]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/rds/send.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[mirror_ubuntu-artful-kernel.git] / net / rds / send.c
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 *
32 */
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
42
43 #include "rds.h"
44
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
50 *
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
54 */
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
58
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
60
61 /*
62 * Reset the send state. Callers must ensure that this doesn't race with
63 * rds_send_xmit().
64 */
65 void rds_send_path_reset(struct rds_conn_path *cp)
66 {
67 struct rds_message *rm, *tmp;
68 unsigned long flags;
69
70 if (cp->cp_xmit_rm) {
71 rm = cp->cp_xmit_rm;
72 cp->cp_xmit_rm = NULL;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm);
78 rds_message_put(rm);
79 }
80
81 cp->cp_xmit_sg = 0;
82 cp->cp_xmit_hdr_off = 0;
83 cp->cp_xmit_data_off = 0;
84 cp->cp_xmit_atomic_sent = 0;
85 cp->cp_xmit_rdma_sent = 0;
86 cp->cp_xmit_data_sent = 0;
87
88 cp->cp_conn->c_map_queued = 0;
89
90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
92
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&cp->cp_lock, flags);
95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
98 }
99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 spin_unlock_irqrestore(&cp->cp_lock, flags);
101 }
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
103
104 static int acquire_in_xmit(struct rds_conn_path *cp)
105 {
106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
107 }
108
109 static void release_in_xmit(struct rds_conn_path *cp)
110 {
111 clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 smp_mb__after_atomic();
113 /*
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
118 */
119 if (waitqueue_active(&cp->cp_waitq))
120 wake_up_all(&cp->cp_waitq);
121 }
122
123 /*
124 * We're making the conscious trade-off here to only send one message
125 * down the connection at a time.
126 * Pro:
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
131 * Con:
132 * - queued acks can be delayed behind large messages
133 * Depends:
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
136 */
137 int rds_send_xmit(struct rds_conn_path *cp)
138 {
139 struct rds_connection *conn = cp->cp_conn;
140 struct rds_message *rm;
141 unsigned long flags;
142 unsigned int tmp;
143 struct scatterlist *sg;
144 int ret = 0;
145 LIST_HEAD(to_be_dropped);
146 int batch_count;
147 unsigned long send_gen = 0;
148
149 restart:
150 batch_count = 0;
151
152 /*
153 * sendmsg calls here after having queued its message on the send
154 * queue. We only have one task feeding the connection at a time. If
155 * another thread is already feeding the queue then we back off. This
156 * avoids blocking the caller and trading per-connection data between
157 * caches per message.
158 */
159 if (!acquire_in_xmit(cp)) {
160 rds_stats_inc(s_send_lock_contention);
161 ret = -ENOMEM;
162 goto out;
163 }
164
165 /*
166 * we record the send generation after doing the xmit acquire.
167 * if someone else manages to jump in and do some work, we'll use
168 * this to avoid a goto restart farther down.
169 *
170 * The acquire_in_xmit() check above ensures that only one
171 * caller can increment c_send_gen at any time.
172 */
173 send_gen = READ_ONCE(cp->cp_send_gen) + 1;
174 WRITE_ONCE(cp->cp_send_gen, send_gen);
175
176 /*
177 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
178 * we do the opposite to avoid races.
179 */
180 if (!rds_conn_path_up(cp)) {
181 release_in_xmit(cp);
182 ret = 0;
183 goto out;
184 }
185
186 if (conn->c_trans->xmit_path_prepare)
187 conn->c_trans->xmit_path_prepare(cp);
188
189 /*
190 * spin trying to push headers and data down the connection until
191 * the connection doesn't make forward progress.
192 */
193 while (1) {
194
195 rm = cp->cp_xmit_rm;
196
197 /*
198 * If between sending messages, we can send a pending congestion
199 * map update.
200 */
201 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
202 rm = rds_cong_update_alloc(conn);
203 if (IS_ERR(rm)) {
204 ret = PTR_ERR(rm);
205 break;
206 }
207 rm->data.op_active = 1;
208 rm->m_inc.i_conn_path = cp;
209 rm->m_inc.i_conn = cp->cp_conn;
210
211 cp->cp_xmit_rm = rm;
212 }
213
214 /*
215 * If not already working on one, grab the next message.
216 *
217 * cp_xmit_rm holds a ref while we're sending this message down
218 * the connction. We can use this ref while holding the
219 * send_sem.. rds_send_reset() is serialized with it.
220 */
221 if (!rm) {
222 unsigned int len;
223
224 batch_count++;
225
226 /* we want to process as big a batch as we can, but
227 * we also want to avoid softlockups. If we've been
228 * through a lot of messages, lets back off and see
229 * if anyone else jumps in
230 */
231 if (batch_count >= send_batch_count)
232 goto over_batch;
233
234 spin_lock_irqsave(&cp->cp_lock, flags);
235
236 if (!list_empty(&cp->cp_send_queue)) {
237 rm = list_entry(cp->cp_send_queue.next,
238 struct rds_message,
239 m_conn_item);
240 rds_message_addref(rm);
241
242 /*
243 * Move the message from the send queue to the retransmit
244 * list right away.
245 */
246 list_move_tail(&rm->m_conn_item,
247 &cp->cp_retrans);
248 }
249
250 spin_unlock_irqrestore(&cp->cp_lock, flags);
251
252 if (!rm)
253 break;
254
255 /* Unfortunately, the way Infiniband deals with
256 * RDMA to a bad MR key is by moving the entire
257 * queue pair to error state. We cold possibly
258 * recover from that, but right now we drop the
259 * connection.
260 * Therefore, we never retransmit messages with RDMA ops.
261 */
262 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
263 (rm->rdma.op_active &&
264 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
265 spin_lock_irqsave(&cp->cp_lock, flags);
266 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
267 list_move(&rm->m_conn_item, &to_be_dropped);
268 spin_unlock_irqrestore(&cp->cp_lock, flags);
269 continue;
270 }
271
272 /* Require an ACK every once in a while */
273 len = ntohl(rm->m_inc.i_hdr.h_len);
274 if (cp->cp_unacked_packets == 0 ||
275 cp->cp_unacked_bytes < len) {
276 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
277
278 cp->cp_unacked_packets =
279 rds_sysctl_max_unacked_packets;
280 cp->cp_unacked_bytes =
281 rds_sysctl_max_unacked_bytes;
282 rds_stats_inc(s_send_ack_required);
283 } else {
284 cp->cp_unacked_bytes -= len;
285 cp->cp_unacked_packets--;
286 }
287
288 cp->cp_xmit_rm = rm;
289 }
290
291 /* The transport either sends the whole rdma or none of it */
292 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
293 rm->m_final_op = &rm->rdma;
294 /* The transport owns the mapped memory for now.
295 * You can't unmap it while it's on the send queue
296 */
297 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
298 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
299 if (ret) {
300 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
301 wake_up_interruptible(&rm->m_flush_wait);
302 break;
303 }
304 cp->cp_xmit_rdma_sent = 1;
305
306 }
307
308 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
309 rm->m_final_op = &rm->atomic;
310 /* The transport owns the mapped memory for now.
311 * You can't unmap it while it's on the send queue
312 */
313 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
314 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
315 if (ret) {
316 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
317 wake_up_interruptible(&rm->m_flush_wait);
318 break;
319 }
320 cp->cp_xmit_atomic_sent = 1;
321
322 }
323
324 /*
325 * A number of cases require an RDS header to be sent
326 * even if there is no data.
327 * We permit 0-byte sends; rds-ping depends on this.
328 * However, if there are exclusively attached silent ops,
329 * we skip the hdr/data send, to enable silent operation.
330 */
331 if (rm->data.op_nents == 0) {
332 int ops_present;
333 int all_ops_are_silent = 1;
334
335 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
336 if (rm->atomic.op_active && !rm->atomic.op_silent)
337 all_ops_are_silent = 0;
338 if (rm->rdma.op_active && !rm->rdma.op_silent)
339 all_ops_are_silent = 0;
340
341 if (ops_present && all_ops_are_silent
342 && !rm->m_rdma_cookie)
343 rm->data.op_active = 0;
344 }
345
346 if (rm->data.op_active && !cp->cp_xmit_data_sent) {
347 rm->m_final_op = &rm->data;
348
349 ret = conn->c_trans->xmit(conn, rm,
350 cp->cp_xmit_hdr_off,
351 cp->cp_xmit_sg,
352 cp->cp_xmit_data_off);
353 if (ret <= 0)
354 break;
355
356 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
357 tmp = min_t(int, ret,
358 sizeof(struct rds_header) -
359 cp->cp_xmit_hdr_off);
360 cp->cp_xmit_hdr_off += tmp;
361 ret -= tmp;
362 }
363
364 sg = &rm->data.op_sg[cp->cp_xmit_sg];
365 while (ret) {
366 tmp = min_t(int, ret, sg->length -
367 cp->cp_xmit_data_off);
368 cp->cp_xmit_data_off += tmp;
369 ret -= tmp;
370 if (cp->cp_xmit_data_off == sg->length) {
371 cp->cp_xmit_data_off = 0;
372 sg++;
373 cp->cp_xmit_sg++;
374 BUG_ON(ret != 0 && cp->cp_xmit_sg ==
375 rm->data.op_nents);
376 }
377 }
378
379 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
380 (cp->cp_xmit_sg == rm->data.op_nents))
381 cp->cp_xmit_data_sent = 1;
382 }
383
384 /*
385 * A rm will only take multiple times through this loop
386 * if there is a data op. Thus, if the data is sent (or there was
387 * none), then we're done with the rm.
388 */
389 if (!rm->data.op_active || cp->cp_xmit_data_sent) {
390 cp->cp_xmit_rm = NULL;
391 cp->cp_xmit_sg = 0;
392 cp->cp_xmit_hdr_off = 0;
393 cp->cp_xmit_data_off = 0;
394 cp->cp_xmit_rdma_sent = 0;
395 cp->cp_xmit_atomic_sent = 0;
396 cp->cp_xmit_data_sent = 0;
397
398 rds_message_put(rm);
399 }
400 }
401
402 over_batch:
403 if (conn->c_trans->xmit_path_complete)
404 conn->c_trans->xmit_path_complete(cp);
405 release_in_xmit(cp);
406
407 /* Nuke any messages we decided not to retransmit. */
408 if (!list_empty(&to_be_dropped)) {
409 /* irqs on here, so we can put(), unlike above */
410 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
411 rds_message_put(rm);
412 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
413 }
414
415 /*
416 * Other senders can queue a message after we last test the send queue
417 * but before we clear RDS_IN_XMIT. In that case they'd back off and
418 * not try and send their newly queued message. We need to check the
419 * send queue after having cleared RDS_IN_XMIT so that their message
420 * doesn't get stuck on the send queue.
421 *
422 * If the transport cannot continue (i.e ret != 0), then it must
423 * call us when more room is available, such as from the tx
424 * completion handler.
425 *
426 * We have an extra generation check here so that if someone manages
427 * to jump in after our release_in_xmit, we'll see that they have done
428 * some work and we will skip our goto
429 */
430 if (ret == 0) {
431 smp_mb();
432 if ((test_bit(0, &conn->c_map_queued) ||
433 !list_empty(&cp->cp_send_queue)) &&
434 send_gen == READ_ONCE(cp->cp_send_gen)) {
435 rds_stats_inc(s_send_lock_queue_raced);
436 if (batch_count < send_batch_count)
437 goto restart;
438 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
439 }
440 }
441 out:
442 return ret;
443 }
444 EXPORT_SYMBOL_GPL(rds_send_xmit);
445
446 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
447 {
448 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
449
450 assert_spin_locked(&rs->rs_lock);
451
452 BUG_ON(rs->rs_snd_bytes < len);
453 rs->rs_snd_bytes -= len;
454
455 if (rs->rs_snd_bytes == 0)
456 rds_stats_inc(s_send_queue_empty);
457 }
458
459 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
460 is_acked_func is_acked)
461 {
462 if (is_acked)
463 return is_acked(rm, ack);
464 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
465 }
466
467 /*
468 * This is pretty similar to what happens below in the ACK
469 * handling code - except that we call here as soon as we get
470 * the IB send completion on the RDMA op and the accompanying
471 * message.
472 */
473 void rds_rdma_send_complete(struct rds_message *rm, int status)
474 {
475 struct rds_sock *rs = NULL;
476 struct rm_rdma_op *ro;
477 struct rds_notifier *notifier;
478 unsigned long flags;
479 unsigned int notify = 0;
480
481 spin_lock_irqsave(&rm->m_rs_lock, flags);
482
483 notify = rm->rdma.op_notify | rm->data.op_notify;
484 ro = &rm->rdma;
485 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
486 ro->op_active && notify && ro->op_notifier) {
487 notifier = ro->op_notifier;
488 rs = rm->m_rs;
489 sock_hold(rds_rs_to_sk(rs));
490
491 notifier->n_status = status;
492 spin_lock(&rs->rs_lock);
493 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
494 spin_unlock(&rs->rs_lock);
495
496 ro->op_notifier = NULL;
497 }
498
499 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
500
501 if (rs) {
502 rds_wake_sk_sleep(rs);
503 sock_put(rds_rs_to_sk(rs));
504 }
505 }
506 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
507
508 /*
509 * Just like above, except looks at atomic op
510 */
511 void rds_atomic_send_complete(struct rds_message *rm, int status)
512 {
513 struct rds_sock *rs = NULL;
514 struct rm_atomic_op *ao;
515 struct rds_notifier *notifier;
516 unsigned long flags;
517
518 spin_lock_irqsave(&rm->m_rs_lock, flags);
519
520 ao = &rm->atomic;
521 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
522 && ao->op_active && ao->op_notify && ao->op_notifier) {
523 notifier = ao->op_notifier;
524 rs = rm->m_rs;
525 sock_hold(rds_rs_to_sk(rs));
526
527 notifier->n_status = status;
528 spin_lock(&rs->rs_lock);
529 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
530 spin_unlock(&rs->rs_lock);
531
532 ao->op_notifier = NULL;
533 }
534
535 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
536
537 if (rs) {
538 rds_wake_sk_sleep(rs);
539 sock_put(rds_rs_to_sk(rs));
540 }
541 }
542 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
543
544 /*
545 * This is the same as rds_rdma_send_complete except we
546 * don't do any locking - we have all the ingredients (message,
547 * socket, socket lock) and can just move the notifier.
548 */
549 static inline void
550 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
551 {
552 struct rm_rdma_op *ro;
553 struct rm_atomic_op *ao;
554
555 ro = &rm->rdma;
556 if (ro->op_active && ro->op_notify && ro->op_notifier) {
557 ro->op_notifier->n_status = status;
558 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
559 ro->op_notifier = NULL;
560 }
561
562 ao = &rm->atomic;
563 if (ao->op_active && ao->op_notify && ao->op_notifier) {
564 ao->op_notifier->n_status = status;
565 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
566 ao->op_notifier = NULL;
567 }
568
569 /* No need to wake the app - caller does this */
570 }
571
572 /*
573 * This removes messages from the socket's list if they're on it. The list
574 * argument must be private to the caller, we must be able to modify it
575 * without locks. The messages must have a reference held for their
576 * position on the list. This function will drop that reference after
577 * removing the messages from the 'messages' list regardless of if it found
578 * the messages on the socket list or not.
579 */
580 static void rds_send_remove_from_sock(struct list_head *messages, int status)
581 {
582 unsigned long flags;
583 struct rds_sock *rs = NULL;
584 struct rds_message *rm;
585
586 while (!list_empty(messages)) {
587 int was_on_sock = 0;
588
589 rm = list_entry(messages->next, struct rds_message,
590 m_conn_item);
591 list_del_init(&rm->m_conn_item);
592
593 /*
594 * If we see this flag cleared then we're *sure* that someone
595 * else beat us to removing it from the sock. If we race
596 * with their flag update we'll get the lock and then really
597 * see that the flag has been cleared.
598 *
599 * The message spinlock makes sure nobody clears rm->m_rs
600 * while we're messing with it. It does not prevent the
601 * message from being removed from the socket, though.
602 */
603 spin_lock_irqsave(&rm->m_rs_lock, flags);
604 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
605 goto unlock_and_drop;
606
607 if (rs != rm->m_rs) {
608 if (rs) {
609 rds_wake_sk_sleep(rs);
610 sock_put(rds_rs_to_sk(rs));
611 }
612 rs = rm->m_rs;
613 if (rs)
614 sock_hold(rds_rs_to_sk(rs));
615 }
616 if (!rs)
617 goto unlock_and_drop;
618 spin_lock(&rs->rs_lock);
619
620 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
621 struct rm_rdma_op *ro = &rm->rdma;
622 struct rds_notifier *notifier;
623
624 list_del_init(&rm->m_sock_item);
625 rds_send_sndbuf_remove(rs, rm);
626
627 if (ro->op_active && ro->op_notifier &&
628 (ro->op_notify || (ro->op_recverr && status))) {
629 notifier = ro->op_notifier;
630 list_add_tail(&notifier->n_list,
631 &rs->rs_notify_queue);
632 if (!notifier->n_status)
633 notifier->n_status = status;
634 rm->rdma.op_notifier = NULL;
635 }
636 was_on_sock = 1;
637 rm->m_rs = NULL;
638 }
639 spin_unlock(&rs->rs_lock);
640
641 unlock_and_drop:
642 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
643 rds_message_put(rm);
644 if (was_on_sock)
645 rds_message_put(rm);
646 }
647
648 if (rs) {
649 rds_wake_sk_sleep(rs);
650 sock_put(rds_rs_to_sk(rs));
651 }
652 }
653
654 /*
655 * Transports call here when they've determined that the receiver queued
656 * messages up to, and including, the given sequence number. Messages are
657 * moved to the retrans queue when rds_send_xmit picks them off the send
658 * queue. This means that in the TCP case, the message may not have been
659 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
660 * checks the RDS_MSG_HAS_ACK_SEQ bit.
661 */
662 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
663 is_acked_func is_acked)
664 {
665 struct rds_message *rm, *tmp;
666 unsigned long flags;
667 LIST_HEAD(list);
668
669 spin_lock_irqsave(&cp->cp_lock, flags);
670
671 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
672 if (!rds_send_is_acked(rm, ack, is_acked))
673 break;
674
675 list_move(&rm->m_conn_item, &list);
676 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
677 }
678
679 /* order flag updates with spin locks */
680 if (!list_empty(&list))
681 smp_mb__after_atomic();
682
683 spin_unlock_irqrestore(&cp->cp_lock, flags);
684
685 /* now remove the messages from the sock list as needed */
686 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
687 }
688 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
689
690 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
691 is_acked_func is_acked)
692 {
693 WARN_ON(conn->c_trans->t_mp_capable);
694 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
695 }
696 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
697
698 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
699 {
700 struct rds_message *rm, *tmp;
701 struct rds_connection *conn;
702 struct rds_conn_path *cp;
703 unsigned long flags;
704 LIST_HEAD(list);
705
706 /* get all the messages we're dropping under the rs lock */
707 spin_lock_irqsave(&rs->rs_lock, flags);
708
709 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
710 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
711 dest->sin_port != rm->m_inc.i_hdr.h_dport))
712 continue;
713
714 list_move(&rm->m_sock_item, &list);
715 rds_send_sndbuf_remove(rs, rm);
716 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
717 }
718
719 /* order flag updates with the rs lock */
720 smp_mb__after_atomic();
721
722 spin_unlock_irqrestore(&rs->rs_lock, flags);
723
724 if (list_empty(&list))
725 return;
726
727 /* Remove the messages from the conn */
728 list_for_each_entry(rm, &list, m_sock_item) {
729
730 conn = rm->m_inc.i_conn;
731 if (conn->c_trans->t_mp_capable)
732 cp = rm->m_inc.i_conn_path;
733 else
734 cp = &conn->c_path[0];
735
736 spin_lock_irqsave(&cp->cp_lock, flags);
737 /*
738 * Maybe someone else beat us to removing rm from the conn.
739 * If we race with their flag update we'll get the lock and
740 * then really see that the flag has been cleared.
741 */
742 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
743 spin_unlock_irqrestore(&cp->cp_lock, flags);
744 spin_lock_irqsave(&rm->m_rs_lock, flags);
745 rm->m_rs = NULL;
746 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
747 continue;
748 }
749 list_del_init(&rm->m_conn_item);
750 spin_unlock_irqrestore(&cp->cp_lock, flags);
751
752 /*
753 * Couldn't grab m_rs_lock in top loop (lock ordering),
754 * but we can now.
755 */
756 spin_lock_irqsave(&rm->m_rs_lock, flags);
757
758 spin_lock(&rs->rs_lock);
759 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
760 spin_unlock(&rs->rs_lock);
761
762 rm->m_rs = NULL;
763 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
764
765 rds_message_put(rm);
766 }
767
768 rds_wake_sk_sleep(rs);
769
770 while (!list_empty(&list)) {
771 rm = list_entry(list.next, struct rds_message, m_sock_item);
772 list_del_init(&rm->m_sock_item);
773 rds_message_wait(rm);
774
775 /* just in case the code above skipped this message
776 * because RDS_MSG_ON_CONN wasn't set, run it again here
777 * taking m_rs_lock is the only thing that keeps us
778 * from racing with ack processing.
779 */
780 spin_lock_irqsave(&rm->m_rs_lock, flags);
781
782 spin_lock(&rs->rs_lock);
783 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
784 spin_unlock(&rs->rs_lock);
785
786 rm->m_rs = NULL;
787 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
788
789 rds_message_put(rm);
790 }
791 }
792
793 /*
794 * we only want this to fire once so we use the callers 'queued'. It's
795 * possible that another thread can race with us and remove the
796 * message from the flow with RDS_CANCEL_SENT_TO.
797 */
798 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
799 struct rds_conn_path *cp,
800 struct rds_message *rm, __be16 sport,
801 __be16 dport, int *queued)
802 {
803 unsigned long flags;
804 u32 len;
805
806 if (*queued)
807 goto out;
808
809 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
810
811 /* this is the only place which holds both the socket's rs_lock
812 * and the connection's c_lock */
813 spin_lock_irqsave(&rs->rs_lock, flags);
814
815 /*
816 * If there is a little space in sndbuf, we don't queue anything,
817 * and userspace gets -EAGAIN. But poll() indicates there's send
818 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
819 * freed up by incoming acks. So we check the *old* value of
820 * rs_snd_bytes here to allow the last msg to exceed the buffer,
821 * and poll() now knows no more data can be sent.
822 */
823 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
824 rs->rs_snd_bytes += len;
825
826 /* let recv side know we are close to send space exhaustion.
827 * This is probably not the optimal way to do it, as this
828 * means we set the flag on *all* messages as soon as our
829 * throughput hits a certain threshold.
830 */
831 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
832 __set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
833
834 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
835 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
836 rds_message_addref(rm);
837 rm->m_rs = rs;
838
839 /* The code ordering is a little weird, but we're
840 trying to minimize the time we hold c_lock */
841 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
842 rm->m_inc.i_conn = conn;
843 rm->m_inc.i_conn_path = cp;
844 rds_message_addref(rm);
845
846 spin_lock(&cp->cp_lock);
847 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
848 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
849 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
850 spin_unlock(&cp->cp_lock);
851
852 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
853 rm, len, rs, rs->rs_snd_bytes,
854 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
855
856 *queued = 1;
857 }
858
859 spin_unlock_irqrestore(&rs->rs_lock, flags);
860 out:
861 return *queued;
862 }
863
864 /*
865 * rds_message is getting to be quite complicated, and we'd like to allocate
866 * it all in one go. This figures out how big it needs to be up front.
867 */
868 static int rds_rm_size(struct msghdr *msg, int data_len)
869 {
870 struct cmsghdr *cmsg;
871 int size = 0;
872 int cmsg_groups = 0;
873 int retval;
874
875 for_each_cmsghdr(cmsg, msg) {
876 if (!CMSG_OK(msg, cmsg))
877 return -EINVAL;
878
879 if (cmsg->cmsg_level != SOL_RDS)
880 continue;
881
882 switch (cmsg->cmsg_type) {
883 case RDS_CMSG_RDMA_ARGS:
884 cmsg_groups |= 1;
885 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
886 if (retval < 0)
887 return retval;
888 size += retval;
889
890 break;
891
892 case RDS_CMSG_RDMA_DEST:
893 case RDS_CMSG_RDMA_MAP:
894 cmsg_groups |= 2;
895 /* these are valid but do no add any size */
896 break;
897
898 case RDS_CMSG_ATOMIC_CSWP:
899 case RDS_CMSG_ATOMIC_FADD:
900 case RDS_CMSG_MASKED_ATOMIC_CSWP:
901 case RDS_CMSG_MASKED_ATOMIC_FADD:
902 cmsg_groups |= 1;
903 size += sizeof(struct scatterlist);
904 break;
905
906 default:
907 return -EINVAL;
908 }
909
910 }
911
912 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
913
914 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
915 if (cmsg_groups == 3)
916 return -EINVAL;
917
918 return size;
919 }
920
921 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
922 struct msghdr *msg, int *allocated_mr)
923 {
924 struct cmsghdr *cmsg;
925 int ret = 0;
926
927 for_each_cmsghdr(cmsg, msg) {
928 if (!CMSG_OK(msg, cmsg))
929 return -EINVAL;
930
931 if (cmsg->cmsg_level != SOL_RDS)
932 continue;
933
934 /* As a side effect, RDMA_DEST and RDMA_MAP will set
935 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
936 */
937 switch (cmsg->cmsg_type) {
938 case RDS_CMSG_RDMA_ARGS:
939 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
940 break;
941
942 case RDS_CMSG_RDMA_DEST:
943 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
944 break;
945
946 case RDS_CMSG_RDMA_MAP:
947 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
948 if (!ret)
949 *allocated_mr = 1;
950 else if (ret == -ENODEV)
951 /* Accommodate the get_mr() case which can fail
952 * if connection isn't established yet.
953 */
954 ret = -EAGAIN;
955 break;
956 case RDS_CMSG_ATOMIC_CSWP:
957 case RDS_CMSG_ATOMIC_FADD:
958 case RDS_CMSG_MASKED_ATOMIC_CSWP:
959 case RDS_CMSG_MASKED_ATOMIC_FADD:
960 ret = rds_cmsg_atomic(rs, rm, cmsg);
961 break;
962
963 default:
964 return -EINVAL;
965 }
966
967 if (ret)
968 break;
969 }
970
971 return ret;
972 }
973
974 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
975 {
976 int hash;
977
978 if (conn->c_npaths == 0)
979 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
980 else
981 hash = RDS_MPATH_HASH(rs, conn->c_npaths);
982 if (conn->c_npaths == 0 && hash != 0) {
983 rds_send_ping(conn, 0);
984
985 if (conn->c_npaths == 0) {
986 wait_event_interruptible(conn->c_hs_waitq,
987 (conn->c_npaths != 0));
988 }
989 if (conn->c_npaths == 1)
990 hash = 0;
991 }
992 return hash;
993 }
994
995 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
996 {
997 struct rds_rdma_args *args;
998 struct cmsghdr *cmsg;
999
1000 for_each_cmsghdr(cmsg, msg) {
1001 if (!CMSG_OK(msg, cmsg))
1002 return -EINVAL;
1003
1004 if (cmsg->cmsg_level != SOL_RDS)
1005 continue;
1006
1007 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1008 args = CMSG_DATA(cmsg);
1009 *rdma_bytes += args->remote_vec.bytes;
1010 }
1011 }
1012 return 0;
1013 }
1014
1015 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1016 {
1017 struct sock *sk = sock->sk;
1018 struct rds_sock *rs = rds_sk_to_rs(sk);
1019 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1020 __be32 daddr;
1021 __be16 dport;
1022 struct rds_message *rm = NULL;
1023 struct rds_connection *conn;
1024 int ret = 0;
1025 int queued = 0, allocated_mr = 0;
1026 int nonblock = msg->msg_flags & MSG_DONTWAIT;
1027 long timeo = sock_sndtimeo(sk, nonblock);
1028 struct rds_conn_path *cpath;
1029 size_t total_payload_len = payload_len, rdma_payload_len = 0;
1030
1031 /* Mirror Linux UDP mirror of BSD error message compatibility */
1032 /* XXX: Perhaps MSG_MORE someday */
1033 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
1034 ret = -EOPNOTSUPP;
1035 goto out;
1036 }
1037
1038 if (msg->msg_namelen) {
1039 /* XXX fail non-unicast destination IPs? */
1040 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1041 ret = -EINVAL;
1042 goto out;
1043 }
1044 daddr = usin->sin_addr.s_addr;
1045 dport = usin->sin_port;
1046 } else {
1047 /* We only care about consistency with ->connect() */
1048 lock_sock(sk);
1049 daddr = rs->rs_conn_addr;
1050 dport = rs->rs_conn_port;
1051 release_sock(sk);
1052 }
1053
1054 lock_sock(sk);
1055 if (daddr == 0 || rs->rs_bound_addr == 0) {
1056 release_sock(sk);
1057 ret = -ENOTCONN; /* XXX not a great errno */
1058 goto out;
1059 }
1060 release_sock(sk);
1061
1062 ret = rds_rdma_bytes(msg, &rdma_payload_len);
1063 if (ret)
1064 goto out;
1065
1066 total_payload_len += rdma_payload_len;
1067 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1068 ret = -EMSGSIZE;
1069 goto out;
1070 }
1071
1072 if (payload_len > rds_sk_sndbuf(rs)) {
1073 ret = -EMSGSIZE;
1074 goto out;
1075 }
1076
1077 /* size of rm including all sgs */
1078 ret = rds_rm_size(msg, payload_len);
1079 if (ret < 0)
1080 goto out;
1081
1082 rm = rds_message_alloc(ret, GFP_KERNEL);
1083 if (!rm) {
1084 ret = -ENOMEM;
1085 goto out;
1086 }
1087
1088 /* Attach data to the rm */
1089 if (payload_len) {
1090 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1091 if (!rm->data.op_sg) {
1092 ret = -ENOMEM;
1093 goto out;
1094 }
1095 ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1096 if (ret)
1097 goto out;
1098 }
1099 rm->data.op_active = 1;
1100
1101 rm->m_daddr = daddr;
1102
1103 /* rds_conn_create has a spinlock that runs with IRQ off.
1104 * Caching the conn in the socket helps a lot. */
1105 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1106 conn = rs->rs_conn;
1107 else {
1108 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1109 rs->rs_bound_addr, daddr,
1110 rs->rs_transport,
1111 sock->sk->sk_allocation);
1112 if (IS_ERR(conn)) {
1113 ret = PTR_ERR(conn);
1114 goto out;
1115 }
1116 rs->rs_conn = conn;
1117 }
1118
1119 /* Parse any control messages the user may have included. */
1120 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1121 if (ret) {
1122 /* Trigger connection so that its ready for the next retry */
1123 if (ret == -EAGAIN)
1124 rds_conn_connect_if_down(conn);
1125 goto out;
1126 }
1127
1128 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1129 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1130 &rm->rdma, conn->c_trans->xmit_rdma);
1131 ret = -EOPNOTSUPP;
1132 goto out;
1133 }
1134
1135 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1136 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1137 &rm->atomic, conn->c_trans->xmit_atomic);
1138 ret = -EOPNOTSUPP;
1139 goto out;
1140 }
1141
1142 if (conn->c_trans->t_mp_capable)
1143 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1144 else
1145 cpath = &conn->c_path[0];
1146
1147 rds_conn_path_connect_if_down(cpath);
1148
1149 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1150 if (ret) {
1151 rs->rs_seen_congestion = 1;
1152 goto out;
1153 }
1154 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1155 dport, &queued)) {
1156 rds_stats_inc(s_send_queue_full);
1157
1158 if (nonblock) {
1159 ret = -EAGAIN;
1160 goto out;
1161 }
1162
1163 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1164 rds_send_queue_rm(rs, conn, cpath, rm,
1165 rs->rs_bound_port,
1166 dport,
1167 &queued),
1168 timeo);
1169 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1170 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1171 continue;
1172
1173 ret = timeo;
1174 if (ret == 0)
1175 ret = -ETIMEDOUT;
1176 goto out;
1177 }
1178
1179 /*
1180 * By now we've committed to the send. We reuse rds_send_worker()
1181 * to retry sends in the rds thread if the transport asks us to.
1182 */
1183 rds_stats_inc(s_send_queued);
1184
1185 ret = rds_send_xmit(cpath);
1186 if (ret == -ENOMEM || ret == -EAGAIN)
1187 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1188
1189 rds_message_put(rm);
1190 return payload_len;
1191
1192 out:
1193 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1194 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1195 * or in any other way, we need to destroy the MR again */
1196 if (allocated_mr)
1197 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1198
1199 if (rm)
1200 rds_message_put(rm);
1201 return ret;
1202 }
1203
1204 /*
1205 * send out a probe. Can be shared by rds_send_ping,
1206 * rds_send_pong, rds_send_hb.
1207 * rds_send_hb should use h_flags
1208 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1209 * or
1210 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1211 */
1212 static int
1213 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1214 __be16 dport, u8 h_flags)
1215 {
1216 struct rds_message *rm;
1217 unsigned long flags;
1218 int ret = 0;
1219
1220 rm = rds_message_alloc(0, GFP_ATOMIC);
1221 if (!rm) {
1222 ret = -ENOMEM;
1223 goto out;
1224 }
1225
1226 rm->m_daddr = cp->cp_conn->c_faddr;
1227 rm->data.op_active = 1;
1228
1229 rds_conn_path_connect_if_down(cp);
1230
1231 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1232 if (ret)
1233 goto out;
1234
1235 spin_lock_irqsave(&cp->cp_lock, flags);
1236 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1237 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1238 rds_message_addref(rm);
1239 rm->m_inc.i_conn = cp->cp_conn;
1240 rm->m_inc.i_conn_path = cp;
1241
1242 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1243 cp->cp_next_tx_seq);
1244 rm->m_inc.i_hdr.h_flags |= h_flags;
1245 cp->cp_next_tx_seq++;
1246
1247 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1248 cp->cp_conn->c_trans->t_mp_capable) {
1249 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1250 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1251
1252 rds_message_add_extension(&rm->m_inc.i_hdr,
1253 RDS_EXTHDR_NPATHS, &npaths,
1254 sizeof(npaths));
1255 rds_message_add_extension(&rm->m_inc.i_hdr,
1256 RDS_EXTHDR_GEN_NUM,
1257 &my_gen_num,
1258 sizeof(u32));
1259 }
1260 spin_unlock_irqrestore(&cp->cp_lock, flags);
1261
1262 rds_stats_inc(s_send_queued);
1263 rds_stats_inc(s_send_pong);
1264
1265 /* schedule the send work on rds_wq */
1266 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1267
1268 rds_message_put(rm);
1269 return 0;
1270
1271 out:
1272 if (rm)
1273 rds_message_put(rm);
1274 return ret;
1275 }
1276
1277 int
1278 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1279 {
1280 return rds_send_probe(cp, 0, dport, 0);
1281 }
1282
1283 void
1284 rds_send_ping(struct rds_connection *conn, int cp_index)
1285 {
1286 unsigned long flags;
1287 struct rds_conn_path *cp = &conn->c_path[cp_index];
1288
1289 spin_lock_irqsave(&cp->cp_lock, flags);
1290 if (conn->c_ping_triggered) {
1291 spin_unlock_irqrestore(&cp->cp_lock, flags);
1292 return;
1293 }
1294 conn->c_ping_triggered = 1;
1295 spin_unlock_irqrestore(&cp->cp_lock, flags);
1296 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1297 }
1298 EXPORT_SYMBOL_GPL(rds_send_ping);