -ENOMEM;
4375
4376 return 0;
4377 }
4378
4379 static void __net_exit packet_net_exit(struct net *net)
4380 {
4381 remove_proc_entry("packet", net->proc_net);
4382 }
4383
4384 static struct pernet_operations packet_net_ops = {
4385 .init = packet_net_init,
4386 .exit = packet_net_exit,
4387 };
4388
4389
4390 static void __exit packet_exit(void)
4391 {
4392 unregister_netdevice_notifier(&packet_netdev_notifier);
4393 unregister_pernet_subsys(&packet_net_ops);
4394 sock_unregister(PF_PACKET);
4395 proto_unregister(&packet_proto);
4396 }
4397
4398 static int __init packet_init(void)
4399 {
4400 int rc = proto_register(&packet_proto, 0);
4401
4402 if (rc != 0)
4403 goto out;
4404
4405 sock_register(&packet_family_ops);
4406 register_pernet_subsys(&packet_net_ops);
4407 register_netdevice_notifier(&packet_netdev_notifier);
4408 out:
4409 return rc;
4410 }
4411
4412 module_init(packet_init);
4413 module_exit(packet_exit);
4414 MODULE_LICENSE("GPL");
4415 MODULE_ALIAS_NETPROTO(PF_PACKET);