]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/cls_u32.c
Merge remote-tracking branch 'mkp-scsi/4.9/scsi-fixes' into fixes
[mirror_ubuntu-bionic-kernel.git] / net / sched / cls_u32.c
1 /*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <net/netlink.h>
44 #include <net/act_api.h>
45 #include <net/pkt_cls.h>
46 #include <linux/netdevice.h>
47
48 struct tc_u_knode {
49 struct tc_u_knode __rcu *next;
50 u32 handle;
51 struct tc_u_hnode __rcu *ht_up;
52 struct tcf_exts exts;
53 #ifdef CONFIG_NET_CLS_IND
54 int ifindex;
55 #endif
56 u8 fshift;
57 struct tcf_result res;
58 struct tc_u_hnode __rcu *ht_down;
59 #ifdef CONFIG_CLS_U32_PERF
60 struct tc_u32_pcnt __percpu *pf;
61 #endif
62 u32 flags;
63 #ifdef CONFIG_CLS_U32_MARK
64 u32 val;
65 u32 mask;
66 u32 __percpu *pcpu_success;
67 #endif
68 struct tcf_proto *tp;
69 struct rcu_head rcu;
70 /* The 'sel' field MUST be the last field in structure to allow for
71 * tc_u32_keys allocated at end of structure.
72 */
73 struct tc_u32_sel sel;
74 };
75
76 struct tc_u_hnode {
77 struct tc_u_hnode __rcu *next;
78 u32 handle;
79 u32 prio;
80 struct tc_u_common *tp_c;
81 int refcnt;
82 unsigned int divisor;
83 struct rcu_head rcu;
84 /* The 'ht' field MUST be the last field in structure to allow for
85 * more entries allocated at end of structure.
86 */
87 struct tc_u_knode __rcu *ht[1];
88 };
89
90 struct tc_u_common {
91 struct tc_u_hnode __rcu *hlist;
92 struct Qdisc *q;
93 int refcnt;
94 u32 hgenerator;
95 struct rcu_head rcu;
96 };
97
98 static inline unsigned int u32_hash_fold(__be32 key,
99 const struct tc_u32_sel *sel,
100 u8 fshift)
101 {
102 unsigned int h = ntohl(key & sel->hmask) >> fshift;
103
104 return h;
105 }
106
107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
108 struct tcf_result *res)
109 {
110 struct {
111 struct tc_u_knode *knode;
112 unsigned int off;
113 } stack[TC_U32_MAXDEPTH];
114
115 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
116 unsigned int off = skb_network_offset(skb);
117 struct tc_u_knode *n;
118 int sdepth = 0;
119 int off2 = 0;
120 int sel = 0;
121 #ifdef CONFIG_CLS_U32_PERF
122 int j;
123 #endif
124 int i, r;
125
126 next_ht:
127 n = rcu_dereference_bh(ht->ht[sel]);
128
129 next_knode:
130 if (n) {
131 struct tc_u32_key *key = n->sel.keys;
132
133 #ifdef CONFIG_CLS_U32_PERF
134 __this_cpu_inc(n->pf->rcnt);
135 j = 0;
136 #endif
137
138 if (tc_skip_sw(n->flags)) {
139 n = rcu_dereference_bh(n->next);
140 goto next_knode;
141 }
142
143 #ifdef CONFIG_CLS_U32_MARK
144 if ((skb->mark & n->mask) != n->val) {
145 n = rcu_dereference_bh(n->next);
146 goto next_knode;
147 } else {
148 __this_cpu_inc(*n->pcpu_success);
149 }
150 #endif
151
152 for (i = n->sel.nkeys; i > 0; i--, key++) {
153 int toff = off + key->off + (off2 & key->offmask);
154 __be32 *data, hdata;
155
156 if (skb_headroom(skb) + toff > INT_MAX)
157 goto out;
158
159 data = skb_header_pointer(skb, toff, 4, &hdata);
160 if (!data)
161 goto out;
162 if ((*data ^ key->val) & key->mask) {
163 n = rcu_dereference_bh(n->next);
164 goto next_knode;
165 }
166 #ifdef CONFIG_CLS_U32_PERF
167 __this_cpu_inc(n->pf->kcnts[j]);
168 j++;
169 #endif
170 }
171
172 ht = rcu_dereference_bh(n->ht_down);
173 if (!ht) {
174 check_terminal:
175 if (n->sel.flags & TC_U32_TERMINAL) {
176
177 *res = n->res;
178 #ifdef CONFIG_NET_CLS_IND
179 if (!tcf_match_indev(skb, n->ifindex)) {
180 n = rcu_dereference_bh(n->next);
181 goto next_knode;
182 }
183 #endif
184 #ifdef CONFIG_CLS_U32_PERF
185 __this_cpu_inc(n->pf->rhit);
186 #endif
187 r = tcf_exts_exec(skb, &n->exts, res);
188 if (r < 0) {
189 n = rcu_dereference_bh(n->next);
190 goto next_knode;
191 }
192
193 return r;
194 }
195 n = rcu_dereference_bh(n->next);
196 goto next_knode;
197 }
198
199 /* PUSH */
200 if (sdepth >= TC_U32_MAXDEPTH)
201 goto deadloop;
202 stack[sdepth].knode = n;
203 stack[sdepth].off = off;
204 sdepth++;
205
206 ht = rcu_dereference_bh(n->ht_down);
207 sel = 0;
208 if (ht->divisor) {
209 __be32 *data, hdata;
210
211 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
212 &hdata);
213 if (!data)
214 goto out;
215 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
216 n->fshift);
217 }
218 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
219 goto next_ht;
220
221 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
222 off2 = n->sel.off + 3;
223 if (n->sel.flags & TC_U32_VAROFFSET) {
224 __be16 *data, hdata;
225
226 data = skb_header_pointer(skb,
227 off + n->sel.offoff,
228 2, &hdata);
229 if (!data)
230 goto out;
231 off2 += ntohs(n->sel.offmask & *data) >>
232 n->sel.offshift;
233 }
234 off2 &= ~3;
235 }
236 if (n->sel.flags & TC_U32_EAT) {
237 off += off2;
238 off2 = 0;
239 }
240
241 if (off < skb->len)
242 goto next_ht;
243 }
244
245 /* POP */
246 if (sdepth--) {
247 n = stack[sdepth].knode;
248 ht = rcu_dereference_bh(n->ht_up);
249 off = stack[sdepth].off;
250 goto check_terminal;
251 }
252 out:
253 return -1;
254
255 deadloop:
256 net_warn_ratelimited("cls_u32: dead loop\n");
257 return -1;
258 }
259
260 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
261 {
262 struct tc_u_hnode *ht;
263
264 for (ht = rtnl_dereference(tp_c->hlist);
265 ht;
266 ht = rtnl_dereference(ht->next))
267 if (ht->handle == handle)
268 break;
269
270 return ht;
271 }
272
273 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
274 {
275 unsigned int sel;
276 struct tc_u_knode *n = NULL;
277
278 sel = TC_U32_HASH(handle);
279 if (sel > ht->divisor)
280 goto out;
281
282 for (n = rtnl_dereference(ht->ht[sel]);
283 n;
284 n = rtnl_dereference(n->next))
285 if (n->handle == handle)
286 break;
287 out:
288 return n;
289 }
290
291
292 static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
293 {
294 struct tc_u_hnode *ht;
295 struct tc_u_common *tp_c = tp->data;
296
297 if (TC_U32_HTID(handle) == TC_U32_ROOT)
298 ht = rtnl_dereference(tp->root);
299 else
300 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
301
302 if (!ht)
303 return 0;
304
305 if (TC_U32_KEY(handle) == 0)
306 return (unsigned long)ht;
307
308 return (unsigned long)u32_lookup_key(ht, handle);
309 }
310
311 static u32 gen_new_htid(struct tc_u_common *tp_c)
312 {
313 int i = 0x800;
314
315 /* hgenerator only used inside rtnl lock it is safe to increment
316 * without read _copy_ update semantics
317 */
318 do {
319 if (++tp_c->hgenerator == 0x7FF)
320 tp_c->hgenerator = 1;
321 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
322
323 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
324 }
325
326 static int u32_init(struct tcf_proto *tp)
327 {
328 struct tc_u_hnode *root_ht;
329 struct tc_u_common *tp_c;
330
331 tp_c = tp->q->u32_node;
332
333 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
334 if (root_ht == NULL)
335 return -ENOBUFS;
336
337 root_ht->divisor = 0;
338 root_ht->refcnt++;
339 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
340 root_ht->prio = tp->prio;
341
342 if (tp_c == NULL) {
343 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
344 if (tp_c == NULL) {
345 kfree(root_ht);
346 return -ENOBUFS;
347 }
348 tp_c->q = tp->q;
349 tp->q->u32_node = tp_c;
350 }
351
352 tp_c->refcnt++;
353 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
354 rcu_assign_pointer(tp_c->hlist, root_ht);
355 root_ht->tp_c = tp_c;
356
357 rcu_assign_pointer(tp->root, root_ht);
358 tp->data = tp_c;
359 return 0;
360 }
361
362 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
363 bool free_pf)
364 {
365 tcf_exts_destroy(&n->exts);
366 if (n->ht_down)
367 n->ht_down->refcnt--;
368 #ifdef CONFIG_CLS_U32_PERF
369 if (free_pf)
370 free_percpu(n->pf);
371 #endif
372 #ifdef CONFIG_CLS_U32_MARK
373 if (free_pf)
374 free_percpu(n->pcpu_success);
375 #endif
376 kfree(n);
377 return 0;
378 }
379
380 /* u32_delete_key_rcu should be called when free'ing a copied
381 * version of a tc_u_knode obtained from u32_init_knode(). When
382 * copies are obtained from u32_init_knode() the statistics are
383 * shared between the old and new copies to allow readers to
384 * continue to update the statistics during the copy. To support
385 * this the u32_delete_key_rcu variant does not free the percpu
386 * statistics.
387 */
388 static void u32_delete_key_rcu(struct rcu_head *rcu)
389 {
390 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
391
392 u32_destroy_key(key->tp, key, false);
393 }
394
395 /* u32_delete_key_freepf_rcu is the rcu callback variant
396 * that free's the entire structure including the statistics
397 * percpu variables. Only use this if the key is not a copy
398 * returned by u32_init_knode(). See u32_delete_key_rcu()
399 * for the variant that should be used with keys return from
400 * u32_init_knode()
401 */
402 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
403 {
404 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
405
406 u32_destroy_key(key->tp, key, true);
407 }
408
409 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
410 {
411 struct tc_u_knode __rcu **kp;
412 struct tc_u_knode *pkp;
413 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
414
415 if (ht) {
416 kp = &ht->ht[TC_U32_HASH(key->handle)];
417 for (pkp = rtnl_dereference(*kp); pkp;
418 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
419 if (pkp == key) {
420 RCU_INIT_POINTER(*kp, key->next);
421
422 tcf_unbind_filter(tp, &key->res);
423 call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
424 return 0;
425 }
426 }
427 }
428 WARN_ON(1);
429 return 0;
430 }
431
432 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
433 {
434 struct net_device *dev = tp->q->dev_queue->dev;
435 struct tc_cls_u32_offload u32_offload = {0};
436 struct tc_to_netdev offload;
437
438 offload.type = TC_SETUP_CLSU32;
439 offload.cls_u32 = &u32_offload;
440
441 if (tc_should_offload(dev, tp, 0)) {
442 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE;
443 offload.cls_u32->knode.handle = handle;
444 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
445 tp->protocol, &offload);
446 }
447 }
448
449 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
450 u32 flags)
451 {
452 struct net_device *dev = tp->q->dev_queue->dev;
453 struct tc_cls_u32_offload u32_offload = {0};
454 struct tc_to_netdev offload;
455 int err;
456
457 if (!tc_should_offload(dev, tp, flags))
458 return tc_skip_sw(flags) ? -EINVAL : 0;
459
460 offload.type = TC_SETUP_CLSU32;
461 offload.cls_u32 = &u32_offload;
462
463 offload.cls_u32->command = TC_CLSU32_NEW_HNODE;
464 offload.cls_u32->hnode.divisor = h->divisor;
465 offload.cls_u32->hnode.handle = h->handle;
466 offload.cls_u32->hnode.prio = h->prio;
467
468 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
469 tp->protocol, &offload);
470 if (tc_skip_sw(flags))
471 return err;
472
473 return 0;
474 }
475
476 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
477 {
478 struct net_device *dev = tp->q->dev_queue->dev;
479 struct tc_cls_u32_offload u32_offload = {0};
480 struct tc_to_netdev offload;
481
482 offload.type = TC_SETUP_CLSU32;
483 offload.cls_u32 = &u32_offload;
484
485 if (tc_should_offload(dev, tp, 0)) {
486 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE;
487 offload.cls_u32->hnode.divisor = h->divisor;
488 offload.cls_u32->hnode.handle = h->handle;
489 offload.cls_u32->hnode.prio = h->prio;
490
491 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
492 tp->protocol, &offload);
493 }
494 }
495
496 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
497 u32 flags)
498 {
499 struct net_device *dev = tp->q->dev_queue->dev;
500 struct tc_cls_u32_offload u32_offload = {0};
501 struct tc_to_netdev offload;
502 int err;
503
504 offload.type = TC_SETUP_CLSU32;
505 offload.cls_u32 = &u32_offload;
506
507 if (!tc_should_offload(dev, tp, flags))
508 return tc_skip_sw(flags) ? -EINVAL : 0;
509
510 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE;
511 offload.cls_u32->knode.handle = n->handle;
512 offload.cls_u32->knode.fshift = n->fshift;
513 #ifdef CONFIG_CLS_U32_MARK
514 offload.cls_u32->knode.val = n->val;
515 offload.cls_u32->knode.mask = n->mask;
516 #else
517 offload.cls_u32->knode.val = 0;
518 offload.cls_u32->knode.mask = 0;
519 #endif
520 offload.cls_u32->knode.sel = &n->sel;
521 offload.cls_u32->knode.exts = &n->exts;
522 if (n->ht_down)
523 offload.cls_u32->knode.link_handle = n->ht_down->handle;
524
525 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
526 tp->protocol, &offload);
527 if (tc_skip_sw(flags))
528 return err;
529
530 return 0;
531 }
532
533 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
534 {
535 struct tc_u_knode *n;
536 unsigned int h;
537
538 for (h = 0; h <= ht->divisor; h++) {
539 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
540 RCU_INIT_POINTER(ht->ht[h],
541 rtnl_dereference(n->next));
542 tcf_unbind_filter(tp, &n->res);
543 u32_remove_hw_knode(tp, n->handle);
544 call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
545 }
546 }
547 }
548
549 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
550 {
551 struct tc_u_common *tp_c = tp->data;
552 struct tc_u_hnode __rcu **hn;
553 struct tc_u_hnode *phn;
554
555 WARN_ON(ht->refcnt);
556
557 u32_clear_hnode(tp, ht);
558
559 hn = &tp_c->hlist;
560 for (phn = rtnl_dereference(*hn);
561 phn;
562 hn = &phn->next, phn = rtnl_dereference(*hn)) {
563 if (phn == ht) {
564 u32_clear_hw_hnode(tp, ht);
565 RCU_INIT_POINTER(*hn, ht->next);
566 kfree_rcu(ht, rcu);
567 return 0;
568 }
569 }
570
571 return -ENOENT;
572 }
573
574 static bool ht_empty(struct tc_u_hnode *ht)
575 {
576 unsigned int h;
577
578 for (h = 0; h <= ht->divisor; h++)
579 if (rcu_access_pointer(ht->ht[h]))
580 return false;
581
582 return true;
583 }
584
585 static bool u32_destroy(struct tcf_proto *tp, bool force)
586 {
587 struct tc_u_common *tp_c = tp->data;
588 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
589
590 WARN_ON(root_ht == NULL);
591
592 if (!force) {
593 if (root_ht) {
594 if (root_ht->refcnt > 1)
595 return false;
596 if (root_ht->refcnt == 1) {
597 if (!ht_empty(root_ht))
598 return false;
599 }
600 }
601
602 if (tp_c->refcnt > 1)
603 return false;
604
605 if (tp_c->refcnt == 1) {
606 struct tc_u_hnode *ht;
607
608 for (ht = rtnl_dereference(tp_c->hlist);
609 ht;
610 ht = rtnl_dereference(ht->next))
611 if (!ht_empty(ht))
612 return false;
613 }
614 }
615
616 if (root_ht && --root_ht->refcnt == 0)
617 u32_destroy_hnode(tp, root_ht);
618
619 if (--tp_c->refcnt == 0) {
620 struct tc_u_hnode *ht;
621
622 tp->q->u32_node = NULL;
623
624 for (ht = rtnl_dereference(tp_c->hlist);
625 ht;
626 ht = rtnl_dereference(ht->next)) {
627 ht->refcnt--;
628 u32_clear_hnode(tp, ht);
629 }
630
631 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
632 RCU_INIT_POINTER(tp_c->hlist, ht->next);
633 kfree_rcu(ht, rcu);
634 }
635
636 kfree(tp_c);
637 }
638
639 tp->data = NULL;
640 return true;
641 }
642
643 static int u32_delete(struct tcf_proto *tp, unsigned long arg)
644 {
645 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
646 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
647
648 if (ht == NULL)
649 return 0;
650
651 if (TC_U32_KEY(ht->handle)) {
652 u32_remove_hw_knode(tp, ht->handle);
653 return u32_delete_key(tp, (struct tc_u_knode *)ht);
654 }
655
656 if (root_ht == ht)
657 return -EINVAL;
658
659 if (ht->refcnt == 1) {
660 ht->refcnt--;
661 u32_destroy_hnode(tp, ht);
662 } else {
663 return -EBUSY;
664 }
665
666 return 0;
667 }
668
669 #define NR_U32_NODE (1<<12)
670 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
671 {
672 struct tc_u_knode *n;
673 unsigned long i;
674 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
675 GFP_KERNEL);
676 if (!bitmap)
677 return handle | 0xFFF;
678
679 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
680 n;
681 n = rtnl_dereference(n->next))
682 set_bit(TC_U32_NODE(n->handle), bitmap);
683
684 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
685 if (i >= NR_U32_NODE)
686 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
687
688 kfree(bitmap);
689 return handle | (i >= NR_U32_NODE ? 0xFFF : i);
690 }
691
692 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
693 [TCA_U32_CLASSID] = { .type = NLA_U32 },
694 [TCA_U32_HASH] = { .type = NLA_U32 },
695 [TCA_U32_LINK] = { .type = NLA_U32 },
696 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
697 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
698 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
699 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
700 [TCA_U32_FLAGS] = { .type = NLA_U32 },
701 };
702
703 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
704 unsigned long base, struct tc_u_hnode *ht,
705 struct tc_u_knode *n, struct nlattr **tb,
706 struct nlattr *est, bool ovr)
707 {
708 struct tcf_exts e;
709 int err;
710
711 err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE);
712 if (err < 0)
713 return err;
714 err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
715 if (err < 0)
716 goto errout;
717
718 err = -EINVAL;
719 if (tb[TCA_U32_LINK]) {
720 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
721 struct tc_u_hnode *ht_down = NULL, *ht_old;
722
723 if (TC_U32_KEY(handle))
724 goto errout;
725
726 if (handle) {
727 ht_down = u32_lookup_ht(ht->tp_c, handle);
728
729 if (ht_down == NULL)
730 goto errout;
731 ht_down->refcnt++;
732 }
733
734 ht_old = rtnl_dereference(n->ht_down);
735 rcu_assign_pointer(n->ht_down, ht_down);
736
737 if (ht_old)
738 ht_old->refcnt--;
739 }
740 if (tb[TCA_U32_CLASSID]) {
741 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
742 tcf_bind_filter(tp, &n->res, base);
743 }
744
745 #ifdef CONFIG_NET_CLS_IND
746 if (tb[TCA_U32_INDEV]) {
747 int ret;
748 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
749 if (ret < 0)
750 goto errout;
751 n->ifindex = ret;
752 }
753 #endif
754 tcf_exts_change(tp, &n->exts, &e);
755
756 return 0;
757 errout:
758 tcf_exts_destroy(&e);
759 return err;
760 }
761
762 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
763 struct tc_u_knode *n)
764 {
765 struct tc_u_knode __rcu **ins;
766 struct tc_u_knode *pins;
767 struct tc_u_hnode *ht;
768
769 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
770 ht = rtnl_dereference(tp->root);
771 else
772 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
773
774 ins = &ht->ht[TC_U32_HASH(n->handle)];
775
776 /* The node must always exist for it to be replaced if this is not the
777 * case then something went very wrong elsewhere.
778 */
779 for (pins = rtnl_dereference(*ins); ;
780 ins = &pins->next, pins = rtnl_dereference(*ins))
781 if (pins->handle == n->handle)
782 break;
783
784 RCU_INIT_POINTER(n->next, pins->next);
785 rcu_assign_pointer(*ins, n);
786 }
787
788 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
789 struct tc_u_knode *n)
790 {
791 struct tc_u_knode *new;
792 struct tc_u32_sel *s = &n->sel;
793
794 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
795 GFP_KERNEL);
796
797 if (!new)
798 return NULL;
799
800 RCU_INIT_POINTER(new->next, n->next);
801 new->handle = n->handle;
802 RCU_INIT_POINTER(new->ht_up, n->ht_up);
803
804 #ifdef CONFIG_NET_CLS_IND
805 new->ifindex = n->ifindex;
806 #endif
807 new->fshift = n->fshift;
808 new->res = n->res;
809 new->flags = n->flags;
810 RCU_INIT_POINTER(new->ht_down, n->ht_down);
811
812 /* bump reference count as long as we hold pointer to structure */
813 if (new->ht_down)
814 new->ht_down->refcnt++;
815
816 #ifdef CONFIG_CLS_U32_PERF
817 /* Statistics may be incremented by readers during update
818 * so we must keep them in tact. When the node is later destroyed
819 * a special destroy call must be made to not free the pf memory.
820 */
821 new->pf = n->pf;
822 #endif
823
824 #ifdef CONFIG_CLS_U32_MARK
825 new->val = n->val;
826 new->mask = n->mask;
827 /* Similarly success statistics must be moved as pointers */
828 new->pcpu_success = n->pcpu_success;
829 #endif
830 new->tp = tp;
831 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
832
833 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
834 kfree(new);
835 return NULL;
836 }
837
838 return new;
839 }
840
841 static int u32_change(struct net *net, struct sk_buff *in_skb,
842 struct tcf_proto *tp, unsigned long base, u32 handle,
843 struct nlattr **tca, unsigned long *arg, bool ovr)
844 {
845 struct tc_u_common *tp_c = tp->data;
846 struct tc_u_hnode *ht;
847 struct tc_u_knode *n;
848 struct tc_u32_sel *s;
849 struct nlattr *opt = tca[TCA_OPTIONS];
850 struct nlattr *tb[TCA_U32_MAX + 1];
851 u32 htid, flags = 0;
852 int err;
853 #ifdef CONFIG_CLS_U32_PERF
854 size_t size;
855 #endif
856
857 if (opt == NULL)
858 return handle ? -EINVAL : 0;
859
860 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
861 if (err < 0)
862 return err;
863
864 if (tb[TCA_U32_FLAGS]) {
865 flags = nla_get_u32(tb[TCA_U32_FLAGS]);
866 if (!tc_flags_valid(flags))
867 return -EINVAL;
868 }
869
870 n = (struct tc_u_knode *)*arg;
871 if (n) {
872 struct tc_u_knode *new;
873
874 if (TC_U32_KEY(n->handle) == 0)
875 return -EINVAL;
876
877 if (n->flags != flags)
878 return -EINVAL;
879
880 new = u32_init_knode(tp, n);
881 if (!new)
882 return -ENOMEM;
883
884 err = u32_set_parms(net, tp, base,
885 rtnl_dereference(n->ht_up), new, tb,
886 tca[TCA_RATE], ovr);
887
888 if (err) {
889 u32_destroy_key(tp, new, false);
890 return err;
891 }
892
893 err = u32_replace_hw_knode(tp, new, flags);
894 if (err) {
895 u32_destroy_key(tp, new, false);
896 return err;
897 }
898
899 u32_replace_knode(tp, tp_c, new);
900 tcf_unbind_filter(tp, &n->res);
901 call_rcu(&n->rcu, u32_delete_key_rcu);
902 return 0;
903 }
904
905 if (tb[TCA_U32_DIVISOR]) {
906 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
907
908 if (--divisor > 0x100)
909 return -EINVAL;
910 if (TC_U32_KEY(handle))
911 return -EINVAL;
912 if (handle == 0) {
913 handle = gen_new_htid(tp->data);
914 if (handle == 0)
915 return -ENOMEM;
916 }
917 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
918 if (ht == NULL)
919 return -ENOBUFS;
920 ht->tp_c = tp_c;
921 ht->refcnt = 1;
922 ht->divisor = divisor;
923 ht->handle = handle;
924 ht->prio = tp->prio;
925
926 err = u32_replace_hw_hnode(tp, ht, flags);
927 if (err) {
928 kfree(ht);
929 return err;
930 }
931
932 RCU_INIT_POINTER(ht->next, tp_c->hlist);
933 rcu_assign_pointer(tp_c->hlist, ht);
934 *arg = (unsigned long)ht;
935
936 return 0;
937 }
938
939 if (tb[TCA_U32_HASH]) {
940 htid = nla_get_u32(tb[TCA_U32_HASH]);
941 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
942 ht = rtnl_dereference(tp->root);
943 htid = ht->handle;
944 } else {
945 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
946 if (ht == NULL)
947 return -EINVAL;
948 }
949 } else {
950 ht = rtnl_dereference(tp->root);
951 htid = ht->handle;
952 }
953
954 if (ht->divisor < TC_U32_HASH(htid))
955 return -EINVAL;
956
957 if (handle) {
958 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
959 return -EINVAL;
960 handle = htid | TC_U32_NODE(handle);
961 } else
962 handle = gen_new_kid(ht, htid);
963
964 if (tb[TCA_U32_SEL] == NULL)
965 return -EINVAL;
966
967 s = nla_data(tb[TCA_U32_SEL]);
968
969 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
970 if (n == NULL)
971 return -ENOBUFS;
972
973 #ifdef CONFIG_CLS_U32_PERF
974 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
975 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
976 if (!n->pf) {
977 kfree(n);
978 return -ENOBUFS;
979 }
980 #endif
981
982 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
983 RCU_INIT_POINTER(n->ht_up, ht);
984 n->handle = handle;
985 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
986 n->flags = flags;
987 n->tp = tp;
988
989 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
990 if (err < 0)
991 goto errout;
992
993 #ifdef CONFIG_CLS_U32_MARK
994 n->pcpu_success = alloc_percpu(u32);
995 if (!n->pcpu_success) {
996 err = -ENOMEM;
997 goto errout;
998 }
999
1000 if (tb[TCA_U32_MARK]) {
1001 struct tc_u32_mark *mark;
1002
1003 mark = nla_data(tb[TCA_U32_MARK]);
1004 n->val = mark->val;
1005 n->mask = mark->mask;
1006 }
1007 #endif
1008
1009 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1010 if (err == 0) {
1011 struct tc_u_knode __rcu **ins;
1012 struct tc_u_knode *pins;
1013
1014 err = u32_replace_hw_knode(tp, n, flags);
1015 if (err)
1016 goto errhw;
1017
1018 ins = &ht->ht[TC_U32_HASH(handle)];
1019 for (pins = rtnl_dereference(*ins); pins;
1020 ins = &pins->next, pins = rtnl_dereference(*ins))
1021 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1022 break;
1023
1024 RCU_INIT_POINTER(n->next, pins);
1025 rcu_assign_pointer(*ins, n);
1026 *arg = (unsigned long)n;
1027 return 0;
1028 }
1029
1030 errhw:
1031 #ifdef CONFIG_CLS_U32_MARK
1032 free_percpu(n->pcpu_success);
1033 #endif
1034
1035 errout:
1036 tcf_exts_destroy(&n->exts);
1037 #ifdef CONFIG_CLS_U32_PERF
1038 free_percpu(n->pf);
1039 #endif
1040 kfree(n);
1041 return err;
1042 }
1043
1044 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1045 {
1046 struct tc_u_common *tp_c = tp->data;
1047 struct tc_u_hnode *ht;
1048 struct tc_u_knode *n;
1049 unsigned int h;
1050
1051 if (arg->stop)
1052 return;
1053
1054 for (ht = rtnl_dereference(tp_c->hlist);
1055 ht;
1056 ht = rtnl_dereference(ht->next)) {
1057 if (ht->prio != tp->prio)
1058 continue;
1059 if (arg->count >= arg->skip) {
1060 if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
1061 arg->stop = 1;
1062 return;
1063 }
1064 }
1065 arg->count++;
1066 for (h = 0; h <= ht->divisor; h++) {
1067 for (n = rtnl_dereference(ht->ht[h]);
1068 n;
1069 n = rtnl_dereference(n->next)) {
1070 if (arg->count < arg->skip) {
1071 arg->count++;
1072 continue;
1073 }
1074 if (arg->fn(tp, (unsigned long)n, arg) < 0) {
1075 arg->stop = 1;
1076 return;
1077 }
1078 arg->count++;
1079 }
1080 }
1081 }
1082 }
1083
1084 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
1085 struct sk_buff *skb, struct tcmsg *t)
1086 {
1087 struct tc_u_knode *n = (struct tc_u_knode *)fh;
1088 struct tc_u_hnode *ht_up, *ht_down;
1089 struct nlattr *nest;
1090
1091 if (n == NULL)
1092 return skb->len;
1093
1094 t->tcm_handle = n->handle;
1095
1096 nest = nla_nest_start(skb, TCA_OPTIONS);
1097 if (nest == NULL)
1098 goto nla_put_failure;
1099
1100 if (TC_U32_KEY(n->handle) == 0) {
1101 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
1102 u32 divisor = ht->divisor + 1;
1103
1104 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1105 goto nla_put_failure;
1106 } else {
1107 #ifdef CONFIG_CLS_U32_PERF
1108 struct tc_u32_pcnt *gpf;
1109 int cpu;
1110 #endif
1111
1112 if (nla_put(skb, TCA_U32_SEL,
1113 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1114 &n->sel))
1115 goto nla_put_failure;
1116
1117 ht_up = rtnl_dereference(n->ht_up);
1118 if (ht_up) {
1119 u32 htid = n->handle & 0xFFFFF000;
1120 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1121 goto nla_put_failure;
1122 }
1123 if (n->res.classid &&
1124 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1125 goto nla_put_failure;
1126
1127 ht_down = rtnl_dereference(n->ht_down);
1128 if (ht_down &&
1129 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1130 goto nla_put_failure;
1131
1132 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1133 goto nla_put_failure;
1134
1135 #ifdef CONFIG_CLS_U32_MARK
1136 if ((n->val || n->mask)) {
1137 struct tc_u32_mark mark = {.val = n->val,
1138 .mask = n->mask,
1139 .success = 0};
1140 int cpum;
1141
1142 for_each_possible_cpu(cpum) {
1143 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1144
1145 mark.success += cnt;
1146 }
1147
1148 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1149 goto nla_put_failure;
1150 }
1151 #endif
1152
1153 if (tcf_exts_dump(skb, &n->exts) < 0)
1154 goto nla_put_failure;
1155
1156 #ifdef CONFIG_NET_CLS_IND
1157 if (n->ifindex) {
1158 struct net_device *dev;
1159 dev = __dev_get_by_index(net, n->ifindex);
1160 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1161 goto nla_put_failure;
1162 }
1163 #endif
1164 #ifdef CONFIG_CLS_U32_PERF
1165 gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1166 n->sel.nkeys * sizeof(u64),
1167 GFP_KERNEL);
1168 if (!gpf)
1169 goto nla_put_failure;
1170
1171 for_each_possible_cpu(cpu) {
1172 int i;
1173 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1174
1175 gpf->rcnt += pf->rcnt;
1176 gpf->rhit += pf->rhit;
1177 for (i = 0; i < n->sel.nkeys; i++)
1178 gpf->kcnts[i] += pf->kcnts[i];
1179 }
1180
1181 if (nla_put_64bit(skb, TCA_U32_PCNT,
1182 sizeof(struct tc_u32_pcnt) +
1183 n->sel.nkeys * sizeof(u64),
1184 gpf, TCA_U32_PAD)) {
1185 kfree(gpf);
1186 goto nla_put_failure;
1187 }
1188 kfree(gpf);
1189 #endif
1190 }
1191
1192 nla_nest_end(skb, nest);
1193
1194 if (TC_U32_KEY(n->handle))
1195 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1196 goto nla_put_failure;
1197 return skb->len;
1198
1199 nla_put_failure:
1200 nla_nest_cancel(skb, nest);
1201 return -1;
1202 }
1203
1204 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1205 .kind = "u32",
1206 .classify = u32_classify,
1207 .init = u32_init,
1208 .destroy = u32_destroy,
1209 .get = u32_get,
1210 .change = u32_change,
1211 .delete = u32_delete,
1212 .walk = u32_walk,
1213 .dump = u32_dump,
1214 .owner = THIS_MODULE,
1215 };
1216
1217 static int __init init_u32(void)
1218 {
1219 pr_info("u32 classifier\n");
1220 #ifdef CONFIG_CLS_U32_PERF
1221 pr_info(" Performance counters on\n");
1222 #endif
1223 #ifdef CONFIG_NET_CLS_IND
1224 pr_info(" input device check on\n");
1225 #endif
1226 #ifdef CONFIG_NET_CLS_ACT
1227 pr_info(" Actions configured\n");
1228 #endif
1229 return register_tcf_proto_ops(&cls_u32_ops);
1230 }
1231
1232 static void __exit exit_u32(void)
1233 {
1234 unregister_tcf_proto_ops(&cls_u32_ops);
1235 }
1236
1237 module_init(init_u32)
1238 module_exit(exit_u32)
1239 MODULE_LICENSE("GPL");