]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - net/sched/cls_flow.c
sched: cls_flow: fix panic on filter replace
[mirror_ubuntu-zesty-kernel.git] / net / sched / cls_flow.c
1 /*
2 * net/sched/cls_flow.c Generic flow classifier
3 *
4 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 */
11
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25
26 #include <net/pkt_cls.h>
27 #include <net/ip.h>
28 #include <net/route.h>
29 #include <net/flow_dissector.h>
30
31 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
32 #include <net/netfilter/nf_conntrack.h>
33 #endif
34
35 struct flow_head {
36 struct list_head filters;
37 struct rcu_head rcu;
38 };
39
40 struct flow_filter {
41 struct list_head list;
42 struct tcf_exts exts;
43 struct tcf_ematch_tree ematches;
44 struct tcf_proto *tp;
45 struct timer_list perturb_timer;
46 u32 perturb_period;
47 u32 handle;
48
49 u32 nkeys;
50 u32 keymask;
51 u32 mode;
52 u32 mask;
53 u32 xor;
54 u32 rshift;
55 u32 addend;
56 u32 divisor;
57 u32 baseclass;
58 u32 hashrnd;
59 struct rcu_head rcu;
60 };
61
62 static inline u32 addr_fold(void *addr)
63 {
64 unsigned long a = (unsigned long)addr;
65
66 return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
67 }
68
69 static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
70 {
71 __be32 src = flow_get_u32_src(flow);
72
73 if (src)
74 return ntohl(src);
75
76 return addr_fold(skb->sk);
77 }
78
79 static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
80 {
81 __be32 dst = flow_get_u32_dst(flow);
82
83 if (dst)
84 return ntohl(dst);
85
86 return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
87 }
88
89 static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
90 {
91 return flow->basic.ip_proto;
92 }
93
94 static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
95 {
96 if (flow->ports.ports)
97 return ntohs(flow->ports.src);
98
99 return addr_fold(skb->sk);
100 }
101
102 static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
103 {
104 if (flow->ports.ports)
105 return ntohs(flow->ports.dst);
106
107 return addr_fold(skb_dst(skb)) ^ (__force u16) tc_skb_protocol(skb);
108 }
109
110 static u32 flow_get_iif(const struct sk_buff *skb)
111 {
112 return skb->skb_iif;
113 }
114
115 static u32 flow_get_priority(const struct sk_buff *skb)
116 {
117 return skb->priority;
118 }
119
120 static u32 flow_get_mark(const struct sk_buff *skb)
121 {
122 return skb->mark;
123 }
124
125 static u32 flow_get_nfct(const struct sk_buff *skb)
126 {
127 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
128 return addr_fold(skb->nfct);
129 #else
130 return 0;
131 #endif
132 }
133
134 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
135 #define CTTUPLE(skb, member) \
136 ({ \
137 enum ip_conntrack_info ctinfo; \
138 const struct nf_conn *ct = nf_ct_get(skb, &ctinfo); \
139 if (ct == NULL) \
140 goto fallback; \
141 ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member; \
142 })
143 #else
144 #define CTTUPLE(skb, member) \
145 ({ \
146 goto fallback; \
147 0; \
148 })
149 #endif
150
151 static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
152 {
153 switch (tc_skb_protocol(skb)) {
154 case htons(ETH_P_IP):
155 return ntohl(CTTUPLE(skb, src.u3.ip));
156 case htons(ETH_P_IPV6):
157 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
158 }
159 fallback:
160 return flow_get_src(skb, flow);
161 }
162
163 static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
164 {
165 switch (tc_skb_protocol(skb)) {
166 case htons(ETH_P_IP):
167 return ntohl(CTTUPLE(skb, dst.u3.ip));
168 case htons(ETH_P_IPV6):
169 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
170 }
171 fallback:
172 return flow_get_dst(skb, flow);
173 }
174
175 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
176 {
177 return ntohs(CTTUPLE(skb, src.u.all));
178 fallback:
179 return flow_get_proto_src(skb, flow);
180 }
181
182 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
183 {
184 return ntohs(CTTUPLE(skb, dst.u.all));
185 fallback:
186 return flow_get_proto_dst(skb, flow);
187 }
188
189 static u32 flow_get_rtclassid(const struct sk_buff *skb)
190 {
191 #ifdef CONFIG_IP_ROUTE_CLASSID
192 if (skb_dst(skb))
193 return skb_dst(skb)->tclassid;
194 #endif
195 return 0;
196 }
197
198 static u32 flow_get_skuid(const struct sk_buff *skb)
199 {
200 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
201 kuid_t skuid = skb->sk->sk_socket->file->f_cred->fsuid;
202 return from_kuid(&init_user_ns, skuid);
203 }
204 return 0;
205 }
206
207 static u32 flow_get_skgid(const struct sk_buff *skb)
208 {
209 if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
210 kgid_t skgid = skb->sk->sk_socket->file->f_cred->fsgid;
211 return from_kgid(&init_user_ns, skgid);
212 }
213 return 0;
214 }
215
216 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
217 {
218 u16 uninitialized_var(tag);
219
220 if (vlan_get_tag(skb, &tag) < 0)
221 return 0;
222 return tag & VLAN_VID_MASK;
223 }
224
225 static u32 flow_get_rxhash(struct sk_buff *skb)
226 {
227 return skb_get_hash(skb);
228 }
229
230 static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
231 {
232 switch (key) {
233 case FLOW_KEY_SRC:
234 return flow_get_src(skb, flow);
235 case FLOW_KEY_DST:
236 return flow_get_dst(skb, flow);
237 case FLOW_KEY_PROTO:
238 return flow_get_proto(skb, flow);
239 case FLOW_KEY_PROTO_SRC:
240 return flow_get_proto_src(skb, flow);
241 case FLOW_KEY_PROTO_DST:
242 return flow_get_proto_dst(skb, flow);
243 case FLOW_KEY_IIF:
244 return flow_get_iif(skb);
245 case FLOW_KEY_PRIORITY:
246 return flow_get_priority(skb);
247 case FLOW_KEY_MARK:
248 return flow_get_mark(skb);
249 case FLOW_KEY_NFCT:
250 return flow_get_nfct(skb);
251 case FLOW_KEY_NFCT_SRC:
252 return flow_get_nfct_src(skb, flow);
253 case FLOW_KEY_NFCT_DST:
254 return flow_get_nfct_dst(skb, flow);
255 case FLOW_KEY_NFCT_PROTO_SRC:
256 return flow_get_nfct_proto_src(skb, flow);
257 case FLOW_KEY_NFCT_PROTO_DST:
258 return flow_get_nfct_proto_dst(skb, flow);
259 case FLOW_KEY_RTCLASSID:
260 return flow_get_rtclassid(skb);
261 case FLOW_KEY_SKUID:
262 return flow_get_skuid(skb);
263 case FLOW_KEY_SKGID:
264 return flow_get_skgid(skb);
265 case FLOW_KEY_VLAN_TAG:
266 return flow_get_vlan_tag(skb);
267 case FLOW_KEY_RXHASH:
268 return flow_get_rxhash(skb);
269 default:
270 WARN_ON(1);
271 return 0;
272 }
273 }
274
275 #define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | \
276 (1 << FLOW_KEY_DST) | \
277 (1 << FLOW_KEY_PROTO) | \
278 (1 << FLOW_KEY_PROTO_SRC) | \
279 (1 << FLOW_KEY_PROTO_DST) | \
280 (1 << FLOW_KEY_NFCT_SRC) | \
281 (1 << FLOW_KEY_NFCT_DST) | \
282 (1 << FLOW_KEY_NFCT_PROTO_SRC) | \
283 (1 << FLOW_KEY_NFCT_PROTO_DST))
284
285 static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
286 struct tcf_result *res)
287 {
288 struct flow_head *head = rcu_dereference_bh(tp->root);
289 struct flow_filter *f;
290 u32 keymask;
291 u32 classid;
292 unsigned int n, key;
293 int r;
294
295 list_for_each_entry_rcu(f, &head->filters, list) {
296 u32 keys[FLOW_KEY_MAX + 1];
297 struct flow_keys flow_keys;
298
299 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
300 continue;
301
302 keymask = f->keymask;
303 if (keymask & FLOW_KEYS_NEEDED)
304 skb_flow_dissect_flow_keys(skb, &flow_keys);
305
306 for (n = 0; n < f->nkeys; n++) {
307 key = ffs(keymask) - 1;
308 keymask &= ~(1 << key);
309 keys[n] = flow_key_get(skb, key, &flow_keys);
310 }
311
312 if (f->mode == FLOW_MODE_HASH)
313 classid = jhash2(keys, f->nkeys, f->hashrnd);
314 else {
315 classid = keys[0];
316 classid = (classid & f->mask) ^ f->xor;
317 classid = (classid >> f->rshift) + f->addend;
318 }
319
320 if (f->divisor)
321 classid %= f->divisor;
322
323 res->class = 0;
324 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
325
326 r = tcf_exts_exec(skb, &f->exts, res);
327 if (r < 0)
328 continue;
329 return r;
330 }
331 return -1;
332 }
333
334 static void flow_perturbation(unsigned long arg)
335 {
336 struct flow_filter *f = (struct flow_filter *)arg;
337
338 get_random_bytes(&f->hashrnd, 4);
339 if (f->perturb_period)
340 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
341 }
342
343 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
344 [TCA_FLOW_KEYS] = { .type = NLA_U32 },
345 [TCA_FLOW_MODE] = { .type = NLA_U32 },
346 [TCA_FLOW_BASECLASS] = { .type = NLA_U32 },
347 [TCA_FLOW_RSHIFT] = { .type = NLA_U32 },
348 [TCA_FLOW_ADDEND] = { .type = NLA_U32 },
349 [TCA_FLOW_MASK] = { .type = NLA_U32 },
350 [TCA_FLOW_XOR] = { .type = NLA_U32 },
351 [TCA_FLOW_DIVISOR] = { .type = NLA_U32 },
352 [TCA_FLOW_ACT] = { .type = NLA_NESTED },
353 [TCA_FLOW_POLICE] = { .type = NLA_NESTED },
354 [TCA_FLOW_EMATCHES] = { .type = NLA_NESTED },
355 [TCA_FLOW_PERTURB] = { .type = NLA_U32 },
356 };
357
358 static void flow_destroy_filter(struct rcu_head *head)
359 {
360 struct flow_filter *f = container_of(head, struct flow_filter, rcu);
361
362 del_timer_sync(&f->perturb_timer);
363 tcf_exts_destroy(&f->exts);
364 tcf_em_tree_destroy(&f->ematches);
365 kfree(f);
366 }
367
368 static int flow_change(struct net *net, struct sk_buff *in_skb,
369 struct tcf_proto *tp, unsigned long base,
370 u32 handle, struct nlattr **tca,
371 unsigned long *arg, bool ovr)
372 {
373 struct flow_head *head = rtnl_dereference(tp->root);
374 struct flow_filter *fold, *fnew;
375 struct nlattr *opt = tca[TCA_OPTIONS];
376 struct nlattr *tb[TCA_FLOW_MAX + 1];
377 struct tcf_exts e;
378 struct tcf_ematch_tree t;
379 unsigned int nkeys = 0;
380 unsigned int perturb_period = 0;
381 u32 baseclass = 0;
382 u32 keymask = 0;
383 u32 mode;
384 int err;
385
386 if (opt == NULL)
387 return -EINVAL;
388
389 err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
390 if (err < 0)
391 return err;
392
393 if (tb[TCA_FLOW_BASECLASS]) {
394 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
395 if (TC_H_MIN(baseclass) == 0)
396 return -EINVAL;
397 }
398
399 if (tb[TCA_FLOW_KEYS]) {
400 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
401
402 nkeys = hweight32(keymask);
403 if (nkeys == 0)
404 return -EINVAL;
405
406 if (fls(keymask) - 1 > FLOW_KEY_MAX)
407 return -EOPNOTSUPP;
408
409 if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
410 sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
411 return -EOPNOTSUPP;
412 }
413
414 tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE);
415 err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr);
416 if (err < 0)
417 return err;
418
419 err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
420 if (err < 0)
421 goto err1;
422
423 err = -ENOBUFS;
424 fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
425 if (!fnew)
426 goto err2;
427
428 tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
429
430 fold = (struct flow_filter *)*arg;
431 if (fold) {
432 err = -EINVAL;
433 if (fold->handle != handle && handle)
434 goto err2;
435
436 /* Copy fold into fnew */
437 fnew->tp = fold->tp;
438 fnew->handle = fold->handle;
439 fnew->nkeys = fold->nkeys;
440 fnew->keymask = fold->keymask;
441 fnew->mode = fold->mode;
442 fnew->mask = fold->mask;
443 fnew->xor = fold->xor;
444 fnew->rshift = fold->rshift;
445 fnew->addend = fold->addend;
446 fnew->divisor = fold->divisor;
447 fnew->baseclass = fold->baseclass;
448 fnew->hashrnd = fold->hashrnd;
449
450 mode = fold->mode;
451 if (tb[TCA_FLOW_MODE])
452 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
453 if (mode != FLOW_MODE_HASH && nkeys > 1)
454 goto err2;
455
456 if (mode == FLOW_MODE_HASH)
457 perturb_period = fold->perturb_period;
458 if (tb[TCA_FLOW_PERTURB]) {
459 if (mode != FLOW_MODE_HASH)
460 goto err2;
461 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
462 }
463 } else {
464 err = -EINVAL;
465 if (!handle)
466 goto err2;
467 if (!tb[TCA_FLOW_KEYS])
468 goto err2;
469
470 mode = FLOW_MODE_MAP;
471 if (tb[TCA_FLOW_MODE])
472 mode = nla_get_u32(tb[TCA_FLOW_MODE]);
473 if (mode != FLOW_MODE_HASH && nkeys > 1)
474 goto err2;
475
476 if (tb[TCA_FLOW_PERTURB]) {
477 if (mode != FLOW_MODE_HASH)
478 goto err2;
479 perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
480 }
481
482 if (TC_H_MAJ(baseclass) == 0)
483 baseclass = TC_H_MAKE(tp->q->handle, baseclass);
484 if (TC_H_MIN(baseclass) == 0)
485 baseclass = TC_H_MAKE(baseclass, 1);
486
487 fnew->handle = handle;
488 fnew->mask = ~0U;
489 fnew->tp = tp;
490 get_random_bytes(&fnew->hashrnd, 4);
491 }
492
493 fnew->perturb_timer.function = flow_perturbation;
494 fnew->perturb_timer.data = (unsigned long)fnew;
495 init_timer_deferrable(&fnew->perturb_timer);
496
497 tcf_exts_change(tp, &fnew->exts, &e);
498 tcf_em_tree_change(tp, &fnew->ematches, &t);
499
500 netif_keep_dst(qdisc_dev(tp->q));
501
502 if (tb[TCA_FLOW_KEYS]) {
503 fnew->keymask = keymask;
504 fnew->nkeys = nkeys;
505 }
506
507 fnew->mode = mode;
508
509 if (tb[TCA_FLOW_MASK])
510 fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
511 if (tb[TCA_FLOW_XOR])
512 fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
513 if (tb[TCA_FLOW_RSHIFT])
514 fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
515 if (tb[TCA_FLOW_ADDEND])
516 fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
517
518 if (tb[TCA_FLOW_DIVISOR])
519 fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
520 if (baseclass)
521 fnew->baseclass = baseclass;
522
523 fnew->perturb_period = perturb_period;
524 if (perturb_period)
525 mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
526
527 if (*arg == 0)
528 list_add_tail_rcu(&fnew->list, &head->filters);
529 else
530 list_replace_rcu(&fold->list, &fnew->list);
531
532 *arg = (unsigned long)fnew;
533
534 if (fold)
535 call_rcu(&fold->rcu, flow_destroy_filter);
536 return 0;
537
538 err2:
539 tcf_em_tree_destroy(&t);
540 kfree(fnew);
541 err1:
542 tcf_exts_destroy(&e);
543 return err;
544 }
545
546 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
547 {
548 struct flow_filter *f = (struct flow_filter *)arg;
549
550 list_del_rcu(&f->list);
551 call_rcu(&f->rcu, flow_destroy_filter);
552 return 0;
553 }
554
555 static int flow_init(struct tcf_proto *tp)
556 {
557 struct flow_head *head;
558
559 head = kzalloc(sizeof(*head), GFP_KERNEL);
560 if (head == NULL)
561 return -ENOBUFS;
562 INIT_LIST_HEAD(&head->filters);
563 rcu_assign_pointer(tp->root, head);
564 return 0;
565 }
566
567 static bool flow_destroy(struct tcf_proto *tp, bool force)
568 {
569 struct flow_head *head = rtnl_dereference(tp->root);
570 struct flow_filter *f, *next;
571
572 if (!force && !list_empty(&head->filters))
573 return false;
574
575 list_for_each_entry_safe(f, next, &head->filters, list) {
576 list_del_rcu(&f->list);
577 call_rcu(&f->rcu, flow_destroy_filter);
578 }
579 RCU_INIT_POINTER(tp->root, NULL);
580 kfree_rcu(head, rcu);
581 return true;
582 }
583
584 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
585 {
586 struct flow_head *head = rtnl_dereference(tp->root);
587 struct flow_filter *f;
588
589 list_for_each_entry(f, &head->filters, list)
590 if (f->handle == handle)
591 return (unsigned long)f;
592 return 0;
593 }
594
595 static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
596 struct sk_buff *skb, struct tcmsg *t)
597 {
598 struct flow_filter *f = (struct flow_filter *)fh;
599 struct nlattr *nest;
600
601 if (f == NULL)
602 return skb->len;
603
604 t->tcm_handle = f->handle;
605
606 nest = nla_nest_start(skb, TCA_OPTIONS);
607 if (nest == NULL)
608 goto nla_put_failure;
609
610 if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
611 nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
612 goto nla_put_failure;
613
614 if (f->mask != ~0 || f->xor != 0) {
615 if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
616 nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
617 goto nla_put_failure;
618 }
619 if (f->rshift &&
620 nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
621 goto nla_put_failure;
622 if (f->addend &&
623 nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
624 goto nla_put_failure;
625
626 if (f->divisor &&
627 nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
628 goto nla_put_failure;
629 if (f->baseclass &&
630 nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
631 goto nla_put_failure;
632
633 if (f->perturb_period &&
634 nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
635 goto nla_put_failure;
636
637 if (tcf_exts_dump(skb, &f->exts) < 0)
638 goto nla_put_failure;
639 #ifdef CONFIG_NET_EMATCH
640 if (f->ematches.hdr.nmatches &&
641 tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
642 goto nla_put_failure;
643 #endif
644 nla_nest_end(skb, nest);
645
646 if (tcf_exts_dump_stats(skb, &f->exts) < 0)
647 goto nla_put_failure;
648
649 return skb->len;
650
651 nla_put_failure:
652 nla_nest_cancel(skb, nest);
653 return -1;
654 }
655
656 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
657 {
658 struct flow_head *head = rtnl_dereference(tp->root);
659 struct flow_filter *f;
660
661 list_for_each_entry(f, &head->filters, list) {
662 if (arg->count < arg->skip)
663 goto skip;
664 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
665 arg->stop = 1;
666 break;
667 }
668 skip:
669 arg->count++;
670 }
671 }
672
673 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
674 .kind = "flow",
675 .classify = flow_classify,
676 .init = flow_init,
677 .destroy = flow_destroy,
678 .change = flow_change,
679 .delete = flow_delete,
680 .get = flow_get,
681 .dump = flow_dump,
682 .walk = flow_walk,
683 .owner = THIS_MODULE,
684 };
685
686 static int __init cls_flow_init(void)
687 {
688 return register_tcf_proto_ops(&cls_flow_ops);
689 }
690
691 static void __exit cls_flow_exit(void)
692 {
693 unregister_tcf_proto_ops(&cls_flow_ops);
694 }
695
696 module_init(cls_flow_init);
697 module_exit(cls_flow_exit);
698
699 MODULE_LICENSE("GPL");
700 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
701 MODULE_DESCRIPTION("TC flow classifier");