]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - net/sched/cls_u32.c
Merge branch 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-artful-kernel.git] / net / sched / cls_u32.c
1 /*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <net/netlink.h>
44 #include <net/act_api.h>
45 #include <net/pkt_cls.h>
46 #include <linux/netdevice.h>
47
48 struct tc_u_knode {
49 struct tc_u_knode __rcu *next;
50 u32 handle;
51 struct tc_u_hnode __rcu *ht_up;
52 struct tcf_exts exts;
53 #ifdef CONFIG_NET_CLS_IND
54 int ifindex;
55 #endif
56 u8 fshift;
57 struct tcf_result res;
58 struct tc_u_hnode __rcu *ht_down;
59 #ifdef CONFIG_CLS_U32_PERF
60 struct tc_u32_pcnt __percpu *pf;
61 #endif
62 u32 flags;
63 #ifdef CONFIG_CLS_U32_MARK
64 u32 val;
65 u32 mask;
66 u32 __percpu *pcpu_success;
67 #endif
68 struct tcf_proto *tp;
69 struct rcu_head rcu;
70 /* The 'sel' field MUST be the last field in structure to allow for
71 * tc_u32_keys allocated at end of structure.
72 */
73 struct tc_u32_sel sel;
74 };
75
76 struct tc_u_hnode {
77 struct tc_u_hnode __rcu *next;
78 u32 handle;
79 u32 prio;
80 struct tc_u_common *tp_c;
81 int refcnt;
82 unsigned int divisor;
83 struct rcu_head rcu;
84 /* The 'ht' field MUST be the last field in structure to allow for
85 * more entries allocated at end of structure.
86 */
87 struct tc_u_knode __rcu *ht[1];
88 };
89
90 struct tc_u_common {
91 struct tc_u_hnode __rcu *hlist;
92 struct Qdisc *q;
93 int refcnt;
94 u32 hgenerator;
95 struct rcu_head rcu;
96 };
97
98 static inline unsigned int u32_hash_fold(__be32 key,
99 const struct tc_u32_sel *sel,
100 u8 fshift)
101 {
102 unsigned int h = ntohl(key & sel->hmask) >> fshift;
103
104 return h;
105 }
106
107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
108 struct tcf_result *res)
109 {
110 struct {
111 struct tc_u_knode *knode;
112 unsigned int off;
113 } stack[TC_U32_MAXDEPTH];
114
115 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
116 unsigned int off = skb_network_offset(skb);
117 struct tc_u_knode *n;
118 int sdepth = 0;
119 int off2 = 0;
120 int sel = 0;
121 #ifdef CONFIG_CLS_U32_PERF
122 int j;
123 #endif
124 int i, r;
125
126 next_ht:
127 n = rcu_dereference_bh(ht->ht[sel]);
128
129 next_knode:
130 if (n) {
131 struct tc_u32_key *key = n->sel.keys;
132
133 #ifdef CONFIG_CLS_U32_PERF
134 __this_cpu_inc(n->pf->rcnt);
135 j = 0;
136 #endif
137
138 if (tc_skip_sw(n->flags)) {
139 n = rcu_dereference_bh(n->next);
140 goto next_knode;
141 }
142
143 #ifdef CONFIG_CLS_U32_MARK
144 if ((skb->mark & n->mask) != n->val) {
145 n = rcu_dereference_bh(n->next);
146 goto next_knode;
147 } else {
148 __this_cpu_inc(*n->pcpu_success);
149 }
150 #endif
151
152 for (i = n->sel.nkeys; i > 0; i--, key++) {
153 int toff = off + key->off + (off2 & key->offmask);
154 __be32 *data, hdata;
155
156 if (skb_headroom(skb) + toff > INT_MAX)
157 goto out;
158
159 data = skb_header_pointer(skb, toff, 4, &hdata);
160 if (!data)
161 goto out;
162 if ((*data ^ key->val) & key->mask) {
163 n = rcu_dereference_bh(n->next);
164 goto next_knode;
165 }
166 #ifdef CONFIG_CLS_U32_PERF
167 __this_cpu_inc(n->pf->kcnts[j]);
168 j++;
169 #endif
170 }
171
172 ht = rcu_dereference_bh(n->ht_down);
173 if (!ht) {
174 check_terminal:
175 if (n->sel.flags & TC_U32_TERMINAL) {
176
177 *res = n->res;
178 #ifdef CONFIG_NET_CLS_IND
179 if (!tcf_match_indev(skb, n->ifindex)) {
180 n = rcu_dereference_bh(n->next);
181 goto next_knode;
182 }
183 #endif
184 #ifdef CONFIG_CLS_U32_PERF
185 __this_cpu_inc(n->pf->rhit);
186 #endif
187 r = tcf_exts_exec(skb, &n->exts, res);
188 if (r < 0) {
189 n = rcu_dereference_bh(n->next);
190 goto next_knode;
191 }
192
193 return r;
194 }
195 n = rcu_dereference_bh(n->next);
196 goto next_knode;
197 }
198
199 /* PUSH */
200 if (sdepth >= TC_U32_MAXDEPTH)
201 goto deadloop;
202 stack[sdepth].knode = n;
203 stack[sdepth].off = off;
204 sdepth++;
205
206 ht = rcu_dereference_bh(n->ht_down);
207 sel = 0;
208 if (ht->divisor) {
209 __be32 *data, hdata;
210
211 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
212 &hdata);
213 if (!data)
214 goto out;
215 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
216 n->fshift);
217 }
218 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
219 goto next_ht;
220
221 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
222 off2 = n->sel.off + 3;
223 if (n->sel.flags & TC_U32_VAROFFSET) {
224 __be16 *data, hdata;
225
226 data = skb_header_pointer(skb,
227 off + n->sel.offoff,
228 2, &hdata);
229 if (!data)
230 goto out;
231 off2 += ntohs(n->sel.offmask & *data) >>
232 n->sel.offshift;
233 }
234 off2 &= ~3;
235 }
236 if (n->sel.flags & TC_U32_EAT) {
237 off += off2;
238 off2 = 0;
239 }
240
241 if (off < skb->len)
242 goto next_ht;
243 }
244
245 /* POP */
246 if (sdepth--) {
247 n = stack[sdepth].knode;
248 ht = rcu_dereference_bh(n->ht_up);
249 off = stack[sdepth].off;
250 goto check_terminal;
251 }
252 out:
253 return -1;
254
255 deadloop:
256 net_warn_ratelimited("cls_u32: dead loop\n");
257 return -1;
258 }
259
260 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
261 {
262 struct tc_u_hnode *ht;
263
264 for (ht = rtnl_dereference(tp_c->hlist);
265 ht;
266 ht = rtnl_dereference(ht->next))
267 if (ht->handle == handle)
268 break;
269
270 return ht;
271 }
272
273 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
274 {
275 unsigned int sel;
276 struct tc_u_knode *n = NULL;
277
278 sel = TC_U32_HASH(handle);
279 if (sel > ht->divisor)
280 goto out;
281
282 for (n = rtnl_dereference(ht->ht[sel]);
283 n;
284 n = rtnl_dereference(n->next))
285 if (n->handle == handle)
286 break;
287 out:
288 return n;
289 }
290
291
292 static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
293 {
294 struct tc_u_hnode *ht;
295 struct tc_u_common *tp_c = tp->data;
296
297 if (TC_U32_HTID(handle) == TC_U32_ROOT)
298 ht = rtnl_dereference(tp->root);
299 else
300 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
301
302 if (!ht)
303 return 0;
304
305 if (TC_U32_KEY(handle) == 0)
306 return (unsigned long)ht;
307
308 return (unsigned long)u32_lookup_key(ht, handle);
309 }
310
311 static u32 gen_new_htid(struct tc_u_common *tp_c)
312 {
313 int i = 0x800;
314
315 /* hgenerator only used inside rtnl lock it is safe to increment
316 * without read _copy_ update semantics
317 */
318 do {
319 if (++tp_c->hgenerator == 0x7FF)
320 tp_c->hgenerator = 1;
321 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
322
323 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
324 }
325
326 static int u32_init(struct tcf_proto *tp)
327 {
328 struct tc_u_hnode *root_ht;
329 struct tc_u_common *tp_c;
330
331 tp_c = tp->q->u32_node;
332
333 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
334 if (root_ht == NULL)
335 return -ENOBUFS;
336
337 root_ht->refcnt++;
338 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
339 root_ht->prio = tp->prio;
340
341 if (tp_c == NULL) {
342 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
343 if (tp_c == NULL) {
344 kfree(root_ht);
345 return -ENOBUFS;
346 }
347 tp_c->q = tp->q;
348 tp->q->u32_node = tp_c;
349 }
350
351 tp_c->refcnt++;
352 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
353 rcu_assign_pointer(tp_c->hlist, root_ht);
354 root_ht->tp_c = tp_c;
355
356 rcu_assign_pointer(tp->root, root_ht);
357 tp->data = tp_c;
358 return 0;
359 }
360
361 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
362 bool free_pf)
363 {
364 tcf_exts_destroy(&n->exts);
365 if (n->ht_down)
366 n->ht_down->refcnt--;
367 #ifdef CONFIG_CLS_U32_PERF
368 if (free_pf)
369 free_percpu(n->pf);
370 #endif
371 #ifdef CONFIG_CLS_U32_MARK
372 if (free_pf)
373 free_percpu(n->pcpu_success);
374 #endif
375 kfree(n);
376 return 0;
377 }
378
379 /* u32_delete_key_rcu should be called when free'ing a copied
380 * version of a tc_u_knode obtained from u32_init_knode(). When
381 * copies are obtained from u32_init_knode() the statistics are
382 * shared between the old and new copies to allow readers to
383 * continue to update the statistics during the copy. To support
384 * this the u32_delete_key_rcu variant does not free the percpu
385 * statistics.
386 */
387 static void u32_delete_key_rcu(struct rcu_head *rcu)
388 {
389 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
390
391 u32_destroy_key(key->tp, key, false);
392 }
393
394 /* u32_delete_key_freepf_rcu is the rcu callback variant
395 * that free's the entire structure including the statistics
396 * percpu variables. Only use this if the key is not a copy
397 * returned by u32_init_knode(). See u32_delete_key_rcu()
398 * for the variant that should be used with keys return from
399 * u32_init_knode()
400 */
401 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
402 {
403 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
404
405 u32_destroy_key(key->tp, key, true);
406 }
407
408 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
409 {
410 struct tc_u_knode __rcu **kp;
411 struct tc_u_knode *pkp;
412 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
413
414 if (ht) {
415 kp = &ht->ht[TC_U32_HASH(key->handle)];
416 for (pkp = rtnl_dereference(*kp); pkp;
417 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
418 if (pkp == key) {
419 RCU_INIT_POINTER(*kp, key->next);
420
421 tcf_unbind_filter(tp, &key->res);
422 call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
423 return 0;
424 }
425 }
426 }
427 WARN_ON(1);
428 return 0;
429 }
430
431 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
432 {
433 struct net_device *dev = tp->q->dev_queue->dev;
434 struct tc_cls_u32_offload u32_offload = {0};
435 struct tc_to_netdev offload;
436
437 offload.type = TC_SETUP_CLSU32;
438 offload.cls_u32 = &u32_offload;
439
440 if (tc_should_offload(dev, tp, 0)) {
441 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE;
442 offload.cls_u32->knode.handle = handle;
443 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
444 tp->protocol, &offload);
445 }
446 }
447
448 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
449 u32 flags)
450 {
451 struct net_device *dev = tp->q->dev_queue->dev;
452 struct tc_cls_u32_offload u32_offload = {0};
453 struct tc_to_netdev offload;
454 int err;
455
456 if (!tc_should_offload(dev, tp, flags))
457 return tc_skip_sw(flags) ? -EINVAL : 0;
458
459 offload.type = TC_SETUP_CLSU32;
460 offload.cls_u32 = &u32_offload;
461
462 offload.cls_u32->command = TC_CLSU32_NEW_HNODE;
463 offload.cls_u32->hnode.divisor = h->divisor;
464 offload.cls_u32->hnode.handle = h->handle;
465 offload.cls_u32->hnode.prio = h->prio;
466
467 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
468 tp->protocol, &offload);
469 if (tc_skip_sw(flags))
470 return err;
471
472 return 0;
473 }
474
475 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
476 {
477 struct net_device *dev = tp->q->dev_queue->dev;
478 struct tc_cls_u32_offload u32_offload = {0};
479 struct tc_to_netdev offload;
480
481 offload.type = TC_SETUP_CLSU32;
482 offload.cls_u32 = &u32_offload;
483
484 if (tc_should_offload(dev, tp, 0)) {
485 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE;
486 offload.cls_u32->hnode.divisor = h->divisor;
487 offload.cls_u32->hnode.handle = h->handle;
488 offload.cls_u32->hnode.prio = h->prio;
489
490 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
491 tp->protocol, &offload);
492 }
493 }
494
495 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
496 u32 flags)
497 {
498 struct net_device *dev = tp->q->dev_queue->dev;
499 struct tc_cls_u32_offload u32_offload = {0};
500 struct tc_to_netdev offload;
501 int err;
502
503 offload.type = TC_SETUP_CLSU32;
504 offload.cls_u32 = &u32_offload;
505
506 if (!tc_should_offload(dev, tp, flags))
507 return tc_skip_sw(flags) ? -EINVAL : 0;
508
509 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE;
510 offload.cls_u32->knode.handle = n->handle;
511 offload.cls_u32->knode.fshift = n->fshift;
512 #ifdef CONFIG_CLS_U32_MARK
513 offload.cls_u32->knode.val = n->val;
514 offload.cls_u32->knode.mask = n->mask;
515 #else
516 offload.cls_u32->knode.val = 0;
517 offload.cls_u32->knode.mask = 0;
518 #endif
519 offload.cls_u32->knode.sel = &n->sel;
520 offload.cls_u32->knode.exts = &n->exts;
521 if (n->ht_down)
522 offload.cls_u32->knode.link_handle = n->ht_down->handle;
523
524 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
525 tp->protocol, &offload);
526
527 if (!err)
528 n->flags |= TCA_CLS_FLAGS_IN_HW;
529
530 if (tc_skip_sw(flags))
531 return err;
532
533 return 0;
534 }
535
536 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
537 {
538 struct tc_u_knode *n;
539 unsigned int h;
540
541 for (h = 0; h <= ht->divisor; h++) {
542 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
543 RCU_INIT_POINTER(ht->ht[h],
544 rtnl_dereference(n->next));
545 tcf_unbind_filter(tp, &n->res);
546 u32_remove_hw_knode(tp, n->handle);
547 call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
548 }
549 }
550 }
551
552 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
553 {
554 struct tc_u_common *tp_c = tp->data;
555 struct tc_u_hnode __rcu **hn;
556 struct tc_u_hnode *phn;
557
558 WARN_ON(ht->refcnt);
559
560 u32_clear_hnode(tp, ht);
561
562 hn = &tp_c->hlist;
563 for (phn = rtnl_dereference(*hn);
564 phn;
565 hn = &phn->next, phn = rtnl_dereference(*hn)) {
566 if (phn == ht) {
567 u32_clear_hw_hnode(tp, ht);
568 RCU_INIT_POINTER(*hn, ht->next);
569 kfree_rcu(ht, rcu);
570 return 0;
571 }
572 }
573
574 return -ENOENT;
575 }
576
577 static bool ht_empty(struct tc_u_hnode *ht)
578 {
579 unsigned int h;
580
581 for (h = 0; h <= ht->divisor; h++)
582 if (rcu_access_pointer(ht->ht[h]))
583 return false;
584
585 return true;
586 }
587
588 static void u32_destroy(struct tcf_proto *tp)
589 {
590 struct tc_u_common *tp_c = tp->data;
591 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
592
593 WARN_ON(root_ht == NULL);
594
595 if (root_ht && --root_ht->refcnt == 0)
596 u32_destroy_hnode(tp, root_ht);
597
598 if (--tp_c->refcnt == 0) {
599 struct tc_u_hnode *ht;
600
601 tp->q->u32_node = NULL;
602
603 for (ht = rtnl_dereference(tp_c->hlist);
604 ht;
605 ht = rtnl_dereference(ht->next)) {
606 ht->refcnt--;
607 u32_clear_hnode(tp, ht);
608 }
609
610 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
611 RCU_INIT_POINTER(tp_c->hlist, ht->next);
612 kfree_rcu(ht, rcu);
613 }
614
615 kfree(tp_c);
616 }
617
618 tp->data = NULL;
619 }
620
621 static int u32_delete(struct tcf_proto *tp, unsigned long arg, bool *last)
622 {
623 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
624 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
625 struct tc_u_common *tp_c = tp->data;
626 int ret = 0;
627
628 if (ht == NULL)
629 goto out;
630
631 if (TC_U32_KEY(ht->handle)) {
632 u32_remove_hw_knode(tp, ht->handle);
633 ret = u32_delete_key(tp, (struct tc_u_knode *)ht);
634 goto out;
635 }
636
637 if (root_ht == ht)
638 return -EINVAL;
639
640 if (ht->refcnt == 1) {
641 ht->refcnt--;
642 u32_destroy_hnode(tp, ht);
643 } else {
644 return -EBUSY;
645 }
646
647 out:
648 *last = true;
649 if (root_ht) {
650 if (root_ht->refcnt > 1) {
651 *last = false;
652 goto ret;
653 }
654 if (root_ht->refcnt == 1) {
655 if (!ht_empty(root_ht)) {
656 *last = false;
657 goto ret;
658 }
659 }
660 }
661
662 if (tp_c->refcnt > 1) {
663 *last = false;
664 goto ret;
665 }
666
667 if (tp_c->refcnt == 1) {
668 struct tc_u_hnode *ht;
669
670 for (ht = rtnl_dereference(tp_c->hlist);
671 ht;
672 ht = rtnl_dereference(ht->next))
673 if (!ht_empty(ht)) {
674 *last = false;
675 break;
676 }
677 }
678
679 ret:
680 return ret;
681 }
682
683 #define NR_U32_NODE (1<<12)
684 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
685 {
686 struct tc_u_knode *n;
687 unsigned long i;
688 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
689 GFP_KERNEL);
690 if (!bitmap)
691 return handle | 0xFFF;
692
693 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
694 n;
695 n = rtnl_dereference(n->next))
696 set_bit(TC_U32_NODE(n->handle), bitmap);
697
698 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
699 if (i >= NR_U32_NODE)
700 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
701
702 kfree(bitmap);
703 return handle | (i >= NR_U32_NODE ? 0xFFF : i);
704 }
705
706 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
707 [TCA_U32_CLASSID] = { .type = NLA_U32 },
708 [TCA_U32_HASH] = { .type = NLA_U32 },
709 [TCA_U32_LINK] = { .type = NLA_U32 },
710 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
711 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
712 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
713 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
714 [TCA_U32_FLAGS] = { .type = NLA_U32 },
715 };
716
717 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
718 unsigned long base, struct tc_u_hnode *ht,
719 struct tc_u_knode *n, struct nlattr **tb,
720 struct nlattr *est, bool ovr)
721 {
722 struct tcf_exts e;
723 int err;
724
725 err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE);
726 if (err < 0)
727 return err;
728 err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
729 if (err < 0)
730 goto errout;
731
732 err = -EINVAL;
733 if (tb[TCA_U32_LINK]) {
734 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
735 struct tc_u_hnode *ht_down = NULL, *ht_old;
736
737 if (TC_U32_KEY(handle))
738 goto errout;
739
740 if (handle) {
741 ht_down = u32_lookup_ht(ht->tp_c, handle);
742
743 if (ht_down == NULL)
744 goto errout;
745 ht_down->refcnt++;
746 }
747
748 ht_old = rtnl_dereference(n->ht_down);
749 rcu_assign_pointer(n->ht_down, ht_down);
750
751 if (ht_old)
752 ht_old->refcnt--;
753 }
754 if (tb[TCA_U32_CLASSID]) {
755 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
756 tcf_bind_filter(tp, &n->res, base);
757 }
758
759 #ifdef CONFIG_NET_CLS_IND
760 if (tb[TCA_U32_INDEV]) {
761 int ret;
762 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
763 if (ret < 0)
764 goto errout;
765 n->ifindex = ret;
766 }
767 #endif
768 tcf_exts_change(tp, &n->exts, &e);
769
770 return 0;
771 errout:
772 tcf_exts_destroy(&e);
773 return err;
774 }
775
776 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
777 struct tc_u_knode *n)
778 {
779 struct tc_u_knode __rcu **ins;
780 struct tc_u_knode *pins;
781 struct tc_u_hnode *ht;
782
783 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
784 ht = rtnl_dereference(tp->root);
785 else
786 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
787
788 ins = &ht->ht[TC_U32_HASH(n->handle)];
789
790 /* The node must always exist for it to be replaced if this is not the
791 * case then something went very wrong elsewhere.
792 */
793 for (pins = rtnl_dereference(*ins); ;
794 ins = &pins->next, pins = rtnl_dereference(*ins))
795 if (pins->handle == n->handle)
796 break;
797
798 RCU_INIT_POINTER(n->next, pins->next);
799 rcu_assign_pointer(*ins, n);
800 }
801
802 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
803 struct tc_u_knode *n)
804 {
805 struct tc_u_knode *new;
806 struct tc_u32_sel *s = &n->sel;
807
808 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
809 GFP_KERNEL);
810
811 if (!new)
812 return NULL;
813
814 RCU_INIT_POINTER(new->next, n->next);
815 new->handle = n->handle;
816 RCU_INIT_POINTER(new->ht_up, n->ht_up);
817
818 #ifdef CONFIG_NET_CLS_IND
819 new->ifindex = n->ifindex;
820 #endif
821 new->fshift = n->fshift;
822 new->res = n->res;
823 new->flags = n->flags;
824 RCU_INIT_POINTER(new->ht_down, n->ht_down);
825
826 /* bump reference count as long as we hold pointer to structure */
827 if (new->ht_down)
828 new->ht_down->refcnt++;
829
830 #ifdef CONFIG_CLS_U32_PERF
831 /* Statistics may be incremented by readers during update
832 * so we must keep them in tact. When the node is later destroyed
833 * a special destroy call must be made to not free the pf memory.
834 */
835 new->pf = n->pf;
836 #endif
837
838 #ifdef CONFIG_CLS_U32_MARK
839 new->val = n->val;
840 new->mask = n->mask;
841 /* Similarly success statistics must be moved as pointers */
842 new->pcpu_success = n->pcpu_success;
843 #endif
844 new->tp = tp;
845 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
846
847 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
848 kfree(new);
849 return NULL;
850 }
851
852 return new;
853 }
854
855 static int u32_change(struct net *net, struct sk_buff *in_skb,
856 struct tcf_proto *tp, unsigned long base, u32 handle,
857 struct nlattr **tca, unsigned long *arg, bool ovr)
858 {
859 struct tc_u_common *tp_c = tp->data;
860 struct tc_u_hnode *ht;
861 struct tc_u_knode *n;
862 struct tc_u32_sel *s;
863 struct nlattr *opt = tca[TCA_OPTIONS];
864 struct nlattr *tb[TCA_U32_MAX + 1];
865 u32 htid, flags = 0;
866 int err;
867 #ifdef CONFIG_CLS_U32_PERF
868 size_t size;
869 #endif
870
871 if (opt == NULL)
872 return handle ? -EINVAL : 0;
873
874 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy, NULL);
875 if (err < 0)
876 return err;
877
878 if (tb[TCA_U32_FLAGS]) {
879 flags = nla_get_u32(tb[TCA_U32_FLAGS]);
880 if (!tc_flags_valid(flags))
881 return -EINVAL;
882 }
883
884 n = (struct tc_u_knode *)*arg;
885 if (n) {
886 struct tc_u_knode *new;
887
888 if (TC_U32_KEY(n->handle) == 0)
889 return -EINVAL;
890
891 if (n->flags != flags)
892 return -EINVAL;
893
894 new = u32_init_knode(tp, n);
895 if (!new)
896 return -ENOMEM;
897
898 err = u32_set_parms(net, tp, base,
899 rtnl_dereference(n->ht_up), new, tb,
900 tca[TCA_RATE], ovr);
901
902 if (err) {
903 u32_destroy_key(tp, new, false);
904 return err;
905 }
906
907 err = u32_replace_hw_knode(tp, new, flags);
908 if (err) {
909 u32_destroy_key(tp, new, false);
910 return err;
911 }
912
913 if (!tc_in_hw(new->flags))
914 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
915
916 u32_replace_knode(tp, tp_c, new);
917 tcf_unbind_filter(tp, &n->res);
918 call_rcu(&n->rcu, u32_delete_key_rcu);
919 return 0;
920 }
921
922 if (tb[TCA_U32_DIVISOR]) {
923 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
924
925 if (--divisor > 0x100)
926 return -EINVAL;
927 if (TC_U32_KEY(handle))
928 return -EINVAL;
929 if (handle == 0) {
930 handle = gen_new_htid(tp->data);
931 if (handle == 0)
932 return -ENOMEM;
933 }
934 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
935 if (ht == NULL)
936 return -ENOBUFS;
937 ht->tp_c = tp_c;
938 ht->refcnt = 1;
939 ht->divisor = divisor;
940 ht->handle = handle;
941 ht->prio = tp->prio;
942
943 err = u32_replace_hw_hnode(tp, ht, flags);
944 if (err) {
945 kfree(ht);
946 return err;
947 }
948
949 RCU_INIT_POINTER(ht->next, tp_c->hlist);
950 rcu_assign_pointer(tp_c->hlist, ht);
951 *arg = (unsigned long)ht;
952
953 return 0;
954 }
955
956 if (tb[TCA_U32_HASH]) {
957 htid = nla_get_u32(tb[TCA_U32_HASH]);
958 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
959 ht = rtnl_dereference(tp->root);
960 htid = ht->handle;
961 } else {
962 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
963 if (ht == NULL)
964 return -EINVAL;
965 }
966 } else {
967 ht = rtnl_dereference(tp->root);
968 htid = ht->handle;
969 }
970
971 if (ht->divisor < TC_U32_HASH(htid))
972 return -EINVAL;
973
974 if (handle) {
975 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
976 return -EINVAL;
977 handle = htid | TC_U32_NODE(handle);
978 } else
979 handle = gen_new_kid(ht, htid);
980
981 if (tb[TCA_U32_SEL] == NULL)
982 return -EINVAL;
983
984 s = nla_data(tb[TCA_U32_SEL]);
985
986 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
987 if (n == NULL)
988 return -ENOBUFS;
989
990 #ifdef CONFIG_CLS_U32_PERF
991 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
992 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
993 if (!n->pf) {
994 kfree(n);
995 return -ENOBUFS;
996 }
997 #endif
998
999 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
1000 RCU_INIT_POINTER(n->ht_up, ht);
1001 n->handle = handle;
1002 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
1003 n->flags = flags;
1004 n->tp = tp;
1005
1006 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
1007 if (err < 0)
1008 goto errout;
1009
1010 #ifdef CONFIG_CLS_U32_MARK
1011 n->pcpu_success = alloc_percpu(u32);
1012 if (!n->pcpu_success) {
1013 err = -ENOMEM;
1014 goto errout;
1015 }
1016
1017 if (tb[TCA_U32_MARK]) {
1018 struct tc_u32_mark *mark;
1019
1020 mark = nla_data(tb[TCA_U32_MARK]);
1021 n->val = mark->val;
1022 n->mask = mark->mask;
1023 }
1024 #endif
1025
1026 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1027 if (err == 0) {
1028 struct tc_u_knode __rcu **ins;
1029 struct tc_u_knode *pins;
1030
1031 err = u32_replace_hw_knode(tp, n, flags);
1032 if (err)
1033 goto errhw;
1034
1035 if (!tc_in_hw(n->flags))
1036 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1037
1038 ins = &ht->ht[TC_U32_HASH(handle)];
1039 for (pins = rtnl_dereference(*ins); pins;
1040 ins = &pins->next, pins = rtnl_dereference(*ins))
1041 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1042 break;
1043
1044 RCU_INIT_POINTER(n->next, pins);
1045 rcu_assign_pointer(*ins, n);
1046 *arg = (unsigned long)n;
1047 return 0;
1048 }
1049
1050 errhw:
1051 #ifdef CONFIG_CLS_U32_MARK
1052 free_percpu(n->pcpu_success);
1053 #endif
1054
1055 errout:
1056 tcf_exts_destroy(&n->exts);
1057 #ifdef CONFIG_CLS_U32_PERF
1058 free_percpu(n->pf);
1059 #endif
1060 kfree(n);
1061 return err;
1062 }
1063
1064 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1065 {
1066 struct tc_u_common *tp_c = tp->data;
1067 struct tc_u_hnode *ht;
1068 struct tc_u_knode *n;
1069 unsigned int h;
1070
1071 if (arg->stop)
1072 return;
1073
1074 for (ht = rtnl_dereference(tp_c->hlist);
1075 ht;
1076 ht = rtnl_dereference(ht->next)) {
1077 if (ht->prio != tp->prio)
1078 continue;
1079 if (arg->count >= arg->skip) {
1080 if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
1081 arg->stop = 1;
1082 return;
1083 }
1084 }
1085 arg->count++;
1086 for (h = 0; h <= ht->divisor; h++) {
1087 for (n = rtnl_dereference(ht->ht[h]);
1088 n;
1089 n = rtnl_dereference(n->next)) {
1090 if (arg->count < arg->skip) {
1091 arg->count++;
1092 continue;
1093 }
1094 if (arg->fn(tp, (unsigned long)n, arg) < 0) {
1095 arg->stop = 1;
1096 return;
1097 }
1098 arg->count++;
1099 }
1100 }
1101 }
1102 }
1103
1104 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
1105 struct sk_buff *skb, struct tcmsg *t)
1106 {
1107 struct tc_u_knode *n = (struct tc_u_knode *)fh;
1108 struct tc_u_hnode *ht_up, *ht_down;
1109 struct nlattr *nest;
1110
1111 if (n == NULL)
1112 return skb->len;
1113
1114 t->tcm_handle = n->handle;
1115
1116 nest = nla_nest_start(skb, TCA_OPTIONS);
1117 if (nest == NULL)
1118 goto nla_put_failure;
1119
1120 if (TC_U32_KEY(n->handle) == 0) {
1121 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
1122 u32 divisor = ht->divisor + 1;
1123
1124 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1125 goto nla_put_failure;
1126 } else {
1127 #ifdef CONFIG_CLS_U32_PERF
1128 struct tc_u32_pcnt *gpf;
1129 int cpu;
1130 #endif
1131
1132 if (nla_put(skb, TCA_U32_SEL,
1133 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1134 &n->sel))
1135 goto nla_put_failure;
1136
1137 ht_up = rtnl_dereference(n->ht_up);
1138 if (ht_up) {
1139 u32 htid = n->handle & 0xFFFFF000;
1140 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1141 goto nla_put_failure;
1142 }
1143 if (n->res.classid &&
1144 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1145 goto nla_put_failure;
1146
1147 ht_down = rtnl_dereference(n->ht_down);
1148 if (ht_down &&
1149 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1150 goto nla_put_failure;
1151
1152 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1153 goto nla_put_failure;
1154
1155 #ifdef CONFIG_CLS_U32_MARK
1156 if ((n->val || n->mask)) {
1157 struct tc_u32_mark mark = {.val = n->val,
1158 .mask = n->mask,
1159 .success = 0};
1160 int cpum;
1161
1162 for_each_possible_cpu(cpum) {
1163 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1164
1165 mark.success += cnt;
1166 }
1167
1168 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1169 goto nla_put_failure;
1170 }
1171 #endif
1172
1173 if (tcf_exts_dump(skb, &n->exts) < 0)
1174 goto nla_put_failure;
1175
1176 #ifdef CONFIG_NET_CLS_IND
1177 if (n->ifindex) {
1178 struct net_device *dev;
1179 dev = __dev_get_by_index(net, n->ifindex);
1180 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1181 goto nla_put_failure;
1182 }
1183 #endif
1184 #ifdef CONFIG_CLS_U32_PERF
1185 gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1186 n->sel.nkeys * sizeof(u64),
1187 GFP_KERNEL);
1188 if (!gpf)
1189 goto nla_put_failure;
1190
1191 for_each_possible_cpu(cpu) {
1192 int i;
1193 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1194
1195 gpf->rcnt += pf->rcnt;
1196 gpf->rhit += pf->rhit;
1197 for (i = 0; i < n->sel.nkeys; i++)
1198 gpf->kcnts[i] += pf->kcnts[i];
1199 }
1200
1201 if (nla_put_64bit(skb, TCA_U32_PCNT,
1202 sizeof(struct tc_u32_pcnt) +
1203 n->sel.nkeys * sizeof(u64),
1204 gpf, TCA_U32_PAD)) {
1205 kfree(gpf);
1206 goto nla_put_failure;
1207 }
1208 kfree(gpf);
1209 #endif
1210 }
1211
1212 nla_nest_end(skb, nest);
1213
1214 if (TC_U32_KEY(n->handle))
1215 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1216 goto nla_put_failure;
1217 return skb->len;
1218
1219 nla_put_failure:
1220 nla_nest_cancel(skb, nest);
1221 return -1;
1222 }
1223
1224 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1225 .kind = "u32",
1226 .classify = u32_classify,
1227 .init = u32_init,
1228 .destroy = u32_destroy,
1229 .get = u32_get,
1230 .change = u32_change,
1231 .delete = u32_delete,
1232 .walk = u32_walk,
1233 .dump = u32_dump,
1234 .owner = THIS_MODULE,
1235 };
1236
1237 static int __init init_u32(void)
1238 {
1239 pr_info("u32 classifier\n");
1240 #ifdef CONFIG_CLS_U32_PERF
1241 pr_info(" Performance counters on\n");
1242 #endif
1243 #ifdef CONFIG_NET_CLS_IND
1244 pr_info(" input device check on\n");
1245 #endif
1246 #ifdef CONFIG_NET_CLS_ACT
1247 pr_info(" Actions configured\n");
1248 #endif
1249 return register_tcf_proto_ops(&cls_u32_ops);
1250 }
1251
1252 static void __exit exit_u32(void)
1253 {
1254 unregister_tcf_proto_ops(&cls_u32_ops);
1255 }
1256
1257 module_init(init_u32)
1258 module_exit(exit_u32)
1259 MODULE_LICENSE("GPL");