]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/qrtr/qrtr.c
Merge tag 'for-linus-5.10-1' of git://github.com/cminyard/linux-ipmi
[mirror_ubuntu-jammy-kernel.git] / net / qrtr / qrtr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12
13 #include <net/sock.h>
14
15 #include "qrtr.h"
16
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23
24 /**
25 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
26 * @version: protocol version
27 * @type: packet type; one of QRTR_TYPE_*
28 * @src_node_id: source node
29 * @src_port_id: source port
30 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
31 * @size: length of packet, excluding this header
32 * @dst_node_id: destination node
33 * @dst_port_id: destination port
34 */
35 struct qrtr_hdr_v1 {
36 __le32 version;
37 __le32 type;
38 __le32 src_node_id;
39 __le32 src_port_id;
40 __le32 confirm_rx;
41 __le32 size;
42 __le32 dst_node_id;
43 __le32 dst_port_id;
44 } __packed;
45
46 /**
47 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
48 * @version: protocol version
49 * @type: packet type; one of QRTR_TYPE_*
50 * @flags: bitmask of QRTR_FLAGS_*
51 * @optlen: length of optional header data
52 * @size: length of packet, excluding this header and optlen
53 * @src_node_id: source node
54 * @src_port_id: source port
55 * @dst_node_id: destination node
56 * @dst_port_id: destination port
57 */
58 struct qrtr_hdr_v2 {
59 u8 version;
60 u8 type;
61 u8 flags;
62 u8 optlen;
63 __le32 size;
64 __le16 src_node_id;
65 __le16 src_port_id;
66 __le16 dst_node_id;
67 __le16 dst_port_id;
68 };
69
70 #define QRTR_FLAGS_CONFIRM_RX BIT(0)
71
72 struct qrtr_cb {
73 u32 src_node;
74 u32 src_port;
75 u32 dst_node;
76 u32 dst_port;
77
78 u8 type;
79 u8 confirm_rx;
80 };
81
82 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
83 sizeof(struct qrtr_hdr_v2))
84
85 struct qrtr_sock {
86 /* WARNING: sk must be the first member */
87 struct sock sk;
88 struct sockaddr_qrtr us;
89 struct sockaddr_qrtr peer;
90 };
91
92 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
93 {
94 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
95 return container_of(sk, struct qrtr_sock, sk);
96 }
97
98 static unsigned int qrtr_local_nid = 1;
99
100 /* for node ids */
101 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
102 static DEFINE_SPINLOCK(qrtr_nodes_lock);
103 /* broadcast list */
104 static LIST_HEAD(qrtr_all_nodes);
105 /* lock for qrtr_all_nodes and node reference */
106 static DEFINE_MUTEX(qrtr_node_lock);
107
108 /* local port allocation management */
109 static DEFINE_IDR(qrtr_ports);
110 static DEFINE_MUTEX(qrtr_port_lock);
111
112 /**
113 * struct qrtr_node - endpoint node
114 * @ep_lock: lock for endpoint management and callbacks
115 * @ep: endpoint
116 * @ref: reference count for node
117 * @nid: node id
118 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
119 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
120 * @rx_queue: receive queue
121 * @item: list item for broadcast list
122 */
123 struct qrtr_node {
124 struct mutex ep_lock;
125 struct qrtr_endpoint *ep;
126 struct kref ref;
127 unsigned int nid;
128
129 struct radix_tree_root qrtr_tx_flow;
130 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
131
132 struct sk_buff_head rx_queue;
133 struct list_head item;
134 };
135
136 /**
137 * struct qrtr_tx_flow - tx flow control
138 * @resume_tx: waiters for a resume tx from the remote
139 * @pending: number of waiting senders
140 * @tx_failed: indicates that a message with confirm_rx flag was lost
141 */
142 struct qrtr_tx_flow {
143 struct wait_queue_head resume_tx;
144 int pending;
145 int tx_failed;
146 };
147
148 #define QRTR_TX_FLOW_HIGH 10
149 #define QRTR_TX_FLOW_LOW 5
150
151 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
152 int type, struct sockaddr_qrtr *from,
153 struct sockaddr_qrtr *to);
154 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
155 int type, struct sockaddr_qrtr *from,
156 struct sockaddr_qrtr *to);
157 static struct qrtr_sock *qrtr_port_lookup(int port);
158 static void qrtr_port_put(struct qrtr_sock *ipc);
159
160 /* Release node resources and free the node.
161 *
162 * Do not call directly, use qrtr_node_release. To be used with
163 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
164 */
165 static void __qrtr_node_release(struct kref *kref)
166 {
167 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
168 struct radix_tree_iter iter;
169 struct qrtr_tx_flow *flow;
170 unsigned long flags;
171 void __rcu **slot;
172
173 spin_lock_irqsave(&qrtr_nodes_lock, flags);
174 if (node->nid != QRTR_EP_NID_AUTO)
175 radix_tree_delete(&qrtr_nodes, node->nid);
176 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
177
178 list_del(&node->item);
179 mutex_unlock(&qrtr_node_lock);
180
181 skb_queue_purge(&node->rx_queue);
182
183 /* Free tx flow counters */
184 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
185 flow = *slot;
186 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
187 kfree(flow);
188 }
189 kfree(node);
190 }
191
192 /* Increment reference to node. */
193 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
194 {
195 if (node)
196 kref_get(&node->ref);
197 return node;
198 }
199
200 /* Decrement reference to node and release as necessary. */
201 static void qrtr_node_release(struct qrtr_node *node)
202 {
203 if (!node)
204 return;
205 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
206 }
207
208 /**
209 * qrtr_tx_resume() - reset flow control counter
210 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
211 * @skb: resume_tx packet
212 */
213 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
214 {
215 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
216 u64 remote_node = le32_to_cpu(pkt->client.node);
217 u32 remote_port = le32_to_cpu(pkt->client.port);
218 struct qrtr_tx_flow *flow;
219 unsigned long key;
220
221 key = remote_node << 32 | remote_port;
222
223 rcu_read_lock();
224 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
225 rcu_read_unlock();
226 if (flow) {
227 spin_lock(&flow->resume_tx.lock);
228 flow->pending = 0;
229 spin_unlock(&flow->resume_tx.lock);
230 wake_up_interruptible_all(&flow->resume_tx);
231 }
232
233 consume_skb(skb);
234 }
235
236 /**
237 * qrtr_tx_wait() - flow control for outgoing packets
238 * @node: qrtr_node that the packet is to be send to
239 * @dest_node: node id of the destination
240 * @dest_port: port number of the destination
241 * @type: type of message
242 *
243 * The flow control scheme is based around the low and high "watermarks". When
244 * the low watermark is passed the confirm_rx flag is set on the outgoing
245 * message, which will trigger the remote to send a control message of the type
246 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
247 * further transmision should be paused.
248 *
249 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
250 */
251 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
252 int type)
253 {
254 unsigned long key = (u64)dest_node << 32 | dest_port;
255 struct qrtr_tx_flow *flow;
256 int confirm_rx = 0;
257 int ret;
258
259 /* Never set confirm_rx on non-data packets */
260 if (type != QRTR_TYPE_DATA)
261 return 0;
262
263 mutex_lock(&node->qrtr_tx_lock);
264 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
265 if (!flow) {
266 flow = kzalloc(sizeof(*flow), GFP_KERNEL);
267 if (flow) {
268 init_waitqueue_head(&flow->resume_tx);
269 radix_tree_insert(&node->qrtr_tx_flow, key, flow);
270 }
271 }
272 mutex_unlock(&node->qrtr_tx_lock);
273
274 /* Set confirm_rx if we where unable to find and allocate a flow */
275 if (!flow)
276 return 1;
277
278 spin_lock_irq(&flow->resume_tx.lock);
279 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
280 flow->pending < QRTR_TX_FLOW_HIGH ||
281 flow->tx_failed ||
282 !node->ep);
283 if (ret < 0) {
284 confirm_rx = ret;
285 } else if (!node->ep) {
286 confirm_rx = -EPIPE;
287 } else if (flow->tx_failed) {
288 flow->tx_failed = 0;
289 confirm_rx = 1;
290 } else {
291 flow->pending++;
292 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
293 }
294 spin_unlock_irq(&flow->resume_tx.lock);
295
296 return confirm_rx;
297 }
298
299 /**
300 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
301 * @node: qrtr_node that the packet is to be send to
302 * @dest_node: node id of the destination
303 * @dest_port: port number of the destination
304 *
305 * Signal that the transmission of a message with confirm_rx flag failed. The
306 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
307 * at which point transmission would stall forever waiting for the resume TX
308 * message associated with the dropped confirm_rx message.
309 * Work around this by marking the flow as having a failed transmission and
310 * cause the next transmission attempt to be sent with the confirm_rx.
311 */
312 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
313 int dest_port)
314 {
315 unsigned long key = (u64)dest_node << 32 | dest_port;
316 struct qrtr_tx_flow *flow;
317
318 rcu_read_lock();
319 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
320 rcu_read_unlock();
321 if (flow) {
322 spin_lock_irq(&flow->resume_tx.lock);
323 flow->tx_failed = 1;
324 spin_unlock_irq(&flow->resume_tx.lock);
325 }
326 }
327
328 /* Pass an outgoing packet socket buffer to the endpoint driver. */
329 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
330 int type, struct sockaddr_qrtr *from,
331 struct sockaddr_qrtr *to)
332 {
333 struct qrtr_hdr_v1 *hdr;
334 size_t len = skb->len;
335 int rc, confirm_rx;
336
337 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
338 if (confirm_rx < 0) {
339 kfree_skb(skb);
340 return confirm_rx;
341 }
342
343 hdr = skb_push(skb, sizeof(*hdr));
344 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
345 hdr->type = cpu_to_le32(type);
346 hdr->src_node_id = cpu_to_le32(from->sq_node);
347 hdr->src_port_id = cpu_to_le32(from->sq_port);
348 if (to->sq_port == QRTR_PORT_CTRL) {
349 hdr->dst_node_id = cpu_to_le32(node->nid);
350 hdr->dst_port_id = cpu_to_le32(QRTR_NODE_BCAST);
351 } else {
352 hdr->dst_node_id = cpu_to_le32(to->sq_node);
353 hdr->dst_port_id = cpu_to_le32(to->sq_port);
354 }
355
356 hdr->size = cpu_to_le32(len);
357 hdr->confirm_rx = !!confirm_rx;
358
359 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
360
361 if (!rc) {
362 mutex_lock(&node->ep_lock);
363 rc = -ENODEV;
364 if (node->ep)
365 rc = node->ep->xmit(node->ep, skb);
366 else
367 kfree_skb(skb);
368 mutex_unlock(&node->ep_lock);
369 }
370 /* Need to ensure that a subsequent message carries the otherwise lost
371 * confirm_rx flag if we dropped this one */
372 if (rc && confirm_rx)
373 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
374
375 return rc;
376 }
377
378 /* Lookup node by id.
379 *
380 * callers must release with qrtr_node_release()
381 */
382 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
383 {
384 struct qrtr_node *node;
385 unsigned long flags;
386
387 spin_lock_irqsave(&qrtr_nodes_lock, flags);
388 node = radix_tree_lookup(&qrtr_nodes, nid);
389 node = qrtr_node_acquire(node);
390 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
391
392 return node;
393 }
394
395 /* Assign node id to node.
396 *
397 * This is mostly useful for automatic node id assignment, based on
398 * the source id in the incoming packet.
399 */
400 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
401 {
402 unsigned long flags;
403
404 if (node->nid != QRTR_EP_NID_AUTO || nid == QRTR_EP_NID_AUTO)
405 return;
406
407 spin_lock_irqsave(&qrtr_nodes_lock, flags);
408 radix_tree_insert(&qrtr_nodes, nid, node);
409 node->nid = nid;
410 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
411 }
412
413 /**
414 * qrtr_endpoint_post() - post incoming data
415 * @ep: endpoint handle
416 * @data: data pointer
417 * @len: size of data in bytes
418 *
419 * Return: 0 on success; negative error code on failure
420 */
421 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
422 {
423 struct qrtr_node *node = ep->node;
424 const struct qrtr_hdr_v1 *v1;
425 const struct qrtr_hdr_v2 *v2;
426 struct qrtr_sock *ipc;
427 struct sk_buff *skb;
428 struct qrtr_cb *cb;
429 unsigned int size;
430 unsigned int ver;
431 size_t hdrlen;
432
433 if (len == 0 || len & 3)
434 return -EINVAL;
435
436 skb = netdev_alloc_skb(NULL, len);
437 if (!skb)
438 return -ENOMEM;
439
440 cb = (struct qrtr_cb *)skb->cb;
441
442 /* Version field in v1 is little endian, so this works for both cases */
443 ver = *(u8*)data;
444
445 switch (ver) {
446 case QRTR_PROTO_VER_1:
447 if (len < sizeof(*v1))
448 goto err;
449 v1 = data;
450 hdrlen = sizeof(*v1);
451
452 cb->type = le32_to_cpu(v1->type);
453 cb->src_node = le32_to_cpu(v1->src_node_id);
454 cb->src_port = le32_to_cpu(v1->src_port_id);
455 cb->confirm_rx = !!v1->confirm_rx;
456 cb->dst_node = le32_to_cpu(v1->dst_node_id);
457 cb->dst_port = le32_to_cpu(v1->dst_port_id);
458
459 size = le32_to_cpu(v1->size);
460 break;
461 case QRTR_PROTO_VER_2:
462 if (len < sizeof(*v2))
463 goto err;
464 v2 = data;
465 hdrlen = sizeof(*v2) + v2->optlen;
466
467 cb->type = v2->type;
468 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
469 cb->src_node = le16_to_cpu(v2->src_node_id);
470 cb->src_port = le16_to_cpu(v2->src_port_id);
471 cb->dst_node = le16_to_cpu(v2->dst_node_id);
472 cb->dst_port = le16_to_cpu(v2->dst_port_id);
473
474 if (cb->src_port == (u16)QRTR_PORT_CTRL)
475 cb->src_port = QRTR_PORT_CTRL;
476 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
477 cb->dst_port = QRTR_PORT_CTRL;
478
479 size = le32_to_cpu(v2->size);
480 break;
481 default:
482 pr_err("qrtr: Invalid version %d\n", ver);
483 goto err;
484 }
485
486 if (len != ALIGN(size, 4) + hdrlen)
487 goto err;
488
489 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
490 cb->type != QRTR_TYPE_RESUME_TX)
491 goto err;
492
493 skb_put_data(skb, data + hdrlen, size);
494
495 qrtr_node_assign(node, cb->src_node);
496
497 if (cb->type == QRTR_TYPE_RESUME_TX) {
498 qrtr_tx_resume(node, skb);
499 } else {
500 ipc = qrtr_port_lookup(cb->dst_port);
501 if (!ipc)
502 goto err;
503
504 if (sock_queue_rcv_skb(&ipc->sk, skb))
505 goto err;
506
507 qrtr_port_put(ipc);
508 }
509
510 return 0;
511
512 err:
513 kfree_skb(skb);
514 return -EINVAL;
515
516 }
517 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
518
519 /**
520 * qrtr_alloc_ctrl_packet() - allocate control packet skb
521 * @pkt: reference to qrtr_ctrl_pkt pointer
522 *
523 * Returns newly allocated sk_buff, or NULL on failure
524 *
525 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
526 * on success returns a reference to the control packet in @pkt.
527 */
528 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt)
529 {
530 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
531 struct sk_buff *skb;
532
533 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, GFP_KERNEL);
534 if (!skb)
535 return NULL;
536
537 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
538 *pkt = skb_put_zero(skb, pkt_len);
539
540 return skb;
541 }
542
543 /**
544 * qrtr_endpoint_register() - register a new endpoint
545 * @ep: endpoint to register
546 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
547 * Return: 0 on success; negative error code on failure
548 *
549 * The specified endpoint must have the xmit function pointer set on call.
550 */
551 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
552 {
553 struct qrtr_node *node;
554
555 if (!ep || !ep->xmit)
556 return -EINVAL;
557
558 node = kzalloc(sizeof(*node), GFP_KERNEL);
559 if (!node)
560 return -ENOMEM;
561
562 kref_init(&node->ref);
563 mutex_init(&node->ep_lock);
564 skb_queue_head_init(&node->rx_queue);
565 node->nid = QRTR_EP_NID_AUTO;
566 node->ep = ep;
567
568 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
569 mutex_init(&node->qrtr_tx_lock);
570
571 qrtr_node_assign(node, nid);
572
573 mutex_lock(&qrtr_node_lock);
574 list_add(&node->item, &qrtr_all_nodes);
575 mutex_unlock(&qrtr_node_lock);
576 ep->node = node;
577
578 return 0;
579 }
580 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
581
582 /**
583 * qrtr_endpoint_unregister - unregister endpoint
584 * @ep: endpoint to unregister
585 */
586 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
587 {
588 struct qrtr_node *node = ep->node;
589 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
590 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
591 struct radix_tree_iter iter;
592 struct qrtr_ctrl_pkt *pkt;
593 struct qrtr_tx_flow *flow;
594 struct sk_buff *skb;
595 void __rcu **slot;
596
597 mutex_lock(&node->ep_lock);
598 node->ep = NULL;
599 mutex_unlock(&node->ep_lock);
600
601 /* Notify the local controller about the event */
602 skb = qrtr_alloc_ctrl_packet(&pkt);
603 if (skb) {
604 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
605 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
606 }
607
608 /* Wake up any transmitters waiting for resume-tx from the node */
609 mutex_lock(&node->qrtr_tx_lock);
610 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
611 flow = *slot;
612 wake_up_interruptible_all(&flow->resume_tx);
613 }
614 mutex_unlock(&node->qrtr_tx_lock);
615
616 qrtr_node_release(node);
617 ep->node = NULL;
618 }
619 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
620
621 /* Lookup socket by port.
622 *
623 * Callers must release with qrtr_port_put()
624 */
625 static struct qrtr_sock *qrtr_port_lookup(int port)
626 {
627 struct qrtr_sock *ipc;
628
629 if (port == QRTR_PORT_CTRL)
630 port = 0;
631
632 rcu_read_lock();
633 ipc = idr_find(&qrtr_ports, port);
634 if (ipc)
635 sock_hold(&ipc->sk);
636 rcu_read_unlock();
637
638 return ipc;
639 }
640
641 /* Release acquired socket. */
642 static void qrtr_port_put(struct qrtr_sock *ipc)
643 {
644 sock_put(&ipc->sk);
645 }
646
647 /* Remove port assignment. */
648 static void qrtr_port_remove(struct qrtr_sock *ipc)
649 {
650 struct qrtr_ctrl_pkt *pkt;
651 struct sk_buff *skb;
652 int port = ipc->us.sq_port;
653 struct sockaddr_qrtr to;
654
655 to.sq_family = AF_QIPCRTR;
656 to.sq_node = QRTR_NODE_BCAST;
657 to.sq_port = QRTR_PORT_CTRL;
658
659 skb = qrtr_alloc_ctrl_packet(&pkt);
660 if (skb) {
661 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
662 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
663 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
664
665 skb_set_owner_w(skb, &ipc->sk);
666 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
667 &to);
668 }
669
670 if (port == QRTR_PORT_CTRL)
671 port = 0;
672
673 __sock_put(&ipc->sk);
674
675 mutex_lock(&qrtr_port_lock);
676 idr_remove(&qrtr_ports, port);
677 mutex_unlock(&qrtr_port_lock);
678
679 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
680 * wait for it to up increment the refcount */
681 synchronize_rcu();
682 }
683
684 /* Assign port number to socket.
685 *
686 * Specify port in the integer pointed to by port, and it will be adjusted
687 * on return as necesssary.
688 *
689 * Port may be:
690 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
691 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
692 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
693 */
694 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
695 {
696 u32 min_port;
697 int rc;
698
699 mutex_lock(&qrtr_port_lock);
700 if (!*port) {
701 min_port = QRTR_MIN_EPH_SOCKET;
702 rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, QRTR_MAX_EPH_SOCKET, GFP_ATOMIC);
703 if (!rc)
704 *port = min_port;
705 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
706 rc = -EACCES;
707 } else if (*port == QRTR_PORT_CTRL) {
708 min_port = 0;
709 rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, 0, GFP_ATOMIC);
710 } else {
711 min_port = *port;
712 rc = idr_alloc_u32(&qrtr_ports, ipc, &min_port, *port, GFP_ATOMIC);
713 if (!rc)
714 *port = min_port;
715 }
716 mutex_unlock(&qrtr_port_lock);
717
718 if (rc == -ENOSPC)
719 return -EADDRINUSE;
720 else if (rc < 0)
721 return rc;
722
723 sock_hold(&ipc->sk);
724
725 return 0;
726 }
727
728 /* Reset all non-control ports */
729 static void qrtr_reset_ports(void)
730 {
731 struct qrtr_sock *ipc;
732 int id;
733
734 mutex_lock(&qrtr_port_lock);
735 idr_for_each_entry(&qrtr_ports, ipc, id) {
736 /* Don't reset control port */
737 if (id == 0)
738 continue;
739
740 sock_hold(&ipc->sk);
741 ipc->sk.sk_err = ENETRESET;
742 ipc->sk.sk_error_report(&ipc->sk);
743 sock_put(&ipc->sk);
744 }
745 mutex_unlock(&qrtr_port_lock);
746 }
747
748 /* Bind socket to address.
749 *
750 * Socket should be locked upon call.
751 */
752 static int __qrtr_bind(struct socket *sock,
753 const struct sockaddr_qrtr *addr, int zapped)
754 {
755 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
756 struct sock *sk = sock->sk;
757 int port;
758 int rc;
759
760 /* rebinding ok */
761 if (!zapped && addr->sq_port == ipc->us.sq_port)
762 return 0;
763
764 port = addr->sq_port;
765 rc = qrtr_port_assign(ipc, &port);
766 if (rc)
767 return rc;
768
769 /* unbind previous, if any */
770 if (!zapped)
771 qrtr_port_remove(ipc);
772 ipc->us.sq_port = port;
773
774 sock_reset_flag(sk, SOCK_ZAPPED);
775
776 /* Notify all open ports about the new controller */
777 if (port == QRTR_PORT_CTRL)
778 qrtr_reset_ports();
779
780 return 0;
781 }
782
783 /* Auto bind to an ephemeral port. */
784 static int qrtr_autobind(struct socket *sock)
785 {
786 struct sock *sk = sock->sk;
787 struct sockaddr_qrtr addr;
788
789 if (!sock_flag(sk, SOCK_ZAPPED))
790 return 0;
791
792 addr.sq_family = AF_QIPCRTR;
793 addr.sq_node = qrtr_local_nid;
794 addr.sq_port = 0;
795
796 return __qrtr_bind(sock, &addr, 1);
797 }
798
799 /* Bind socket to specified sockaddr. */
800 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
801 {
802 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
803 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
804 struct sock *sk = sock->sk;
805 int rc;
806
807 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
808 return -EINVAL;
809
810 if (addr->sq_node != ipc->us.sq_node)
811 return -EINVAL;
812
813 lock_sock(sk);
814 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
815 release_sock(sk);
816
817 return rc;
818 }
819
820 /* Queue packet to local peer socket. */
821 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
822 int type, struct sockaddr_qrtr *from,
823 struct sockaddr_qrtr *to)
824 {
825 struct qrtr_sock *ipc;
826 struct qrtr_cb *cb;
827
828 ipc = qrtr_port_lookup(to->sq_port);
829 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
830 kfree_skb(skb);
831 return -ENODEV;
832 }
833
834 cb = (struct qrtr_cb *)skb->cb;
835 cb->src_node = from->sq_node;
836 cb->src_port = from->sq_port;
837
838 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
839 qrtr_port_put(ipc);
840 kfree_skb(skb);
841 return -ENOSPC;
842 }
843
844 qrtr_port_put(ipc);
845
846 return 0;
847 }
848
849 /* Queue packet for broadcast. */
850 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
851 int type, struct sockaddr_qrtr *from,
852 struct sockaddr_qrtr *to)
853 {
854 struct sk_buff *skbn;
855
856 mutex_lock(&qrtr_node_lock);
857 list_for_each_entry(node, &qrtr_all_nodes, item) {
858 skbn = skb_clone(skb, GFP_KERNEL);
859 if (!skbn)
860 break;
861 skb_set_owner_w(skbn, skb->sk);
862 qrtr_node_enqueue(node, skbn, type, from, to);
863 }
864 mutex_unlock(&qrtr_node_lock);
865
866 qrtr_local_enqueue(NULL, skb, type, from, to);
867
868 return 0;
869 }
870
871 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
872 {
873 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
874 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
875 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
876 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
877 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
878 struct sock *sk = sock->sk;
879 struct qrtr_node *node;
880 struct sk_buff *skb;
881 size_t plen;
882 u32 type;
883 int rc;
884
885 if (msg->msg_flags & ~(MSG_DONTWAIT))
886 return -EINVAL;
887
888 if (len > 65535)
889 return -EMSGSIZE;
890
891 lock_sock(sk);
892
893 if (addr) {
894 if (msg->msg_namelen < sizeof(*addr)) {
895 release_sock(sk);
896 return -EINVAL;
897 }
898
899 if (addr->sq_family != AF_QIPCRTR) {
900 release_sock(sk);
901 return -EINVAL;
902 }
903
904 rc = qrtr_autobind(sock);
905 if (rc) {
906 release_sock(sk);
907 return rc;
908 }
909 } else if (sk->sk_state == TCP_ESTABLISHED) {
910 addr = &ipc->peer;
911 } else {
912 release_sock(sk);
913 return -ENOTCONN;
914 }
915
916 node = NULL;
917 if (addr->sq_node == QRTR_NODE_BCAST) {
918 if (addr->sq_port != QRTR_PORT_CTRL &&
919 qrtr_local_nid != QRTR_NODE_BCAST) {
920 release_sock(sk);
921 return -ENOTCONN;
922 }
923 enqueue_fn = qrtr_bcast_enqueue;
924 } else if (addr->sq_node == ipc->us.sq_node) {
925 enqueue_fn = qrtr_local_enqueue;
926 } else {
927 node = qrtr_node_lookup(addr->sq_node);
928 if (!node) {
929 release_sock(sk);
930 return -ECONNRESET;
931 }
932 enqueue_fn = qrtr_node_enqueue;
933 }
934
935 plen = (len + 3) & ~3;
936 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
937 msg->msg_flags & MSG_DONTWAIT, &rc);
938 if (!skb)
939 goto out_node;
940
941 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
942
943 rc = memcpy_from_msg(skb_put(skb, len), msg, len);
944 if (rc) {
945 kfree_skb(skb);
946 goto out_node;
947 }
948
949 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
950 if (len < 4) {
951 rc = -EINVAL;
952 kfree_skb(skb);
953 goto out_node;
954 }
955
956 /* control messages already require the type as 'command' */
957 skb_copy_bits(skb, 0, &qrtr_type, 4);
958 }
959
960 type = le32_to_cpu(qrtr_type);
961 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
962 if (rc >= 0)
963 rc = len;
964
965 out_node:
966 qrtr_node_release(node);
967 release_sock(sk);
968
969 return rc;
970 }
971
972 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
973 {
974 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
975 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
976 struct qrtr_ctrl_pkt *pkt;
977 struct qrtr_node *node;
978 struct sk_buff *skb;
979 int ret;
980
981 node = qrtr_node_lookup(remote.sq_node);
982 if (!node)
983 return -EINVAL;
984
985 skb = qrtr_alloc_ctrl_packet(&pkt);
986 if (!skb)
987 return -ENOMEM;
988
989 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
990 pkt->client.node = cpu_to_le32(cb->dst_node);
991 pkt->client.port = cpu_to_le32(cb->dst_port);
992
993 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
994
995 qrtr_node_release(node);
996
997 return ret;
998 }
999
1000 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1001 size_t size, int flags)
1002 {
1003 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1004 struct sock *sk = sock->sk;
1005 struct sk_buff *skb;
1006 struct qrtr_cb *cb;
1007 int copied, rc;
1008
1009 lock_sock(sk);
1010
1011 if (sock_flag(sk, SOCK_ZAPPED)) {
1012 release_sock(sk);
1013 return -EADDRNOTAVAIL;
1014 }
1015
1016 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1017 flags & MSG_DONTWAIT, &rc);
1018 if (!skb) {
1019 release_sock(sk);
1020 return rc;
1021 }
1022 cb = (struct qrtr_cb *)skb->cb;
1023
1024 copied = skb->len;
1025 if (copied > size) {
1026 copied = size;
1027 msg->msg_flags |= MSG_TRUNC;
1028 }
1029
1030 rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1031 if (rc < 0)
1032 goto out;
1033 rc = copied;
1034
1035 if (addr) {
1036 addr->sq_family = AF_QIPCRTR;
1037 addr->sq_node = cb->src_node;
1038 addr->sq_port = cb->src_port;
1039 msg->msg_namelen = sizeof(*addr);
1040 }
1041
1042 out:
1043 if (cb->confirm_rx)
1044 qrtr_send_resume_tx(cb);
1045
1046 skb_free_datagram(sk, skb);
1047 release_sock(sk);
1048
1049 return rc;
1050 }
1051
1052 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1053 int len, int flags)
1054 {
1055 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1056 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1057 struct sock *sk = sock->sk;
1058 int rc;
1059
1060 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1061 return -EINVAL;
1062
1063 lock_sock(sk);
1064
1065 sk->sk_state = TCP_CLOSE;
1066 sock->state = SS_UNCONNECTED;
1067
1068 rc = qrtr_autobind(sock);
1069 if (rc) {
1070 release_sock(sk);
1071 return rc;
1072 }
1073
1074 ipc->peer = *addr;
1075 sock->state = SS_CONNECTED;
1076 sk->sk_state = TCP_ESTABLISHED;
1077
1078 release_sock(sk);
1079
1080 return 0;
1081 }
1082
1083 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1084 int peer)
1085 {
1086 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1087 struct sockaddr_qrtr qaddr;
1088 struct sock *sk = sock->sk;
1089
1090 lock_sock(sk);
1091 if (peer) {
1092 if (sk->sk_state != TCP_ESTABLISHED) {
1093 release_sock(sk);
1094 return -ENOTCONN;
1095 }
1096
1097 qaddr = ipc->peer;
1098 } else {
1099 qaddr = ipc->us;
1100 }
1101 release_sock(sk);
1102
1103 qaddr.sq_family = AF_QIPCRTR;
1104
1105 memcpy(saddr, &qaddr, sizeof(qaddr));
1106
1107 return sizeof(qaddr);
1108 }
1109
1110 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1111 {
1112 void __user *argp = (void __user *)arg;
1113 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1114 struct sock *sk = sock->sk;
1115 struct sockaddr_qrtr *sq;
1116 struct sk_buff *skb;
1117 struct ifreq ifr;
1118 long len = 0;
1119 int rc = 0;
1120
1121 lock_sock(sk);
1122
1123 switch (cmd) {
1124 case TIOCOUTQ:
1125 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1126 if (len < 0)
1127 len = 0;
1128 rc = put_user(len, (int __user *)argp);
1129 break;
1130 case TIOCINQ:
1131 skb = skb_peek(&sk->sk_receive_queue);
1132 if (skb)
1133 len = skb->len;
1134 rc = put_user(len, (int __user *)argp);
1135 break;
1136 case SIOCGIFADDR:
1137 if (copy_from_user(&ifr, argp, sizeof(ifr))) {
1138 rc = -EFAULT;
1139 break;
1140 }
1141
1142 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1143 *sq = ipc->us;
1144 if (copy_to_user(argp, &ifr, sizeof(ifr))) {
1145 rc = -EFAULT;
1146 break;
1147 }
1148 break;
1149 case SIOCADDRT:
1150 case SIOCDELRT:
1151 case SIOCSIFADDR:
1152 case SIOCGIFDSTADDR:
1153 case SIOCSIFDSTADDR:
1154 case SIOCGIFBRDADDR:
1155 case SIOCSIFBRDADDR:
1156 case SIOCGIFNETMASK:
1157 case SIOCSIFNETMASK:
1158 rc = -EINVAL;
1159 break;
1160 default:
1161 rc = -ENOIOCTLCMD;
1162 break;
1163 }
1164
1165 release_sock(sk);
1166
1167 return rc;
1168 }
1169
1170 static int qrtr_release(struct socket *sock)
1171 {
1172 struct sock *sk = sock->sk;
1173 struct qrtr_sock *ipc;
1174
1175 if (!sk)
1176 return 0;
1177
1178 lock_sock(sk);
1179
1180 ipc = qrtr_sk(sk);
1181 sk->sk_shutdown = SHUTDOWN_MASK;
1182 if (!sock_flag(sk, SOCK_DEAD))
1183 sk->sk_state_change(sk);
1184
1185 sock_set_flag(sk, SOCK_DEAD);
1186 sock_orphan(sk);
1187 sock->sk = NULL;
1188
1189 if (!sock_flag(sk, SOCK_ZAPPED))
1190 qrtr_port_remove(ipc);
1191
1192 skb_queue_purge(&sk->sk_receive_queue);
1193
1194 release_sock(sk);
1195 sock_put(sk);
1196
1197 return 0;
1198 }
1199
1200 static const struct proto_ops qrtr_proto_ops = {
1201 .owner = THIS_MODULE,
1202 .family = AF_QIPCRTR,
1203 .bind = qrtr_bind,
1204 .connect = qrtr_connect,
1205 .socketpair = sock_no_socketpair,
1206 .accept = sock_no_accept,
1207 .listen = sock_no_listen,
1208 .sendmsg = qrtr_sendmsg,
1209 .recvmsg = qrtr_recvmsg,
1210 .getname = qrtr_getname,
1211 .ioctl = qrtr_ioctl,
1212 .gettstamp = sock_gettstamp,
1213 .poll = datagram_poll,
1214 .shutdown = sock_no_shutdown,
1215 .release = qrtr_release,
1216 .mmap = sock_no_mmap,
1217 .sendpage = sock_no_sendpage,
1218 };
1219
1220 static struct proto qrtr_proto = {
1221 .name = "QIPCRTR",
1222 .owner = THIS_MODULE,
1223 .obj_size = sizeof(struct qrtr_sock),
1224 };
1225
1226 static int qrtr_create(struct net *net, struct socket *sock,
1227 int protocol, int kern)
1228 {
1229 struct qrtr_sock *ipc;
1230 struct sock *sk;
1231
1232 if (sock->type != SOCK_DGRAM)
1233 return -EPROTOTYPE;
1234
1235 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1236 if (!sk)
1237 return -ENOMEM;
1238
1239 sock_set_flag(sk, SOCK_ZAPPED);
1240
1241 sock_init_data(sock, sk);
1242 sock->ops = &qrtr_proto_ops;
1243
1244 ipc = qrtr_sk(sk);
1245 ipc->us.sq_family = AF_QIPCRTR;
1246 ipc->us.sq_node = qrtr_local_nid;
1247 ipc->us.sq_port = 0;
1248
1249 return 0;
1250 }
1251
1252 static const struct net_proto_family qrtr_family = {
1253 .owner = THIS_MODULE,
1254 .family = AF_QIPCRTR,
1255 .create = qrtr_create,
1256 };
1257
1258 static int __init qrtr_proto_init(void)
1259 {
1260 int rc;
1261
1262 rc = proto_register(&qrtr_proto, 1);
1263 if (rc)
1264 return rc;
1265
1266 rc = sock_register(&qrtr_family);
1267 if (rc) {
1268 proto_unregister(&qrtr_proto);
1269 return rc;
1270 }
1271
1272 qrtr_ns_init();
1273
1274 return rc;
1275 }
1276 postcore_initcall(qrtr_proto_init);
1277
1278 static void __exit qrtr_proto_fini(void)
1279 {
1280 qrtr_ns_remove();
1281 sock_unregister(qrtr_family.family);
1282 proto_unregister(&qrtr_proto);
1283 }
1284 module_exit(qrtr_proto_fini);
1285
1286 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1287 MODULE_LICENSE("GPL v2");
1288 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);