]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/rfkill/core.c
rfkill: rfkill_set_block() when suspended nitpick
[mirror_ubuntu-bionic-kernel.git] / net / rfkill / core.c
1 /*
2 * Copyright (C) 2006 - 2007 Ivo van Doorn
3 * Copyright (C) 2007 Dmitry Torokhov
4 * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the
18 * Free Software Foundation, Inc.,
19 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20 */
21
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/workqueue.h>
26 #include <linux/capability.h>
27 #include <linux/list.h>
28 #include <linux/mutex.h>
29 #include <linux/rfkill.h>
30 #include <linux/spinlock.h>
31 #include <linux/miscdevice.h>
32 #include <linux/wait.h>
33 #include <linux/poll.h>
34 #include <linux/fs.h>
35
36 #include "rfkill.h"
37
38 #define POLL_INTERVAL (5 * HZ)
39
40 #define RFKILL_BLOCK_HW BIT(0)
41 #define RFKILL_BLOCK_SW BIT(1)
42 #define RFKILL_BLOCK_SW_PREV BIT(2)
43 #define RFKILL_BLOCK_ANY (RFKILL_BLOCK_HW |\
44 RFKILL_BLOCK_SW |\
45 RFKILL_BLOCK_SW_PREV)
46 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
47
48 struct rfkill {
49 spinlock_t lock;
50
51 const char *name;
52 enum rfkill_type type;
53
54 unsigned long state;
55
56 u32 idx;
57
58 bool registered;
59 bool suspended;
60 bool persistent;
61
62 const struct rfkill_ops *ops;
63 void *data;
64
65 #ifdef CONFIG_RFKILL_LEDS
66 struct led_trigger led_trigger;
67 const char *ledtrigname;
68 #endif
69
70 struct device dev;
71 struct list_head node;
72
73 struct delayed_work poll_work;
74 struct work_struct uevent_work;
75 struct work_struct sync_work;
76 };
77 #define to_rfkill(d) container_of(d, struct rfkill, dev)
78
79 struct rfkill_int_event {
80 struct list_head list;
81 struct rfkill_event ev;
82 };
83
84 struct rfkill_data {
85 struct list_head list;
86 struct list_head events;
87 struct mutex mtx;
88 wait_queue_head_t read_wait;
89 bool input_handler;
90 };
91
92
93 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
94 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
95 MODULE_DESCRIPTION("RF switch support");
96 MODULE_LICENSE("GPL");
97
98
99 /*
100 * The locking here should be made much smarter, we currently have
101 * a bit of a stupid situation because drivers might want to register
102 * the rfkill struct under their own lock, and take this lock during
103 * rfkill method calls -- which will cause an AB-BA deadlock situation.
104 *
105 * To fix that, we need to rework this code here to be mostly lock-free
106 * and only use the mutex for list manipulations, not to protect the
107 * various other global variables. Then we can avoid holding the mutex
108 * around driver operations, and all is happy.
109 */
110 static LIST_HEAD(rfkill_list); /* list of registered rf switches */
111 static DEFINE_MUTEX(rfkill_global_mutex);
112 static LIST_HEAD(rfkill_fds); /* list of open fds of /dev/rfkill */
113
114 static unsigned int rfkill_default_state = 1;
115 module_param_named(default_state, rfkill_default_state, uint, 0444);
116 MODULE_PARM_DESC(default_state,
117 "Default initial state for all radio types, 0 = radio off");
118
119 static struct {
120 bool cur, sav;
121 } rfkill_global_states[NUM_RFKILL_TYPES];
122
123 static bool rfkill_epo_lock_active;
124
125
126 #ifdef CONFIG_RFKILL_LEDS
127 static void rfkill_led_trigger_event(struct rfkill *rfkill)
128 {
129 struct led_trigger *trigger;
130
131 if (!rfkill->registered)
132 return;
133
134 trigger = &rfkill->led_trigger;
135
136 if (rfkill->state & RFKILL_BLOCK_ANY)
137 led_trigger_event(trigger, LED_OFF);
138 else
139 led_trigger_event(trigger, LED_FULL);
140 }
141
142 static void rfkill_led_trigger_activate(struct led_classdev *led)
143 {
144 struct rfkill *rfkill;
145
146 rfkill = container_of(led->trigger, struct rfkill, led_trigger);
147
148 rfkill_led_trigger_event(rfkill);
149 }
150
151 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
152 {
153 return rfkill->led_trigger.name;
154 }
155 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
156
157 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
158 {
159 BUG_ON(!rfkill);
160
161 rfkill->ledtrigname = name;
162 }
163 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
164
165 static int rfkill_led_trigger_register(struct rfkill *rfkill)
166 {
167 rfkill->led_trigger.name = rfkill->ledtrigname
168 ? : dev_name(&rfkill->dev);
169 rfkill->led_trigger.activate = rfkill_led_trigger_activate;
170 return led_trigger_register(&rfkill->led_trigger);
171 }
172
173 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
174 {
175 led_trigger_unregister(&rfkill->led_trigger);
176 }
177 #else
178 static void rfkill_led_trigger_event(struct rfkill *rfkill)
179 {
180 }
181
182 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
183 {
184 return 0;
185 }
186
187 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
188 {
189 }
190 #endif /* CONFIG_RFKILL_LEDS */
191
192 static void rfkill_fill_event(struct rfkill_event *ev, struct rfkill *rfkill,
193 enum rfkill_operation op)
194 {
195 unsigned long flags;
196
197 ev->idx = rfkill->idx;
198 ev->type = rfkill->type;
199 ev->op = op;
200
201 spin_lock_irqsave(&rfkill->lock, flags);
202 ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
203 ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
204 RFKILL_BLOCK_SW_PREV));
205 spin_unlock_irqrestore(&rfkill->lock, flags);
206 }
207
208 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
209 {
210 struct rfkill_data *data;
211 struct rfkill_int_event *ev;
212
213 list_for_each_entry(data, &rfkill_fds, list) {
214 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
215 if (!ev)
216 continue;
217 rfkill_fill_event(&ev->ev, rfkill, op);
218 mutex_lock(&data->mtx);
219 list_add_tail(&ev->list, &data->events);
220 mutex_unlock(&data->mtx);
221 wake_up_interruptible(&data->read_wait);
222 }
223 }
224
225 static void rfkill_event(struct rfkill *rfkill)
226 {
227 if (!rfkill->registered || rfkill->suspended)
228 return;
229
230 kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
231
232 /* also send event to /dev/rfkill */
233 rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
234 }
235
236 static bool __rfkill_set_hw_state(struct rfkill *rfkill,
237 bool blocked, bool *change)
238 {
239 unsigned long flags;
240 bool prev, any;
241
242 BUG_ON(!rfkill);
243
244 spin_lock_irqsave(&rfkill->lock, flags);
245 prev = !!(rfkill->state & RFKILL_BLOCK_HW);
246 if (blocked)
247 rfkill->state |= RFKILL_BLOCK_HW;
248 else
249 rfkill->state &= ~RFKILL_BLOCK_HW;
250 *change = prev != blocked;
251 any = rfkill->state & RFKILL_BLOCK_ANY;
252 spin_unlock_irqrestore(&rfkill->lock, flags);
253
254 rfkill_led_trigger_event(rfkill);
255
256 return any;
257 }
258
259 /**
260 * rfkill_set_block - wrapper for set_block method
261 *
262 * @rfkill: the rfkill struct to use
263 * @blocked: the new software state
264 *
265 * Calls the set_block method (when applicable) and handles notifications
266 * etc. as well.
267 */
268 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
269 {
270 unsigned long flags;
271 int err;
272
273 if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
274 return;
275
276 /*
277 * Some platforms (...!) generate input events which affect the
278 * _hard_ kill state -- whenever something tries to change the
279 * current software state query the hardware state too.
280 */
281 if (rfkill->ops->query)
282 rfkill->ops->query(rfkill, rfkill->data);
283
284 spin_lock_irqsave(&rfkill->lock, flags);
285 if (rfkill->state & RFKILL_BLOCK_SW)
286 rfkill->state |= RFKILL_BLOCK_SW_PREV;
287 else
288 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
289
290 if (blocked)
291 rfkill->state |= RFKILL_BLOCK_SW;
292 else
293 rfkill->state &= ~RFKILL_BLOCK_SW;
294
295 rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
296 spin_unlock_irqrestore(&rfkill->lock, flags);
297
298 err = rfkill->ops->set_block(rfkill->data, blocked);
299
300 spin_lock_irqsave(&rfkill->lock, flags);
301 if (err) {
302 /*
303 * Failed -- reset status to _prev, this may be different
304 * from what set set _PREV to earlier in this function
305 * if rfkill_set_sw_state was invoked.
306 */
307 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
308 rfkill->state |= RFKILL_BLOCK_SW;
309 else
310 rfkill->state &= ~RFKILL_BLOCK_SW;
311 }
312 rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
313 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
314 spin_unlock_irqrestore(&rfkill->lock, flags);
315
316 rfkill_led_trigger_event(rfkill);
317 rfkill_event(rfkill);
318 }
319
320 #ifdef CONFIG_RFKILL_INPUT
321 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
322
323 /**
324 * __rfkill_switch_all - Toggle state of all switches of given type
325 * @type: type of interfaces to be affected
326 * @state: the new state
327 *
328 * This function sets the state of all switches of given type,
329 * unless a specific switch is claimed by userspace (in which case,
330 * that switch is left alone) or suspended.
331 *
332 * Caller must have acquired rfkill_global_mutex.
333 */
334 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
335 {
336 struct rfkill *rfkill;
337
338 rfkill_global_states[type].cur = blocked;
339 list_for_each_entry(rfkill, &rfkill_list, node) {
340 if (rfkill->type != type)
341 continue;
342
343 rfkill_set_block(rfkill, blocked);
344 }
345 }
346
347 /**
348 * rfkill_switch_all - Toggle state of all switches of given type
349 * @type: type of interfaces to be affected
350 * @state: the new state
351 *
352 * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
353 * Please refer to __rfkill_switch_all() for details.
354 *
355 * Does nothing if the EPO lock is active.
356 */
357 void rfkill_switch_all(enum rfkill_type type, bool blocked)
358 {
359 if (atomic_read(&rfkill_input_disabled))
360 return;
361
362 mutex_lock(&rfkill_global_mutex);
363
364 if (!rfkill_epo_lock_active)
365 __rfkill_switch_all(type, blocked);
366
367 mutex_unlock(&rfkill_global_mutex);
368 }
369
370 /**
371 * rfkill_epo - emergency power off all transmitters
372 *
373 * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
374 * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
375 *
376 * The global state before the EPO is saved and can be restored later
377 * using rfkill_restore_states().
378 */
379 void rfkill_epo(void)
380 {
381 struct rfkill *rfkill;
382 int i;
383
384 if (atomic_read(&rfkill_input_disabled))
385 return;
386
387 mutex_lock(&rfkill_global_mutex);
388
389 rfkill_epo_lock_active = true;
390 list_for_each_entry(rfkill, &rfkill_list, node)
391 rfkill_set_block(rfkill, true);
392
393 for (i = 0; i < NUM_RFKILL_TYPES; i++) {
394 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
395 rfkill_global_states[i].cur = true;
396 }
397
398 mutex_unlock(&rfkill_global_mutex);
399 }
400
401 /**
402 * rfkill_restore_states - restore global states
403 *
404 * Restore (and sync switches to) the global state from the
405 * states in rfkill_default_states. This can undo the effects of
406 * a call to rfkill_epo().
407 */
408 void rfkill_restore_states(void)
409 {
410 int i;
411
412 if (atomic_read(&rfkill_input_disabled))
413 return;
414
415 mutex_lock(&rfkill_global_mutex);
416
417 rfkill_epo_lock_active = false;
418 for (i = 0; i < NUM_RFKILL_TYPES; i++)
419 __rfkill_switch_all(i, rfkill_global_states[i].sav);
420 mutex_unlock(&rfkill_global_mutex);
421 }
422
423 /**
424 * rfkill_remove_epo_lock - unlock state changes
425 *
426 * Used by rfkill-input manually unlock state changes, when
427 * the EPO switch is deactivated.
428 */
429 void rfkill_remove_epo_lock(void)
430 {
431 if (atomic_read(&rfkill_input_disabled))
432 return;
433
434 mutex_lock(&rfkill_global_mutex);
435 rfkill_epo_lock_active = false;
436 mutex_unlock(&rfkill_global_mutex);
437 }
438
439 /**
440 * rfkill_is_epo_lock_active - returns true EPO is active
441 *
442 * Returns 0 (false) if there is NOT an active EPO contidion,
443 * and 1 (true) if there is an active EPO contition, which
444 * locks all radios in one of the BLOCKED states.
445 *
446 * Can be called in atomic context.
447 */
448 bool rfkill_is_epo_lock_active(void)
449 {
450 return rfkill_epo_lock_active;
451 }
452
453 /**
454 * rfkill_get_global_sw_state - returns global state for a type
455 * @type: the type to get the global state of
456 *
457 * Returns the current global state for a given wireless
458 * device type.
459 */
460 bool rfkill_get_global_sw_state(const enum rfkill_type type)
461 {
462 return rfkill_global_states[type].cur;
463 }
464 #endif
465
466
467 bool rfkill_set_hw_state(struct rfkill *rfkill, bool blocked)
468 {
469 bool ret, change;
470
471 ret = __rfkill_set_hw_state(rfkill, blocked, &change);
472
473 if (!rfkill->registered)
474 return ret;
475
476 if (change)
477 schedule_work(&rfkill->uevent_work);
478
479 return ret;
480 }
481 EXPORT_SYMBOL(rfkill_set_hw_state);
482
483 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
484 {
485 u32 bit = RFKILL_BLOCK_SW;
486
487 /* if in a ops->set_block right now, use other bit */
488 if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
489 bit = RFKILL_BLOCK_SW_PREV;
490
491 if (blocked)
492 rfkill->state |= bit;
493 else
494 rfkill->state &= ~bit;
495 }
496
497 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
498 {
499 unsigned long flags;
500 bool prev, hwblock;
501
502 BUG_ON(!rfkill);
503
504 spin_lock_irqsave(&rfkill->lock, flags);
505 prev = !!(rfkill->state & RFKILL_BLOCK_SW);
506 __rfkill_set_sw_state(rfkill, blocked);
507 hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
508 blocked = blocked || hwblock;
509 spin_unlock_irqrestore(&rfkill->lock, flags);
510
511 if (!rfkill->registered) {
512 rfkill->persistent = true;
513 } else {
514 if (prev != blocked && !hwblock)
515 schedule_work(&rfkill->uevent_work);
516
517 rfkill_led_trigger_event(rfkill);
518 }
519
520 return blocked;
521 }
522 EXPORT_SYMBOL(rfkill_set_sw_state);
523
524 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
525 {
526 unsigned long flags;
527 bool swprev, hwprev;
528
529 BUG_ON(!rfkill);
530
531 spin_lock_irqsave(&rfkill->lock, flags);
532
533 /*
534 * No need to care about prev/setblock ... this is for uevent only
535 * and that will get triggered by rfkill_set_block anyway.
536 */
537 swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
538 hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
539 __rfkill_set_sw_state(rfkill, sw);
540
541 spin_unlock_irqrestore(&rfkill->lock, flags);
542
543 if (!rfkill->registered) {
544 rfkill->persistent = true;
545 } else {
546 if (swprev != sw || hwprev != hw)
547 schedule_work(&rfkill->uevent_work);
548
549 rfkill_led_trigger_event(rfkill);
550 }
551 }
552 EXPORT_SYMBOL(rfkill_set_states);
553
554 static ssize_t rfkill_name_show(struct device *dev,
555 struct device_attribute *attr,
556 char *buf)
557 {
558 struct rfkill *rfkill = to_rfkill(dev);
559
560 return sprintf(buf, "%s\n", rfkill->name);
561 }
562
563 static const char *rfkill_get_type_str(enum rfkill_type type)
564 {
565 switch (type) {
566 case RFKILL_TYPE_WLAN:
567 return "wlan";
568 case RFKILL_TYPE_BLUETOOTH:
569 return "bluetooth";
570 case RFKILL_TYPE_UWB:
571 return "ultrawideband";
572 case RFKILL_TYPE_WIMAX:
573 return "wimax";
574 case RFKILL_TYPE_WWAN:
575 return "wwan";
576 default:
577 BUG();
578 }
579
580 BUILD_BUG_ON(NUM_RFKILL_TYPES != RFKILL_TYPE_WWAN + 1);
581 }
582
583 static ssize_t rfkill_type_show(struct device *dev,
584 struct device_attribute *attr,
585 char *buf)
586 {
587 struct rfkill *rfkill = to_rfkill(dev);
588
589 return sprintf(buf, "%s\n", rfkill_get_type_str(rfkill->type));
590 }
591
592 static ssize_t rfkill_idx_show(struct device *dev,
593 struct device_attribute *attr,
594 char *buf)
595 {
596 struct rfkill *rfkill = to_rfkill(dev);
597
598 return sprintf(buf, "%d\n", rfkill->idx);
599 }
600
601 static u8 user_state_from_blocked(unsigned long state)
602 {
603 if (state & RFKILL_BLOCK_HW)
604 return RFKILL_USER_STATE_HARD_BLOCKED;
605 if (state & RFKILL_BLOCK_SW)
606 return RFKILL_USER_STATE_SOFT_BLOCKED;
607
608 return RFKILL_USER_STATE_UNBLOCKED;
609 }
610
611 static ssize_t rfkill_state_show(struct device *dev,
612 struct device_attribute *attr,
613 char *buf)
614 {
615 struct rfkill *rfkill = to_rfkill(dev);
616 unsigned long flags;
617 u32 state;
618
619 spin_lock_irqsave(&rfkill->lock, flags);
620 state = rfkill->state;
621 spin_unlock_irqrestore(&rfkill->lock, flags);
622
623 return sprintf(buf, "%d\n", user_state_from_blocked(state));
624 }
625
626 static ssize_t rfkill_state_store(struct device *dev,
627 struct device_attribute *attr,
628 const char *buf, size_t count)
629 {
630 /*
631 * The intention was that userspace can only take control over
632 * a given device when/if rfkill-input doesn't control it due
633 * to user_claim. Since user_claim is currently unsupported,
634 * we never support changing the state from userspace -- this
635 * can be implemented again later.
636 */
637
638 return -EPERM;
639 }
640
641 static ssize_t rfkill_claim_show(struct device *dev,
642 struct device_attribute *attr,
643 char *buf)
644 {
645 return sprintf(buf, "%d\n", 0);
646 }
647
648 static ssize_t rfkill_claim_store(struct device *dev,
649 struct device_attribute *attr,
650 const char *buf, size_t count)
651 {
652 return -EOPNOTSUPP;
653 }
654
655 static struct device_attribute rfkill_dev_attrs[] = {
656 __ATTR(name, S_IRUGO, rfkill_name_show, NULL),
657 __ATTR(type, S_IRUGO, rfkill_type_show, NULL),
658 __ATTR(index, S_IRUGO, rfkill_idx_show, NULL),
659 __ATTR(state, S_IRUGO|S_IWUSR, rfkill_state_show, rfkill_state_store),
660 __ATTR(claim, S_IRUGO|S_IWUSR, rfkill_claim_show, rfkill_claim_store),
661 __ATTR_NULL
662 };
663
664 static void rfkill_release(struct device *dev)
665 {
666 struct rfkill *rfkill = to_rfkill(dev);
667
668 kfree(rfkill);
669 }
670
671 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
672 {
673 struct rfkill *rfkill = to_rfkill(dev);
674 unsigned long flags;
675 u32 state;
676 int error;
677
678 error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
679 if (error)
680 return error;
681 error = add_uevent_var(env, "RFKILL_TYPE=%s",
682 rfkill_get_type_str(rfkill->type));
683 if (error)
684 return error;
685 spin_lock_irqsave(&rfkill->lock, flags);
686 state = rfkill->state;
687 spin_unlock_irqrestore(&rfkill->lock, flags);
688 error = add_uevent_var(env, "RFKILL_STATE=%d",
689 user_state_from_blocked(state));
690 return error;
691 }
692
693 void rfkill_pause_polling(struct rfkill *rfkill)
694 {
695 BUG_ON(!rfkill);
696
697 if (!rfkill->ops->poll)
698 return;
699
700 cancel_delayed_work_sync(&rfkill->poll_work);
701 }
702 EXPORT_SYMBOL(rfkill_pause_polling);
703
704 void rfkill_resume_polling(struct rfkill *rfkill)
705 {
706 BUG_ON(!rfkill);
707
708 if (!rfkill->ops->poll)
709 return;
710
711 schedule_work(&rfkill->poll_work.work);
712 }
713 EXPORT_SYMBOL(rfkill_resume_polling);
714
715 static int rfkill_suspend(struct device *dev, pm_message_t state)
716 {
717 struct rfkill *rfkill = to_rfkill(dev);
718
719 rfkill_pause_polling(rfkill);
720
721 rfkill->suspended = true;
722
723 return 0;
724 }
725
726 static int rfkill_resume(struct device *dev)
727 {
728 struct rfkill *rfkill = to_rfkill(dev);
729 bool cur;
730
731 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
732 rfkill_set_block(rfkill, cur);
733
734 rfkill->suspended = false;
735
736 rfkill_resume_polling(rfkill);
737
738 return 0;
739 }
740
741 static struct class rfkill_class = {
742 .name = "rfkill",
743 .dev_release = rfkill_release,
744 .dev_attrs = rfkill_dev_attrs,
745 .dev_uevent = rfkill_dev_uevent,
746 .suspend = rfkill_suspend,
747 .resume = rfkill_resume,
748 };
749
750 bool rfkill_blocked(struct rfkill *rfkill)
751 {
752 unsigned long flags;
753 u32 state;
754
755 spin_lock_irqsave(&rfkill->lock, flags);
756 state = rfkill->state;
757 spin_unlock_irqrestore(&rfkill->lock, flags);
758
759 return !!(state & RFKILL_BLOCK_ANY);
760 }
761 EXPORT_SYMBOL(rfkill_blocked);
762
763
764 struct rfkill * __must_check rfkill_alloc(const char *name,
765 struct device *parent,
766 const enum rfkill_type type,
767 const struct rfkill_ops *ops,
768 void *ops_data)
769 {
770 struct rfkill *rfkill;
771 struct device *dev;
772
773 if (WARN_ON(!ops))
774 return NULL;
775
776 if (WARN_ON(!ops->set_block))
777 return NULL;
778
779 if (WARN_ON(!name))
780 return NULL;
781
782 if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
783 return NULL;
784
785 rfkill = kzalloc(sizeof(*rfkill), GFP_KERNEL);
786 if (!rfkill)
787 return NULL;
788
789 spin_lock_init(&rfkill->lock);
790 INIT_LIST_HEAD(&rfkill->node);
791 rfkill->type = type;
792 rfkill->name = name;
793 rfkill->ops = ops;
794 rfkill->data = ops_data;
795
796 dev = &rfkill->dev;
797 dev->class = &rfkill_class;
798 dev->parent = parent;
799 device_initialize(dev);
800
801 return rfkill;
802 }
803 EXPORT_SYMBOL(rfkill_alloc);
804
805 static void rfkill_poll(struct work_struct *work)
806 {
807 struct rfkill *rfkill;
808
809 rfkill = container_of(work, struct rfkill, poll_work.work);
810
811 /*
812 * Poll hardware state -- driver will use one of the
813 * rfkill_set{,_hw,_sw}_state functions and use its
814 * return value to update the current status.
815 */
816 rfkill->ops->poll(rfkill, rfkill->data);
817
818 schedule_delayed_work(&rfkill->poll_work,
819 round_jiffies_relative(POLL_INTERVAL));
820 }
821
822 static void rfkill_uevent_work(struct work_struct *work)
823 {
824 struct rfkill *rfkill;
825
826 rfkill = container_of(work, struct rfkill, uevent_work);
827
828 mutex_lock(&rfkill_global_mutex);
829 rfkill_event(rfkill);
830 mutex_unlock(&rfkill_global_mutex);
831 }
832
833 static void rfkill_sync_work(struct work_struct *work)
834 {
835 struct rfkill *rfkill;
836 bool cur;
837
838 rfkill = container_of(work, struct rfkill, sync_work);
839
840 mutex_lock(&rfkill_global_mutex);
841 cur = rfkill_global_states[rfkill->type].cur;
842 rfkill_set_block(rfkill, cur);
843 mutex_unlock(&rfkill_global_mutex);
844 }
845
846 int __must_check rfkill_register(struct rfkill *rfkill)
847 {
848 static unsigned long rfkill_no;
849 struct device *dev = &rfkill->dev;
850 int error;
851
852 BUG_ON(!rfkill);
853
854 mutex_lock(&rfkill_global_mutex);
855
856 if (rfkill->registered) {
857 error = -EALREADY;
858 goto unlock;
859 }
860
861 rfkill->idx = rfkill_no;
862 dev_set_name(dev, "rfkill%lu", rfkill_no);
863 rfkill_no++;
864
865 list_add_tail(&rfkill->node, &rfkill_list);
866
867 error = device_add(dev);
868 if (error)
869 goto remove;
870
871 error = rfkill_led_trigger_register(rfkill);
872 if (error)
873 goto devdel;
874
875 rfkill->registered = true;
876
877 INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
878 INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
879 INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
880
881 if (rfkill->ops->poll)
882 schedule_delayed_work(&rfkill->poll_work,
883 round_jiffies_relative(POLL_INTERVAL));
884
885 if (!rfkill->persistent || rfkill_epo_lock_active) {
886 schedule_work(&rfkill->sync_work);
887 } else {
888 #ifdef CONFIG_RFKILL_INPUT
889 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
890
891 if (!atomic_read(&rfkill_input_disabled))
892 __rfkill_switch_all(rfkill->type, soft_blocked);
893 #endif
894 }
895
896 rfkill_send_events(rfkill, RFKILL_OP_ADD);
897
898 mutex_unlock(&rfkill_global_mutex);
899 return 0;
900
901 devdel:
902 device_del(&rfkill->dev);
903 remove:
904 list_del_init(&rfkill->node);
905 unlock:
906 mutex_unlock(&rfkill_global_mutex);
907 return error;
908 }
909 EXPORT_SYMBOL(rfkill_register);
910
911 void rfkill_unregister(struct rfkill *rfkill)
912 {
913 BUG_ON(!rfkill);
914
915 if (rfkill->ops->poll)
916 cancel_delayed_work_sync(&rfkill->poll_work);
917
918 cancel_work_sync(&rfkill->uevent_work);
919 cancel_work_sync(&rfkill->sync_work);
920
921 rfkill->registered = false;
922
923 device_del(&rfkill->dev);
924
925 mutex_lock(&rfkill_global_mutex);
926 rfkill_send_events(rfkill, RFKILL_OP_DEL);
927 list_del_init(&rfkill->node);
928 mutex_unlock(&rfkill_global_mutex);
929
930 rfkill_led_trigger_unregister(rfkill);
931 }
932 EXPORT_SYMBOL(rfkill_unregister);
933
934 void rfkill_destroy(struct rfkill *rfkill)
935 {
936 if (rfkill)
937 put_device(&rfkill->dev);
938 }
939 EXPORT_SYMBOL(rfkill_destroy);
940
941 static int rfkill_fop_open(struct inode *inode, struct file *file)
942 {
943 struct rfkill_data *data;
944 struct rfkill *rfkill;
945 struct rfkill_int_event *ev, *tmp;
946
947 data = kzalloc(sizeof(*data), GFP_KERNEL);
948 if (!data)
949 return -ENOMEM;
950
951 INIT_LIST_HEAD(&data->events);
952 mutex_init(&data->mtx);
953 init_waitqueue_head(&data->read_wait);
954
955 mutex_lock(&rfkill_global_mutex);
956 mutex_lock(&data->mtx);
957 /*
958 * start getting events from elsewhere but hold mtx to get
959 * startup events added first
960 */
961 list_add(&data->list, &rfkill_fds);
962
963 list_for_each_entry(rfkill, &rfkill_list, node) {
964 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
965 if (!ev)
966 goto free;
967 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
968 list_add_tail(&ev->list, &data->events);
969 }
970 mutex_unlock(&data->mtx);
971 mutex_unlock(&rfkill_global_mutex);
972
973 file->private_data = data;
974
975 return nonseekable_open(inode, file);
976
977 free:
978 mutex_unlock(&data->mtx);
979 mutex_unlock(&rfkill_global_mutex);
980 mutex_destroy(&data->mtx);
981 list_for_each_entry_safe(ev, tmp, &data->events, list)
982 kfree(ev);
983 kfree(data);
984 return -ENOMEM;
985 }
986
987 static unsigned int rfkill_fop_poll(struct file *file, poll_table *wait)
988 {
989 struct rfkill_data *data = file->private_data;
990 unsigned int res = POLLOUT | POLLWRNORM;
991
992 poll_wait(file, &data->read_wait, wait);
993
994 mutex_lock(&data->mtx);
995 if (!list_empty(&data->events))
996 res = POLLIN | POLLRDNORM;
997 mutex_unlock(&data->mtx);
998
999 return res;
1000 }
1001
1002 static bool rfkill_readable(struct rfkill_data *data)
1003 {
1004 bool r;
1005
1006 mutex_lock(&data->mtx);
1007 r = !list_empty(&data->events);
1008 mutex_unlock(&data->mtx);
1009
1010 return r;
1011 }
1012
1013 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1014 size_t count, loff_t *pos)
1015 {
1016 struct rfkill_data *data = file->private_data;
1017 struct rfkill_int_event *ev;
1018 unsigned long sz;
1019 int ret;
1020
1021 mutex_lock(&data->mtx);
1022
1023 while (list_empty(&data->events)) {
1024 if (file->f_flags & O_NONBLOCK) {
1025 ret = -EAGAIN;
1026 goto out;
1027 }
1028 mutex_unlock(&data->mtx);
1029 ret = wait_event_interruptible(data->read_wait,
1030 rfkill_readable(data));
1031 mutex_lock(&data->mtx);
1032
1033 if (ret)
1034 goto out;
1035 }
1036
1037 ev = list_first_entry(&data->events, struct rfkill_int_event,
1038 list);
1039
1040 sz = min_t(unsigned long, sizeof(ev->ev), count);
1041 ret = sz;
1042 if (copy_to_user(buf, &ev->ev, sz))
1043 ret = -EFAULT;
1044
1045 list_del(&ev->list);
1046 kfree(ev);
1047 out:
1048 mutex_unlock(&data->mtx);
1049 return ret;
1050 }
1051
1052 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1053 size_t count, loff_t *pos)
1054 {
1055 struct rfkill *rfkill;
1056 struct rfkill_event ev;
1057
1058 /* we don't need the 'hard' variable but accept it */
1059 if (count < sizeof(ev) - 1)
1060 return -EINVAL;
1061
1062 if (copy_from_user(&ev, buf, sizeof(ev) - 1))
1063 return -EFAULT;
1064
1065 if (ev.op != RFKILL_OP_CHANGE && ev.op != RFKILL_OP_CHANGE_ALL)
1066 return -EINVAL;
1067
1068 if (ev.type >= NUM_RFKILL_TYPES)
1069 return -EINVAL;
1070
1071 mutex_lock(&rfkill_global_mutex);
1072
1073 if (ev.op == RFKILL_OP_CHANGE_ALL) {
1074 if (ev.type == RFKILL_TYPE_ALL) {
1075 enum rfkill_type i;
1076 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1077 rfkill_global_states[i].cur = ev.soft;
1078 } else {
1079 rfkill_global_states[ev.type].cur = ev.soft;
1080 }
1081 }
1082
1083 list_for_each_entry(rfkill, &rfkill_list, node) {
1084 if (rfkill->idx != ev.idx && ev.op != RFKILL_OP_CHANGE_ALL)
1085 continue;
1086
1087 if (rfkill->type != ev.type && ev.type != RFKILL_TYPE_ALL)
1088 continue;
1089
1090 rfkill_set_block(rfkill, ev.soft);
1091 }
1092 mutex_unlock(&rfkill_global_mutex);
1093
1094 return count;
1095 }
1096
1097 static int rfkill_fop_release(struct inode *inode, struct file *file)
1098 {
1099 struct rfkill_data *data = file->private_data;
1100 struct rfkill_int_event *ev, *tmp;
1101
1102 mutex_lock(&rfkill_global_mutex);
1103 list_del(&data->list);
1104 mutex_unlock(&rfkill_global_mutex);
1105
1106 mutex_destroy(&data->mtx);
1107 list_for_each_entry_safe(ev, tmp, &data->events, list)
1108 kfree(ev);
1109
1110 #ifdef CONFIG_RFKILL_INPUT
1111 if (data->input_handler)
1112 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1113 printk(KERN_DEBUG "rfkill: input handler enabled\n");
1114 #endif
1115
1116 kfree(data);
1117
1118 return 0;
1119 }
1120
1121 #ifdef CONFIG_RFKILL_INPUT
1122 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1123 unsigned long arg)
1124 {
1125 struct rfkill_data *data = file->private_data;
1126
1127 if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1128 return -ENOSYS;
1129
1130 if (_IOC_NR(cmd) != RFKILL_IOC_NOINPUT)
1131 return -ENOSYS;
1132
1133 mutex_lock(&data->mtx);
1134
1135 if (!data->input_handler) {
1136 if (atomic_inc_return(&rfkill_input_disabled) == 1)
1137 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1138 data->input_handler = true;
1139 }
1140
1141 mutex_unlock(&data->mtx);
1142
1143 return 0;
1144 }
1145 #endif
1146
1147 static const struct file_operations rfkill_fops = {
1148 .open = rfkill_fop_open,
1149 .read = rfkill_fop_read,
1150 .write = rfkill_fop_write,
1151 .poll = rfkill_fop_poll,
1152 .release = rfkill_fop_release,
1153 #ifdef CONFIG_RFKILL_INPUT
1154 .unlocked_ioctl = rfkill_fop_ioctl,
1155 .compat_ioctl = rfkill_fop_ioctl,
1156 #endif
1157 };
1158
1159 static struct miscdevice rfkill_miscdev = {
1160 .name = "rfkill",
1161 .fops = &rfkill_fops,
1162 .minor = MISC_DYNAMIC_MINOR,
1163 };
1164
1165 static int __init rfkill_init(void)
1166 {
1167 int error;
1168 int i;
1169
1170 for (i = 0; i < NUM_RFKILL_TYPES; i++)
1171 rfkill_global_states[i].cur = !rfkill_default_state;
1172
1173 error = class_register(&rfkill_class);
1174 if (error)
1175 goto out;
1176
1177 error = misc_register(&rfkill_miscdev);
1178 if (error) {
1179 class_unregister(&rfkill_class);
1180 goto out;
1181 }
1182
1183 #ifdef CONFIG_RFKILL_INPUT
1184 error = rfkill_handler_init();
1185 if (error) {
1186 misc_deregister(&rfkill_miscdev);
1187 class_unregister(&rfkill_class);
1188 goto out;
1189 }
1190 #endif
1191
1192 out:
1193 return error;
1194 }
1195 subsys_initcall(rfkill_init);
1196
1197 static void __exit rfkill_exit(void)
1198 {
1199 #ifdef CONFIG_RFKILL_INPUT
1200 rfkill_handler_exit();
1201 #endif
1202 misc_deregister(&rfkill_miscdev);
1203 class_unregister(&rfkill_class);
1204 }
1205 module_exit(rfkill_exit);