]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/qrtr/qrtr.c
Merge branch 'pm-cpufreq'
[mirror_ubuntu-jammy-kernel.git] / net / qrtr / qrtr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/netlink.h>
8 #include <linux/qrtr.h>
9 #include <linux/termios.h> /* For TIOCINQ/OUTQ */
10 #include <linux/spinlock.h>
11 #include <linux/wait.h>
12
13 #include <net/sock.h>
14
15 #include "qrtr.h"
16
17 #define QRTR_PROTO_VER_1 1
18 #define QRTR_PROTO_VER_2 3
19
20 /* auto-bind range */
21 #define QRTR_MIN_EPH_SOCKET 0x4000
22 #define QRTR_MAX_EPH_SOCKET 0x7fff
23 #define QRTR_EPH_PORT_RANGE \
24 XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25
26 /**
27 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
28 * @version: protocol version
29 * @type: packet type; one of QRTR_TYPE_*
30 * @src_node_id: source node
31 * @src_port_id: source port
32 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
33 * @size: length of packet, excluding this header
34 * @dst_node_id: destination node
35 * @dst_port_id: destination port
36 */
37 struct qrtr_hdr_v1 {
38 __le32 version;
39 __le32 type;
40 __le32 src_node_id;
41 __le32 src_port_id;
42 __le32 confirm_rx;
43 __le32 size;
44 __le32 dst_node_id;
45 __le32 dst_port_id;
46 } __packed;
47
48 /**
49 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
50 * @version: protocol version
51 * @type: packet type; one of QRTR_TYPE_*
52 * @flags: bitmask of QRTR_FLAGS_*
53 * @optlen: length of optional header data
54 * @size: length of packet, excluding this header and optlen
55 * @src_node_id: source node
56 * @src_port_id: source port
57 * @dst_node_id: destination node
58 * @dst_port_id: destination port
59 */
60 struct qrtr_hdr_v2 {
61 u8 version;
62 u8 type;
63 u8 flags;
64 u8 optlen;
65 __le32 size;
66 __le16 src_node_id;
67 __le16 src_port_id;
68 __le16 dst_node_id;
69 __le16 dst_port_id;
70 };
71
72 #define QRTR_FLAGS_CONFIRM_RX BIT(0)
73
74 struct qrtr_cb {
75 u32 src_node;
76 u32 src_port;
77 u32 dst_node;
78 u32 dst_port;
79
80 u8 type;
81 u8 confirm_rx;
82 };
83
84 #define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
85 sizeof(struct qrtr_hdr_v2))
86
87 struct qrtr_sock {
88 /* WARNING: sk must be the first member */
89 struct sock sk;
90 struct sockaddr_qrtr us;
91 struct sockaddr_qrtr peer;
92 };
93
94 static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
95 {
96 BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
97 return container_of(sk, struct qrtr_sock, sk);
98 }
99
100 static unsigned int qrtr_local_nid = 1;
101
102 /* for node ids */
103 static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
104 static DEFINE_SPINLOCK(qrtr_nodes_lock);
105 /* broadcast list */
106 static LIST_HEAD(qrtr_all_nodes);
107 /* lock for qrtr_all_nodes and node reference */
108 static DEFINE_MUTEX(qrtr_node_lock);
109
110 /* local port allocation management */
111 static DEFINE_XARRAY_ALLOC(qrtr_ports);
112
113 /**
114 * struct qrtr_node - endpoint node
115 * @ep_lock: lock for endpoint management and callbacks
116 * @ep: endpoint
117 * @ref: reference count for node
118 * @nid: node id
119 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
120 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
121 * @rx_queue: receive queue
122 * @item: list item for broadcast list
123 */
124 struct qrtr_node {
125 struct mutex ep_lock;
126 struct qrtr_endpoint *ep;
127 struct kref ref;
128 unsigned int nid;
129
130 struct radix_tree_root qrtr_tx_flow;
131 struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
132
133 struct sk_buff_head rx_queue;
134 struct list_head item;
135 };
136
137 /**
138 * struct qrtr_tx_flow - tx flow control
139 * @resume_tx: waiters for a resume tx from the remote
140 * @pending: number of waiting senders
141 * @tx_failed: indicates that a message with confirm_rx flag was lost
142 */
143 struct qrtr_tx_flow {
144 struct wait_queue_head resume_tx;
145 int pending;
146 int tx_failed;
147 };
148
149 #define QRTR_TX_FLOW_HIGH 10
150 #define QRTR_TX_FLOW_LOW 5
151
152 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
153 int type, struct sockaddr_qrtr *from,
154 struct sockaddr_qrtr *to);
155 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
156 int type, struct sockaddr_qrtr *from,
157 struct sockaddr_qrtr *to);
158 static struct qrtr_sock *qrtr_port_lookup(int port);
159 static void qrtr_port_put(struct qrtr_sock *ipc);
160
161 /* Release node resources and free the node.
162 *
163 * Do not call directly, use qrtr_node_release. To be used with
164 * kref_put_mutex. As such, the node mutex is expected to be locked on call.
165 */
166 static void __qrtr_node_release(struct kref *kref)
167 {
168 struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
169 struct radix_tree_iter iter;
170 struct qrtr_tx_flow *flow;
171 unsigned long flags;
172 void __rcu **slot;
173
174 spin_lock_irqsave(&qrtr_nodes_lock, flags);
175 /* If the node is a bridge for other nodes, there are possibly
176 * multiple entries pointing to our released node, delete them all.
177 */
178 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
179 if (*slot == node)
180 radix_tree_iter_delete(&qrtr_nodes, &iter, slot);
181 }
182 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
183
184 list_del(&node->item);
185 mutex_unlock(&qrtr_node_lock);
186
187 skb_queue_purge(&node->rx_queue);
188
189 /* Free tx flow counters */
190 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
191 flow = *slot;
192 radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
193 kfree(flow);
194 }
195 kfree(node);
196 }
197
198 /* Increment reference to node. */
199 static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
200 {
201 if (node)
202 kref_get(&node->ref);
203 return node;
204 }
205
206 /* Decrement reference to node and release as necessary. */
207 static void qrtr_node_release(struct qrtr_node *node)
208 {
209 if (!node)
210 return;
211 kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
212 }
213
214 /**
215 * qrtr_tx_resume() - reset flow control counter
216 * @node: qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
217 * @skb: resume_tx packet
218 */
219 static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
220 {
221 struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
222 u64 remote_node = le32_to_cpu(pkt->client.node);
223 u32 remote_port = le32_to_cpu(pkt->client.port);
224 struct qrtr_tx_flow *flow;
225 unsigned long key;
226
227 key = remote_node << 32 | remote_port;
228
229 rcu_read_lock();
230 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
231 rcu_read_unlock();
232 if (flow) {
233 spin_lock(&flow->resume_tx.lock);
234 flow->pending = 0;
235 spin_unlock(&flow->resume_tx.lock);
236 wake_up_interruptible_all(&flow->resume_tx);
237 }
238
239 consume_skb(skb);
240 }
241
242 /**
243 * qrtr_tx_wait() - flow control for outgoing packets
244 * @node: qrtr_node that the packet is to be send to
245 * @dest_node: node id of the destination
246 * @dest_port: port number of the destination
247 * @type: type of message
248 *
249 * The flow control scheme is based around the low and high "watermarks". When
250 * the low watermark is passed the confirm_rx flag is set on the outgoing
251 * message, which will trigger the remote to send a control message of the type
252 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
253 * further transmision should be paused.
254 *
255 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
256 */
257 static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
258 int type)
259 {
260 unsigned long key = (u64)dest_node << 32 | dest_port;
261 struct qrtr_tx_flow *flow;
262 int confirm_rx = 0;
263 int ret;
264
265 /* Never set confirm_rx on non-data packets */
266 if (type != QRTR_TYPE_DATA)
267 return 0;
268
269 mutex_lock(&node->qrtr_tx_lock);
270 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
271 if (!flow) {
272 flow = kzalloc(sizeof(*flow), GFP_KERNEL);
273 if (flow) {
274 init_waitqueue_head(&flow->resume_tx);
275 if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
276 kfree(flow);
277 flow = NULL;
278 }
279 }
280 }
281 mutex_unlock(&node->qrtr_tx_lock);
282
283 /* Set confirm_rx if we where unable to find and allocate a flow */
284 if (!flow)
285 return 1;
286
287 spin_lock_irq(&flow->resume_tx.lock);
288 ret = wait_event_interruptible_locked_irq(flow->resume_tx,
289 flow->pending < QRTR_TX_FLOW_HIGH ||
290 flow->tx_failed ||
291 !node->ep);
292 if (ret < 0) {
293 confirm_rx = ret;
294 } else if (!node->ep) {
295 confirm_rx = -EPIPE;
296 } else if (flow->tx_failed) {
297 flow->tx_failed = 0;
298 confirm_rx = 1;
299 } else {
300 flow->pending++;
301 confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
302 }
303 spin_unlock_irq(&flow->resume_tx.lock);
304
305 return confirm_rx;
306 }
307
308 /**
309 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
310 * @node: qrtr_node that the packet is to be send to
311 * @dest_node: node id of the destination
312 * @dest_port: port number of the destination
313 *
314 * Signal that the transmission of a message with confirm_rx flag failed. The
315 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
316 * at which point transmission would stall forever waiting for the resume TX
317 * message associated with the dropped confirm_rx message.
318 * Work around this by marking the flow as having a failed transmission and
319 * cause the next transmission attempt to be sent with the confirm_rx.
320 */
321 static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
322 int dest_port)
323 {
324 unsigned long key = (u64)dest_node << 32 | dest_port;
325 struct qrtr_tx_flow *flow;
326
327 rcu_read_lock();
328 flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
329 rcu_read_unlock();
330 if (flow) {
331 spin_lock_irq(&flow->resume_tx.lock);
332 flow->tx_failed = 1;
333 spin_unlock_irq(&flow->resume_tx.lock);
334 }
335 }
336
337 /* Pass an outgoing packet socket buffer to the endpoint driver. */
338 static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
339 int type, struct sockaddr_qrtr *from,
340 struct sockaddr_qrtr *to)
341 {
342 struct qrtr_hdr_v1 *hdr;
343 size_t len = skb->len;
344 int rc, confirm_rx;
345
346 confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
347 if (confirm_rx < 0) {
348 kfree_skb(skb);
349 return confirm_rx;
350 }
351
352 hdr = skb_push(skb, sizeof(*hdr));
353 hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
354 hdr->type = cpu_to_le32(type);
355 hdr->src_node_id = cpu_to_le32(from->sq_node);
356 hdr->src_port_id = cpu_to_le32(from->sq_port);
357 if (to->sq_port == QRTR_PORT_CTRL) {
358 hdr->dst_node_id = cpu_to_le32(node->nid);
359 hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
360 } else {
361 hdr->dst_node_id = cpu_to_le32(to->sq_node);
362 hdr->dst_port_id = cpu_to_le32(to->sq_port);
363 }
364
365 hdr->size = cpu_to_le32(len);
366 hdr->confirm_rx = !!confirm_rx;
367
368 rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
369
370 if (!rc) {
371 mutex_lock(&node->ep_lock);
372 rc = -ENODEV;
373 if (node->ep)
374 rc = node->ep->xmit(node->ep, skb);
375 else
376 kfree_skb(skb);
377 mutex_unlock(&node->ep_lock);
378 }
379 /* Need to ensure that a subsequent message carries the otherwise lost
380 * confirm_rx flag if we dropped this one */
381 if (rc && confirm_rx)
382 qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
383
384 return rc;
385 }
386
387 /* Lookup node by id.
388 *
389 * callers must release with qrtr_node_release()
390 */
391 static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
392 {
393 struct qrtr_node *node;
394 unsigned long flags;
395
396 spin_lock_irqsave(&qrtr_nodes_lock, flags);
397 node = radix_tree_lookup(&qrtr_nodes, nid);
398 node = qrtr_node_acquire(node);
399 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
400
401 return node;
402 }
403
404 /* Assign node id to node.
405 *
406 * This is mostly useful for automatic node id assignment, based on
407 * the source id in the incoming packet.
408 */
409 static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
410 {
411 unsigned long flags;
412
413 if (nid == QRTR_EP_NID_AUTO)
414 return;
415
416 spin_lock_irqsave(&qrtr_nodes_lock, flags);
417 radix_tree_insert(&qrtr_nodes, nid, node);
418 if (node->nid == QRTR_EP_NID_AUTO)
419 node->nid = nid;
420 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
421 }
422
423 /**
424 * qrtr_endpoint_post() - post incoming data
425 * @ep: endpoint handle
426 * @data: data pointer
427 * @len: size of data in bytes
428 *
429 * Return: 0 on success; negative error code on failure
430 */
431 int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
432 {
433 struct qrtr_node *node = ep->node;
434 const struct qrtr_hdr_v1 *v1;
435 const struct qrtr_hdr_v2 *v2;
436 struct qrtr_sock *ipc;
437 struct sk_buff *skb;
438 struct qrtr_cb *cb;
439 size_t size;
440 unsigned int ver;
441 size_t hdrlen;
442
443 if (len == 0 || len & 3)
444 return -EINVAL;
445
446 skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
447 if (!skb)
448 return -ENOMEM;
449
450 cb = (struct qrtr_cb *)skb->cb;
451
452 /* Version field in v1 is little endian, so this works for both cases */
453 ver = *(u8*)data;
454
455 switch (ver) {
456 case QRTR_PROTO_VER_1:
457 if (len < sizeof(*v1))
458 goto err;
459 v1 = data;
460 hdrlen = sizeof(*v1);
461
462 cb->type = le32_to_cpu(v1->type);
463 cb->src_node = le32_to_cpu(v1->src_node_id);
464 cb->src_port = le32_to_cpu(v1->src_port_id);
465 cb->confirm_rx = !!v1->confirm_rx;
466 cb->dst_node = le32_to_cpu(v1->dst_node_id);
467 cb->dst_port = le32_to_cpu(v1->dst_port_id);
468
469 size = le32_to_cpu(v1->size);
470 break;
471 case QRTR_PROTO_VER_2:
472 if (len < sizeof(*v2))
473 goto err;
474 v2 = data;
475 hdrlen = sizeof(*v2) + v2->optlen;
476
477 cb->type = v2->type;
478 cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
479 cb->src_node = le16_to_cpu(v2->src_node_id);
480 cb->src_port = le16_to_cpu(v2->src_port_id);
481 cb->dst_node = le16_to_cpu(v2->dst_node_id);
482 cb->dst_port = le16_to_cpu(v2->dst_port_id);
483
484 if (cb->src_port == (u16)QRTR_PORT_CTRL)
485 cb->src_port = QRTR_PORT_CTRL;
486 if (cb->dst_port == (u16)QRTR_PORT_CTRL)
487 cb->dst_port = QRTR_PORT_CTRL;
488
489 size = le32_to_cpu(v2->size);
490 break;
491 default:
492 pr_err("qrtr: Invalid version %d\n", ver);
493 goto err;
494 }
495
496 if (!size || len != ALIGN(size, 4) + hdrlen)
497 goto err;
498
499 if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
500 cb->type != QRTR_TYPE_RESUME_TX)
501 goto err;
502
503 skb_put_data(skb, data + hdrlen, size);
504
505 qrtr_node_assign(node, cb->src_node);
506
507 if (cb->type == QRTR_TYPE_NEW_SERVER) {
508 /* Remote node endpoint can bridge other distant nodes */
509 const struct qrtr_ctrl_pkt *pkt = data + hdrlen;
510
511 qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
512 }
513
514 if (cb->type == QRTR_TYPE_RESUME_TX) {
515 qrtr_tx_resume(node, skb);
516 } else {
517 ipc = qrtr_port_lookup(cb->dst_port);
518 if (!ipc)
519 goto err;
520
521 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
522 qrtr_port_put(ipc);
523 goto err;
524 }
525
526 qrtr_port_put(ipc);
527 }
528
529 return 0;
530
531 err:
532 kfree_skb(skb);
533 return -EINVAL;
534
535 }
536 EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
537
538 /**
539 * qrtr_alloc_ctrl_packet() - allocate control packet skb
540 * @pkt: reference to qrtr_ctrl_pkt pointer
541 * @flags: the type of memory to allocate
542 *
543 * Returns newly allocated sk_buff, or NULL on failure
544 *
545 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
546 * on success returns a reference to the control packet in @pkt.
547 */
548 static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
549 gfp_t flags)
550 {
551 const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
552 struct sk_buff *skb;
553
554 skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags);
555 if (!skb)
556 return NULL;
557
558 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
559 *pkt = skb_put_zero(skb, pkt_len);
560
561 return skb;
562 }
563
564 /**
565 * qrtr_endpoint_register() - register a new endpoint
566 * @ep: endpoint to register
567 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
568 * Return: 0 on success; negative error code on failure
569 *
570 * The specified endpoint must have the xmit function pointer set on call.
571 */
572 int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
573 {
574 struct qrtr_node *node;
575
576 if (!ep || !ep->xmit)
577 return -EINVAL;
578
579 node = kzalloc(sizeof(*node), GFP_KERNEL);
580 if (!node)
581 return -ENOMEM;
582
583 kref_init(&node->ref);
584 mutex_init(&node->ep_lock);
585 skb_queue_head_init(&node->rx_queue);
586 node->nid = QRTR_EP_NID_AUTO;
587 node->ep = ep;
588
589 INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
590 mutex_init(&node->qrtr_tx_lock);
591
592 qrtr_node_assign(node, nid);
593
594 mutex_lock(&qrtr_node_lock);
595 list_add(&node->item, &qrtr_all_nodes);
596 mutex_unlock(&qrtr_node_lock);
597 ep->node = node;
598
599 return 0;
600 }
601 EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
602
603 /**
604 * qrtr_endpoint_unregister - unregister endpoint
605 * @ep: endpoint to unregister
606 */
607 void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
608 {
609 struct qrtr_node *node = ep->node;
610 struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
611 struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
612 struct radix_tree_iter iter;
613 struct qrtr_ctrl_pkt *pkt;
614 struct qrtr_tx_flow *flow;
615 struct sk_buff *skb;
616 unsigned long flags;
617 void __rcu **slot;
618
619 mutex_lock(&node->ep_lock);
620 node->ep = NULL;
621 mutex_unlock(&node->ep_lock);
622
623 /* Notify the local controller about the event */
624 spin_lock_irqsave(&qrtr_nodes_lock, flags);
625 radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
626 if (*slot != node)
627 continue;
628 src.sq_node = iter.index;
629 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC);
630 if (skb) {
631 pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
632 qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
633 }
634 }
635 spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
636
637 /* Wake up any transmitters waiting for resume-tx from the node */
638 mutex_lock(&node->qrtr_tx_lock);
639 radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
640 flow = *slot;
641 wake_up_interruptible_all(&flow->resume_tx);
642 }
643 mutex_unlock(&node->qrtr_tx_lock);
644
645 qrtr_node_release(node);
646 ep->node = NULL;
647 }
648 EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
649
650 /* Lookup socket by port.
651 *
652 * Callers must release with qrtr_port_put()
653 */
654 static struct qrtr_sock *qrtr_port_lookup(int port)
655 {
656 struct qrtr_sock *ipc;
657
658 if (port == QRTR_PORT_CTRL)
659 port = 0;
660
661 rcu_read_lock();
662 ipc = xa_load(&qrtr_ports, port);
663 if (ipc)
664 sock_hold(&ipc->sk);
665 rcu_read_unlock();
666
667 return ipc;
668 }
669
670 /* Release acquired socket. */
671 static void qrtr_port_put(struct qrtr_sock *ipc)
672 {
673 sock_put(&ipc->sk);
674 }
675
676 /* Remove port assignment. */
677 static void qrtr_port_remove(struct qrtr_sock *ipc)
678 {
679 struct qrtr_ctrl_pkt *pkt;
680 struct sk_buff *skb;
681 int port = ipc->us.sq_port;
682 struct sockaddr_qrtr to;
683
684 to.sq_family = AF_QIPCRTR;
685 to.sq_node = QRTR_NODE_BCAST;
686 to.sq_port = QRTR_PORT_CTRL;
687
688 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
689 if (skb) {
690 pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
691 pkt->client.node = cpu_to_le32(ipc->us.sq_node);
692 pkt->client.port = cpu_to_le32(ipc->us.sq_port);
693
694 skb_set_owner_w(skb, &ipc->sk);
695 qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
696 &to);
697 }
698
699 if (port == QRTR_PORT_CTRL)
700 port = 0;
701
702 __sock_put(&ipc->sk);
703
704 xa_erase(&qrtr_ports, port);
705
706 /* Ensure that if qrtr_port_lookup() did enter the RCU read section we
707 * wait for it to up increment the refcount */
708 synchronize_rcu();
709 }
710
711 /* Assign port number to socket.
712 *
713 * Specify port in the integer pointed to by port, and it will be adjusted
714 * on return as necesssary.
715 *
716 * Port may be:
717 * 0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
718 * <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
719 * >QRTR_MIN_EPH_SOCKET: Specified; available to all
720 */
721 static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
722 {
723 int rc;
724
725 if (!*port) {
726 rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
727 GFP_KERNEL);
728 } else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
729 rc = -EACCES;
730 } else if (*port == QRTR_PORT_CTRL) {
731 rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
732 } else {
733 rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
734 }
735
736 if (rc == -EBUSY)
737 return -EADDRINUSE;
738 else if (rc < 0)
739 return rc;
740
741 sock_hold(&ipc->sk);
742
743 return 0;
744 }
745
746 /* Reset all non-control ports */
747 static void qrtr_reset_ports(void)
748 {
749 struct qrtr_sock *ipc;
750 unsigned long index;
751
752 rcu_read_lock();
753 xa_for_each_start(&qrtr_ports, index, ipc, 1) {
754 sock_hold(&ipc->sk);
755 ipc->sk.sk_err = ENETRESET;
756 sk_error_report(&ipc->sk);
757 sock_put(&ipc->sk);
758 }
759 rcu_read_unlock();
760 }
761
762 /* Bind socket to address.
763 *
764 * Socket should be locked upon call.
765 */
766 static int __qrtr_bind(struct socket *sock,
767 const struct sockaddr_qrtr *addr, int zapped)
768 {
769 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
770 struct sock *sk = sock->sk;
771 int port;
772 int rc;
773
774 /* rebinding ok */
775 if (!zapped && addr->sq_port == ipc->us.sq_port)
776 return 0;
777
778 port = addr->sq_port;
779 rc = qrtr_port_assign(ipc, &port);
780 if (rc)
781 return rc;
782
783 /* unbind previous, if any */
784 if (!zapped)
785 qrtr_port_remove(ipc);
786 ipc->us.sq_port = port;
787
788 sock_reset_flag(sk, SOCK_ZAPPED);
789
790 /* Notify all open ports about the new controller */
791 if (port == QRTR_PORT_CTRL)
792 qrtr_reset_ports();
793
794 return 0;
795 }
796
797 /* Auto bind to an ephemeral port. */
798 static int qrtr_autobind(struct socket *sock)
799 {
800 struct sock *sk = sock->sk;
801 struct sockaddr_qrtr addr;
802
803 if (!sock_flag(sk, SOCK_ZAPPED))
804 return 0;
805
806 addr.sq_family = AF_QIPCRTR;
807 addr.sq_node = qrtr_local_nid;
808 addr.sq_port = 0;
809
810 return __qrtr_bind(sock, &addr, 1);
811 }
812
813 /* Bind socket to specified sockaddr. */
814 static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
815 {
816 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
817 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
818 struct sock *sk = sock->sk;
819 int rc;
820
821 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
822 return -EINVAL;
823
824 if (addr->sq_node != ipc->us.sq_node)
825 return -EINVAL;
826
827 lock_sock(sk);
828 rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
829 release_sock(sk);
830
831 return rc;
832 }
833
834 /* Queue packet to local peer socket. */
835 static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
836 int type, struct sockaddr_qrtr *from,
837 struct sockaddr_qrtr *to)
838 {
839 struct qrtr_sock *ipc;
840 struct qrtr_cb *cb;
841
842 ipc = qrtr_port_lookup(to->sq_port);
843 if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
844 if (ipc)
845 qrtr_port_put(ipc);
846 kfree_skb(skb);
847 return -ENODEV;
848 }
849
850 cb = (struct qrtr_cb *)skb->cb;
851 cb->src_node = from->sq_node;
852 cb->src_port = from->sq_port;
853
854 if (sock_queue_rcv_skb(&ipc->sk, skb)) {
855 qrtr_port_put(ipc);
856 kfree_skb(skb);
857 return -ENOSPC;
858 }
859
860 qrtr_port_put(ipc);
861
862 return 0;
863 }
864
865 /* Queue packet for broadcast. */
866 static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
867 int type, struct sockaddr_qrtr *from,
868 struct sockaddr_qrtr *to)
869 {
870 struct sk_buff *skbn;
871
872 mutex_lock(&qrtr_node_lock);
873 list_for_each_entry(node, &qrtr_all_nodes, item) {
874 skbn = skb_clone(skb, GFP_KERNEL);
875 if (!skbn)
876 break;
877 skb_set_owner_w(skbn, skb->sk);
878 qrtr_node_enqueue(node, skbn, type, from, to);
879 }
880 mutex_unlock(&qrtr_node_lock);
881
882 qrtr_local_enqueue(NULL, skb, type, from, to);
883
884 return 0;
885 }
886
887 static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
888 {
889 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
890 int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
891 struct sockaddr_qrtr *, struct sockaddr_qrtr *);
892 __le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
893 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
894 struct sock *sk = sock->sk;
895 struct qrtr_node *node;
896 struct sk_buff *skb;
897 size_t plen;
898 u32 type;
899 int rc;
900
901 if (msg->msg_flags & ~(MSG_DONTWAIT))
902 return -EINVAL;
903
904 if (len > 65535)
905 return -EMSGSIZE;
906
907 lock_sock(sk);
908
909 if (addr) {
910 if (msg->msg_namelen < sizeof(*addr)) {
911 release_sock(sk);
912 return -EINVAL;
913 }
914
915 if (addr->sq_family != AF_QIPCRTR) {
916 release_sock(sk);
917 return -EINVAL;
918 }
919
920 rc = qrtr_autobind(sock);
921 if (rc) {
922 release_sock(sk);
923 return rc;
924 }
925 } else if (sk->sk_state == TCP_ESTABLISHED) {
926 addr = &ipc->peer;
927 } else {
928 release_sock(sk);
929 return -ENOTCONN;
930 }
931
932 node = NULL;
933 if (addr->sq_node == QRTR_NODE_BCAST) {
934 if (addr->sq_port != QRTR_PORT_CTRL &&
935 qrtr_local_nid != QRTR_NODE_BCAST) {
936 release_sock(sk);
937 return -ENOTCONN;
938 }
939 enqueue_fn = qrtr_bcast_enqueue;
940 } else if (addr->sq_node == ipc->us.sq_node) {
941 enqueue_fn = qrtr_local_enqueue;
942 } else {
943 node = qrtr_node_lookup(addr->sq_node);
944 if (!node) {
945 release_sock(sk);
946 return -ECONNRESET;
947 }
948 enqueue_fn = qrtr_node_enqueue;
949 }
950
951 plen = (len + 3) & ~3;
952 skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
953 msg->msg_flags & MSG_DONTWAIT, &rc);
954 if (!skb) {
955 rc = -ENOMEM;
956 goto out_node;
957 }
958
959 skb_reserve(skb, QRTR_HDR_MAX_SIZE);
960
961 rc = memcpy_from_msg(skb_put(skb, len), msg, len);
962 if (rc) {
963 kfree_skb(skb);
964 goto out_node;
965 }
966
967 if (ipc->us.sq_port == QRTR_PORT_CTRL) {
968 if (len < 4) {
969 rc = -EINVAL;
970 kfree_skb(skb);
971 goto out_node;
972 }
973
974 /* control messages already require the type as 'command' */
975 skb_copy_bits(skb, 0, &qrtr_type, 4);
976 }
977
978 type = le32_to_cpu(qrtr_type);
979 rc = enqueue_fn(node, skb, type, &ipc->us, addr);
980 if (rc >= 0)
981 rc = len;
982
983 out_node:
984 qrtr_node_release(node);
985 release_sock(sk);
986
987 return rc;
988 }
989
990 static int qrtr_send_resume_tx(struct qrtr_cb *cb)
991 {
992 struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
993 struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
994 struct qrtr_ctrl_pkt *pkt;
995 struct qrtr_node *node;
996 struct sk_buff *skb;
997 int ret;
998
999 node = qrtr_node_lookup(remote.sq_node);
1000 if (!node)
1001 return -EINVAL;
1002
1003 skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
1004 if (!skb)
1005 return -ENOMEM;
1006
1007 pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1008 pkt->client.node = cpu_to_le32(cb->dst_node);
1009 pkt->client.port = cpu_to_le32(cb->dst_port);
1010
1011 ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1012
1013 qrtr_node_release(node);
1014
1015 return ret;
1016 }
1017
1018 static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1019 size_t size, int flags)
1020 {
1021 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1022 struct sock *sk = sock->sk;
1023 struct sk_buff *skb;
1024 struct qrtr_cb *cb;
1025 int copied, rc;
1026
1027 lock_sock(sk);
1028
1029 if (sock_flag(sk, SOCK_ZAPPED)) {
1030 release_sock(sk);
1031 return -EADDRNOTAVAIL;
1032 }
1033
1034 skb = skb_recv_datagram(sk, flags & ~MSG_DONTWAIT,
1035 flags & MSG_DONTWAIT, &rc);
1036 if (!skb) {
1037 release_sock(sk);
1038 return rc;
1039 }
1040 cb = (struct qrtr_cb *)skb->cb;
1041
1042 copied = skb->len;
1043 if (copied > size) {
1044 copied = size;
1045 msg->msg_flags |= MSG_TRUNC;
1046 }
1047
1048 rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1049 if (rc < 0)
1050 goto out;
1051 rc = copied;
1052
1053 if (addr) {
1054 /* There is an anonymous 2-byte hole after sq_family,
1055 * make sure to clear it.
1056 */
1057 memset(addr, 0, sizeof(*addr));
1058
1059 addr->sq_family = AF_QIPCRTR;
1060 addr->sq_node = cb->src_node;
1061 addr->sq_port = cb->src_port;
1062 msg->msg_namelen = sizeof(*addr);
1063 }
1064
1065 out:
1066 if (cb->confirm_rx)
1067 qrtr_send_resume_tx(cb);
1068
1069 skb_free_datagram(sk, skb);
1070 release_sock(sk);
1071
1072 return rc;
1073 }
1074
1075 static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1076 int len, int flags)
1077 {
1078 DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1079 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1080 struct sock *sk = sock->sk;
1081 int rc;
1082
1083 if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1084 return -EINVAL;
1085
1086 lock_sock(sk);
1087
1088 sk->sk_state = TCP_CLOSE;
1089 sock->state = SS_UNCONNECTED;
1090
1091 rc = qrtr_autobind(sock);
1092 if (rc) {
1093 release_sock(sk);
1094 return rc;
1095 }
1096
1097 ipc->peer = *addr;
1098 sock->state = SS_CONNECTED;
1099 sk->sk_state = TCP_ESTABLISHED;
1100
1101 release_sock(sk);
1102
1103 return 0;
1104 }
1105
1106 static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1107 int peer)
1108 {
1109 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1110 struct sockaddr_qrtr qaddr;
1111 struct sock *sk = sock->sk;
1112
1113 lock_sock(sk);
1114 if (peer) {
1115 if (sk->sk_state != TCP_ESTABLISHED) {
1116 release_sock(sk);
1117 return -ENOTCONN;
1118 }
1119
1120 qaddr = ipc->peer;
1121 } else {
1122 qaddr = ipc->us;
1123 }
1124 release_sock(sk);
1125
1126 qaddr.sq_family = AF_QIPCRTR;
1127
1128 memcpy(saddr, &qaddr, sizeof(qaddr));
1129
1130 return sizeof(qaddr);
1131 }
1132
1133 static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1134 {
1135 void __user *argp = (void __user *)arg;
1136 struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1137 struct sock *sk = sock->sk;
1138 struct sockaddr_qrtr *sq;
1139 struct sk_buff *skb;
1140 struct ifreq ifr;
1141 long len = 0;
1142 int rc = 0;
1143
1144 lock_sock(sk);
1145
1146 switch (cmd) {
1147 case TIOCOUTQ:
1148 len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1149 if (len < 0)
1150 len = 0;
1151 rc = put_user(len, (int __user *)argp);
1152 break;
1153 case TIOCINQ:
1154 skb = skb_peek(&sk->sk_receive_queue);
1155 if (skb)
1156 len = skb->len;
1157 rc = put_user(len, (int __user *)argp);
1158 break;
1159 case SIOCGIFADDR:
1160 if (copy_from_user(&ifr, argp, sizeof(ifr))) {
1161 rc = -EFAULT;
1162 break;
1163 }
1164
1165 sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1166 *sq = ipc->us;
1167 if (copy_to_user(argp, &ifr, sizeof(ifr))) {
1168 rc = -EFAULT;
1169 break;
1170 }
1171 break;
1172 case SIOCADDRT:
1173 case SIOCDELRT:
1174 case SIOCSIFADDR:
1175 case SIOCGIFDSTADDR:
1176 case SIOCSIFDSTADDR:
1177 case SIOCGIFBRDADDR:
1178 case SIOCSIFBRDADDR:
1179 case SIOCGIFNETMASK:
1180 case SIOCSIFNETMASK:
1181 rc = -EINVAL;
1182 break;
1183 default:
1184 rc = -ENOIOCTLCMD;
1185 break;
1186 }
1187
1188 release_sock(sk);
1189
1190 return rc;
1191 }
1192
1193 static int qrtr_release(struct socket *sock)
1194 {
1195 struct sock *sk = sock->sk;
1196 struct qrtr_sock *ipc;
1197
1198 if (!sk)
1199 return 0;
1200
1201 lock_sock(sk);
1202
1203 ipc = qrtr_sk(sk);
1204 sk->sk_shutdown = SHUTDOWN_MASK;
1205 if (!sock_flag(sk, SOCK_DEAD))
1206 sk->sk_state_change(sk);
1207
1208 sock_set_flag(sk, SOCK_DEAD);
1209 sock_orphan(sk);
1210 sock->sk = NULL;
1211
1212 if (!sock_flag(sk, SOCK_ZAPPED))
1213 qrtr_port_remove(ipc);
1214
1215 skb_queue_purge(&sk->sk_receive_queue);
1216
1217 release_sock(sk);
1218 sock_put(sk);
1219
1220 return 0;
1221 }
1222
1223 static const struct proto_ops qrtr_proto_ops = {
1224 .owner = THIS_MODULE,
1225 .family = AF_QIPCRTR,
1226 .bind = qrtr_bind,
1227 .connect = qrtr_connect,
1228 .socketpair = sock_no_socketpair,
1229 .accept = sock_no_accept,
1230 .listen = sock_no_listen,
1231 .sendmsg = qrtr_sendmsg,
1232 .recvmsg = qrtr_recvmsg,
1233 .getname = qrtr_getname,
1234 .ioctl = qrtr_ioctl,
1235 .gettstamp = sock_gettstamp,
1236 .poll = datagram_poll,
1237 .shutdown = sock_no_shutdown,
1238 .release = qrtr_release,
1239 .mmap = sock_no_mmap,
1240 .sendpage = sock_no_sendpage,
1241 };
1242
1243 static struct proto qrtr_proto = {
1244 .name = "QIPCRTR",
1245 .owner = THIS_MODULE,
1246 .obj_size = sizeof(struct qrtr_sock),
1247 };
1248
1249 static int qrtr_create(struct net *net, struct socket *sock,
1250 int protocol, int kern)
1251 {
1252 struct qrtr_sock *ipc;
1253 struct sock *sk;
1254
1255 if (sock->type != SOCK_DGRAM)
1256 return -EPROTOTYPE;
1257
1258 sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1259 if (!sk)
1260 return -ENOMEM;
1261
1262 sock_set_flag(sk, SOCK_ZAPPED);
1263
1264 sock_init_data(sock, sk);
1265 sock->ops = &qrtr_proto_ops;
1266
1267 ipc = qrtr_sk(sk);
1268 ipc->us.sq_family = AF_QIPCRTR;
1269 ipc->us.sq_node = qrtr_local_nid;
1270 ipc->us.sq_port = 0;
1271
1272 return 0;
1273 }
1274
1275 static const struct net_proto_family qrtr_family = {
1276 .owner = THIS_MODULE,
1277 .family = AF_QIPCRTR,
1278 .create = qrtr_create,
1279 };
1280
1281 static int __init qrtr_proto_init(void)
1282 {
1283 int rc;
1284
1285 rc = proto_register(&qrtr_proto, 1);
1286 if (rc)
1287 return rc;
1288
1289 rc = sock_register(&qrtr_family);
1290 if (rc)
1291 goto err_proto;
1292
1293 rc = qrtr_ns_init();
1294 if (rc)
1295 goto err_sock;
1296
1297 return 0;
1298
1299 err_sock:
1300 sock_unregister(qrtr_family.family);
1301 err_proto:
1302 proto_unregister(&qrtr_proto);
1303 return rc;
1304 }
1305 postcore_initcall(qrtr_proto_init);
1306
1307 static void __exit qrtr_proto_fini(void)
1308 {
1309 qrtr_ns_remove();
1310 sock_unregister(qrtr_family.family);
1311 proto_unregister(&qrtr_proto);
1312 }
1313 module_exit(qrtr_proto_fini);
1314
1315 MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1316 MODULE_LICENSE("GPL v2");
1317 MODULE_ALIAS_NETPROTO(PF_QIPCRTR);