]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/rds/send.c
RDS: Fix locking in send on m_rs_lock
[mirror_ubuntu-artful-kernel.git] / net / rds / send.c
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/gfp.h>
35 #include <net/sock.h>
36 #include <linux/in.h>
37 #include <linux/list.h>
38
39 #include "rds.h"
40
41 /* When transmitting messages in rds_send_xmit, we need to emerge from
42 * time to time and briefly release the CPU. Otherwise the softlock watchdog
43 * will kick our shin.
44 * Also, it seems fairer to not let one busy connection stall all the
45 * others.
46 *
47 * send_batch_count is the number of times we'll loop in send_xmit. Setting
48 * it to 0 will restore the old behavior (where we looped until we had
49 * drained the queue).
50 */
51 static int send_batch_count = 64;
52 module_param(send_batch_count, int, 0444);
53 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
54
55 /*
56 * Reset the send state. Caller must hold c_send_lock when calling here.
57 */
58 void rds_send_reset(struct rds_connection *conn)
59 {
60 struct rds_message *rm, *tmp;
61 unsigned long flags;
62
63 if (conn->c_xmit_rm) {
64 /* Tell the user the RDMA op is no longer mapped by the
65 * transport. This isn't entirely true (it's flushed out
66 * independently) but as the connection is down, there's
67 * no ongoing RDMA to/from that memory */
68 rds_message_unmapped(conn->c_xmit_rm);
69 rds_message_put(conn->c_xmit_rm);
70 conn->c_xmit_rm = NULL;
71 }
72 conn->c_xmit_sg = 0;
73 conn->c_xmit_hdr_off = 0;
74 conn->c_xmit_data_off = 0;
75 conn->c_xmit_atomic_sent = 0;
76 conn->c_xmit_rdma_sent = 0;
77 conn->c_xmit_data_sent = 0;
78
79 conn->c_map_queued = 0;
80
81 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
82 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
83
84 /* Mark messages as retransmissions, and move them to the send q */
85 spin_lock_irqsave(&conn->c_lock, flags);
86 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
87 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
88 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
89 }
90 list_splice_init(&conn->c_retrans, &conn->c_send_queue);
91 spin_unlock_irqrestore(&conn->c_lock, flags);
92 }
93
94 /*
95 * We're making the concious trade-off here to only send one message
96 * down the connection at a time.
97 * Pro:
98 * - tx queueing is a simple fifo list
99 * - reassembly is optional and easily done by transports per conn
100 * - no per flow rx lookup at all, straight to the socket
101 * - less per-frag memory and wire overhead
102 * Con:
103 * - queued acks can be delayed behind large messages
104 * Depends:
105 * - small message latency is higher behind queued large messages
106 * - large message latency isn't starved by intervening small sends
107 */
108 int rds_send_xmit(struct rds_connection *conn)
109 {
110 struct rds_message *rm;
111 unsigned long flags;
112 unsigned int tmp;
113 unsigned int send_quota = send_batch_count;
114 struct scatterlist *sg;
115 int ret = 0;
116 int was_empty = 0;
117 LIST_HEAD(to_be_dropped);
118
119 if (!rds_conn_up(conn))
120 goto out;
121
122 /*
123 * sendmsg calls here after having queued its message on the send
124 * queue. We only have one task feeding the connection at a time. If
125 * another thread is already feeding the queue then we back off. This
126 * avoids blocking the caller and trading per-connection data between
127 * caches per message.
128 */
129 if (!spin_trylock_irqsave(&conn->c_send_lock, flags)) {
130 rds_stats_inc(s_send_lock_contention);
131 ret = -ENOMEM;
132 goto out;
133 }
134
135 if (conn->c_trans->xmit_prepare)
136 conn->c_trans->xmit_prepare(conn);
137
138 /*
139 * spin trying to push headers and data down the connection until
140 * the connection doesn't make forward progress.
141 */
142 while (--send_quota) {
143
144 rm = conn->c_xmit_rm;
145
146 /*
147 * If between sending messages, we can send a pending congestion
148 * map update.
149 */
150 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
151 rm = rds_cong_update_alloc(conn);
152 if (IS_ERR(rm)) {
153 ret = PTR_ERR(rm);
154 break;
155 }
156 rm->data.op_active = 1;
157
158 conn->c_xmit_rm = rm;
159 }
160
161 /*
162 * If not already working on one, grab the next message.
163 *
164 * c_xmit_rm holds a ref while we're sending this message down
165 * the connction. We can use this ref while holding the
166 * send_sem.. rds_send_reset() is serialized with it.
167 */
168 if (!rm) {
169 unsigned int len;
170
171 spin_lock(&conn->c_lock);
172
173 if (!list_empty(&conn->c_send_queue)) {
174 rm = list_entry(conn->c_send_queue.next,
175 struct rds_message,
176 m_conn_item);
177 rds_message_addref(rm);
178
179 /*
180 * Move the message from the send queue to the retransmit
181 * list right away.
182 */
183 list_move_tail(&rm->m_conn_item, &conn->c_retrans);
184 }
185
186 spin_unlock(&conn->c_lock);
187
188 if (!rm) {
189 was_empty = 1;
190 break;
191 }
192
193 /* Unfortunately, the way Infiniband deals with
194 * RDMA to a bad MR key is by moving the entire
195 * queue pair to error state. We cold possibly
196 * recover from that, but right now we drop the
197 * connection.
198 * Therefore, we never retransmit messages with RDMA ops.
199 */
200 if (rm->rdma.op_active &&
201 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
202 spin_lock(&conn->c_lock);
203 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
204 list_move(&rm->m_conn_item, &to_be_dropped);
205 spin_unlock(&conn->c_lock);
206 continue;
207 }
208
209 /* Require an ACK every once in a while */
210 len = ntohl(rm->m_inc.i_hdr.h_len);
211 if (conn->c_unacked_packets == 0 ||
212 conn->c_unacked_bytes < len) {
213 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
214
215 conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
216 conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
217 rds_stats_inc(s_send_ack_required);
218 } else {
219 conn->c_unacked_bytes -= len;
220 conn->c_unacked_packets--;
221 }
222
223 conn->c_xmit_rm = rm;
224 }
225
226 /* The transport either sends the whole rdma or none of it */
227 if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
228 rm->m_final_op = &rm->rdma;
229 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
230 if (ret)
231 break;
232 conn->c_xmit_rdma_sent = 1;
233
234 /* The transport owns the mapped memory for now.
235 * You can't unmap it while it's on the send queue */
236 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
237 }
238
239 if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
240 rm->m_final_op = &rm->atomic;
241 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
242 if (ret)
243 break;
244 conn->c_xmit_atomic_sent = 1;
245
246 /* The transport owns the mapped memory for now.
247 * You can't unmap it while it's on the send queue */
248 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
249 }
250
251 /*
252 * A number of cases require an RDS header to be sent
253 * even if there is no data.
254 * We permit 0-byte sends; rds-ping depends on this.
255 * However, if there are exclusively attached silent ops,
256 * we skip the hdr/data send, to enable silent operation.
257 */
258 if (rm->data.op_nents == 0) {
259 int ops_present;
260 int all_ops_are_silent = 1;
261
262 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
263 if (rm->atomic.op_active && !rm->atomic.op_silent)
264 all_ops_are_silent = 0;
265 if (rm->rdma.op_active && !rm->rdma.op_silent)
266 all_ops_are_silent = 0;
267
268 if (ops_present && all_ops_are_silent
269 && !rm->m_rdma_cookie)
270 rm->data.op_active = 0;
271 }
272
273 if (rm->data.op_active && !conn->c_xmit_data_sent) {
274 rm->m_final_op = &rm->data;
275 ret = conn->c_trans->xmit(conn, rm,
276 conn->c_xmit_hdr_off,
277 conn->c_xmit_sg,
278 conn->c_xmit_data_off);
279 if (ret <= 0)
280 break;
281
282 if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
283 tmp = min_t(int, ret,
284 sizeof(struct rds_header) -
285 conn->c_xmit_hdr_off);
286 conn->c_xmit_hdr_off += tmp;
287 ret -= tmp;
288 }
289
290 sg = &rm->data.op_sg[conn->c_xmit_sg];
291 while (ret) {
292 tmp = min_t(int, ret, sg->length -
293 conn->c_xmit_data_off);
294 conn->c_xmit_data_off += tmp;
295 ret -= tmp;
296 if (conn->c_xmit_data_off == sg->length) {
297 conn->c_xmit_data_off = 0;
298 sg++;
299 conn->c_xmit_sg++;
300 BUG_ON(ret != 0 &&
301 conn->c_xmit_sg == rm->data.op_nents);
302 }
303 }
304
305 if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
306 (conn->c_xmit_sg == rm->data.op_nents))
307 conn->c_xmit_data_sent = 1;
308 }
309
310 /*
311 * A rm will only take multiple times through this loop
312 * if there is a data op. Thus, if the data is sent (or there was
313 * none), then we're done with the rm.
314 */
315 if (!rm->data.op_active || conn->c_xmit_data_sent) {
316 conn->c_xmit_rm = NULL;
317 conn->c_xmit_sg = 0;
318 conn->c_xmit_hdr_off = 0;
319 conn->c_xmit_data_off = 0;
320 conn->c_xmit_rdma_sent = 0;
321 conn->c_xmit_atomic_sent = 0;
322 conn->c_xmit_data_sent = 0;
323
324 rds_message_put(rm);
325 }
326 }
327
328 if (conn->c_trans->xmit_complete)
329 conn->c_trans->xmit_complete(conn);
330
331 /*
332 * We might be racing with another sender who queued a message but
333 * backed off on noticing that we held the c_send_lock. If we check
334 * for queued messages after dropping the sem then either we'll
335 * see the queued message or the queuer will get the sem. If we
336 * notice the queued message then we trigger an immediate retry.
337 *
338 * We need to be careful only to do this when we stopped processing
339 * the send queue because it was empty. It's the only way we
340 * stop processing the loop when the transport hasn't taken
341 * responsibility for forward progress.
342 */
343 spin_unlock_irqrestore(&conn->c_send_lock, flags);
344
345 /* Nuke any messages we decided not to retransmit. */
346 if (!list_empty(&to_be_dropped)) {
347 /* irqs on here, so we can put(), unlike above */
348 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
349 rds_message_put(rm);
350 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
351 }
352
353 if (send_quota == 0 && !was_empty) {
354 /* We exhausted the send quota, but there's work left to
355 * do. Return and (re-)schedule the send worker.
356 */
357 ret = -EAGAIN;
358 }
359
360 if (ret == 0 && was_empty) {
361 /* A simple bit test would be way faster than taking the
362 * spin lock */
363 spin_lock_irqsave(&conn->c_lock, flags);
364 if (!list_empty(&conn->c_send_queue)) {
365 rds_stats_inc(s_send_lock_queue_raced);
366 ret = -EAGAIN;
367 }
368 spin_unlock_irqrestore(&conn->c_lock, flags);
369 }
370 out:
371 return ret;
372 }
373
374 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
375 {
376 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
377
378 assert_spin_locked(&rs->rs_lock);
379
380 BUG_ON(rs->rs_snd_bytes < len);
381 rs->rs_snd_bytes -= len;
382
383 if (rs->rs_snd_bytes == 0)
384 rds_stats_inc(s_send_queue_empty);
385 }
386
387 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
388 is_acked_func is_acked)
389 {
390 if (is_acked)
391 return is_acked(rm, ack);
392 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
393 }
394
395 /*
396 * Returns true if there are no messages on the send and retransmit queues
397 * which have a sequence number greater than or equal to the given sequence
398 * number.
399 */
400 int rds_send_acked_before(struct rds_connection *conn, u64 seq)
401 {
402 struct rds_message *rm, *tmp;
403 int ret = 1;
404
405 spin_lock(&conn->c_lock);
406
407 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
408 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
409 ret = 0;
410 break;
411 }
412
413 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
414 if (be64_to_cpu(rm->m_inc.i_hdr.h_sequence) < seq)
415 ret = 0;
416 break;
417 }
418
419 spin_unlock(&conn->c_lock);
420
421 return ret;
422 }
423
424 /*
425 * This is pretty similar to what happens below in the ACK
426 * handling code - except that we call here as soon as we get
427 * the IB send completion on the RDMA op and the accompanying
428 * message.
429 */
430 void rds_rdma_send_complete(struct rds_message *rm, int status)
431 {
432 struct rds_sock *rs = NULL;
433 struct rm_rdma_op *ro;
434 struct rds_notifier *notifier;
435 unsigned long flags;
436
437 spin_lock_irqsave(&rm->m_rs_lock, flags);
438
439 ro = &rm->rdma;
440 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
441 ro->op_active && ro->op_notify && ro->op_notifier) {
442 notifier = ro->op_notifier;
443 rs = rm->m_rs;
444 sock_hold(rds_rs_to_sk(rs));
445
446 notifier->n_status = status;
447 spin_lock(&rs->rs_lock);
448 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
449 spin_unlock(&rs->rs_lock);
450
451 ro->op_notifier = NULL;
452 }
453
454 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
455
456 if (rs) {
457 rds_wake_sk_sleep(rs);
458 sock_put(rds_rs_to_sk(rs));
459 }
460 }
461 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
462
463 /*
464 * Just like above, except looks at atomic op
465 */
466 void rds_atomic_send_complete(struct rds_message *rm, int status)
467 {
468 struct rds_sock *rs = NULL;
469 struct rm_atomic_op *ao;
470 struct rds_notifier *notifier;
471 unsigned long flags;
472
473 spin_lock_irqsave(&rm->m_rs_lock, flags);
474
475 ao = &rm->atomic;
476 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
477 && ao->op_active && ao->op_notify && ao->op_notifier) {
478 notifier = ao->op_notifier;
479 rs = rm->m_rs;
480 sock_hold(rds_rs_to_sk(rs));
481
482 notifier->n_status = status;
483 spin_lock(&rs->rs_lock);
484 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
485 spin_unlock(&rs->rs_lock);
486
487 ao->op_notifier = NULL;
488 }
489
490 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
491
492 if (rs) {
493 rds_wake_sk_sleep(rs);
494 sock_put(rds_rs_to_sk(rs));
495 }
496 }
497 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
498
499 /*
500 * This is the same as rds_rdma_send_complete except we
501 * don't do any locking - we have all the ingredients (message,
502 * socket, socket lock) and can just move the notifier.
503 */
504 static inline void
505 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
506 {
507 struct rm_rdma_op *ro;
508 struct rm_atomic_op *ao;
509
510 ro = &rm->rdma;
511 if (ro->op_active && ro->op_notify && ro->op_notifier) {
512 ro->op_notifier->n_status = status;
513 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
514 ro->op_notifier = NULL;
515 }
516
517 ao = &rm->atomic;
518 if (ao->op_active && ao->op_notify && ao->op_notifier) {
519 ao->op_notifier->n_status = status;
520 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
521 ao->op_notifier = NULL;
522 }
523
524 /* No need to wake the app - caller does this */
525 }
526
527 /*
528 * This is called from the IB send completion when we detect
529 * a RDMA operation that failed with remote access error.
530 * So speed is not an issue here.
531 */
532 struct rds_message *rds_send_get_message(struct rds_connection *conn,
533 struct rm_rdma_op *op)
534 {
535 struct rds_message *rm, *tmp, *found = NULL;
536 unsigned long flags;
537
538 spin_lock_irqsave(&conn->c_lock, flags);
539
540 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
541 if (&rm->rdma == op) {
542 atomic_inc(&rm->m_refcount);
543 found = rm;
544 goto out;
545 }
546 }
547
548 list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
549 if (&rm->rdma == op) {
550 atomic_inc(&rm->m_refcount);
551 found = rm;
552 break;
553 }
554 }
555
556 out:
557 spin_unlock_irqrestore(&conn->c_lock, flags);
558
559 return found;
560 }
561 EXPORT_SYMBOL_GPL(rds_send_get_message);
562
563 /*
564 * This removes messages from the socket's list if they're on it. The list
565 * argument must be private to the caller, we must be able to modify it
566 * without locks. The messages must have a reference held for their
567 * position on the list. This function will drop that reference after
568 * removing the messages from the 'messages' list regardless of if it found
569 * the messages on the socket list or not.
570 */
571 void rds_send_remove_from_sock(struct list_head *messages, int status)
572 {
573 unsigned long flags;
574 struct rds_sock *rs = NULL;
575 struct rds_message *rm;
576
577 while (!list_empty(messages)) {
578 int was_on_sock = 0;
579
580 rm = list_entry(messages->next, struct rds_message,
581 m_conn_item);
582 list_del_init(&rm->m_conn_item);
583
584 /*
585 * If we see this flag cleared then we're *sure* that someone
586 * else beat us to removing it from the sock. If we race
587 * with their flag update we'll get the lock and then really
588 * see that the flag has been cleared.
589 *
590 * The message spinlock makes sure nobody clears rm->m_rs
591 * while we're messing with it. It does not prevent the
592 * message from being removed from the socket, though.
593 */
594 spin_lock_irqsave(&rm->m_rs_lock, flags);
595 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
596 goto unlock_and_drop;
597
598 if (rs != rm->m_rs) {
599 if (rs) {
600 rds_wake_sk_sleep(rs);
601 sock_put(rds_rs_to_sk(rs));
602 }
603 rs = rm->m_rs;
604 sock_hold(rds_rs_to_sk(rs));
605 }
606 spin_lock(&rs->rs_lock);
607
608 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
609 struct rm_rdma_op *ro = &rm->rdma;
610 struct rds_notifier *notifier;
611
612 list_del_init(&rm->m_sock_item);
613 rds_send_sndbuf_remove(rs, rm);
614
615 if (ro->op_active && ro->op_notifier &&
616 (ro->op_notify || (ro->op_recverr && status))) {
617 notifier = ro->op_notifier;
618 list_add_tail(&notifier->n_list,
619 &rs->rs_notify_queue);
620 if (!notifier->n_status)
621 notifier->n_status = status;
622 rm->rdma.op_notifier = NULL;
623 }
624 was_on_sock = 1;
625 rm->m_rs = NULL;
626 }
627 spin_unlock(&rs->rs_lock);
628
629 unlock_and_drop:
630 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
631 rds_message_put(rm);
632 if (was_on_sock)
633 rds_message_put(rm);
634 }
635
636 if (rs) {
637 rds_wake_sk_sleep(rs);
638 sock_put(rds_rs_to_sk(rs));
639 }
640 }
641
642 /*
643 * Transports call here when they've determined that the receiver queued
644 * messages up to, and including, the given sequence number. Messages are
645 * moved to the retrans queue when rds_send_xmit picks them off the send
646 * queue. This means that in the TCP case, the message may not have been
647 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
648 * checks the RDS_MSG_HAS_ACK_SEQ bit.
649 *
650 * XXX It's not clear to me how this is safely serialized with socket
651 * destruction. Maybe it should bail if it sees SOCK_DEAD.
652 */
653 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
654 is_acked_func is_acked)
655 {
656 struct rds_message *rm, *tmp;
657 unsigned long flags;
658 LIST_HEAD(list);
659
660 spin_lock_irqsave(&conn->c_lock, flags);
661
662 list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
663 if (!rds_send_is_acked(rm, ack, is_acked))
664 break;
665
666 list_move(&rm->m_conn_item, &list);
667 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
668 }
669
670 /* order flag updates with spin locks */
671 if (!list_empty(&list))
672 smp_mb__after_clear_bit();
673
674 spin_unlock_irqrestore(&conn->c_lock, flags);
675
676 /* now remove the messages from the sock list as needed */
677 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
678 }
679 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
680
681 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
682 {
683 struct rds_message *rm, *tmp;
684 struct rds_connection *conn;
685 unsigned long flags;
686 LIST_HEAD(list);
687
688 /* get all the messages we're dropping under the rs lock */
689 spin_lock_irqsave(&rs->rs_lock, flags);
690
691 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
692 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
693 dest->sin_port != rm->m_inc.i_hdr.h_dport))
694 continue;
695
696 list_move(&rm->m_sock_item, &list);
697 rds_send_sndbuf_remove(rs, rm);
698 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
699 }
700
701 /* order flag updates with the rs lock */
702 smp_mb__after_clear_bit();
703
704 spin_unlock_irqrestore(&rs->rs_lock, flags);
705
706 if (list_empty(&list))
707 return;
708
709 /* Remove the messages from the conn */
710 list_for_each_entry(rm, &list, m_sock_item) {
711
712 conn = rm->m_inc.i_conn;
713
714 spin_lock_irqsave(&conn->c_lock, flags);
715 /*
716 * Maybe someone else beat us to removing rm from the conn.
717 * If we race with their flag update we'll get the lock and
718 * then really see that the flag has been cleared.
719 */
720 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
721 spin_unlock_irqrestore(&conn->c_lock, flags);
722 continue;
723 }
724 list_del_init(&rm->m_conn_item);
725 spin_unlock_irqrestore(&conn->c_lock, flags);
726
727 /*
728 * Couldn't grab m_rs_lock in top loop (lock ordering),
729 * but we can now.
730 */
731 spin_lock_irqsave(&rm->m_rs_lock, flags);
732
733 spin_lock(&rs->rs_lock);
734 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
735 spin_unlock(&rs->rs_lock);
736
737 rm->m_rs = NULL;
738 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
739
740 rds_message_put(rm);
741 }
742
743 rds_wake_sk_sleep(rs);
744
745 while (!list_empty(&list)) {
746 rm = list_entry(list.next, struct rds_message, m_sock_item);
747 list_del_init(&rm->m_sock_item);
748
749 rds_message_wait(rm);
750 rds_message_put(rm);
751 }
752 }
753
754 /*
755 * we only want this to fire once so we use the callers 'queued'. It's
756 * possible that another thread can race with us and remove the
757 * message from the flow with RDS_CANCEL_SENT_TO.
758 */
759 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
760 struct rds_message *rm, __be16 sport,
761 __be16 dport, int *queued)
762 {
763 unsigned long flags;
764 u32 len;
765
766 if (*queued)
767 goto out;
768
769 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
770
771 /* this is the only place which holds both the socket's rs_lock
772 * and the connection's c_lock */
773 spin_lock_irqsave(&rs->rs_lock, flags);
774
775 /*
776 * If there is a little space in sndbuf, we don't queue anything,
777 * and userspace gets -EAGAIN. But poll() indicates there's send
778 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
779 * freed up by incoming acks. So we check the *old* value of
780 * rs_snd_bytes here to allow the last msg to exceed the buffer,
781 * and poll() now knows no more data can be sent.
782 */
783 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
784 rs->rs_snd_bytes += len;
785
786 /* let recv side know we are close to send space exhaustion.
787 * This is probably not the optimal way to do it, as this
788 * means we set the flag on *all* messages as soon as our
789 * throughput hits a certain threshold.
790 */
791 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
792 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
793
794 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
795 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
796 rds_message_addref(rm);
797 rm->m_rs = rs;
798
799 /* The code ordering is a little weird, but we're
800 trying to minimize the time we hold c_lock */
801 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
802 rm->m_inc.i_conn = conn;
803 rds_message_addref(rm);
804
805 spin_lock(&conn->c_lock);
806 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
807 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
808 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
809 spin_unlock(&conn->c_lock);
810
811 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
812 rm, len, rs, rs->rs_snd_bytes,
813 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
814
815 *queued = 1;
816 }
817
818 spin_unlock_irqrestore(&rs->rs_lock, flags);
819 out:
820 return *queued;
821 }
822
823 /*
824 * rds_message is getting to be quite complicated, and we'd like to allocate
825 * it all in one go. This figures out how big it needs to be up front.
826 */
827 static int rds_rm_size(struct msghdr *msg, int data_len)
828 {
829 struct cmsghdr *cmsg;
830 int size = 0;
831 int cmsg_groups = 0;
832 int retval;
833
834 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
835 if (!CMSG_OK(msg, cmsg))
836 return -EINVAL;
837
838 if (cmsg->cmsg_level != SOL_RDS)
839 continue;
840
841 switch (cmsg->cmsg_type) {
842 case RDS_CMSG_RDMA_ARGS:
843 cmsg_groups |= 1;
844 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
845 if (retval < 0)
846 return retval;
847 size += retval;
848
849 break;
850
851 case RDS_CMSG_RDMA_DEST:
852 case RDS_CMSG_RDMA_MAP:
853 cmsg_groups |= 2;
854 /* these are valid but do no add any size */
855 break;
856
857 case RDS_CMSG_ATOMIC_CSWP:
858 case RDS_CMSG_ATOMIC_FADD:
859 cmsg_groups |= 1;
860 size += sizeof(struct scatterlist);
861 break;
862
863 default:
864 return -EINVAL;
865 }
866
867 }
868
869 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
870
871 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
872 if (cmsg_groups == 3)
873 return -EINVAL;
874
875 return size;
876 }
877
878 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
879 struct msghdr *msg, int *allocated_mr)
880 {
881 struct cmsghdr *cmsg;
882 int ret = 0;
883
884 for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
885 if (!CMSG_OK(msg, cmsg))
886 return -EINVAL;
887
888 if (cmsg->cmsg_level != SOL_RDS)
889 continue;
890
891 /* As a side effect, RDMA_DEST and RDMA_MAP will set
892 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
893 */
894 switch (cmsg->cmsg_type) {
895 case RDS_CMSG_RDMA_ARGS:
896 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
897 break;
898
899 case RDS_CMSG_RDMA_DEST:
900 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
901 break;
902
903 case RDS_CMSG_RDMA_MAP:
904 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
905 if (!ret)
906 *allocated_mr = 1;
907 break;
908 case RDS_CMSG_ATOMIC_CSWP:
909 case RDS_CMSG_ATOMIC_FADD:
910 ret = rds_cmsg_atomic(rs, rm, cmsg);
911 break;
912
913 default:
914 return -EINVAL;
915 }
916
917 if (ret)
918 break;
919 }
920
921 return ret;
922 }
923
924 int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
925 size_t payload_len)
926 {
927 struct sock *sk = sock->sk;
928 struct rds_sock *rs = rds_sk_to_rs(sk);
929 struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
930 __be32 daddr;
931 __be16 dport;
932 struct rds_message *rm = NULL;
933 struct rds_connection *conn;
934 int ret = 0;
935 int queued = 0, allocated_mr = 0;
936 int nonblock = msg->msg_flags & MSG_DONTWAIT;
937 long timeo = sock_sndtimeo(sk, nonblock);
938
939 /* Mirror Linux UDP mirror of BSD error message compatibility */
940 /* XXX: Perhaps MSG_MORE someday */
941 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
942 printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
943 ret = -EOPNOTSUPP;
944 goto out;
945 }
946
947 if (msg->msg_namelen) {
948 /* XXX fail non-unicast destination IPs? */
949 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
950 ret = -EINVAL;
951 goto out;
952 }
953 daddr = usin->sin_addr.s_addr;
954 dport = usin->sin_port;
955 } else {
956 /* We only care about consistency with ->connect() */
957 lock_sock(sk);
958 daddr = rs->rs_conn_addr;
959 dport = rs->rs_conn_port;
960 release_sock(sk);
961 }
962
963 /* racing with another thread binding seems ok here */
964 if (daddr == 0 || rs->rs_bound_addr == 0) {
965 ret = -ENOTCONN; /* XXX not a great errno */
966 goto out;
967 }
968
969 /* size of rm including all sgs */
970 ret = rds_rm_size(msg, payload_len);
971 if (ret < 0)
972 goto out;
973
974 rm = rds_message_alloc(ret, GFP_KERNEL);
975 if (!rm) {
976 ret = -ENOMEM;
977 goto out;
978 }
979
980 /* Attach data to the rm */
981 if (payload_len) {
982 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
983 ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
984 if (ret)
985 goto out;
986 }
987 rm->data.op_active = 1;
988
989 rm->m_daddr = daddr;
990
991 /* rds_conn_create has a spinlock that runs with IRQ off.
992 * Caching the conn in the socket helps a lot. */
993 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
994 conn = rs->rs_conn;
995 else {
996 conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
997 rs->rs_transport,
998 sock->sk->sk_allocation);
999 if (IS_ERR(conn)) {
1000 ret = PTR_ERR(conn);
1001 goto out;
1002 }
1003 rs->rs_conn = conn;
1004 }
1005
1006 /* Parse any control messages the user may have included. */
1007 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1008 if (ret)
1009 goto out;
1010
1011 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1012 if (printk_ratelimit())
1013 printk(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1014 &rm->rdma, conn->c_trans->xmit_rdma);
1015 ret = -EOPNOTSUPP;
1016 goto out;
1017 }
1018
1019 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1020 if (printk_ratelimit())
1021 printk(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1022 &rm->atomic, conn->c_trans->xmit_atomic);
1023 ret = -EOPNOTSUPP;
1024 goto out;
1025 }
1026
1027 /* If the connection is down, trigger a connect. We may
1028 * have scheduled a delayed reconnect however - in this case
1029 * we should not interfere.
1030 */
1031 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1032 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1033 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1034
1035 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1036 if (ret) {
1037 rs->rs_seen_congestion = 1;
1038 goto out;
1039 }
1040
1041 while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1042 dport, &queued)) {
1043 rds_stats_inc(s_send_queue_full);
1044 /* XXX make sure this is reasonable */
1045 if (payload_len > rds_sk_sndbuf(rs)) {
1046 ret = -EMSGSIZE;
1047 goto out;
1048 }
1049 if (nonblock) {
1050 ret = -EAGAIN;
1051 goto out;
1052 }
1053
1054 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1055 rds_send_queue_rm(rs, conn, rm,
1056 rs->rs_bound_port,
1057 dport,
1058 &queued),
1059 timeo);
1060 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1061 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1062 continue;
1063
1064 ret = timeo;
1065 if (ret == 0)
1066 ret = -ETIMEDOUT;
1067 goto out;
1068 }
1069
1070 /*
1071 * By now we've committed to the send. We reuse rds_send_worker()
1072 * to retry sends in the rds thread if the transport asks us to.
1073 */
1074 rds_stats_inc(s_send_queued);
1075
1076 if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1077 rds_send_xmit(conn);
1078
1079 rds_message_put(rm);
1080 return payload_len;
1081
1082 out:
1083 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1084 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1085 * or in any other way, we need to destroy the MR again */
1086 if (allocated_mr)
1087 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1088
1089 if (rm)
1090 rds_message_put(rm);
1091 return ret;
1092 }
1093
1094 /*
1095 * Reply to a ping packet.
1096 */
1097 int
1098 rds_send_pong(struct rds_connection *conn, __be16 dport)
1099 {
1100 struct rds_message *rm;
1101 unsigned long flags;
1102 int ret = 0;
1103
1104 rm = rds_message_alloc(0, GFP_ATOMIC);
1105 if (!rm) {
1106 ret = -ENOMEM;
1107 goto out;
1108 }
1109
1110 rm->m_daddr = conn->c_faddr;
1111
1112 /* If the connection is down, trigger a connect. We may
1113 * have scheduled a delayed reconnect however - in this case
1114 * we should not interfere.
1115 */
1116 if (rds_conn_state(conn) == RDS_CONN_DOWN &&
1117 !test_and_set_bit(RDS_RECONNECT_PENDING, &conn->c_flags))
1118 queue_delayed_work(rds_wq, &conn->c_conn_w, 0);
1119
1120 ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1121 if (ret)
1122 goto out;
1123
1124 spin_lock_irqsave(&conn->c_lock, flags);
1125 list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1126 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1127 rds_message_addref(rm);
1128 rm->m_inc.i_conn = conn;
1129
1130 rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1131 conn->c_next_tx_seq);
1132 conn->c_next_tx_seq++;
1133 spin_unlock_irqrestore(&conn->c_lock, flags);
1134
1135 rds_stats_inc(s_send_queued);
1136 rds_stats_inc(s_send_pong);
1137
1138 queue_delayed_work(rds_wq, &conn->c_send_w, 0);
1139 rds_message_put(rm);
1140 return 0;
1141
1142 out:
1143 if (rm)
1144 rds_message_put(rm);
1145 return ret;
1146 }