]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/rds/af_rds.c
Merge tag 'scsi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb...
[mirror_ubuntu-zesty-kernel.git] / net / rds / af_rds.c
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/poll.h>
39 #include <net/sock.h>
40
41 #include "rds.h"
42
43 /* this is just used for stats gathering :/ */
44 static DEFINE_SPINLOCK(rds_sock_lock);
45 static unsigned long rds_sock_count;
46 static LIST_HEAD(rds_sock_list);
47 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
48
49 /*
50 * This is called as the final descriptor referencing this socket is closed.
51 * We have to unbind the socket so that another socket can be bound to the
52 * address it was using.
53 *
54 * We have to be careful about racing with the incoming path. sock_orphan()
55 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
56 * messages shouldn't be queued.
57 */
58 static int rds_release(struct socket *sock)
59 {
60 struct sock *sk = sock->sk;
61 struct rds_sock *rs;
62
63 if (!sk)
64 goto out;
65
66 rs = rds_sk_to_rs(sk);
67
68 sock_orphan(sk);
69 /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
70 * that ensures the recv path has completed messing
71 * with the socket. */
72 rds_clear_recv_queue(rs);
73 rds_cong_remove_socket(rs);
74
75 rds_remove_bound(rs);
76
77 rds_send_drop_to(rs, NULL);
78 rds_rdma_drop_keys(rs);
79 rds_notify_queue_get(rs, NULL);
80
81 spin_lock_bh(&rds_sock_lock);
82 list_del_init(&rs->rs_item);
83 rds_sock_count--;
84 spin_unlock_bh(&rds_sock_lock);
85
86 rds_trans_put(rs->rs_transport);
87
88 sock->sk = NULL;
89 sock_put(sk);
90 out:
91 return 0;
92 }
93
94 /*
95 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
96 * _bh() isn't OK here, we're called from interrupt handlers. It's probably OK
97 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
98 * this seems more conservative.
99 * NB - normally, one would use sk_callback_lock for this, but we can
100 * get here from interrupts, whereas the network code grabs sk_callback_lock
101 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
102 */
103 void rds_wake_sk_sleep(struct rds_sock *rs)
104 {
105 unsigned long flags;
106
107 read_lock_irqsave(&rs->rs_recv_lock, flags);
108 __rds_wake_sk_sleep(rds_rs_to_sk(rs));
109 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
110 }
111
112 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
113 int *uaddr_len, int peer)
114 {
115 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
116 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
117
118 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
119
120 /* racey, don't care */
121 if (peer) {
122 if (!rs->rs_conn_addr)
123 return -ENOTCONN;
124
125 sin->sin_port = rs->rs_conn_port;
126 sin->sin_addr.s_addr = rs->rs_conn_addr;
127 } else {
128 sin->sin_port = rs->rs_bound_port;
129 sin->sin_addr.s_addr = rs->rs_bound_addr;
130 }
131
132 sin->sin_family = AF_INET;
133
134 *uaddr_len = sizeof(*sin);
135 return 0;
136 }
137
138 /*
139 * RDS' poll is without a doubt the least intuitive part of the interface,
140 * as POLLIN and POLLOUT do not behave entirely as you would expect from
141 * a network protocol.
142 *
143 * POLLIN is asserted if
144 * - there is data on the receive queue.
145 * - to signal that a previously congested destination may have become
146 * uncongested
147 * - A notification has been queued to the socket (this can be a congestion
148 * update, or a RDMA completion).
149 *
150 * POLLOUT is asserted if there is room on the send queue. This does not mean
151 * however, that the next sendmsg() call will succeed. If the application tries
152 * to send to a congested destination, the system call may still fail (and
153 * return ENOBUFS).
154 */
155 static unsigned int rds_poll(struct file *file, struct socket *sock,
156 poll_table *wait)
157 {
158 struct sock *sk = sock->sk;
159 struct rds_sock *rs = rds_sk_to_rs(sk);
160 unsigned int mask = 0;
161 unsigned long flags;
162
163 poll_wait(file, sk_sleep(sk), wait);
164
165 if (rs->rs_seen_congestion)
166 poll_wait(file, &rds_poll_waitq, wait);
167
168 read_lock_irqsave(&rs->rs_recv_lock, flags);
169 if (!rs->rs_cong_monitor) {
170 /* When a congestion map was updated, we signal POLLIN for
171 * "historical" reasons. Applications can also poll for
172 * WRBAND instead. */
173 if (rds_cong_updated_since(&rs->rs_cong_track))
174 mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
175 } else {
176 spin_lock(&rs->rs_lock);
177 if (rs->rs_cong_notify)
178 mask |= (POLLIN | POLLRDNORM);
179 spin_unlock(&rs->rs_lock);
180 }
181 if (!list_empty(&rs->rs_recv_queue) ||
182 !list_empty(&rs->rs_notify_queue))
183 mask |= (POLLIN | POLLRDNORM);
184 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
185 mask |= (POLLOUT | POLLWRNORM);
186 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
187
188 /* clear state any time we wake a seen-congested socket */
189 if (mask)
190 rs->rs_seen_congestion = 0;
191
192 return mask;
193 }
194
195 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
196 {
197 return -ENOIOCTLCMD;
198 }
199
200 static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
201 int len)
202 {
203 struct sockaddr_in sin;
204 int ret = 0;
205
206 /* racing with another thread binding seems ok here */
207 if (rs->rs_bound_addr == 0) {
208 ret = -ENOTCONN; /* XXX not a great errno */
209 goto out;
210 }
211
212 if (len < sizeof(struct sockaddr_in)) {
213 ret = -EINVAL;
214 goto out;
215 }
216
217 if (copy_from_user(&sin, optval, sizeof(sin))) {
218 ret = -EFAULT;
219 goto out;
220 }
221
222 rds_send_drop_to(rs, &sin);
223 out:
224 return ret;
225 }
226
227 static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
228 int optlen)
229 {
230 int value;
231
232 if (optlen < sizeof(int))
233 return -EINVAL;
234 if (get_user(value, (int __user *) optval))
235 return -EFAULT;
236 *optvar = !!value;
237 return 0;
238 }
239
240 static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
241 int optlen)
242 {
243 int ret;
244
245 ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
246 if (ret == 0) {
247 if (rs->rs_cong_monitor) {
248 rds_cong_add_socket(rs);
249 } else {
250 rds_cong_remove_socket(rs);
251 rs->rs_cong_mask = 0;
252 rs->rs_cong_notify = 0;
253 }
254 }
255 return ret;
256 }
257
258 static int rds_set_transport(struct rds_sock *rs, char __user *optval,
259 int optlen)
260 {
261 int t_type;
262
263 if (rs->rs_transport)
264 return -EOPNOTSUPP; /* previously attached to transport */
265
266 if (optlen != sizeof(int))
267 return -EINVAL;
268
269 if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
270 return -EFAULT;
271
272 if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
273 return -EINVAL;
274
275 rs->rs_transport = rds_trans_get(t_type);
276
277 return rs->rs_transport ? 0 : -ENOPROTOOPT;
278 }
279
280 static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
281 int optlen)
282 {
283 int val, valbool;
284
285 if (optlen != sizeof(int))
286 return -EFAULT;
287
288 if (get_user(val, (int __user *)optval))
289 return -EFAULT;
290
291 valbool = val ? 1 : 0;
292
293 if (valbool)
294 sock_set_flag(sk, SOCK_RCVTSTAMP);
295 else
296 sock_reset_flag(sk, SOCK_RCVTSTAMP);
297
298 return 0;
299 }
300
301 static int rds_setsockopt(struct socket *sock, int level, int optname,
302 char __user *optval, unsigned int optlen)
303 {
304 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
305 int ret;
306
307 if (level != SOL_RDS) {
308 ret = -ENOPROTOOPT;
309 goto out;
310 }
311
312 switch (optname) {
313 case RDS_CANCEL_SENT_TO:
314 ret = rds_cancel_sent_to(rs, optval, optlen);
315 break;
316 case RDS_GET_MR:
317 ret = rds_get_mr(rs, optval, optlen);
318 break;
319 case RDS_GET_MR_FOR_DEST:
320 ret = rds_get_mr_for_dest(rs, optval, optlen);
321 break;
322 case RDS_FREE_MR:
323 ret = rds_free_mr(rs, optval, optlen);
324 break;
325 case RDS_RECVERR:
326 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
327 break;
328 case RDS_CONG_MONITOR:
329 ret = rds_cong_monitor(rs, optval, optlen);
330 break;
331 case SO_RDS_TRANSPORT:
332 lock_sock(sock->sk);
333 ret = rds_set_transport(rs, optval, optlen);
334 release_sock(sock->sk);
335 break;
336 case SO_TIMESTAMP:
337 lock_sock(sock->sk);
338 ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
339 release_sock(sock->sk);
340 break;
341 default:
342 ret = -ENOPROTOOPT;
343 }
344 out:
345 return ret;
346 }
347
348 static int rds_getsockopt(struct socket *sock, int level, int optname,
349 char __user *optval, int __user *optlen)
350 {
351 struct rds_sock *rs = rds_sk_to_rs(sock->sk);
352 int ret = -ENOPROTOOPT, len;
353 int trans;
354
355 if (level != SOL_RDS)
356 goto out;
357
358 if (get_user(len, optlen)) {
359 ret = -EFAULT;
360 goto out;
361 }
362
363 switch (optname) {
364 case RDS_INFO_FIRST ... RDS_INFO_LAST:
365 ret = rds_info_getsockopt(sock, optname, optval,
366 optlen);
367 break;
368
369 case RDS_RECVERR:
370 if (len < sizeof(int))
371 ret = -EINVAL;
372 else
373 if (put_user(rs->rs_recverr, (int __user *) optval) ||
374 put_user(sizeof(int), optlen))
375 ret = -EFAULT;
376 else
377 ret = 0;
378 break;
379 case SO_RDS_TRANSPORT:
380 if (len < sizeof(int)) {
381 ret = -EINVAL;
382 break;
383 }
384 trans = (rs->rs_transport ? rs->rs_transport->t_type :
385 RDS_TRANS_NONE); /* unbound */
386 if (put_user(trans, (int __user *)optval) ||
387 put_user(sizeof(int), optlen))
388 ret = -EFAULT;
389 else
390 ret = 0;
391 break;
392 default:
393 break;
394 }
395
396 out:
397 return ret;
398
399 }
400
401 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
402 int addr_len, int flags)
403 {
404 struct sock *sk = sock->sk;
405 struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
406 struct rds_sock *rs = rds_sk_to_rs(sk);
407 int ret = 0;
408
409 lock_sock(sk);
410
411 if (addr_len != sizeof(struct sockaddr_in)) {
412 ret = -EINVAL;
413 goto out;
414 }
415
416 if (sin->sin_family != AF_INET) {
417 ret = -EAFNOSUPPORT;
418 goto out;
419 }
420
421 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
422 ret = -EDESTADDRREQ;
423 goto out;
424 }
425
426 rs->rs_conn_addr = sin->sin_addr.s_addr;
427 rs->rs_conn_port = sin->sin_port;
428
429 out:
430 release_sock(sk);
431 return ret;
432 }
433
434 static struct proto rds_proto = {
435 .name = "RDS",
436 .owner = THIS_MODULE,
437 .obj_size = sizeof(struct rds_sock),
438 };
439
440 static const struct proto_ops rds_proto_ops = {
441 .family = AF_RDS,
442 .owner = THIS_MODULE,
443 .release = rds_release,
444 .bind = rds_bind,
445 .connect = rds_connect,
446 .socketpair = sock_no_socketpair,
447 .accept = sock_no_accept,
448 .getname = rds_getname,
449 .poll = rds_poll,
450 .ioctl = rds_ioctl,
451 .listen = sock_no_listen,
452 .shutdown = sock_no_shutdown,
453 .setsockopt = rds_setsockopt,
454 .getsockopt = rds_getsockopt,
455 .sendmsg = rds_sendmsg,
456 .recvmsg = rds_recvmsg,
457 .mmap = sock_no_mmap,
458 .sendpage = sock_no_sendpage,
459 };
460
461 static void rds_sock_destruct(struct sock *sk)
462 {
463 struct rds_sock *rs = rds_sk_to_rs(sk);
464
465 WARN_ON((&rs->rs_item != rs->rs_item.next ||
466 &rs->rs_item != rs->rs_item.prev));
467 }
468
469 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
470 {
471 struct rds_sock *rs;
472
473 sock_init_data(sock, sk);
474 sock->ops = &rds_proto_ops;
475 sk->sk_protocol = protocol;
476 sk->sk_destruct = rds_sock_destruct;
477
478 rs = rds_sk_to_rs(sk);
479 spin_lock_init(&rs->rs_lock);
480 rwlock_init(&rs->rs_recv_lock);
481 INIT_LIST_HEAD(&rs->rs_send_queue);
482 INIT_LIST_HEAD(&rs->rs_recv_queue);
483 INIT_LIST_HEAD(&rs->rs_notify_queue);
484 INIT_LIST_HEAD(&rs->rs_cong_list);
485 spin_lock_init(&rs->rs_rdma_lock);
486 rs->rs_rdma_keys = RB_ROOT;
487
488 spin_lock_bh(&rds_sock_lock);
489 list_add_tail(&rs->rs_item, &rds_sock_list);
490 rds_sock_count++;
491 spin_unlock_bh(&rds_sock_lock);
492
493 return 0;
494 }
495
496 static int rds_create(struct net *net, struct socket *sock, int protocol,
497 int kern)
498 {
499 struct sock *sk;
500
501 if (sock->type != SOCK_SEQPACKET || protocol)
502 return -ESOCKTNOSUPPORT;
503
504 sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
505 if (!sk)
506 return -ENOMEM;
507
508 return __rds_create(sock, sk, protocol);
509 }
510
511 void rds_sock_addref(struct rds_sock *rs)
512 {
513 sock_hold(rds_rs_to_sk(rs));
514 }
515
516 void rds_sock_put(struct rds_sock *rs)
517 {
518 sock_put(rds_rs_to_sk(rs));
519 }
520
521 static const struct net_proto_family rds_family_ops = {
522 .family = AF_RDS,
523 .create = rds_create,
524 .owner = THIS_MODULE,
525 };
526
527 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
528 struct rds_info_iterator *iter,
529 struct rds_info_lengths *lens)
530 {
531 struct rds_sock *rs;
532 struct rds_incoming *inc;
533 unsigned int total = 0;
534
535 len /= sizeof(struct rds_info_message);
536
537 spin_lock_bh(&rds_sock_lock);
538
539 list_for_each_entry(rs, &rds_sock_list, rs_item) {
540 read_lock(&rs->rs_recv_lock);
541
542 /* XXX too lazy to maintain counts.. */
543 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
544 total++;
545 if (total <= len)
546 rds_inc_info_copy(inc, iter, inc->i_saddr,
547 rs->rs_bound_addr, 1);
548 }
549
550 read_unlock(&rs->rs_recv_lock);
551 }
552
553 spin_unlock_bh(&rds_sock_lock);
554
555 lens->nr = total;
556 lens->each = sizeof(struct rds_info_message);
557 }
558
559 static void rds_sock_info(struct socket *sock, unsigned int len,
560 struct rds_info_iterator *iter,
561 struct rds_info_lengths *lens)
562 {
563 struct rds_info_socket sinfo;
564 struct rds_sock *rs;
565
566 len /= sizeof(struct rds_info_socket);
567
568 spin_lock_bh(&rds_sock_lock);
569
570 if (len < rds_sock_count)
571 goto out;
572
573 list_for_each_entry(rs, &rds_sock_list, rs_item) {
574 sinfo.sndbuf = rds_sk_sndbuf(rs);
575 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
576 sinfo.bound_addr = rs->rs_bound_addr;
577 sinfo.connected_addr = rs->rs_conn_addr;
578 sinfo.bound_port = rs->rs_bound_port;
579 sinfo.connected_port = rs->rs_conn_port;
580 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
581
582 rds_info_copy(iter, &sinfo, sizeof(sinfo));
583 }
584
585 out:
586 lens->nr = rds_sock_count;
587 lens->each = sizeof(struct rds_info_socket);
588
589 spin_unlock_bh(&rds_sock_lock);
590 }
591
592 static void rds_exit(void)
593 {
594 sock_unregister(rds_family_ops.family);
595 proto_unregister(&rds_proto);
596 rds_conn_exit();
597 rds_cong_exit();
598 rds_sysctl_exit();
599 rds_threads_exit();
600 rds_stats_exit();
601 rds_page_exit();
602 rds_bind_lock_destroy();
603 rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
604 rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
605 }
606 module_exit(rds_exit);
607
608 u32 rds_gen_num;
609
610 static int rds_init(void)
611 {
612 int ret;
613
614 net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
615
616 ret = rds_bind_lock_init();
617 if (ret)
618 goto out;
619
620 ret = rds_conn_init();
621 if (ret)
622 goto out_bind;
623
624 ret = rds_threads_init();
625 if (ret)
626 goto out_conn;
627 ret = rds_sysctl_init();
628 if (ret)
629 goto out_threads;
630 ret = rds_stats_init();
631 if (ret)
632 goto out_sysctl;
633 ret = proto_register(&rds_proto, 1);
634 if (ret)
635 goto out_stats;
636 ret = sock_register(&rds_family_ops);
637 if (ret)
638 goto out_proto;
639
640 rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
641 rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
642
643 goto out;
644
645 out_proto:
646 proto_unregister(&rds_proto);
647 out_stats:
648 rds_stats_exit();
649 out_sysctl:
650 rds_sysctl_exit();
651 out_threads:
652 rds_threads_exit();
653 out_conn:
654 rds_conn_exit();
655 rds_cong_exit();
656 rds_page_exit();
657 out_bind:
658 rds_bind_lock_destroy();
659 out:
660 return ret;
661 }
662 module_init(rds_init);
663
664 #define DRV_VERSION "4.0"
665 #define DRV_RELDATE "Feb 12, 2009"
666
667 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
668 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
669 " v" DRV_VERSION " (" DRV_RELDATE ")");
670 MODULE_VERSION(DRV_VERSION);
671 MODULE_LICENSE("Dual BSD/GPL");
672 MODULE_ALIAS_NETPROTO(PF_RDS);