]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - net/sched/cls_u32.c
Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / net / sched / cls_u32.c
1 /*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <linux/netdevice.h>
44 #include <linux/hash.h>
45 #include <net/netlink.h>
46 #include <net/act_api.h>
47 #include <net/pkt_cls.h>
48 #include <linux/netdevice.h>
49 #include <linux/idr.h>
50
51 struct tc_u_knode {
52 struct tc_u_knode __rcu *next;
53 u32 handle;
54 struct tc_u_hnode __rcu *ht_up;
55 struct tcf_exts exts;
56 #ifdef CONFIG_NET_CLS_IND
57 int ifindex;
58 #endif
59 u8 fshift;
60 struct tcf_result res;
61 struct tc_u_hnode __rcu *ht_down;
62 #ifdef CONFIG_CLS_U32_PERF
63 struct tc_u32_pcnt __percpu *pf;
64 #endif
65 u32 flags;
66 #ifdef CONFIG_CLS_U32_MARK
67 u32 val;
68 u32 mask;
69 u32 __percpu *pcpu_success;
70 #endif
71 struct tcf_proto *tp;
72 union {
73 struct work_struct work;
74 struct rcu_head rcu;
75 };
76 /* The 'sel' field MUST be the last field in structure to allow for
77 * tc_u32_keys allocated at end of structure.
78 */
79 struct tc_u32_sel sel;
80 };
81
82 struct tc_u_hnode {
83 struct tc_u_hnode __rcu *next;
84 u32 handle;
85 u32 prio;
86 struct tc_u_common *tp_c;
87 int refcnt;
88 unsigned int divisor;
89 struct idr handle_idr;
90 struct rcu_head rcu;
91 /* The 'ht' field MUST be the last field in structure to allow for
92 * more entries allocated at end of structure.
93 */
94 struct tc_u_knode __rcu *ht[1];
95 };
96
97 struct tc_u_common {
98 struct tc_u_hnode __rcu *hlist;
99 struct tcf_block *block;
100 int refcnt;
101 struct idr handle_idr;
102 struct hlist_node hnode;
103 struct rcu_head rcu;
104 };
105
106 static inline unsigned int u32_hash_fold(__be32 key,
107 const struct tc_u32_sel *sel,
108 u8 fshift)
109 {
110 unsigned int h = ntohl(key & sel->hmask) >> fshift;
111
112 return h;
113 }
114
115 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
116 struct tcf_result *res)
117 {
118 struct {
119 struct tc_u_knode *knode;
120 unsigned int off;
121 } stack[TC_U32_MAXDEPTH];
122
123 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
124 unsigned int off = skb_network_offset(skb);
125 struct tc_u_knode *n;
126 int sdepth = 0;
127 int off2 = 0;
128 int sel = 0;
129 #ifdef CONFIG_CLS_U32_PERF
130 int j;
131 #endif
132 int i, r;
133
134 next_ht:
135 n = rcu_dereference_bh(ht->ht[sel]);
136
137 next_knode:
138 if (n) {
139 struct tc_u32_key *key = n->sel.keys;
140
141 #ifdef CONFIG_CLS_U32_PERF
142 __this_cpu_inc(n->pf->rcnt);
143 j = 0;
144 #endif
145
146 if (tc_skip_sw(n->flags)) {
147 n = rcu_dereference_bh(n->next);
148 goto next_knode;
149 }
150
151 #ifdef CONFIG_CLS_U32_MARK
152 if ((skb->mark & n->mask) != n->val) {
153 n = rcu_dereference_bh(n->next);
154 goto next_knode;
155 } else {
156 __this_cpu_inc(*n->pcpu_success);
157 }
158 #endif
159
160 for (i = n->sel.nkeys; i > 0; i--, key++) {
161 int toff = off + key->off + (off2 & key->offmask);
162 __be32 *data, hdata;
163
164 if (skb_headroom(skb) + toff > INT_MAX)
165 goto out;
166
167 data = skb_header_pointer(skb, toff, 4, &hdata);
168 if (!data)
169 goto out;
170 if ((*data ^ key->val) & key->mask) {
171 n = rcu_dereference_bh(n->next);
172 goto next_knode;
173 }
174 #ifdef CONFIG_CLS_U32_PERF
175 __this_cpu_inc(n->pf->kcnts[j]);
176 j++;
177 #endif
178 }
179
180 ht = rcu_dereference_bh(n->ht_down);
181 if (!ht) {
182 check_terminal:
183 if (n->sel.flags & TC_U32_TERMINAL) {
184
185 *res = n->res;
186 #ifdef CONFIG_NET_CLS_IND
187 if (!tcf_match_indev(skb, n->ifindex)) {
188 n = rcu_dereference_bh(n->next);
189 goto next_knode;
190 }
191 #endif
192 #ifdef CONFIG_CLS_U32_PERF
193 __this_cpu_inc(n->pf->rhit);
194 #endif
195 r = tcf_exts_exec(skb, &n->exts, res);
196 if (r < 0) {
197 n = rcu_dereference_bh(n->next);
198 goto next_knode;
199 }
200
201 return r;
202 }
203 n = rcu_dereference_bh(n->next);
204 goto next_knode;
205 }
206
207 /* PUSH */
208 if (sdepth >= TC_U32_MAXDEPTH)
209 goto deadloop;
210 stack[sdepth].knode = n;
211 stack[sdepth].off = off;
212 sdepth++;
213
214 ht = rcu_dereference_bh(n->ht_down);
215 sel = 0;
216 if (ht->divisor) {
217 __be32 *data, hdata;
218
219 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
220 &hdata);
221 if (!data)
222 goto out;
223 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
224 n->fshift);
225 }
226 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
227 goto next_ht;
228
229 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
230 off2 = n->sel.off + 3;
231 if (n->sel.flags & TC_U32_VAROFFSET) {
232 __be16 *data, hdata;
233
234 data = skb_header_pointer(skb,
235 off + n->sel.offoff,
236 2, &hdata);
237 if (!data)
238 goto out;
239 off2 += ntohs(n->sel.offmask & *data) >>
240 n->sel.offshift;
241 }
242 off2 &= ~3;
243 }
244 if (n->sel.flags & TC_U32_EAT) {
245 off += off2;
246 off2 = 0;
247 }
248
249 if (off < skb->len)
250 goto next_ht;
251 }
252
253 /* POP */
254 if (sdepth--) {
255 n = stack[sdepth].knode;
256 ht = rcu_dereference_bh(n->ht_up);
257 off = stack[sdepth].off;
258 goto check_terminal;
259 }
260 out:
261 return -1;
262
263 deadloop:
264 net_warn_ratelimited("cls_u32: dead loop\n");
265 return -1;
266 }
267
268 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
269 {
270 struct tc_u_hnode *ht;
271
272 for (ht = rtnl_dereference(tp_c->hlist);
273 ht;
274 ht = rtnl_dereference(ht->next))
275 if (ht->handle == handle)
276 break;
277
278 return ht;
279 }
280
281 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
282 {
283 unsigned int sel;
284 struct tc_u_knode *n = NULL;
285
286 sel = TC_U32_HASH(handle);
287 if (sel > ht->divisor)
288 goto out;
289
290 for (n = rtnl_dereference(ht->ht[sel]);
291 n;
292 n = rtnl_dereference(n->next))
293 if (n->handle == handle)
294 break;
295 out:
296 return n;
297 }
298
299
300 static void *u32_get(struct tcf_proto *tp, u32 handle)
301 {
302 struct tc_u_hnode *ht;
303 struct tc_u_common *tp_c = tp->data;
304
305 if (TC_U32_HTID(handle) == TC_U32_ROOT)
306 ht = rtnl_dereference(tp->root);
307 else
308 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
309
310 if (!ht)
311 return NULL;
312
313 if (TC_U32_KEY(handle) == 0)
314 return ht;
315
316 return u32_lookup_key(ht, handle);
317 }
318
319 static u32 gen_new_htid(struct tc_u_common *tp_c, struct tc_u_hnode *ptr)
320 {
321 unsigned long idr_index;
322 int err;
323
324 /* This is only used inside rtnl lock it is safe to increment
325 * without read _copy_ update semantics
326 */
327 err = idr_alloc_ext(&tp_c->handle_idr, ptr, &idr_index,
328 1, 0x7FF, GFP_KERNEL);
329 if (err)
330 return 0;
331 return (u32)(idr_index | 0x800) << 20;
332 }
333
334 static struct hlist_head *tc_u_common_hash;
335
336 #define U32_HASH_SHIFT 10
337 #define U32_HASH_SIZE (1 << U32_HASH_SHIFT)
338
339 static unsigned int tc_u_hash(const struct tcf_proto *tp)
340 {
341 return hash_ptr(tp->chain->block, U32_HASH_SHIFT);
342 }
343
344 static struct tc_u_common *tc_u_common_find(const struct tcf_proto *tp)
345 {
346 struct tc_u_common *tc;
347 unsigned int h;
348
349 h = tc_u_hash(tp);
350 hlist_for_each_entry(tc, &tc_u_common_hash[h], hnode) {
351 if (tc->block == tp->chain->block)
352 return tc;
353 }
354 return NULL;
355 }
356
357 static int u32_init(struct tcf_proto *tp)
358 {
359 struct tc_u_hnode *root_ht;
360 struct tc_u_common *tp_c;
361 unsigned int h;
362
363 tp_c = tc_u_common_find(tp);
364
365 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
366 if (root_ht == NULL)
367 return -ENOBUFS;
368
369 root_ht->refcnt++;
370 root_ht->handle = tp_c ? gen_new_htid(tp_c, root_ht) : 0x80000000;
371 root_ht->prio = tp->prio;
372 idr_init(&root_ht->handle_idr);
373
374 if (tp_c == NULL) {
375 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
376 if (tp_c == NULL) {
377 kfree(root_ht);
378 return -ENOBUFS;
379 }
380 tp_c->block = tp->chain->block;
381 INIT_HLIST_NODE(&tp_c->hnode);
382 idr_init(&tp_c->handle_idr);
383
384 h = tc_u_hash(tp);
385 hlist_add_head(&tp_c->hnode, &tc_u_common_hash[h]);
386 }
387
388 tp_c->refcnt++;
389 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
390 rcu_assign_pointer(tp_c->hlist, root_ht);
391 root_ht->tp_c = tp_c;
392
393 rcu_assign_pointer(tp->root, root_ht);
394 tp->data = tp_c;
395 return 0;
396 }
397
398 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
399 bool free_pf)
400 {
401 tcf_exts_destroy(&n->exts);
402 tcf_exts_put_net(&n->exts);
403 if (n->ht_down)
404 n->ht_down->refcnt--;
405 #ifdef CONFIG_CLS_U32_PERF
406 if (free_pf)
407 free_percpu(n->pf);
408 #endif
409 #ifdef CONFIG_CLS_U32_MARK
410 if (free_pf)
411 free_percpu(n->pcpu_success);
412 #endif
413 kfree(n);
414 return 0;
415 }
416
417 /* u32_delete_key_rcu should be called when free'ing a copied
418 * version of a tc_u_knode obtained from u32_init_knode(). When
419 * copies are obtained from u32_init_knode() the statistics are
420 * shared between the old and new copies to allow readers to
421 * continue to update the statistics during the copy. To support
422 * this the u32_delete_key_rcu variant does not free the percpu
423 * statistics.
424 */
425 static void u32_delete_key_work(struct work_struct *work)
426 {
427 struct tc_u_knode *key = container_of(work, struct tc_u_knode, work);
428
429 rtnl_lock();
430 u32_destroy_key(key->tp, key, false);
431 rtnl_unlock();
432 }
433
434 static void u32_delete_key_rcu(struct rcu_head *rcu)
435 {
436 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
437
438 INIT_WORK(&key->work, u32_delete_key_work);
439 tcf_queue_work(&key->work);
440 }
441
442 /* u32_delete_key_freepf_rcu is the rcu callback variant
443 * that free's the entire structure including the statistics
444 * percpu variables. Only use this if the key is not a copy
445 * returned by u32_init_knode(). See u32_delete_key_rcu()
446 * for the variant that should be used with keys return from
447 * u32_init_knode()
448 */
449 static void u32_delete_key_freepf_work(struct work_struct *work)
450 {
451 struct tc_u_knode *key = container_of(work, struct tc_u_knode, work);
452
453 rtnl_lock();
454 u32_destroy_key(key->tp, key, true);
455 rtnl_unlock();
456 }
457
458 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
459 {
460 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
461
462 INIT_WORK(&key->work, u32_delete_key_freepf_work);
463 tcf_queue_work(&key->work);
464 }
465
466 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
467 {
468 struct tc_u_knode __rcu **kp;
469 struct tc_u_knode *pkp;
470 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
471
472 if (ht) {
473 kp = &ht->ht[TC_U32_HASH(key->handle)];
474 for (pkp = rtnl_dereference(*kp); pkp;
475 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
476 if (pkp == key) {
477 RCU_INIT_POINTER(*kp, key->next);
478
479 tcf_unbind_filter(tp, &key->res);
480 tcf_exts_get_net(&key->exts);
481 call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
482 return 0;
483 }
484 }
485 }
486 WARN_ON(1);
487 return 0;
488 }
489
490 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
491 {
492 struct tcf_block *block = tp->chain->block;
493 struct tc_cls_u32_offload cls_u32 = {};
494
495 tc_cls_common_offload_init(&cls_u32.common, tp);
496 cls_u32.command = TC_CLSU32_DELETE_HNODE;
497 cls_u32.hnode.divisor = h->divisor;
498 cls_u32.hnode.handle = h->handle;
499 cls_u32.hnode.prio = h->prio;
500
501 tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, false);
502 }
503
504 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
505 u32 flags)
506 {
507 struct tcf_block *block = tp->chain->block;
508 struct tc_cls_u32_offload cls_u32 = {};
509 bool skip_sw = tc_skip_sw(flags);
510 bool offloaded = false;
511 int err;
512
513 tc_cls_common_offload_init(&cls_u32.common, tp);
514 cls_u32.command = TC_CLSU32_NEW_HNODE;
515 cls_u32.hnode.divisor = h->divisor;
516 cls_u32.hnode.handle = h->handle;
517 cls_u32.hnode.prio = h->prio;
518
519 err = tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, skip_sw);
520 if (err < 0) {
521 u32_clear_hw_hnode(tp, h);
522 return err;
523 } else if (err > 0) {
524 offloaded = true;
525 }
526
527 if (skip_sw && !offloaded)
528 return -EINVAL;
529
530 return 0;
531 }
532
533 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
534 {
535 struct tcf_block *block = tp->chain->block;
536 struct tc_cls_u32_offload cls_u32 = {};
537
538 tc_cls_common_offload_init(&cls_u32.common, tp);
539 cls_u32.command = TC_CLSU32_DELETE_KNODE;
540 cls_u32.knode.handle = handle;
541
542 tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, false);
543 }
544
545 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
546 u32 flags)
547 {
548 struct tcf_block *block = tp->chain->block;
549 struct tc_cls_u32_offload cls_u32 = {};
550 bool skip_sw = tc_skip_sw(flags);
551 int err;
552
553 tc_cls_common_offload_init(&cls_u32.common, tp);
554 cls_u32.command = TC_CLSU32_REPLACE_KNODE;
555 cls_u32.knode.handle = n->handle;
556 cls_u32.knode.fshift = n->fshift;
557 #ifdef CONFIG_CLS_U32_MARK
558 cls_u32.knode.val = n->val;
559 cls_u32.knode.mask = n->mask;
560 #else
561 cls_u32.knode.val = 0;
562 cls_u32.knode.mask = 0;
563 #endif
564 cls_u32.knode.sel = &n->sel;
565 cls_u32.knode.exts = &n->exts;
566 if (n->ht_down)
567 cls_u32.knode.link_handle = n->ht_down->handle;
568
569 err = tc_setup_cb_call(block, NULL, TC_SETUP_CLSU32, &cls_u32, skip_sw);
570 if (err < 0) {
571 u32_remove_hw_knode(tp, n->handle);
572 return err;
573 } else if (err > 0) {
574 n->flags |= TCA_CLS_FLAGS_IN_HW;
575 }
576
577 if (skip_sw && !(n->flags & TCA_CLS_FLAGS_IN_HW))
578 return -EINVAL;
579
580 return 0;
581 }
582
583 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
584 {
585 struct tc_u_knode *n;
586 unsigned int h;
587
588 for (h = 0; h <= ht->divisor; h++) {
589 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
590 RCU_INIT_POINTER(ht->ht[h],
591 rtnl_dereference(n->next));
592 tcf_unbind_filter(tp, &n->res);
593 u32_remove_hw_knode(tp, n->handle);
594 idr_remove_ext(&ht->handle_idr, n->handle);
595 if (tcf_exts_get_net(&n->exts))
596 call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
597 else
598 u32_destroy_key(n->tp, n, true);
599 }
600 }
601 }
602
603 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
604 {
605 struct tc_u_common *tp_c = tp->data;
606 struct tc_u_hnode __rcu **hn;
607 struct tc_u_hnode *phn;
608
609 WARN_ON(ht->refcnt);
610
611 u32_clear_hnode(tp, ht);
612
613 hn = &tp_c->hlist;
614 for (phn = rtnl_dereference(*hn);
615 phn;
616 hn = &phn->next, phn = rtnl_dereference(*hn)) {
617 if (phn == ht) {
618 u32_clear_hw_hnode(tp, ht);
619 idr_destroy(&ht->handle_idr);
620 idr_remove_ext(&tp_c->handle_idr, ht->handle);
621 RCU_INIT_POINTER(*hn, ht->next);
622 kfree_rcu(ht, rcu);
623 return 0;
624 }
625 }
626
627 return -ENOENT;
628 }
629
630 static bool ht_empty(struct tc_u_hnode *ht)
631 {
632 unsigned int h;
633
634 for (h = 0; h <= ht->divisor; h++)
635 if (rcu_access_pointer(ht->ht[h]))
636 return false;
637
638 return true;
639 }
640
641 static void u32_destroy(struct tcf_proto *tp)
642 {
643 struct tc_u_common *tp_c = tp->data;
644 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
645
646 WARN_ON(root_ht == NULL);
647
648 if (root_ht && --root_ht->refcnt == 0)
649 u32_destroy_hnode(tp, root_ht);
650
651 if (--tp_c->refcnt == 0) {
652 struct tc_u_hnode *ht;
653
654 hlist_del(&tp_c->hnode);
655
656 for (ht = rtnl_dereference(tp_c->hlist);
657 ht;
658 ht = rtnl_dereference(ht->next)) {
659 ht->refcnt--;
660 u32_clear_hnode(tp, ht);
661 }
662
663 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
664 RCU_INIT_POINTER(tp_c->hlist, ht->next);
665 kfree_rcu(ht, rcu);
666 }
667
668 idr_destroy(&tp_c->handle_idr);
669 kfree(tp_c);
670 }
671
672 tp->data = NULL;
673 }
674
675 static int u32_delete(struct tcf_proto *tp, void *arg, bool *last)
676 {
677 struct tc_u_hnode *ht = arg;
678 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
679 struct tc_u_common *tp_c = tp->data;
680 int ret = 0;
681
682 if (ht == NULL)
683 goto out;
684
685 if (TC_U32_KEY(ht->handle)) {
686 u32_remove_hw_knode(tp, ht->handle);
687 ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
688 goto out;
689 }
690
691 if (root_ht == ht)
692 return -EINVAL;
693
694 if (ht->refcnt == 1) {
695 ht->refcnt--;
696 u32_destroy_hnode(tp, ht);
697 } else {
698 return -EBUSY;
699 }
700
701 out:
702 *last = true;
703 if (root_ht) {
704 if (root_ht->refcnt > 1) {
705 *last = false;
706 goto ret;
707 }
708 if (root_ht->refcnt == 1) {
709 if (!ht_empty(root_ht)) {
710 *last = false;
711 goto ret;
712 }
713 }
714 }
715
716 if (tp_c->refcnt > 1) {
717 *last = false;
718 goto ret;
719 }
720
721 if (tp_c->refcnt == 1) {
722 struct tc_u_hnode *ht;
723
724 for (ht = rtnl_dereference(tp_c->hlist);
725 ht;
726 ht = rtnl_dereference(ht->next))
727 if (!ht_empty(ht)) {
728 *last = false;
729 break;
730 }
731 }
732
733 ret:
734 return ret;
735 }
736
737 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 htid)
738 {
739 unsigned long idr_index;
740 u32 start = htid | 0x800;
741 u32 max = htid | 0xFFF;
742 u32 min = htid;
743
744 if (idr_alloc_ext(&ht->handle_idr, NULL, &idr_index,
745 start, max + 1, GFP_KERNEL)) {
746 if (idr_alloc_ext(&ht->handle_idr, NULL, &idr_index,
747 min + 1, max + 1, GFP_KERNEL))
748 return max;
749 }
750
751 return (u32)idr_index;
752 }
753
754 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
755 [TCA_U32_CLASSID] = { .type = NLA_U32 },
756 [TCA_U32_HASH] = { .type = NLA_U32 },
757 [TCA_U32_LINK] = { .type = NLA_U32 },
758 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
759 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
760 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
761 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
762 [TCA_U32_FLAGS] = { .type = NLA_U32 },
763 };
764
765 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
766 unsigned long base, struct tc_u_hnode *ht,
767 struct tc_u_knode *n, struct nlattr **tb,
768 struct nlattr *est, bool ovr)
769 {
770 int err;
771
772 err = tcf_exts_validate(net, tp, tb, est, &n->exts, ovr);
773 if (err < 0)
774 return err;
775
776 if (tb[TCA_U32_LINK]) {
777 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
778 struct tc_u_hnode *ht_down = NULL, *ht_old;
779
780 if (TC_U32_KEY(handle))
781 return -EINVAL;
782
783 if (handle) {
784 ht_down = u32_lookup_ht(ht->tp_c, handle);
785
786 if (ht_down == NULL)
787 return -EINVAL;
788 ht_down->refcnt++;
789 }
790
791 ht_old = rtnl_dereference(n->ht_down);
792 rcu_assign_pointer(n->ht_down, ht_down);
793
794 if (ht_old)
795 ht_old->refcnt--;
796 }
797 if (tb[TCA_U32_CLASSID]) {
798 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
799 tcf_bind_filter(tp, &n->res, base);
800 }
801
802 #ifdef CONFIG_NET_CLS_IND
803 if (tb[TCA_U32_INDEV]) {
804 int ret;
805 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
806 if (ret < 0)
807 return -EINVAL;
808 n->ifindex = ret;
809 }
810 #endif
811 return 0;
812 }
813
814 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
815 struct tc_u_knode *n)
816 {
817 struct tc_u_knode __rcu **ins;
818 struct tc_u_knode *pins;
819 struct tc_u_hnode *ht;
820
821 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
822 ht = rtnl_dereference(tp->root);
823 else
824 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
825
826 ins = &ht->ht[TC_U32_HASH(n->handle)];
827
828 /* The node must always exist for it to be replaced if this is not the
829 * case then something went very wrong elsewhere.
830 */
831 for (pins = rtnl_dereference(*ins); ;
832 ins = &pins->next, pins = rtnl_dereference(*ins))
833 if (pins->handle == n->handle)
834 break;
835
836 idr_replace_ext(&ht->handle_idr, n, n->handle);
837 RCU_INIT_POINTER(n->next, pins->next);
838 rcu_assign_pointer(*ins, n);
839 }
840
841 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
842 struct tc_u_knode *n)
843 {
844 struct tc_u_knode *new;
845 struct tc_u32_sel *s = &n->sel;
846
847 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
848 GFP_KERNEL);
849
850 if (!new)
851 return NULL;
852
853 RCU_INIT_POINTER(new->next, n->next);
854 new->handle = n->handle;
855 RCU_INIT_POINTER(new->ht_up, n->ht_up);
856
857 #ifdef CONFIG_NET_CLS_IND
858 new->ifindex = n->ifindex;
859 #endif
860 new->fshift = n->fshift;
861 new->res = n->res;
862 new->flags = n->flags;
863 RCU_INIT_POINTER(new->ht_down, n->ht_down);
864
865 /* bump reference count as long as we hold pointer to structure */
866 if (new->ht_down)
867 new->ht_down->refcnt++;
868
869 #ifdef CONFIG_CLS_U32_PERF
870 /* Statistics may be incremented by readers during update
871 * so we must keep them in tact. When the node is later destroyed
872 * a special destroy call must be made to not free the pf memory.
873 */
874 new->pf = n->pf;
875 #endif
876
877 #ifdef CONFIG_CLS_U32_MARK
878 new->val = n->val;
879 new->mask = n->mask;
880 /* Similarly success statistics must be moved as pointers */
881 new->pcpu_success = n->pcpu_success;
882 #endif
883 new->tp = tp;
884 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
885
886 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
887 kfree(new);
888 return NULL;
889 }
890
891 return new;
892 }
893
894 static int u32_change(struct net *net, struct sk_buff *in_skb,
895 struct tcf_proto *tp, unsigned long base, u32 handle,
896 struct nlattr **tca, void **arg, bool ovr)
897 {
898 struct tc_u_common *tp_c = tp->data;
899 struct tc_u_hnode *ht;
900 struct tc_u_knode *n;
901 struct tc_u32_sel *s;
902 struct nlattr *opt = tca[TCA_OPTIONS];
903 struct nlattr *tb[TCA_U32_MAX + 1];
904 u32 htid, flags = 0;
905 int err;
906 #ifdef CONFIG_CLS_U32_PERF
907 size_t size;
908 #endif
909
910 if (opt == NULL)
911 return handle ? -EINVAL : 0;
912
913 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL);
914 if (err < 0)
915 return err;
916
917 if (tb[TCA_U32_FLAGS]) {
918 flags = nla_get_u32(tb[TCA_U32_FLAGS]);
919 if (!tc_flags_valid(flags))
920 return -EINVAL;
921 }
922
923 n = *arg;
924 if (n) {
925 struct tc_u_knode *new;
926
927 if (TC_U32_KEY(n->handle) == 0)
928 return -EINVAL;
929
930 if (n->flags != flags)
931 return -EINVAL;
932
933 new = u32_init_knode(tp, n);
934 if (!new)
935 return -ENOMEM;
936
937 err = u32_set_parms(net, tp, base,
938 rtnl_dereference(n->ht_up), new, tb,
939 tca[TCA_RATE], ovr);
940
941 if (err) {
942 u32_destroy_key(tp, new, false);
943 return err;
944 }
945
946 err = u32_replace_hw_knode(tp, new, flags);
947 if (err) {
948 u32_destroy_key(tp, new, false);
949 return err;
950 }
951
952 if (!tc_in_hw(new->flags))
953 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
954
955 u32_replace_knode(tp, tp_c, new);
956 tcf_unbind_filter(tp, &n->res);
957 tcf_exts_get_net(&n->exts);
958 call_rcu(&n->rcu, u32_delete_key_rcu);
959 return 0;
960 }
961
962 if (tb[TCA_U32_DIVISOR]) {
963 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
964
965 if (--divisor > 0x100)
966 return -EINVAL;
967 if (TC_U32_KEY(handle))
968 return -EINVAL;
969 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
970 if (ht == NULL)
971 return -ENOBUFS;
972 if (handle == 0) {
973 handle = gen_new_htid(tp->data, ht);
974 if (handle == 0) {
975 kfree(ht);
976 return -ENOMEM;
977 }
978 } else {
979 err = idr_alloc_ext(&tp_c->handle_idr, ht, NULL,
980 handle, handle + 1, GFP_KERNEL);
981 if (err) {
982 kfree(ht);
983 return err;
984 }
985 }
986 ht->tp_c = tp_c;
987 ht->refcnt = 1;
988 ht->divisor = divisor;
989 ht->handle = handle;
990 ht->prio = tp->prio;
991 idr_init(&ht->handle_idr);
992
993 err = u32_replace_hw_hnode(tp, ht, flags);
994 if (err) {
995 idr_remove_ext(&tp_c->handle_idr, handle);
996 kfree(ht);
997 return err;
998 }
999
1000 RCU_INIT_POINTER(ht->next, tp_c->hlist);
1001 rcu_assign_pointer(tp_c->hlist, ht);
1002 *arg = ht;
1003
1004 return 0;
1005 }
1006
1007 if (tb[TCA_U32_HASH]) {
1008 htid = nla_get_u32(tb[TCA_U32_HASH]);
1009 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
1010 ht = rtnl_dereference(tp->root);
1011 htid = ht->handle;
1012 } else {
1013 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
1014 if (ht == NULL)
1015 return -EINVAL;
1016 }
1017 } else {
1018 ht = rtnl_dereference(tp->root);
1019 htid = ht->handle;
1020 }
1021
1022 if (ht->divisor < TC_U32_HASH(htid))
1023 return -EINVAL;
1024
1025 if (handle) {
1026 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
1027 return -EINVAL;
1028 handle = htid | TC_U32_NODE(handle);
1029 err = idr_alloc_ext(&ht->handle_idr, NULL, NULL,
1030 handle, handle + 1,
1031 GFP_KERNEL);
1032 if (err)
1033 return err;
1034 } else
1035 handle = gen_new_kid(ht, htid);
1036
1037 if (tb[TCA_U32_SEL] == NULL) {
1038 err = -EINVAL;
1039 goto erridr;
1040 }
1041
1042 s = nla_data(tb[TCA_U32_SEL]);
1043
1044 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
1045 if (n == NULL) {
1046 err = -ENOBUFS;
1047 goto erridr;
1048 }
1049
1050 #ifdef CONFIG_CLS_U32_PERF
1051 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
1052 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
1053 if (!n->pf) {
1054 err = -ENOBUFS;
1055 goto errfree;
1056 }
1057 #endif
1058
1059 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
1060 RCU_INIT_POINTER(n->ht_up, ht);
1061 n->handle = handle;
1062 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1063 n->flags = flags;
1064 n->tp = tp;
1065
1066 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
1067 if (err < 0)
1068 goto errout;
1069
1070 #ifdef CONFIG_CLS_U32_MARK
1071 n->pcpu_success = alloc_percpu(u32);
1072 if (!n->pcpu_success) {
1073 err = -ENOMEM;
1074 goto errout;
1075 }
1076
1077 if (tb[TCA_U32_MARK]) {
1078 struct tc_u32_mark *mark;
1079
1080 mark = nla_data(tb[TCA_U32_MARK]);
1081 n->val = mark->val;
1082 n->mask = mark->mask;
1083 }
1084 #endif
1085
1086 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1087 if (err == 0) {
1088 struct tc_u_knode __rcu **ins;
1089 struct tc_u_knode *pins;
1090
1091 err = u32_replace_hw_knode(tp, n, flags);
1092 if (err)
1093 goto errhw;
1094
1095 if (!tc_in_hw(n->flags))
1096 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1097
1098 ins = &ht->ht[TC_U32_HASH(handle)];
1099 for (pins = rtnl_dereference(*ins); pins;
1100 ins = &pins->next, pins = rtnl_dereference(*ins))
1101 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1102 break;
1103
1104 RCU_INIT_POINTER(n->next, pins);
1105 rcu_assign_pointer(*ins, n);
1106 *arg = n;
1107 return 0;
1108 }
1109
1110 errhw:
1111 #ifdef CONFIG_CLS_U32_MARK
1112 free_percpu(n->pcpu_success);
1113 #endif
1114
1115 errout:
1116 tcf_exts_destroy(&n->exts);
1117 #ifdef CONFIG_CLS_U32_PERF
1118 errfree:
1119 free_percpu(n->pf);
1120 #endif
1121 kfree(n);
1122 erridr:
1123 idr_remove_ext(&ht->handle_idr, handle);
1124 return err;
1125 }
1126
1127 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1128 {
1129 struct tc_u_common *tp_c = tp->data;
1130 struct tc_u_hnode *ht;
1131 struct tc_u_knode *n;
1132 unsigned int h;
1133
1134 if (arg->stop)
1135 return;
1136
1137 for (ht = rtnl_dereference(tp_c->hlist);
1138 ht;
1139 ht = rtnl_dereference(ht->next)) {
1140 if (ht->prio != tp->prio)
1141 continue;
1142 if (arg->count >= arg->skip) {
1143 if (arg->fn(tp, ht, arg) < 0) {
1144 arg->stop = 1;
1145 return;
1146 }
1147 }
1148 arg->count++;
1149 for (h = 0; h <= ht->divisor; h++) {
1150 for (n = rtnl_dereference(ht->ht[h]);
1151 n;
1152 n = rtnl_dereference(n->next)) {
1153 if (arg->count < arg->skip) {
1154 arg->count++;
1155 continue;
1156 }
1157 if (arg->fn(tp, n, arg) < 0) {
1158 arg->stop = 1;
1159 return;
1160 }
1161 arg->count++;
1162 }
1163 }
1164 }
1165 }
1166
1167 static void u32_bind_class(void *fh, u32 classid, unsigned long cl)
1168 {
1169 struct tc_u_knode *n = fh;
1170
1171 if (n && n->res.classid == classid)
1172 n->res.class = cl;
1173 }
1174
1175 static int u32_dump(struct net *net, struct tcf_proto *tp, void *fh,
1176 struct sk_buff *skb, struct tcmsg *t)
1177 {
1178 struct tc_u_knode *n = fh;
1179 struct tc_u_hnode *ht_up, *ht_down;
1180 struct nlattr *nest;
1181
1182 if (n == NULL)
1183 return skb->len;
1184
1185 t->tcm_handle = n->handle;
1186
1187 nest = nla_nest_start(skb, TCA_OPTIONS);
1188 if (nest == NULL)
1189 goto nla_put_failure;
1190
1191 if (TC_U32_KEY(n->handle) == 0) {
1192 struct tc_u_hnode *ht = fh;
1193 u32 divisor = ht->divisor + 1;
1194
1195 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1196 goto nla_put_failure;
1197 } else {
1198 #ifdef CONFIG_CLS_U32_PERF
1199 struct tc_u32_pcnt *gpf;
1200 int cpu;
1201 #endif
1202
1203 if (nla_put(skb, TCA_U32_SEL,
1204 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1205 &n->sel))
1206 goto nla_put_failure;
1207
1208 ht_up = rtnl_dereference(n->ht_up);
1209 if (ht_up) {
1210 u32 htid = n->handle & 0xFFFFF000;
1211 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1212 goto nla_put_failure;
1213 }
1214 if (n->res.classid &&
1215 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1216 goto nla_put_failure;
1217
1218 ht_down = rtnl_dereference(n->ht_down);
1219 if (ht_down &&
1220 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1221 goto nla_put_failure;
1222
1223 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1224 goto nla_put_failure;
1225
1226 #ifdef CONFIG_CLS_U32_MARK
1227 if ((n->val || n->mask)) {
1228 struct tc_u32_mark mark = {.val = n->val,
1229 .mask = n->mask,
1230 .success = 0};
1231 int cpum;
1232
1233 for_each_possible_cpu(cpum) {
1234 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1235
1236 mark.success += cnt;
1237 }
1238
1239 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1240 goto nla_put_failure;
1241 }
1242 #endif
1243
1244 if (tcf_exts_dump(skb, &n->exts) < 0)
1245 goto nla_put_failure;
1246
1247 #ifdef CONFIG_NET_CLS_IND
1248 if (n->ifindex) {
1249 struct net_device *dev;
1250 dev = __dev_get_by_index(net, n->ifindex);
1251 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1252 goto nla_put_failure;
1253 }
1254 #endif
1255 #ifdef CONFIG_CLS_U32_PERF
1256 gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1257 n->sel.nkeys * sizeof(u64),
1258 GFP_KERNEL);
1259 if (!gpf)
1260 goto nla_put_failure;
1261
1262 for_each_possible_cpu(cpu) {
1263 int i;
1264 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1265
1266 gpf->rcnt += pf->rcnt;
1267 gpf->rhit += pf->rhit;
1268 for (i = 0; i < n->sel.nkeys; i++)
1269 gpf->kcnts[i] += pf->kcnts[i];
1270 }
1271
1272 if (nla_put_64bit(skb, TCA_U32_PCNT,
1273 sizeof(struct tc_u32_pcnt) +
1274 n->sel.nkeys * sizeof(u64),
1275 gpf, TCA_U32_PAD)) {
1276 kfree(gpf);
1277 goto nla_put_failure;
1278 }
1279 kfree(gpf);
1280 #endif
1281 }
1282
1283 nla_nest_end(skb, nest);
1284
1285 if (TC_U32_KEY(n->handle))
1286 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1287 goto nla_put_failure;
1288 return skb->len;
1289
1290 nla_put_failure:
1291 nla_nest_cancel(skb, nest);
1292 return -1;
1293 }
1294
1295 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1296 .kind = "u32",
1297 .classify = u32_classify,
1298 .init = u32_init,
1299 .destroy = u32_destroy,
1300 .get = u32_get,
1301 .change = u32_change,
1302 .delete = u32_delete,
1303 .walk = u32_walk,
1304 .dump = u32_dump,
1305 .bind_class = u32_bind_class,
1306 .owner = THIS_MODULE,
1307 };
1308
1309 static int __init init_u32(void)
1310 {
1311 int i, ret;
1312
1313 pr_info("u32 classifier\n");
1314 #ifdef CONFIG_CLS_U32_PERF
1315 pr_info(" Performance counters on\n");
1316 #endif
1317 #ifdef CONFIG_NET_CLS_IND
1318 pr_info(" input device check on\n");
1319 #endif
1320 #ifdef CONFIG_NET_CLS_ACT
1321 pr_info(" Actions configured\n");
1322 #endif
1323 tc_u_common_hash = kvmalloc_array(U32_HASH_SIZE,
1324 sizeof(struct hlist_head),
1325 GFP_KERNEL);
1326 if (!tc_u_common_hash)
1327 return -ENOMEM;
1328
1329 for (i = 0; i < U32_HASH_SIZE; i++)
1330 INIT_HLIST_HEAD(&tc_u_common_hash[i]);
1331
1332 ret = register_tcf_proto_ops(&cls_u32_ops);
1333 if (ret)
1334 kvfree(tc_u_common_hash);
1335 return ret;
1336 }
1337
1338 static void __exit exit_u32(void)
1339 {
1340 unregister_tcf_proto_ops(&cls_u32_ops);
1341 kvfree(tc_u_common_hash);
1342 }
1343
1344 module_init(init_u32)
1345 module_exit(exit_u32)
1346 MODULE_LICENSE("GPL");