]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - net/sched/cls_u32.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[mirror_ubuntu-hirsute-kernel.git] / net / sched / cls_u32.c
1 /*
2 * net/sched/cls_u32.c Ugly (or Universal) 32bit key Packet Classifier.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
10 *
11 * The filters are packed to hash tables of key nodes
12 * with a set of 32bit key/mask pairs at every node.
13 * Nodes reference next level hash tables etc.
14 *
15 * This scheme is the best universal classifier I managed to
16 * invent; it is not super-fast, but it is not slow (provided you
17 * program it correctly), and general enough. And its relative
18 * speed grows as the number of rules becomes larger.
19 *
20 * It seems that it represents the best middle point between
21 * speed and manageability both by human and by machine.
22 *
23 * It is especially useful for link sharing combined with QoS;
24 * pure RSVP doesn't need such a general approach and can use
25 * much simpler (and faster) schemes, sort of cls_rsvp.c.
26 *
27 * JHS: We should remove the CONFIG_NET_CLS_IND from here
28 * eventually when the meta match extension is made available
29 *
30 * nfmark match added by Catalin(ux aka Dino) BOIE <catab at umbrella.ro>
31 */
32
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/string.h>
38 #include <linux/errno.h>
39 #include <linux/percpu.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/skbuff.h>
42 #include <linux/bitmap.h>
43 #include <net/netlink.h>
44 #include <net/act_api.h>
45 #include <net/pkt_cls.h>
46 #include <linux/netdevice.h>
47
48 struct tc_u_knode {
49 struct tc_u_knode __rcu *next;
50 u32 handle;
51 struct tc_u_hnode __rcu *ht_up;
52 struct tcf_exts exts;
53 #ifdef CONFIG_NET_CLS_IND
54 int ifindex;
55 #endif
56 u8 fshift;
57 struct tcf_result res;
58 struct tc_u_hnode __rcu *ht_down;
59 #ifdef CONFIG_CLS_U32_PERF
60 struct tc_u32_pcnt __percpu *pf;
61 #endif
62 u32 flags;
63 #ifdef CONFIG_CLS_U32_MARK
64 u32 val;
65 u32 mask;
66 u32 __percpu *pcpu_success;
67 #endif
68 struct tcf_proto *tp;
69 struct rcu_head rcu;
70 /* The 'sel' field MUST be the last field in structure to allow for
71 * tc_u32_keys allocated at end of structure.
72 */
73 struct tc_u32_sel sel;
74 };
75
76 struct tc_u_hnode {
77 struct tc_u_hnode __rcu *next;
78 u32 handle;
79 u32 prio;
80 struct tc_u_common *tp_c;
81 int refcnt;
82 unsigned int divisor;
83 struct rcu_head rcu;
84 /* The 'ht' field MUST be the last field in structure to allow for
85 * more entries allocated at end of structure.
86 */
87 struct tc_u_knode __rcu *ht[1];
88 };
89
90 struct tc_u_common {
91 struct tc_u_hnode __rcu *hlist;
92 struct Qdisc *q;
93 int refcnt;
94 u32 hgenerator;
95 struct rcu_head rcu;
96 };
97
98 static inline unsigned int u32_hash_fold(__be32 key,
99 const struct tc_u32_sel *sel,
100 u8 fshift)
101 {
102 unsigned int h = ntohl(key & sel->hmask) >> fshift;
103
104 return h;
105 }
106
107 static int u32_classify(struct sk_buff *skb, const struct tcf_proto *tp,
108 struct tcf_result *res)
109 {
110 struct {
111 struct tc_u_knode *knode;
112 unsigned int off;
113 } stack[TC_U32_MAXDEPTH];
114
115 struct tc_u_hnode *ht = rcu_dereference_bh(tp->root);
116 unsigned int off = skb_network_offset(skb);
117 struct tc_u_knode *n;
118 int sdepth = 0;
119 int off2 = 0;
120 int sel = 0;
121 #ifdef CONFIG_CLS_U32_PERF
122 int j;
123 #endif
124 int i, r;
125
126 next_ht:
127 n = rcu_dereference_bh(ht->ht[sel]);
128
129 next_knode:
130 if (n) {
131 struct tc_u32_key *key = n->sel.keys;
132
133 #ifdef CONFIG_CLS_U32_PERF
134 __this_cpu_inc(n->pf->rcnt);
135 j = 0;
136 #endif
137
138 if (tc_skip_sw(n->flags)) {
139 n = rcu_dereference_bh(n->next);
140 goto next_knode;
141 }
142
143 #ifdef CONFIG_CLS_U32_MARK
144 if ((skb->mark & n->mask) != n->val) {
145 n = rcu_dereference_bh(n->next);
146 goto next_knode;
147 } else {
148 __this_cpu_inc(*n->pcpu_success);
149 }
150 #endif
151
152 for (i = n->sel.nkeys; i > 0; i--, key++) {
153 int toff = off + key->off + (off2 & key->offmask);
154 __be32 *data, hdata;
155
156 if (skb_headroom(skb) + toff > INT_MAX)
157 goto out;
158
159 data = skb_header_pointer(skb, toff, 4, &hdata);
160 if (!data)
161 goto out;
162 if ((*data ^ key->val) & key->mask) {
163 n = rcu_dereference_bh(n->next);
164 goto next_knode;
165 }
166 #ifdef CONFIG_CLS_U32_PERF
167 __this_cpu_inc(n->pf->kcnts[j]);
168 j++;
169 #endif
170 }
171
172 ht = rcu_dereference_bh(n->ht_down);
173 if (!ht) {
174 check_terminal:
175 if (n->sel.flags & TC_U32_TERMINAL) {
176
177 *res = n->res;
178 #ifdef CONFIG_NET_CLS_IND
179 if (!tcf_match_indev(skb, n->ifindex)) {
180 n = rcu_dereference_bh(n->next);
181 goto next_knode;
182 }
183 #endif
184 #ifdef CONFIG_CLS_U32_PERF
185 __this_cpu_inc(n->pf->rhit);
186 #endif
187 r = tcf_exts_exec(skb, &n->exts, res);
188 if (r < 0) {
189 n = rcu_dereference_bh(n->next);
190 goto next_knode;
191 }
192
193 return r;
194 }
195 n = rcu_dereference_bh(n->next);
196 goto next_knode;
197 }
198
199 /* PUSH */
200 if (sdepth >= TC_U32_MAXDEPTH)
201 goto deadloop;
202 stack[sdepth].knode = n;
203 stack[sdepth].off = off;
204 sdepth++;
205
206 ht = rcu_dereference_bh(n->ht_down);
207 sel = 0;
208 if (ht->divisor) {
209 __be32 *data, hdata;
210
211 data = skb_header_pointer(skb, off + n->sel.hoff, 4,
212 &hdata);
213 if (!data)
214 goto out;
215 sel = ht->divisor & u32_hash_fold(*data, &n->sel,
216 n->fshift);
217 }
218 if (!(n->sel.flags & (TC_U32_VAROFFSET | TC_U32_OFFSET | TC_U32_EAT)))
219 goto next_ht;
220
221 if (n->sel.flags & (TC_U32_OFFSET | TC_U32_VAROFFSET)) {
222 off2 = n->sel.off + 3;
223 if (n->sel.flags & TC_U32_VAROFFSET) {
224 __be16 *data, hdata;
225
226 data = skb_header_pointer(skb,
227 off + n->sel.offoff,
228 2, &hdata);
229 if (!data)
230 goto out;
231 off2 += ntohs(n->sel.offmask & *data) >>
232 n->sel.offshift;
233 }
234 off2 &= ~3;
235 }
236 if (n->sel.flags & TC_U32_EAT) {
237 off += off2;
238 off2 = 0;
239 }
240
241 if (off < skb->len)
242 goto next_ht;
243 }
244
245 /* POP */
246 if (sdepth--) {
247 n = stack[sdepth].knode;
248 ht = rcu_dereference_bh(n->ht_up);
249 off = stack[sdepth].off;
250 goto check_terminal;
251 }
252 out:
253 return -1;
254
255 deadloop:
256 net_warn_ratelimited("cls_u32: dead loop\n");
257 return -1;
258 }
259
260 static struct tc_u_hnode *u32_lookup_ht(struct tc_u_common *tp_c, u32 handle)
261 {
262 struct tc_u_hnode *ht;
263
264 for (ht = rtnl_dereference(tp_c->hlist);
265 ht;
266 ht = rtnl_dereference(ht->next))
267 if (ht->handle == handle)
268 break;
269
270 return ht;
271 }
272
273 static struct tc_u_knode *u32_lookup_key(struct tc_u_hnode *ht, u32 handle)
274 {
275 unsigned int sel;
276 struct tc_u_knode *n = NULL;
277
278 sel = TC_U32_HASH(handle);
279 if (sel > ht->divisor)
280 goto out;
281
282 for (n = rtnl_dereference(ht->ht[sel]);
283 n;
284 n = rtnl_dereference(n->next))
285 if (n->handle == handle)
286 break;
287 out:
288 return n;
289 }
290
291
292 static unsigned long u32_get(struct tcf_proto *tp, u32 handle)
293 {
294 struct tc_u_hnode *ht;
295 struct tc_u_common *tp_c = tp->data;
296
297 if (TC_U32_HTID(handle) == TC_U32_ROOT)
298 ht = rtnl_dereference(tp->root);
299 else
300 ht = u32_lookup_ht(tp_c, TC_U32_HTID(handle));
301
302 if (!ht)
303 return 0;
304
305 if (TC_U32_KEY(handle) == 0)
306 return (unsigned long)ht;
307
308 return (unsigned long)u32_lookup_key(ht, handle);
309 }
310
311 static u32 gen_new_htid(struct tc_u_common *tp_c)
312 {
313 int i = 0x800;
314
315 /* hgenerator only used inside rtnl lock it is safe to increment
316 * without read _copy_ update semantics
317 */
318 do {
319 if (++tp_c->hgenerator == 0x7FF)
320 tp_c->hgenerator = 1;
321 } while (--i > 0 && u32_lookup_ht(tp_c, (tp_c->hgenerator|0x800)<<20));
322
323 return i > 0 ? (tp_c->hgenerator|0x800)<<20 : 0;
324 }
325
326 static int u32_init(struct tcf_proto *tp)
327 {
328 struct tc_u_hnode *root_ht;
329 struct tc_u_common *tp_c;
330
331 tp_c = tp->q->u32_node;
332
333 root_ht = kzalloc(sizeof(*root_ht), GFP_KERNEL);
334 if (root_ht == NULL)
335 return -ENOBUFS;
336
337 root_ht->refcnt++;
338 root_ht->handle = tp_c ? gen_new_htid(tp_c) : 0x80000000;
339 root_ht->prio = tp->prio;
340
341 if (tp_c == NULL) {
342 tp_c = kzalloc(sizeof(*tp_c), GFP_KERNEL);
343 if (tp_c == NULL) {
344 kfree(root_ht);
345 return -ENOBUFS;
346 }
347 tp_c->q = tp->q;
348 tp->q->u32_node = tp_c;
349 }
350
351 tp_c->refcnt++;
352 RCU_INIT_POINTER(root_ht->next, tp_c->hlist);
353 rcu_assign_pointer(tp_c->hlist, root_ht);
354 root_ht->tp_c = tp_c;
355
356 rcu_assign_pointer(tp->root, root_ht);
357 tp->data = tp_c;
358 return 0;
359 }
360
361 static int u32_destroy_key(struct tcf_proto *tp, struct tc_u_knode *n,
362 bool free_pf)
363 {
364 tcf_exts_destroy(&n->exts);
365 if (n->ht_down)
366 n->ht_down->refcnt--;
367 #ifdef CONFIG_CLS_U32_PERF
368 if (free_pf)
369 free_percpu(n->pf);
370 #endif
371 #ifdef CONFIG_CLS_U32_MARK
372 if (free_pf)
373 free_percpu(n->pcpu_success);
374 #endif
375 kfree(n);
376 return 0;
377 }
378
379 /* u32_delete_key_rcu should be called when free'ing a copied
380 * version of a tc_u_knode obtained from u32_init_knode(). When
381 * copies are obtained from u32_init_knode() the statistics are
382 * shared between the old and new copies to allow readers to
383 * continue to update the statistics during the copy. To support
384 * this the u32_delete_key_rcu variant does not free the percpu
385 * statistics.
386 */
387 static void u32_delete_key_rcu(struct rcu_head *rcu)
388 {
389 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
390
391 u32_destroy_key(key->tp, key, false);
392 }
393
394 /* u32_delete_key_freepf_rcu is the rcu callback variant
395 * that free's the entire structure including the statistics
396 * percpu variables. Only use this if the key is not a copy
397 * returned by u32_init_knode(). See u32_delete_key_rcu()
398 * for the variant that should be used with keys return from
399 * u32_init_knode()
400 */
401 static void u32_delete_key_freepf_rcu(struct rcu_head *rcu)
402 {
403 struct tc_u_knode *key = container_of(rcu, struct tc_u_knode, rcu);
404
405 u32_destroy_key(key->tp, key, true);
406 }
407
408 static int u32_delete_key(struct tcf_proto *tp, struct tc_u_knode *key)
409 {
410 struct tc_u_knode __rcu **kp;
411 struct tc_u_knode *pkp;
412 struct tc_u_hnode *ht = rtnl_dereference(key->ht_up);
413
414 if (ht) {
415 kp = &ht->ht[TC_U32_HASH(key->handle)];
416 for (pkp = rtnl_dereference(*kp); pkp;
417 kp = &pkp->next, pkp = rtnl_dereference(*kp)) {
418 if (pkp == key) {
419 RCU_INIT_POINTER(*kp, key->next);
420
421 tcf_unbind_filter(tp, &key->res);
422 call_rcu(&key->rcu, u32_delete_key_freepf_rcu);
423 return 0;
424 }
425 }
426 }
427 WARN_ON(1);
428 return 0;
429 }
430
431 static void u32_remove_hw_knode(struct tcf_proto *tp, u32 handle)
432 {
433 struct net_device *dev = tp->q->dev_queue->dev;
434 struct tc_cls_u32_offload u32_offload = {0};
435 struct tc_to_netdev offload;
436
437 offload.type = TC_SETUP_CLSU32;
438 offload.cls_u32 = &u32_offload;
439
440 if (tc_should_offload(dev, tp, 0)) {
441 offload.cls_u32->command = TC_CLSU32_DELETE_KNODE;
442 offload.cls_u32->knode.handle = handle;
443 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
444 tp->protocol, &offload);
445 }
446 }
447
448 static int u32_replace_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h,
449 u32 flags)
450 {
451 struct net_device *dev = tp->q->dev_queue->dev;
452 struct tc_cls_u32_offload u32_offload = {0};
453 struct tc_to_netdev offload;
454 int err;
455
456 if (!tc_should_offload(dev, tp, flags))
457 return tc_skip_sw(flags) ? -EINVAL : 0;
458
459 offload.type = TC_SETUP_CLSU32;
460 offload.cls_u32 = &u32_offload;
461
462 offload.cls_u32->command = TC_CLSU32_NEW_HNODE;
463 offload.cls_u32->hnode.divisor = h->divisor;
464 offload.cls_u32->hnode.handle = h->handle;
465 offload.cls_u32->hnode.prio = h->prio;
466
467 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
468 tp->protocol, &offload);
469 if (tc_skip_sw(flags))
470 return err;
471
472 return 0;
473 }
474
475 static void u32_clear_hw_hnode(struct tcf_proto *tp, struct tc_u_hnode *h)
476 {
477 struct net_device *dev = tp->q->dev_queue->dev;
478 struct tc_cls_u32_offload u32_offload = {0};
479 struct tc_to_netdev offload;
480
481 offload.type = TC_SETUP_CLSU32;
482 offload.cls_u32 = &u32_offload;
483
484 if (tc_should_offload(dev, tp, 0)) {
485 offload.cls_u32->command = TC_CLSU32_DELETE_HNODE;
486 offload.cls_u32->hnode.divisor = h->divisor;
487 offload.cls_u32->hnode.handle = h->handle;
488 offload.cls_u32->hnode.prio = h->prio;
489
490 dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
491 tp->protocol, &offload);
492 }
493 }
494
495 static int u32_replace_hw_knode(struct tcf_proto *tp, struct tc_u_knode *n,
496 u32 flags)
497 {
498 struct net_device *dev = tp->q->dev_queue->dev;
499 struct tc_cls_u32_offload u32_offload = {0};
500 struct tc_to_netdev offload;
501 int err;
502
503 offload.type = TC_SETUP_CLSU32;
504 offload.cls_u32 = &u32_offload;
505
506 if (!tc_should_offload(dev, tp, flags))
507 return tc_skip_sw(flags) ? -EINVAL : 0;
508
509 offload.cls_u32->command = TC_CLSU32_REPLACE_KNODE;
510 offload.cls_u32->knode.handle = n->handle;
511 offload.cls_u32->knode.fshift = n->fshift;
512 #ifdef CONFIG_CLS_U32_MARK
513 offload.cls_u32->knode.val = n->val;
514 offload.cls_u32->knode.mask = n->mask;
515 #else
516 offload.cls_u32->knode.val = 0;
517 offload.cls_u32->knode.mask = 0;
518 #endif
519 offload.cls_u32->knode.sel = &n->sel;
520 offload.cls_u32->knode.exts = &n->exts;
521 if (n->ht_down)
522 offload.cls_u32->knode.link_handle = n->ht_down->handle;
523
524 err = dev->netdev_ops->ndo_setup_tc(dev, tp->q->handle,
525 tp->protocol, &offload);
526
527 if (!err)
528 n->flags |= TCA_CLS_FLAGS_IN_HW;
529
530 if (tc_skip_sw(flags))
531 return err;
532
533 return 0;
534 }
535
536 static void u32_clear_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
537 {
538 struct tc_u_knode *n;
539 unsigned int h;
540
541 for (h = 0; h <= ht->divisor; h++) {
542 while ((n = rtnl_dereference(ht->ht[h])) != NULL) {
543 RCU_INIT_POINTER(ht->ht[h],
544 rtnl_dereference(n->next));
545 tcf_unbind_filter(tp, &n->res);
546 u32_remove_hw_knode(tp, n->handle);
547 call_rcu(&n->rcu, u32_delete_key_freepf_rcu);
548 }
549 }
550 }
551
552 static int u32_destroy_hnode(struct tcf_proto *tp, struct tc_u_hnode *ht)
553 {
554 struct tc_u_common *tp_c = tp->data;
555 struct tc_u_hnode __rcu **hn;
556 struct tc_u_hnode *phn;
557
558 WARN_ON(ht->refcnt);
559
560 u32_clear_hnode(tp, ht);
561
562 hn = &tp_c->hlist;
563 for (phn = rtnl_dereference(*hn);
564 phn;
565 hn = &phn->next, phn = rtnl_dereference(*hn)) {
566 if (phn == ht) {
567 u32_clear_hw_hnode(tp, ht);
568 RCU_INIT_POINTER(*hn, ht->next);
569 kfree_rcu(ht, rcu);
570 return 0;
571 }
572 }
573
574 return -ENOENT;
575 }
576
577 static bool ht_empty(struct tc_u_hnode *ht)
578 {
579 unsigned int h;
580
581 for (h = 0; h <= ht->divisor; h++)
582 if (rcu_access_pointer(ht->ht[h]))
583 return false;
584
585 return true;
586 }
587
588 static bool u32_destroy(struct tcf_proto *tp, bool force)
589 {
590 struct tc_u_common *tp_c = tp->data;
591 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
592
593 WARN_ON(root_ht == NULL);
594
595 if (!force) {
596 if (root_ht) {
597 if (root_ht->refcnt > 1)
598 return false;
599 if (root_ht->refcnt == 1) {
600 if (!ht_empty(root_ht))
601 return false;
602 }
603 }
604
605 if (tp_c->refcnt > 1)
606 return false;
607
608 if (tp_c->refcnt == 1) {
609 struct tc_u_hnode *ht;
610
611 for (ht = rtnl_dereference(tp_c->hlist);
612 ht;
613 ht = rtnl_dereference(ht->next))
614 if (!ht_empty(ht))
615 return false;
616 }
617 }
618
619 if (root_ht && --root_ht->refcnt == 0)
620 u32_destroy_hnode(tp, root_ht);
621
622 if (--tp_c->refcnt == 0) {
623 struct tc_u_hnode *ht;
624
625 tp->q->u32_node = NULL;
626
627 for (ht = rtnl_dereference(tp_c->hlist);
628 ht;
629 ht = rtnl_dereference(ht->next)) {
630 ht->refcnt--;
631 u32_clear_hnode(tp, ht);
632 }
633
634 while ((ht = rtnl_dereference(tp_c->hlist)) != NULL) {
635 RCU_INIT_POINTER(tp_c->hlist, ht->next);
636 kfree_rcu(ht, rcu);
637 }
638
639 kfree(tp_c);
640 }
641
642 tp->data = NULL;
643 return true;
644 }
645
646 static int u32_delete(struct tcf_proto *tp, unsigned long arg)
647 {
648 struct tc_u_hnode *ht = (struct tc_u_hnode *)arg;
649 struct tc_u_hnode *root_ht = rtnl_dereference(tp->root);
650
651 if (ht == NULL)
652 return 0;
653
654 if (TC_U32_KEY(ht->handle)) {
655 u32_remove_hw_knode(tp, ht->handle);
656 return u32_delete_key(tp, (struct tc_u_knode *)ht);
657 }
658
659 if (root_ht == ht)
660 return -EINVAL;
661
662 if (ht->refcnt == 1) {
663 ht->refcnt--;
664 u32_destroy_hnode(tp, ht);
665 } else {
666 return -EBUSY;
667 }
668
669 return 0;
670 }
671
672 #define NR_U32_NODE (1<<12)
673 static u32 gen_new_kid(struct tc_u_hnode *ht, u32 handle)
674 {
675 struct tc_u_knode *n;
676 unsigned long i;
677 unsigned long *bitmap = kzalloc(BITS_TO_LONGS(NR_U32_NODE) * sizeof(unsigned long),
678 GFP_KERNEL);
679 if (!bitmap)
680 return handle | 0xFFF;
681
682 for (n = rtnl_dereference(ht->ht[TC_U32_HASH(handle)]);
683 n;
684 n = rtnl_dereference(n->next))
685 set_bit(TC_U32_NODE(n->handle), bitmap);
686
687 i = find_next_zero_bit(bitmap, NR_U32_NODE, 0x800);
688 if (i >= NR_U32_NODE)
689 i = find_next_zero_bit(bitmap, NR_U32_NODE, 1);
690
691 kfree(bitmap);
692 return handle | (i >= NR_U32_NODE ? 0xFFF : i);
693 }
694
695 static const struct nla_policy u32_policy[TCA_U32_MAX + 1] = {
696 [TCA_U32_CLASSID] = { .type = NLA_U32 },
697 [TCA_U32_HASH] = { .type = NLA_U32 },
698 [TCA_U32_LINK] = { .type = NLA_U32 },
699 [TCA_U32_DIVISOR] = { .type = NLA_U32 },
700 [TCA_U32_SEL] = { .len = sizeof(struct tc_u32_sel) },
701 [TCA_U32_INDEV] = { .type = NLA_STRING, .len = IFNAMSIZ },
702 [TCA_U32_MARK] = { .len = sizeof(struct tc_u32_mark) },
703 [TCA_U32_FLAGS] = { .type = NLA_U32 },
704 };
705
706 static int u32_set_parms(struct net *net, struct tcf_proto *tp,
707 unsigned long base, struct tc_u_hnode *ht,
708 struct tc_u_knode *n, struct nlattr **tb,
709 struct nlattr *est, bool ovr)
710 {
711 struct tcf_exts e;
712 int err;
713
714 err = tcf_exts_init(&e, TCA_U32_ACT, TCA_U32_POLICE);
715 if (err < 0)
716 return err;
717 err = tcf_exts_validate(net, tp, tb, est, &e, ovr);
718 if (err < 0)
719 goto errout;
720
721 err = -EINVAL;
722 if (tb[TCA_U32_LINK]) {
723 u32 handle = nla_get_u32(tb[TCA_U32_LINK]);
724 struct tc_u_hnode *ht_down = NULL, *ht_old;
725
726 if (TC_U32_KEY(handle))
727 goto errout;
728
729 if (handle) {
730 ht_down = u32_lookup_ht(ht->tp_c, handle);
731
732 if (ht_down == NULL)
733 goto errout;
734 ht_down->refcnt++;
735 }
736
737 ht_old = rtnl_dereference(n->ht_down);
738 rcu_assign_pointer(n->ht_down, ht_down);
739
740 if (ht_old)
741 ht_old->refcnt--;
742 }
743 if (tb[TCA_U32_CLASSID]) {
744 n->res.classid = nla_get_u32(tb[TCA_U32_CLASSID]);
745 tcf_bind_filter(tp, &n->res, base);
746 }
747
748 #ifdef CONFIG_NET_CLS_IND
749 if (tb[TCA_U32_INDEV]) {
750 int ret;
751 ret = tcf_change_indev(net, tb[TCA_U32_INDEV]);
752 if (ret < 0)
753 goto errout;
754 n->ifindex = ret;
755 }
756 #endif
757 tcf_exts_change(tp, &n->exts, &e);
758
759 return 0;
760 errout:
761 tcf_exts_destroy(&e);
762 return err;
763 }
764
765 static void u32_replace_knode(struct tcf_proto *tp, struct tc_u_common *tp_c,
766 struct tc_u_knode *n)
767 {
768 struct tc_u_knode __rcu **ins;
769 struct tc_u_knode *pins;
770 struct tc_u_hnode *ht;
771
772 if (TC_U32_HTID(n->handle) == TC_U32_ROOT)
773 ht = rtnl_dereference(tp->root);
774 else
775 ht = u32_lookup_ht(tp_c, TC_U32_HTID(n->handle));
776
777 ins = &ht->ht[TC_U32_HASH(n->handle)];
778
779 /* The node must always exist for it to be replaced if this is not the
780 * case then something went very wrong elsewhere.
781 */
782 for (pins = rtnl_dereference(*ins); ;
783 ins = &pins->next, pins = rtnl_dereference(*ins))
784 if (pins->handle == n->handle)
785 break;
786
787 RCU_INIT_POINTER(n->next, pins->next);
788 rcu_assign_pointer(*ins, n);
789 }
790
791 static struct tc_u_knode *u32_init_knode(struct tcf_proto *tp,
792 struct tc_u_knode *n)
793 {
794 struct tc_u_knode *new;
795 struct tc_u32_sel *s = &n->sel;
796
797 new = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key),
798 GFP_KERNEL);
799
800 if (!new)
801 return NULL;
802
803 RCU_INIT_POINTER(new->next, n->next);
804 new->handle = n->handle;
805 RCU_INIT_POINTER(new->ht_up, n->ht_up);
806
807 #ifdef CONFIG_NET_CLS_IND
808 new->ifindex = n->ifindex;
809 #endif
810 new->fshift = n->fshift;
811 new->res = n->res;
812 new->flags = n->flags;
813 RCU_INIT_POINTER(new->ht_down, n->ht_down);
814
815 /* bump reference count as long as we hold pointer to structure */
816 if (new->ht_down)
817 new->ht_down->refcnt++;
818
819 #ifdef CONFIG_CLS_U32_PERF
820 /* Statistics may be incremented by readers during update
821 * so we must keep them in tact. When the node is later destroyed
822 * a special destroy call must be made to not free the pf memory.
823 */
824 new->pf = n->pf;
825 #endif
826
827 #ifdef CONFIG_CLS_U32_MARK
828 new->val = n->val;
829 new->mask = n->mask;
830 /* Similarly success statistics must be moved as pointers */
831 new->pcpu_success = n->pcpu_success;
832 #endif
833 new->tp = tp;
834 memcpy(&new->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
835
836 if (tcf_exts_init(&new->exts, TCA_U32_ACT, TCA_U32_POLICE)) {
837 kfree(new);
838 return NULL;
839 }
840
841 return new;
842 }
843
844 static int u32_change(struct net *net, struct sk_buff *in_skb,
845 struct tcf_proto *tp, unsigned long base, u32 handle,
846 struct nlattr **tca, unsigned long *arg, bool ovr)
847 {
848 struct tc_u_common *tp_c = tp->data;
849 struct tc_u_hnode *ht;
850 struct tc_u_knode *n;
851 struct tc_u32_sel *s;
852 struct nlattr *opt = tca[TCA_OPTIONS];
853 struct nlattr *tb[TCA_U32_MAX + 1];
854 u32 htid, flags = 0;
855 int err;
856 #ifdef CONFIG_CLS_U32_PERF
857 size_t size;
858 #endif
859
860 if (opt == NULL)
861 return handle ? -EINVAL : 0;
862
863 err = nla_parse_nested(tb, TCA_U32_MAX, opt, u32_policy);
864 if (err < 0)
865 return err;
866
867 if (tb[TCA_U32_FLAGS]) {
868 flags = nla_get_u32(tb[TCA_U32_FLAGS]);
869 if (!tc_flags_valid(flags))
870 return -EINVAL;
871 }
872
873 n = (struct tc_u_knode *)*arg;
874 if (n) {
875 struct tc_u_knode *new;
876
877 if (TC_U32_KEY(n->handle) == 0)
878 return -EINVAL;
879
880 if (n->flags != flags)
881 return -EINVAL;
882
883 new = u32_init_knode(tp, n);
884 if (!new)
885 return -ENOMEM;
886
887 err = u32_set_parms(net, tp, base,
888 rtnl_dereference(n->ht_up), new, tb,
889 tca[TCA_RATE], ovr);
890
891 if (err) {
892 u32_destroy_key(tp, new, false);
893 return err;
894 }
895
896 err = u32_replace_hw_knode(tp, new, flags);
897 if (err) {
898 u32_destroy_key(tp, new, false);
899 return err;
900 }
901
902 if (!tc_in_hw(new->flags))
903 new->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
904
905 u32_replace_knode(tp, tp_c, new);
906 tcf_unbind_filter(tp, &n->res);
907 call_rcu(&n->rcu, u32_delete_key_rcu);
908 return 0;
909 }
910
911 if (tb[TCA_U32_DIVISOR]) {
912 unsigned int divisor = nla_get_u32(tb[TCA_U32_DIVISOR]);
913
914 if (--divisor > 0x100)
915 return -EINVAL;
916 if (TC_U32_KEY(handle))
917 return -EINVAL;
918 if (handle == 0) {
919 handle = gen_new_htid(tp->data);
920 if (handle == 0)
921 return -ENOMEM;
922 }
923 ht = kzalloc(sizeof(*ht) + divisor*sizeof(void *), GFP_KERNEL);
924 if (ht == NULL)
925 return -ENOBUFS;
926 ht->tp_c = tp_c;
927 ht->refcnt = 1;
928 ht->divisor = divisor;
929 ht->handle = handle;
930 ht->prio = tp->prio;
931
932 err = u32_replace_hw_hnode(tp, ht, flags);
933 if (err) {
934 kfree(ht);
935 return err;
936 }
937
938 RCU_INIT_POINTER(ht->next, tp_c->hlist);
939 rcu_assign_pointer(tp_c->hlist, ht);
940 *arg = (unsigned long)ht;
941
942 return 0;
943 }
944
945 if (tb[TCA_U32_HASH]) {
946 htid = nla_get_u32(tb[TCA_U32_HASH]);
947 if (TC_U32_HTID(htid) == TC_U32_ROOT) {
948 ht = rtnl_dereference(tp->root);
949 htid = ht->handle;
950 } else {
951 ht = u32_lookup_ht(tp->data, TC_U32_HTID(htid));
952 if (ht == NULL)
953 return -EINVAL;
954 }
955 } else {
956 ht = rtnl_dereference(tp->root);
957 htid = ht->handle;
958 }
959
960 if (ht->divisor < TC_U32_HASH(htid))
961 return -EINVAL;
962
963 if (handle) {
964 if (TC_U32_HTID(handle) && TC_U32_HTID(handle^htid))
965 return -EINVAL;
966 handle = htid | TC_U32_NODE(handle);
967 } else
968 handle = gen_new_kid(ht, htid);
969
970 if (tb[TCA_U32_SEL] == NULL)
971 return -EINVAL;
972
973 s = nla_data(tb[TCA_U32_SEL]);
974
975 n = kzalloc(sizeof(*n) + s->nkeys*sizeof(struct tc_u32_key), GFP_KERNEL);
976 if (n == NULL)
977 return -ENOBUFS;
978
979 #ifdef CONFIG_CLS_U32_PERF
980 size = sizeof(struct tc_u32_pcnt) + s->nkeys * sizeof(u64);
981 n->pf = __alloc_percpu(size, __alignof__(struct tc_u32_pcnt));
982 if (!n->pf) {
983 kfree(n);
984 return -ENOBUFS;
985 }
986 #endif
987
988 memcpy(&n->sel, s, sizeof(*s) + s->nkeys*sizeof(struct tc_u32_key));
989 RCU_INIT_POINTER(n->ht_up, ht);
990 n->handle = handle;
991 n->fshift = s->hmask ? ffs(ntohl(s->hmask)) - 1 : 0;
992 n->flags = flags;
993 n->tp = tp;
994
995 err = tcf_exts_init(&n->exts, TCA_U32_ACT, TCA_U32_POLICE);
996 if (err < 0)
997 goto errout;
998
999 #ifdef CONFIG_CLS_U32_MARK
1000 n->pcpu_success = alloc_percpu(u32);
1001 if (!n->pcpu_success) {
1002 err = -ENOMEM;
1003 goto errout;
1004 }
1005
1006 if (tb[TCA_U32_MARK]) {
1007 struct tc_u32_mark *mark;
1008
1009 mark = nla_data(tb[TCA_U32_MARK]);
1010 n->val = mark->val;
1011 n->mask = mark->mask;
1012 }
1013 #endif
1014
1015 err = u32_set_parms(net, tp, base, ht, n, tb, tca[TCA_RATE], ovr);
1016 if (err == 0) {
1017 struct tc_u_knode __rcu **ins;
1018 struct tc_u_knode *pins;
1019
1020 err = u32_replace_hw_knode(tp, n, flags);
1021 if (err)
1022 goto errhw;
1023
1024 if (!tc_in_hw(n->flags))
1025 n->flags |= TCA_CLS_FLAGS_NOT_IN_HW;
1026
1027 ins = &ht->ht[TC_U32_HASH(handle)];
1028 for (pins = rtnl_dereference(*ins); pins;
1029 ins = &pins->next, pins = rtnl_dereference(*ins))
1030 if (TC_U32_NODE(handle) < TC_U32_NODE(pins->handle))
1031 break;
1032
1033 RCU_INIT_POINTER(n->next, pins);
1034 rcu_assign_pointer(*ins, n);
1035 *arg = (unsigned long)n;
1036 return 0;
1037 }
1038
1039 errhw:
1040 #ifdef CONFIG_CLS_U32_MARK
1041 free_percpu(n->pcpu_success);
1042 #endif
1043
1044 errout:
1045 tcf_exts_destroy(&n->exts);
1046 #ifdef CONFIG_CLS_U32_PERF
1047 free_percpu(n->pf);
1048 #endif
1049 kfree(n);
1050 return err;
1051 }
1052
1053 static void u32_walk(struct tcf_proto *tp, struct tcf_walker *arg)
1054 {
1055 struct tc_u_common *tp_c = tp->data;
1056 struct tc_u_hnode *ht;
1057 struct tc_u_knode *n;
1058 unsigned int h;
1059
1060 if (arg->stop)
1061 return;
1062
1063 for (ht = rtnl_dereference(tp_c->hlist);
1064 ht;
1065 ht = rtnl_dereference(ht->next)) {
1066 if (ht->prio != tp->prio)
1067 continue;
1068 if (arg->count >= arg->skip) {
1069 if (arg->fn(tp, (unsigned long)ht, arg) < 0) {
1070 arg->stop = 1;
1071 return;
1072 }
1073 }
1074 arg->count++;
1075 for (h = 0; h <= ht->divisor; h++) {
1076 for (n = rtnl_dereference(ht->ht[h]);
1077 n;
1078 n = rtnl_dereference(n->next)) {
1079 if (arg->count < arg->skip) {
1080 arg->count++;
1081 continue;
1082 }
1083 if (arg->fn(tp, (unsigned long)n, arg) < 0) {
1084 arg->stop = 1;
1085 return;
1086 }
1087 arg->count++;
1088 }
1089 }
1090 }
1091 }
1092
1093 static int u32_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
1094 struct sk_buff *skb, struct tcmsg *t)
1095 {
1096 struct tc_u_knode *n = (struct tc_u_knode *)fh;
1097 struct tc_u_hnode *ht_up, *ht_down;
1098 struct nlattr *nest;
1099
1100 if (n == NULL)
1101 return skb->len;
1102
1103 t->tcm_handle = n->handle;
1104
1105 nest = nla_nest_start(skb, TCA_OPTIONS);
1106 if (nest == NULL)
1107 goto nla_put_failure;
1108
1109 if (TC_U32_KEY(n->handle) == 0) {
1110 struct tc_u_hnode *ht = (struct tc_u_hnode *)fh;
1111 u32 divisor = ht->divisor + 1;
1112
1113 if (nla_put_u32(skb, TCA_U32_DIVISOR, divisor))
1114 goto nla_put_failure;
1115 } else {
1116 #ifdef CONFIG_CLS_U32_PERF
1117 struct tc_u32_pcnt *gpf;
1118 int cpu;
1119 #endif
1120
1121 if (nla_put(skb, TCA_U32_SEL,
1122 sizeof(n->sel) + n->sel.nkeys*sizeof(struct tc_u32_key),
1123 &n->sel))
1124 goto nla_put_failure;
1125
1126 ht_up = rtnl_dereference(n->ht_up);
1127 if (ht_up) {
1128 u32 htid = n->handle & 0xFFFFF000;
1129 if (nla_put_u32(skb, TCA_U32_HASH, htid))
1130 goto nla_put_failure;
1131 }
1132 if (n->res.classid &&
1133 nla_put_u32(skb, TCA_U32_CLASSID, n->res.classid))
1134 goto nla_put_failure;
1135
1136 ht_down = rtnl_dereference(n->ht_down);
1137 if (ht_down &&
1138 nla_put_u32(skb, TCA_U32_LINK, ht_down->handle))
1139 goto nla_put_failure;
1140
1141 if (n->flags && nla_put_u32(skb, TCA_U32_FLAGS, n->flags))
1142 goto nla_put_failure;
1143
1144 #ifdef CONFIG_CLS_U32_MARK
1145 if ((n->val || n->mask)) {
1146 struct tc_u32_mark mark = {.val = n->val,
1147 .mask = n->mask,
1148 .success = 0};
1149 int cpum;
1150
1151 for_each_possible_cpu(cpum) {
1152 __u32 cnt = *per_cpu_ptr(n->pcpu_success, cpum);
1153
1154 mark.success += cnt;
1155 }
1156
1157 if (nla_put(skb, TCA_U32_MARK, sizeof(mark), &mark))
1158 goto nla_put_failure;
1159 }
1160 #endif
1161
1162 if (tcf_exts_dump(skb, &n->exts) < 0)
1163 goto nla_put_failure;
1164
1165 #ifdef CONFIG_NET_CLS_IND
1166 if (n->ifindex) {
1167 struct net_device *dev;
1168 dev = __dev_get_by_index(net, n->ifindex);
1169 if (dev && nla_put_string(skb, TCA_U32_INDEV, dev->name))
1170 goto nla_put_failure;
1171 }
1172 #endif
1173 #ifdef CONFIG_CLS_U32_PERF
1174 gpf = kzalloc(sizeof(struct tc_u32_pcnt) +
1175 n->sel.nkeys * sizeof(u64),
1176 GFP_KERNEL);
1177 if (!gpf)
1178 goto nla_put_failure;
1179
1180 for_each_possible_cpu(cpu) {
1181 int i;
1182 struct tc_u32_pcnt *pf = per_cpu_ptr(n->pf, cpu);
1183
1184 gpf->rcnt += pf->rcnt;
1185 gpf->rhit += pf->rhit;
1186 for (i = 0; i < n->sel.nkeys; i++)
1187 gpf->kcnts[i] += pf->kcnts[i];
1188 }
1189
1190 if (nla_put_64bit(skb, TCA_U32_PCNT,
1191 sizeof(struct tc_u32_pcnt) +
1192 n->sel.nkeys * sizeof(u64),
1193 gpf, TCA_U32_PAD)) {
1194 kfree(gpf);
1195 goto nla_put_failure;
1196 }
1197 kfree(gpf);
1198 #endif
1199 }
1200
1201 nla_nest_end(skb, nest);
1202
1203 if (TC_U32_KEY(n->handle))
1204 if (tcf_exts_dump_stats(skb, &n->exts) < 0)
1205 goto nla_put_failure;
1206 return skb->len;
1207
1208 nla_put_failure:
1209 nla_nest_cancel(skb, nest);
1210 return -1;
1211 }
1212
1213 static struct tcf_proto_ops cls_u32_ops __read_mostly = {
1214 .kind = "u32",
1215 .classify = u32_classify,
1216 .init = u32_init,
1217 .destroy = u32_destroy,
1218 .get = u32_get,
1219 .change = u32_change,
1220 .delete = u32_delete,
1221 .walk = u32_walk,
1222 .dump = u32_dump,
1223 .owner = THIS_MODULE,
1224 };
1225
1226 static int __init init_u32(void)
1227 {
1228 pr_info("u32 classifier\n");
1229 #ifdef CONFIG_CLS_U32_PERF
1230 pr_info(" Performance counters on\n");
1231 #endif
1232 #ifdef CONFIG_NET_CLS_IND
1233 pr_info(" input device check on\n");
1234 #endif
1235 #ifdef CONFIG_NET_CLS_ACT
1236 pr_info(" Actions configured\n");
1237 #endif
1238 return register_tcf_proto_ops(&cls_u32_ops);
1239 }
1240
1241 static void __exit exit_u32(void)
1242 {
1243 unregister_tcf_proto_ops(&cls_u32_ops);
1244 }
1245
1246 module_init(init_u32)
1247 module_exit(exit_u32)
1248 MODULE_LICENSE("GPL");