]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - net/rds/ib_send.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / net / rds / ib_send.c
1 /*
2 * Copyright (c) 2006, 2017 Oracle and/or its affiliates. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/device.h>
36 #include <linux/dmapool.h>
37 #include <linux/ratelimit.h>
38
39 #include "rds_single_path.h"
40 #include "rds.h"
41 #include "ib.h"
42
43 /*
44 * Convert IB-specific error message to RDS error message and call core
45 * completion handler.
46 */
47 static void rds_ib_send_complete(struct rds_message *rm,
48 int wc_status,
49 void (*complete)(struct rds_message *rm, int status))
50 {
51 int notify_status;
52
53 switch (wc_status) {
54 case IB_WC_WR_FLUSH_ERR:
55 return;
56
57 case IB_WC_SUCCESS:
58 notify_status = RDS_RDMA_SUCCESS;
59 break;
60
61 case IB_WC_REM_ACCESS_ERR:
62 notify_status = RDS_RDMA_REMOTE_ERROR;
63 break;
64
65 default:
66 notify_status = RDS_RDMA_OTHER_ERROR;
67 break;
68 }
69 complete(rm, notify_status);
70 }
71
72 static void rds_ib_send_unmap_rdma(struct rds_ib_connection *ic,
73 struct rm_rdma_op *op,
74 int wc_status)
75 {
76 if (op->op_mapped) {
77 ib_dma_unmap_sg(ic->i_cm_id->device,
78 op->op_sg, op->op_nents,
79 op->op_write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
80 op->op_mapped = 0;
81 }
82
83 /* If the user asked for a completion notification on this
84 * message, we can implement three different semantics:
85 * 1. Notify when we received the ACK on the RDS message
86 * that was queued with the RDMA. This provides reliable
87 * notification of RDMA status at the expense of a one-way
88 * packet delay.
89 * 2. Notify when the IB stack gives us the completion event for
90 * the RDMA operation.
91 * 3. Notify when the IB stack gives us the completion event for
92 * the accompanying RDS messages.
93 * Here, we implement approach #3. To implement approach #2,
94 * we would need to take an event for the rdma WR. To implement #1,
95 * don't call rds_rdma_send_complete at all, and fall back to the notify
96 * handling in the ACK processing code.
97 *
98 * Note: There's no need to explicitly sync any RDMA buffers using
99 * ib_dma_sync_sg_for_cpu - the completion for the RDMA
100 * operation itself unmapped the RDMA buffers, which takes care
101 * of synching.
102 */
103 rds_ib_send_complete(container_of(op, struct rds_message, rdma),
104 wc_status, rds_rdma_send_complete);
105
106 if (op->op_write)
107 rds_stats_add(s_send_rdma_bytes, op->op_bytes);
108 else
109 rds_stats_add(s_recv_rdma_bytes, op->op_bytes);
110 }
111
112 static void rds_ib_send_unmap_atomic(struct rds_ib_connection *ic,
113 struct rm_atomic_op *op,
114 int wc_status)
115 {
116 /* unmap atomic recvbuf */
117 if (op->op_mapped) {
118 ib_dma_unmap_sg(ic->i_cm_id->device, op->op_sg, 1,
119 DMA_FROM_DEVICE);
120 op->op_mapped = 0;
121 }
122
123 rds_ib_send_complete(container_of(op, struct rds_message, atomic),
124 wc_status, rds_atomic_send_complete);
125
126 if (op->op_type == RDS_ATOMIC_TYPE_CSWP)
127 rds_ib_stats_inc(s_ib_atomic_cswp);
128 else
129 rds_ib_stats_inc(s_ib_atomic_fadd);
130 }
131
132 static void rds_ib_send_unmap_data(struct rds_ib_connection *ic,
133 struct rm_data_op *op,
134 int wc_status)
135 {
136 struct rds_message *rm = container_of(op, struct rds_message, data);
137
138 if (op->op_nents)
139 ib_dma_unmap_sg(ic->i_cm_id->device,
140 op->op_sg, op->op_nents,
141 DMA_TO_DEVICE);
142
143 if (rm->rdma.op_active && rm->data.op_notify)
144 rds_ib_send_unmap_rdma(ic, &rm->rdma, wc_status);
145 }
146
147 /*
148 * Unmap the resources associated with a struct send_work.
149 *
150 * Returns the rm for no good reason other than it is unobtainable
151 * other than by switching on wr.opcode, currently, and the caller,
152 * the event handler, needs it.
153 */
154 static struct rds_message *rds_ib_send_unmap_op(struct rds_ib_connection *ic,
155 struct rds_ib_send_work *send,
156 int wc_status)
157 {
158 struct rds_message *rm = NULL;
159
160 /* In the error case, wc.opcode sometimes contains garbage */
161 switch (send->s_wr.opcode) {
162 case IB_WR_SEND:
163 if (send->s_op) {
164 rm = container_of(send->s_op, struct rds_message, data);
165 rds_ib_send_unmap_data(ic, send->s_op, wc_status);
166 }
167 break;
168 case IB_WR_RDMA_WRITE:
169 case IB_WR_RDMA_READ:
170 if (send->s_op) {
171 rm = container_of(send->s_op, struct rds_message, rdma);
172 rds_ib_send_unmap_rdma(ic, send->s_op, wc_status);
173 }
174 break;
175 case IB_WR_ATOMIC_FETCH_AND_ADD:
176 case IB_WR_ATOMIC_CMP_AND_SWP:
177 if (send->s_op) {
178 rm = container_of(send->s_op, struct rds_message, atomic);
179 rds_ib_send_unmap_atomic(ic, send->s_op, wc_status);
180 }
181 break;
182 default:
183 printk_ratelimited(KERN_NOTICE
184 "RDS/IB: %s: unexpected opcode 0x%x in WR!\n",
185 __func__, send->s_wr.opcode);
186 break;
187 }
188
189 send->s_wr.opcode = 0xdead;
190
191 return rm;
192 }
193
194 void rds_ib_send_init_ring(struct rds_ib_connection *ic)
195 {
196 struct rds_ib_send_work *send;
197 u32 i;
198
199 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
200 struct ib_sge *sge;
201
202 send->s_op = NULL;
203
204 send->s_wr.wr_id = i;
205 send->s_wr.sg_list = send->s_sge;
206 send->s_wr.ex.imm_data = 0;
207
208 sge = &send->s_sge[0];
209 sge->addr = ic->i_send_hdrs_dma + (i * sizeof(struct rds_header));
210 sge->length = sizeof(struct rds_header);
211 sge->lkey = ic->i_pd->local_dma_lkey;
212
213 send->s_sge[1].lkey = ic->i_pd->local_dma_lkey;
214 }
215 }
216
217 void rds_ib_send_clear_ring(struct rds_ib_connection *ic)
218 {
219 struct rds_ib_send_work *send;
220 u32 i;
221
222 for (i = 0, send = ic->i_sends; i < ic->i_send_ring.w_nr; i++, send++) {
223 if (send->s_op && send->s_wr.opcode != 0xdead)
224 rds_ib_send_unmap_op(ic, send, IB_WC_WR_FLUSH_ERR);
225 }
226 }
227
228 /*
229 * The only fast path caller always has a non-zero nr, so we don't
230 * bother testing nr before performing the atomic sub.
231 */
232 static void rds_ib_sub_signaled(struct rds_ib_connection *ic, int nr)
233 {
234 if ((atomic_sub_return(nr, &ic->i_signaled_sends) == 0) &&
235 waitqueue_active(&rds_ib_ring_empty_wait))
236 wake_up(&rds_ib_ring_empty_wait);
237 BUG_ON(atomic_read(&ic->i_signaled_sends) < 0);
238 }
239
240 /*
241 * The _oldest/_free ring operations here race cleanly with the alloc/unalloc
242 * operations performed in the send path. As the sender allocs and potentially
243 * unallocs the next free entry in the ring it doesn't alter which is
244 * the next to be freed, which is what this is concerned with.
245 */
246 void rds_ib_send_cqe_handler(struct rds_ib_connection *ic, struct ib_wc *wc)
247 {
248 struct rds_message *rm = NULL;
249 struct rds_connection *conn = ic->conn;
250 struct rds_ib_send_work *send;
251 u32 completed;
252 u32 oldest;
253 u32 i = 0;
254 int nr_sig = 0;
255
256
257 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
258 (unsigned long long)wc->wr_id, wc->status,
259 ib_wc_status_msg(wc->status), wc->byte_len,
260 be32_to_cpu(wc->ex.imm_data));
261 rds_ib_stats_inc(s_ib_tx_cq_event);
262
263 if (wc->wr_id == RDS_IB_ACK_WR_ID) {
264 if (time_after(jiffies, ic->i_ack_queued + HZ / 2))
265 rds_ib_stats_inc(s_ib_tx_stalled);
266 rds_ib_ack_send_complete(ic);
267 return;
268 }
269
270 oldest = rds_ib_ring_oldest(&ic->i_send_ring);
271
272 completed = rds_ib_ring_completed(&ic->i_send_ring, wc->wr_id, oldest);
273
274 for (i = 0; i < completed; i++) {
275 send = &ic->i_sends[oldest];
276 if (send->s_wr.send_flags & IB_SEND_SIGNALED)
277 nr_sig++;
278
279 rm = rds_ib_send_unmap_op(ic, send, wc->status);
280
281 if (time_after(jiffies, send->s_queued + HZ / 2))
282 rds_ib_stats_inc(s_ib_tx_stalled);
283
284 if (send->s_op) {
285 if (send->s_op == rm->m_final_op) {
286 /* If anyone waited for this message to get
287 * flushed out, wake them up now
288 */
289 rds_message_unmapped(rm);
290 }
291 rds_message_put(rm);
292 send->s_op = NULL;
293 }
294
295 oldest = (oldest + 1) % ic->i_send_ring.w_nr;
296 }
297
298 rds_ib_ring_free(&ic->i_send_ring, completed);
299 rds_ib_sub_signaled(ic, nr_sig);
300 nr_sig = 0;
301
302 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags) ||
303 test_bit(0, &conn->c_map_queued))
304 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
305
306 /* We expect errors as the qp is drained during shutdown */
307 if (wc->status != IB_WC_SUCCESS && rds_conn_up(conn)) {
308 rds_ib_conn_error(conn, "send completion on <%pI6c,%pI6c,%d> had status %u (%s), disconnecting and reconnecting\n",
309 &conn->c_laddr, &conn->c_faddr,
310 conn->c_tos, wc->status,
311 ib_wc_status_msg(wc->status));
312 }
313 }
314
315 /*
316 * This is the main function for allocating credits when sending
317 * messages.
318 *
319 * Conceptually, we have two counters:
320 * - send credits: this tells us how many WRs we're allowed
321 * to submit without overruning the receiver's queue. For
322 * each SEND WR we post, we decrement this by one.
323 *
324 * - posted credits: this tells us how many WRs we recently
325 * posted to the receive queue. This value is transferred
326 * to the peer as a "credit update" in a RDS header field.
327 * Every time we transmit credits to the peer, we subtract
328 * the amount of transferred credits from this counter.
329 *
330 * It is essential that we avoid situations where both sides have
331 * exhausted their send credits, and are unable to send new credits
332 * to the peer. We achieve this by requiring that we send at least
333 * one credit update to the peer before exhausting our credits.
334 * When new credits arrive, we subtract one credit that is withheld
335 * until we've posted new buffers and are ready to transmit these
336 * credits (see rds_ib_send_add_credits below).
337 *
338 * The RDS send code is essentially single-threaded; rds_send_xmit
339 * sets RDS_IN_XMIT to ensure exclusive access to the send ring.
340 * However, the ACK sending code is independent and can race with
341 * message SENDs.
342 *
343 * In the send path, we need to update the counters for send credits
344 * and the counter of posted buffers atomically - when we use the
345 * last available credit, we cannot allow another thread to race us
346 * and grab the posted credits counter. Hence, we have to use a
347 * spinlock to protect the credit counter, or use atomics.
348 *
349 * Spinlocks shared between the send and the receive path are bad,
350 * because they create unnecessary delays. An early implementation
351 * using a spinlock showed a 5% degradation in throughput at some
352 * loads.
353 *
354 * This implementation avoids spinlocks completely, putting both
355 * counters into a single atomic, and updating that atomic using
356 * atomic_add (in the receive path, when receiving fresh credits),
357 * and using atomic_cmpxchg when updating the two counters.
358 */
359 int rds_ib_send_grab_credits(struct rds_ib_connection *ic,
360 u32 wanted, u32 *adv_credits, int need_posted, int max_posted)
361 {
362 unsigned int avail, posted, got = 0, advertise;
363 long oldval, newval;
364
365 *adv_credits = 0;
366 if (!ic->i_flowctl)
367 return wanted;
368
369 try_again:
370 advertise = 0;
371 oldval = newval = atomic_read(&ic->i_credits);
372 posted = IB_GET_POST_CREDITS(oldval);
373 avail = IB_GET_SEND_CREDITS(oldval);
374
375 rdsdebug("wanted=%u credits=%u posted=%u\n",
376 wanted, avail, posted);
377
378 /* The last credit must be used to send a credit update. */
379 if (avail && !posted)
380 avail--;
381
382 if (avail < wanted) {
383 struct rds_connection *conn = ic->i_cm_id->context;
384
385 /* Oops, there aren't that many credits left! */
386 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
387 got = avail;
388 } else {
389 /* Sometimes you get what you want, lalala. */
390 got = wanted;
391 }
392 newval -= IB_SET_SEND_CREDITS(got);
393
394 /*
395 * If need_posted is non-zero, then the caller wants
396 * the posted regardless of whether any send credits are
397 * available.
398 */
399 if (posted && (got || need_posted)) {
400 advertise = min_t(unsigned int, posted, max_posted);
401 newval -= IB_SET_POST_CREDITS(advertise);
402 }
403
404 /* Finally bill everything */
405 if (atomic_cmpxchg(&ic->i_credits, oldval, newval) != oldval)
406 goto try_again;
407
408 *adv_credits = advertise;
409 return got;
410 }
411
412 void rds_ib_send_add_credits(struct rds_connection *conn, unsigned int credits)
413 {
414 struct rds_ib_connection *ic = conn->c_transport_data;
415
416 if (credits == 0)
417 return;
418
419 rdsdebug("credits=%u current=%u%s\n",
420 credits,
421 IB_GET_SEND_CREDITS(atomic_read(&ic->i_credits)),
422 test_bit(RDS_LL_SEND_FULL, &conn->c_flags) ? ", ll_send_full" : "");
423
424 atomic_add(IB_SET_SEND_CREDITS(credits), &ic->i_credits);
425 if (test_and_clear_bit(RDS_LL_SEND_FULL, &conn->c_flags))
426 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
427
428 WARN_ON(IB_GET_SEND_CREDITS(credits) >= 16384);
429
430 rds_ib_stats_inc(s_ib_rx_credit_updates);
431 }
432
433 void rds_ib_advertise_credits(struct rds_connection *conn, unsigned int posted)
434 {
435 struct rds_ib_connection *ic = conn->c_transport_data;
436
437 if (posted == 0)
438 return;
439
440 atomic_add(IB_SET_POST_CREDITS(posted), &ic->i_credits);
441
442 /* Decide whether to send an update to the peer now.
443 * If we would send a credit update for every single buffer we
444 * post, we would end up with an ACK storm (ACK arrives,
445 * consumes buffer, we refill the ring, send ACK to remote
446 * advertising the newly posted buffer... ad inf)
447 *
448 * Performance pretty much depends on how often we send
449 * credit updates - too frequent updates mean lots of ACKs.
450 * Too infrequent updates, and the peer will run out of
451 * credits and has to throttle.
452 * For the time being, 16 seems to be a good compromise.
453 */
454 if (IB_GET_POST_CREDITS(atomic_read(&ic->i_credits)) >= 16)
455 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
456 }
457
458 static inline int rds_ib_set_wr_signal_state(struct rds_ib_connection *ic,
459 struct rds_ib_send_work *send,
460 bool notify)
461 {
462 /*
463 * We want to delay signaling completions just enough to get
464 * the batching benefits but not so much that we create dead time
465 * on the wire.
466 */
467 if (ic->i_unsignaled_wrs-- == 0 || notify) {
468 ic->i_unsignaled_wrs = rds_ib_sysctl_max_unsig_wrs;
469 send->s_wr.send_flags |= IB_SEND_SIGNALED;
470 return 1;
471 }
472 return 0;
473 }
474
475 /*
476 * This can be called multiple times for a given message. The first time
477 * we see a message we map its scatterlist into the IB device so that
478 * we can provide that mapped address to the IB scatter gather entries
479 * in the IB work requests. We translate the scatterlist into a series
480 * of work requests that fragment the message. These work requests complete
481 * in order so we pass ownership of the message to the completion handler
482 * once we send the final fragment.
483 *
484 * The RDS core uses the c_send_lock to only enter this function once
485 * per connection. This makes sure that the tx ring alloc/unalloc pairs
486 * don't get out of sync and confuse the ring.
487 */
488 int rds_ib_xmit(struct rds_connection *conn, struct rds_message *rm,
489 unsigned int hdr_off, unsigned int sg, unsigned int off)
490 {
491 struct rds_ib_connection *ic = conn->c_transport_data;
492 struct ib_device *dev = ic->i_cm_id->device;
493 struct rds_ib_send_work *send = NULL;
494 struct rds_ib_send_work *first;
495 struct rds_ib_send_work *prev;
496 const struct ib_send_wr *failed_wr;
497 struct scatterlist *scat;
498 u32 pos;
499 u32 i;
500 u32 work_alloc;
501 u32 credit_alloc = 0;
502 u32 posted;
503 u32 adv_credits = 0;
504 int send_flags = 0;
505 int bytes_sent = 0;
506 int ret;
507 int flow_controlled = 0;
508 int nr_sig = 0;
509
510 BUG_ON(off % RDS_FRAG_SIZE);
511 BUG_ON(hdr_off != 0 && hdr_off != sizeof(struct rds_header));
512
513 /* Do not send cong updates to IB loopback */
514 if (conn->c_loopback
515 && rm->m_inc.i_hdr.h_flags & RDS_FLAG_CONG_BITMAP) {
516 rds_cong_map_updated(conn->c_fcong, ~(u64) 0);
517 scat = &rm->data.op_sg[sg];
518 ret = max_t(int, RDS_CONG_MAP_BYTES, scat->length);
519 return sizeof(struct rds_header) + ret;
520 }
521
522 /* FIXME we may overallocate here */
523 if (be32_to_cpu(rm->m_inc.i_hdr.h_len) == 0)
524 i = 1;
525 else
526 i = DIV_ROUND_UP(be32_to_cpu(rm->m_inc.i_hdr.h_len), RDS_FRAG_SIZE);
527
528 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
529 if (work_alloc == 0) {
530 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
531 rds_ib_stats_inc(s_ib_tx_ring_full);
532 ret = -ENOMEM;
533 goto out;
534 }
535
536 if (ic->i_flowctl) {
537 credit_alloc = rds_ib_send_grab_credits(ic, work_alloc, &posted, 0, RDS_MAX_ADV_CREDIT);
538 adv_credits += posted;
539 if (credit_alloc < work_alloc) {
540 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - credit_alloc);
541 work_alloc = credit_alloc;
542 flow_controlled = 1;
543 }
544 if (work_alloc == 0) {
545 set_bit(RDS_LL_SEND_FULL, &conn->c_flags);
546 rds_ib_stats_inc(s_ib_tx_throttle);
547 ret = -ENOMEM;
548 goto out;
549 }
550 }
551
552 /* map the message the first time we see it */
553 if (!ic->i_data_op) {
554 if (rm->data.op_nents) {
555 rm->data.op_count = ib_dma_map_sg(dev,
556 rm->data.op_sg,
557 rm->data.op_nents,
558 DMA_TO_DEVICE);
559 rdsdebug("ic %p mapping rm %p: %d\n", ic, rm, rm->data.op_count);
560 if (rm->data.op_count == 0) {
561 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
562 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
563 ret = -ENOMEM; /* XXX ? */
564 goto out;
565 }
566 } else {
567 rm->data.op_count = 0;
568 }
569
570 rds_message_addref(rm);
571 rm->data.op_dmasg = 0;
572 rm->data.op_dmaoff = 0;
573 ic->i_data_op = &rm->data;
574
575 /* Finalize the header */
576 if (test_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags))
577 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_ACK_REQUIRED;
578 if (test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))
579 rm->m_inc.i_hdr.h_flags |= RDS_FLAG_RETRANSMITTED;
580
581 /* If it has a RDMA op, tell the peer we did it. This is
582 * used by the peer to release use-once RDMA MRs. */
583 if (rm->rdma.op_active) {
584 struct rds_ext_header_rdma ext_hdr;
585
586 ext_hdr.h_rdma_rkey = cpu_to_be32(rm->rdma.op_rkey);
587 rds_message_add_extension(&rm->m_inc.i_hdr,
588 RDS_EXTHDR_RDMA, &ext_hdr, sizeof(ext_hdr));
589 }
590 if (rm->m_rdma_cookie) {
591 rds_message_add_rdma_dest_extension(&rm->m_inc.i_hdr,
592 rds_rdma_cookie_key(rm->m_rdma_cookie),
593 rds_rdma_cookie_offset(rm->m_rdma_cookie));
594 }
595
596 /* Note - rds_ib_piggyb_ack clears the ACK_REQUIRED bit, so
597 * we should not do this unless we have a chance of at least
598 * sticking the header into the send ring. Which is why we
599 * should call rds_ib_ring_alloc first. */
600 rm->m_inc.i_hdr.h_ack = cpu_to_be64(rds_ib_piggyb_ack(ic));
601 rds_message_make_checksum(&rm->m_inc.i_hdr);
602
603 /*
604 * Update adv_credits since we reset the ACK_REQUIRED bit.
605 */
606 if (ic->i_flowctl) {
607 rds_ib_send_grab_credits(ic, 0, &posted, 1, RDS_MAX_ADV_CREDIT - adv_credits);
608 adv_credits += posted;
609 BUG_ON(adv_credits > 255);
610 }
611 }
612
613 /* Sometimes you want to put a fence between an RDMA
614 * READ and the following SEND.
615 * We could either do this all the time
616 * or when requested by the user. Right now, we let
617 * the application choose.
618 */
619 if (rm->rdma.op_active && rm->rdma.op_fence)
620 send_flags = IB_SEND_FENCE;
621
622 /* Each frag gets a header. Msgs may be 0 bytes */
623 send = &ic->i_sends[pos];
624 first = send;
625 prev = NULL;
626 scat = &ic->i_data_op->op_sg[rm->data.op_dmasg];
627 i = 0;
628 do {
629 unsigned int len = 0;
630
631 /* Set up the header */
632 send->s_wr.send_flags = send_flags;
633 send->s_wr.opcode = IB_WR_SEND;
634 send->s_wr.num_sge = 1;
635 send->s_wr.next = NULL;
636 send->s_queued = jiffies;
637 send->s_op = NULL;
638
639 send->s_sge[0].addr = ic->i_send_hdrs_dma
640 + (pos * sizeof(struct rds_header));
641 send->s_sge[0].length = sizeof(struct rds_header);
642
643 memcpy(&ic->i_send_hdrs[pos], &rm->m_inc.i_hdr, sizeof(struct rds_header));
644
645 /* Set up the data, if present */
646 if (i < work_alloc
647 && scat != &rm->data.op_sg[rm->data.op_count]) {
648 len = min(RDS_FRAG_SIZE,
649 sg_dma_len(scat) - rm->data.op_dmaoff);
650 send->s_wr.num_sge = 2;
651
652 send->s_sge[1].addr = sg_dma_address(scat);
653 send->s_sge[1].addr += rm->data.op_dmaoff;
654 send->s_sge[1].length = len;
655
656 bytes_sent += len;
657 rm->data.op_dmaoff += len;
658 if (rm->data.op_dmaoff == sg_dma_len(scat)) {
659 scat++;
660 rm->data.op_dmasg++;
661 rm->data.op_dmaoff = 0;
662 }
663 }
664
665 rds_ib_set_wr_signal_state(ic, send, false);
666
667 /*
668 * Always signal the last one if we're stopping due to flow control.
669 */
670 if (ic->i_flowctl && flow_controlled && i == (work_alloc - 1)) {
671 rds_ib_set_wr_signal_state(ic, send, true);
672 send->s_wr.send_flags |= IB_SEND_SOLICITED;
673 }
674
675 if (send->s_wr.send_flags & IB_SEND_SIGNALED)
676 nr_sig++;
677
678 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
679 &send->s_wr, send->s_wr.num_sge, send->s_wr.next);
680
681 if (ic->i_flowctl && adv_credits) {
682 struct rds_header *hdr = &ic->i_send_hdrs[pos];
683
684 /* add credit and redo the header checksum */
685 hdr->h_credit = adv_credits;
686 rds_message_make_checksum(hdr);
687 adv_credits = 0;
688 rds_ib_stats_inc(s_ib_tx_credit_updates);
689 }
690
691 if (prev)
692 prev->s_wr.next = &send->s_wr;
693 prev = send;
694
695 pos = (pos + 1) % ic->i_send_ring.w_nr;
696 send = &ic->i_sends[pos];
697 i++;
698
699 } while (i < work_alloc
700 && scat != &rm->data.op_sg[rm->data.op_count]);
701
702 /* Account the RDS header in the number of bytes we sent, but just once.
703 * The caller has no concept of fragmentation. */
704 if (hdr_off == 0)
705 bytes_sent += sizeof(struct rds_header);
706
707 /* if we finished the message then send completion owns it */
708 if (scat == &rm->data.op_sg[rm->data.op_count]) {
709 prev->s_op = ic->i_data_op;
710 prev->s_wr.send_flags |= IB_SEND_SOLICITED;
711 if (!(prev->s_wr.send_flags & IB_SEND_SIGNALED))
712 nr_sig += rds_ib_set_wr_signal_state(ic, prev, true);
713 ic->i_data_op = NULL;
714 }
715
716 /* Put back wrs & credits we didn't use */
717 if (i < work_alloc) {
718 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
719 work_alloc = i;
720 }
721 if (ic->i_flowctl && i < credit_alloc)
722 rds_ib_send_add_credits(conn, credit_alloc - i);
723
724 if (nr_sig)
725 atomic_add(nr_sig, &ic->i_signaled_sends);
726
727 /* XXX need to worry about failed_wr and partial sends. */
728 failed_wr = &first->s_wr;
729 ret = ib_post_send(ic->i_cm_id->qp, &first->s_wr, &failed_wr);
730 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
731 first, &first->s_wr, ret, failed_wr);
732 BUG_ON(failed_wr != &first->s_wr);
733 if (ret) {
734 printk(KERN_WARNING "RDS/IB: ib_post_send to %pI6c "
735 "returned %d\n", &conn->c_faddr, ret);
736 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
737 rds_ib_sub_signaled(ic, nr_sig);
738 if (prev->s_op) {
739 ic->i_data_op = prev->s_op;
740 prev->s_op = NULL;
741 }
742
743 rds_ib_conn_error(ic->conn, "ib_post_send failed\n");
744 goto out;
745 }
746
747 ret = bytes_sent;
748 out:
749 BUG_ON(adv_credits);
750 return ret;
751 }
752
753 /*
754 * Issue atomic operation.
755 * A simplified version of the rdma case, we always map 1 SG, and
756 * only 8 bytes, for the return value from the atomic operation.
757 */
758 int rds_ib_xmit_atomic(struct rds_connection *conn, struct rm_atomic_op *op)
759 {
760 struct rds_ib_connection *ic = conn->c_transport_data;
761 struct rds_ib_send_work *send = NULL;
762 const struct ib_send_wr *failed_wr;
763 u32 pos;
764 u32 work_alloc;
765 int ret;
766 int nr_sig = 0;
767
768 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, 1, &pos);
769 if (work_alloc != 1) {
770 rds_ib_stats_inc(s_ib_tx_ring_full);
771 ret = -ENOMEM;
772 goto out;
773 }
774
775 /* address of send request in ring */
776 send = &ic->i_sends[pos];
777 send->s_queued = jiffies;
778
779 if (op->op_type == RDS_ATOMIC_TYPE_CSWP) {
780 send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_CMP_AND_SWP;
781 send->s_atomic_wr.compare_add = op->op_m_cswp.compare;
782 send->s_atomic_wr.swap = op->op_m_cswp.swap;
783 send->s_atomic_wr.compare_add_mask = op->op_m_cswp.compare_mask;
784 send->s_atomic_wr.swap_mask = op->op_m_cswp.swap_mask;
785 } else { /* FADD */
786 send->s_atomic_wr.wr.opcode = IB_WR_MASKED_ATOMIC_FETCH_AND_ADD;
787 send->s_atomic_wr.compare_add = op->op_m_fadd.add;
788 send->s_atomic_wr.swap = 0;
789 send->s_atomic_wr.compare_add_mask = op->op_m_fadd.nocarry_mask;
790 send->s_atomic_wr.swap_mask = 0;
791 }
792 send->s_wr.send_flags = 0;
793 nr_sig = rds_ib_set_wr_signal_state(ic, send, op->op_notify);
794 send->s_atomic_wr.wr.num_sge = 1;
795 send->s_atomic_wr.wr.next = NULL;
796 send->s_atomic_wr.remote_addr = op->op_remote_addr;
797 send->s_atomic_wr.rkey = op->op_rkey;
798 send->s_op = op;
799 rds_message_addref(container_of(send->s_op, struct rds_message, atomic));
800
801 /* map 8 byte retval buffer to the device */
802 ret = ib_dma_map_sg(ic->i_cm_id->device, op->op_sg, 1, DMA_FROM_DEVICE);
803 rdsdebug("ic %p mapping atomic op %p. mapped %d pg\n", ic, op, ret);
804 if (ret != 1) {
805 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
806 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
807 ret = -ENOMEM; /* XXX ? */
808 goto out;
809 }
810
811 /* Convert our struct scatterlist to struct ib_sge */
812 send->s_sge[0].addr = sg_dma_address(op->op_sg);
813 send->s_sge[0].length = sg_dma_len(op->op_sg);
814 send->s_sge[0].lkey = ic->i_pd->local_dma_lkey;
815
816 rdsdebug("rva %Lx rpa %Lx len %u\n", op->op_remote_addr,
817 send->s_sge[0].addr, send->s_sge[0].length);
818
819 if (nr_sig)
820 atomic_add(nr_sig, &ic->i_signaled_sends);
821
822 failed_wr = &send->s_atomic_wr.wr;
823 ret = ib_post_send(ic->i_cm_id->qp, &send->s_atomic_wr.wr, &failed_wr);
824 rdsdebug("ic %p send %p (wr %p) ret %d wr %p\n", ic,
825 send, &send->s_atomic_wr, ret, failed_wr);
826 BUG_ON(failed_wr != &send->s_atomic_wr.wr);
827 if (ret) {
828 printk(KERN_WARNING "RDS/IB: atomic ib_post_send to %pI6c "
829 "returned %d\n", &conn->c_faddr, ret);
830 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
831 rds_ib_sub_signaled(ic, nr_sig);
832 goto out;
833 }
834
835 if (unlikely(failed_wr != &send->s_atomic_wr.wr)) {
836 printk(KERN_WARNING "RDS/IB: atomic ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
837 BUG_ON(failed_wr != &send->s_atomic_wr.wr);
838 }
839
840 out:
841 return ret;
842 }
843
844 int rds_ib_xmit_rdma(struct rds_connection *conn, struct rm_rdma_op *op)
845 {
846 struct rds_ib_connection *ic = conn->c_transport_data;
847 struct rds_ib_send_work *send = NULL;
848 struct rds_ib_send_work *first;
849 struct rds_ib_send_work *prev;
850 const struct ib_send_wr *failed_wr;
851 struct scatterlist *scat;
852 unsigned long len;
853 u64 remote_addr = op->op_remote_addr;
854 u32 max_sge = ic->rds_ibdev->max_sge;
855 u32 pos;
856 u32 work_alloc;
857 u32 i;
858 u32 j;
859 int sent;
860 int ret;
861 int num_sge;
862 int nr_sig = 0;
863
864 /* map the op the first time we see it */
865 if (!op->op_mapped) {
866 op->op_count = ib_dma_map_sg(ic->i_cm_id->device,
867 op->op_sg, op->op_nents, (op->op_write) ?
868 DMA_TO_DEVICE : DMA_FROM_DEVICE);
869 rdsdebug("ic %p mapping op %p: %d\n", ic, op, op->op_count);
870 if (op->op_count == 0) {
871 rds_ib_stats_inc(s_ib_tx_sg_mapping_failure);
872 ret = -ENOMEM; /* XXX ? */
873 goto out;
874 }
875
876 op->op_mapped = 1;
877 }
878
879 /*
880 * Instead of knowing how to return a partial rdma read/write we insist that there
881 * be enough work requests to send the entire message.
882 */
883 i = DIV_ROUND_UP(op->op_count, max_sge);
884
885 work_alloc = rds_ib_ring_alloc(&ic->i_send_ring, i, &pos);
886 if (work_alloc != i) {
887 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
888 rds_ib_stats_inc(s_ib_tx_ring_full);
889 ret = -ENOMEM;
890 goto out;
891 }
892
893 send = &ic->i_sends[pos];
894 first = send;
895 prev = NULL;
896 scat = &op->op_sg[0];
897 sent = 0;
898 num_sge = op->op_count;
899
900 for (i = 0; i < work_alloc && scat != &op->op_sg[op->op_count]; i++) {
901 send->s_wr.send_flags = 0;
902 send->s_queued = jiffies;
903 send->s_op = NULL;
904
905 nr_sig += rds_ib_set_wr_signal_state(ic, send, op->op_notify);
906
907 send->s_wr.opcode = op->op_write ? IB_WR_RDMA_WRITE : IB_WR_RDMA_READ;
908 send->s_rdma_wr.remote_addr = remote_addr;
909 send->s_rdma_wr.rkey = op->op_rkey;
910
911 if (num_sge > max_sge) {
912 send->s_rdma_wr.wr.num_sge = max_sge;
913 num_sge -= max_sge;
914 } else {
915 send->s_rdma_wr.wr.num_sge = num_sge;
916 }
917
918 send->s_rdma_wr.wr.next = NULL;
919
920 if (prev)
921 prev->s_rdma_wr.wr.next = &send->s_rdma_wr.wr;
922
923 for (j = 0; j < send->s_rdma_wr.wr.num_sge &&
924 scat != &op->op_sg[op->op_count]; j++) {
925 len = sg_dma_len(scat);
926 send->s_sge[j].addr = sg_dma_address(scat);
927 send->s_sge[j].length = len;
928 send->s_sge[j].lkey = ic->i_pd->local_dma_lkey;
929
930 sent += len;
931 rdsdebug("ic %p sent %d remote_addr %llu\n", ic, sent, remote_addr);
932
933 remote_addr += len;
934 scat++;
935 }
936
937 rdsdebug("send %p wr %p num_sge %u next %p\n", send,
938 &send->s_rdma_wr.wr,
939 send->s_rdma_wr.wr.num_sge,
940 send->s_rdma_wr.wr.next);
941
942 prev = send;
943 if (++send == &ic->i_sends[ic->i_send_ring.w_nr])
944 send = ic->i_sends;
945 }
946
947 /* give a reference to the last op */
948 if (scat == &op->op_sg[op->op_count]) {
949 prev->s_op = op;
950 rds_message_addref(container_of(op, struct rds_message, rdma));
951 }
952
953 if (i < work_alloc) {
954 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc - i);
955 work_alloc = i;
956 }
957
958 if (nr_sig)
959 atomic_add(nr_sig, &ic->i_signaled_sends);
960
961 failed_wr = &first->s_rdma_wr.wr;
962 ret = ib_post_send(ic->i_cm_id->qp, &first->s_rdma_wr.wr, &failed_wr);
963 rdsdebug("ic %p first %p (wr %p) ret %d wr %p\n", ic,
964 first, &first->s_rdma_wr.wr, ret, failed_wr);
965 BUG_ON(failed_wr != &first->s_rdma_wr.wr);
966 if (ret) {
967 printk(KERN_WARNING "RDS/IB: rdma ib_post_send to %pI6c "
968 "returned %d\n", &conn->c_faddr, ret);
969 rds_ib_ring_unalloc(&ic->i_send_ring, work_alloc);
970 rds_ib_sub_signaled(ic, nr_sig);
971 goto out;
972 }
973
974 if (unlikely(failed_wr != &first->s_rdma_wr.wr)) {
975 printk(KERN_WARNING "RDS/IB: ib_post_send() rc=%d, but failed_wqe updated!\n", ret);
976 BUG_ON(failed_wr != &first->s_rdma_wr.wr);
977 }
978
979
980 out:
981 return ret;
982 }
983
984 void rds_ib_xmit_path_complete(struct rds_conn_path *cp)
985 {
986 struct rds_connection *conn = cp->cp_conn;
987 struct rds_ib_connection *ic = conn->c_transport_data;
988
989 /* We may have a pending ACK or window update we were unable
990 * to send previously (due to flow control). Try again. */
991 rds_ib_attempt_ack(ic);
992 }