]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - net/sched/sch_cake.c
acc9b9da985f81ffd9b485e082cf1781e6731ba2
[mirror_ubuntu-jammy-kernel.git] / net / sched / sch_cake.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
70 #include <net/tcp.h>
71 #include <net/flow_dissector.h>
72
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
75 #endif
76
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
82
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
89 */
90 struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
96 };
97
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
106 */
107 struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
115 };
116
117 enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
123 };
124
125 struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136 }; /* please try to keep this structure <= 64 bytes */
137
138 struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
141 u16 srchost_bulk_flow_count;
142 u16 dsthost_bulk_flow_count;
143 };
144
145 struct cake_heap_entry {
146 u16 t:3, b:10;
147 };
148
149 struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
156
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
163
164 u32 max_skblen;
165
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
169
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
175
176 u16 tin_quantum_prio;
177 u16 tin_quantum_band;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
214 u32 fwmark_mask;
215 u16 fwmark_shft;
216
217 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
218 u16 rate_shft;
219 ktime_t time_next_packet;
220 ktime_t failsafe_next_packet;
221 u64 rate_ns;
222 u64 rate_bps;
223 u16 rate_flags;
224 s16 rate_overhead;
225 u16 rate_mpu;
226 u64 interval;
227 u64 target;
228
229 /* resource tracking */
230 u32 buffer_used;
231 u32 buffer_max_used;
232 u32 buffer_limit;
233 u32 buffer_config_limit;
234
235 /* indices for dequeue */
236 u16 cur_tin;
237 u16 cur_flow;
238
239 struct qdisc_watchdog watchdog;
240 const u8 *tin_index;
241 const u8 *tin_order;
242
243 /* bandwidth capacity estimate */
244 ktime_t last_packet_time;
245 ktime_t avg_window_begin;
246 u64 avg_packet_interval;
247 u64 avg_window_bytes;
248 u64 avg_peak_bandwidth;
249 ktime_t last_reconfig_time;
250
251 /* packet length stats */
252 u32 avg_netoff;
253 u16 max_netlen;
254 u16 max_adjlen;
255 u16 min_netlen;
256 u16 min_adjlen;
257 };
258
259 enum {
260 CAKE_FLAG_OVERHEAD = BIT(0),
261 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
262 CAKE_FLAG_INGRESS = BIT(2),
263 CAKE_FLAG_WASH = BIT(3),
264 CAKE_FLAG_SPLIT_GSO = BIT(4)
265 };
266
267 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
268 * obtain the best features of each. Codel is excellent on flows which
269 * respond to congestion signals in a TCP-like way. BLUE is more effective on
270 * unresponsive flows.
271 */
272
273 struct cobalt_skb_cb {
274 ktime_t enqueue_time;
275 u32 adjusted_len;
276 };
277
278 static u64 us_to_ns(u64 us)
279 {
280 return us * NSEC_PER_USEC;
281 }
282
283 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
284 {
285 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
286 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
287 }
288
289 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
290 {
291 return get_cobalt_cb(skb)->enqueue_time;
292 }
293
294 static void cobalt_set_enqueue_time(struct sk_buff *skb,
295 ktime_t now)
296 {
297 get_cobalt_cb(skb)->enqueue_time = now;
298 }
299
300 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
301
302 /* Diffserv lookup tables */
303
304 static const u8 precedence[] = {
305 0, 0, 0, 0, 0, 0, 0, 0,
306 1, 1, 1, 1, 1, 1, 1, 1,
307 2, 2, 2, 2, 2, 2, 2, 2,
308 3, 3, 3, 3, 3, 3, 3, 3,
309 4, 4, 4, 4, 4, 4, 4, 4,
310 5, 5, 5, 5, 5, 5, 5, 5,
311 6, 6, 6, 6, 6, 6, 6, 6,
312 7, 7, 7, 7, 7, 7, 7, 7,
313 };
314
315 static const u8 diffserv8[] = {
316 2, 5, 1, 2, 4, 2, 2, 2,
317 0, 2, 1, 2, 1, 2, 1, 2,
318 5, 2, 4, 2, 4, 2, 4, 2,
319 3, 2, 3, 2, 3, 2, 3, 2,
320 6, 2, 3, 2, 3, 2, 3, 2,
321 6, 2, 2, 2, 6, 2, 6, 2,
322 7, 2, 2, 2, 2, 2, 2, 2,
323 7, 2, 2, 2, 2, 2, 2, 2,
324 };
325
326 static const u8 diffserv4[] = {
327 0, 2, 0, 0, 2, 0, 0, 0,
328 1, 0, 0, 0, 0, 0, 0, 0,
329 2, 0, 2, 0, 2, 0, 2, 0,
330 2, 0, 2, 0, 2, 0, 2, 0,
331 3, 0, 2, 0, 2, 0, 2, 0,
332 3, 0, 0, 0, 3, 0, 3, 0,
333 3, 0, 0, 0, 0, 0, 0, 0,
334 3, 0, 0, 0, 0, 0, 0, 0,
335 };
336
337 static const u8 diffserv3[] = {
338 0, 0, 0, 0, 2, 0, 0, 0,
339 1, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 0, 0, 0, 0,
341 0, 0, 0, 0, 0, 0, 0, 0,
342 0, 0, 0, 0, 0, 0, 0, 0,
343 0, 0, 0, 0, 2, 0, 2, 0,
344 2, 0, 0, 0, 0, 0, 0, 0,
345 2, 0, 0, 0, 0, 0, 0, 0,
346 };
347
348 static const u8 besteffort[] = {
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 0, 0, 0, 0, 0, 0, 0, 0,
355 0, 0, 0, 0, 0, 0, 0, 0,
356 0, 0, 0, 0, 0, 0, 0, 0,
357 };
358
359 /* tin priority order for stats dumping */
360
361 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
362 static const u8 bulk_order[] = {1, 0, 2, 3};
363
364 #define REC_INV_SQRT_CACHE (16)
365 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
366
367 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
368 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
369 *
370 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
371 */
372
373 static void cobalt_newton_step(struct cobalt_vars *vars)
374 {
375 u32 invsqrt, invsqrt2;
376 u64 val;
377
378 invsqrt = vars->rec_inv_sqrt;
379 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
380 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
381
382 val >>= 2; /* avoid overflow in following multiply */
383 val = (val * invsqrt) >> (32 - 2 + 1);
384
385 vars->rec_inv_sqrt = val;
386 }
387
388 static void cobalt_invsqrt(struct cobalt_vars *vars)
389 {
390 if (vars->count < REC_INV_SQRT_CACHE)
391 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
392 else
393 cobalt_newton_step(vars);
394 }
395
396 /* There is a big difference in timing between the accurate values placed in
397 * the cache and the approximations given by a single Newton step for small
398 * count values, particularly when stepping from count 1 to 2 or vice versa.
399 * Above 16, a single Newton step gives sufficient accuracy in either
400 * direction, given the precision stored.
401 *
402 * The magnitude of the error when stepping up to count 2 is such as to give
403 * the value that *should* have been produced at count 4.
404 */
405
406 static void cobalt_cache_init(void)
407 {
408 struct cobalt_vars v;
409
410 memset(&v, 0, sizeof(v));
411 v.rec_inv_sqrt = ~0U;
412 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
413
414 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
415 cobalt_newton_step(&v);
416 cobalt_newton_step(&v);
417 cobalt_newton_step(&v);
418 cobalt_newton_step(&v);
419
420 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
421 }
422 }
423
424 static void cobalt_vars_init(struct cobalt_vars *vars)
425 {
426 memset(vars, 0, sizeof(*vars));
427
428 if (!cobalt_rec_inv_sqrt_cache[0]) {
429 cobalt_cache_init();
430 cobalt_rec_inv_sqrt_cache[0] = ~0;
431 }
432 }
433
434 /* CoDel control_law is t + interval/sqrt(count)
435 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
436 * both sqrt() and divide operation.
437 */
438 static ktime_t cobalt_control(ktime_t t,
439 u64 interval,
440 u32 rec_inv_sqrt)
441 {
442 return ktime_add_ns(t, reciprocal_scale(interval,
443 rec_inv_sqrt));
444 }
445
446 /* Call this when a packet had to be dropped due to queue overflow. Returns
447 * true if the BLUE state was quiescent before but active after this call.
448 */
449 static bool cobalt_queue_full(struct cobalt_vars *vars,
450 struct cobalt_params *p,
451 ktime_t now)
452 {
453 bool up = false;
454
455 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
456 up = !vars->p_drop;
457 vars->p_drop += p->p_inc;
458 if (vars->p_drop < p->p_inc)
459 vars->p_drop = ~0;
460 vars->blue_timer = now;
461 }
462 vars->dropping = true;
463 vars->drop_next = now;
464 if (!vars->count)
465 vars->count = 1;
466
467 return up;
468 }
469
470 /* Call this when the queue was serviced but turned out to be empty. Returns
471 * true if the BLUE state was active before but quiescent after this call.
472 */
473 static bool cobalt_queue_empty(struct cobalt_vars *vars,
474 struct cobalt_params *p,
475 ktime_t now)
476 {
477 bool down = false;
478
479 if (vars->p_drop &&
480 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
481 if (vars->p_drop < p->p_dec)
482 vars->p_drop = 0;
483 else
484 vars->p_drop -= p->p_dec;
485 vars->blue_timer = now;
486 down = !vars->p_drop;
487 }
488 vars->dropping = false;
489
490 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
491 vars->count--;
492 cobalt_invsqrt(vars);
493 vars->drop_next = cobalt_control(vars->drop_next,
494 p->interval,
495 vars->rec_inv_sqrt);
496 }
497
498 return down;
499 }
500
501 /* Call this with a freshly dequeued packet for possible congestion marking.
502 * Returns true as an instruction to drop the packet, false for delivery.
503 */
504 static bool cobalt_should_drop(struct cobalt_vars *vars,
505 struct cobalt_params *p,
506 ktime_t now,
507 struct sk_buff *skb,
508 u32 bulk_flows)
509 {
510 bool next_due, over_target, drop = false;
511 ktime_t schedule;
512 u64 sojourn;
513
514 /* The 'schedule' variable records, in its sign, whether 'now' is before or
515 * after 'drop_next'. This allows 'drop_next' to be updated before the next
516 * scheduling decision is actually branched, without destroying that
517 * information. Similarly, the first 'schedule' value calculated is preserved
518 * in the boolean 'next_due'.
519 *
520 * As for 'drop_next', we take advantage of the fact that 'interval' is both
521 * the delay between first exceeding 'target' and the first signalling event,
522 * *and* the scaling factor for the signalling frequency. It's therefore very
523 * natural to use a single mechanism for both purposes, and eliminates a
524 * significant amount of reference Codel's spaghetti code. To help with this,
525 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
526 * as possible to 1.0 in fixed-point.
527 */
528
529 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
530 schedule = ktime_sub(now, vars->drop_next);
531 over_target = sojourn > p->target &&
532 sojourn > p->mtu_time * bulk_flows * 2 &&
533 sojourn > p->mtu_time * 4;
534 next_due = vars->count && ktime_to_ns(schedule) >= 0;
535
536 vars->ecn_marked = false;
537
538 if (over_target) {
539 if (!vars->dropping) {
540 vars->dropping = true;
541 vars->drop_next = cobalt_control(now,
542 p->interval,
543 vars->rec_inv_sqrt);
544 }
545 if (!vars->count)
546 vars->count = 1;
547 } else if (vars->dropping) {
548 vars->dropping = false;
549 }
550
551 if (next_due && vars->dropping) {
552 /* Use ECN mark if possible, otherwise drop */
553 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
554
555 vars->count++;
556 if (!vars->count)
557 vars->count--;
558 cobalt_invsqrt(vars);
559 vars->drop_next = cobalt_control(vars->drop_next,
560 p->interval,
561 vars->rec_inv_sqrt);
562 schedule = ktime_sub(now, vars->drop_next);
563 } else {
564 while (next_due) {
565 vars->count--;
566 cobalt_invsqrt(vars);
567 vars->drop_next = cobalt_control(vars->drop_next,
568 p->interval,
569 vars->rec_inv_sqrt);
570 schedule = ktime_sub(now, vars->drop_next);
571 next_due = vars->count && ktime_to_ns(schedule) >= 0;
572 }
573 }
574
575 /* Simple BLUE implementation. Lack of ECN is deliberate. */
576 if (vars->p_drop)
577 drop |= (prandom_u32() < vars->p_drop);
578
579 /* Overload the drop_next field as an activity timeout */
580 if (!vars->count)
581 vars->drop_next = ktime_add_ns(now, p->interval);
582 else if (ktime_to_ns(schedule) > 0 && !drop)
583 vars->drop_next = now;
584
585 return drop;
586 }
587
588 static void cake_update_flowkeys(struct flow_keys *keys,
589 const struct sk_buff *skb)
590 {
591 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
592 struct nf_conntrack_tuple tuple = {};
593 bool rev = !skb->_nfct;
594
595 if (tc_skb_protocol(skb) != htons(ETH_P_IP))
596 return;
597
598 if (!nf_ct_get_tuple_skb(&tuple, skb))
599 return;
600
601 keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
602 keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
603
604 if (keys->ports.ports) {
605 keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
606 keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
607 }
608 #endif
609 }
610
611 /* Cake has several subtle multiple bit settings. In these cases you
612 * would be matching triple isolate mode as well.
613 */
614
615 static bool cake_dsrc(int flow_mode)
616 {
617 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
618 }
619
620 static bool cake_ddst(int flow_mode)
621 {
622 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
623 }
624
625 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
626 int flow_mode, u16 flow_override, u16 host_override)
627 {
628 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
629 u16 reduced_hash, srchost_idx, dsthost_idx;
630 struct flow_keys keys, host_keys;
631
632 if (unlikely(flow_mode == CAKE_FLOW_NONE))
633 return 0;
634
635 /* If both overrides are set we can skip packet dissection entirely */
636 if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
637 (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
638 goto skip_hash;
639
640 skb_flow_dissect_flow_keys(skb, &keys,
641 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
642
643 if (flow_mode & CAKE_FLOW_NAT_FLAG)
644 cake_update_flowkeys(&keys, skb);
645
646 /* flow_hash_from_keys() sorts the addresses by value, so we have
647 * to preserve their order in a separate data structure to treat
648 * src and dst host addresses as independently selectable.
649 */
650 host_keys = keys;
651 host_keys.ports.ports = 0;
652 host_keys.basic.ip_proto = 0;
653 host_keys.keyid.keyid = 0;
654 host_keys.tags.flow_label = 0;
655
656 switch (host_keys.control.addr_type) {
657 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
658 host_keys.addrs.v4addrs.src = 0;
659 dsthost_hash = flow_hash_from_keys(&host_keys);
660 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
661 host_keys.addrs.v4addrs.dst = 0;
662 srchost_hash = flow_hash_from_keys(&host_keys);
663 break;
664
665 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
666 memset(&host_keys.addrs.v6addrs.src, 0,
667 sizeof(host_keys.addrs.v6addrs.src));
668 dsthost_hash = flow_hash_from_keys(&host_keys);
669 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
670 memset(&host_keys.addrs.v6addrs.dst, 0,
671 sizeof(host_keys.addrs.v6addrs.dst));
672 srchost_hash = flow_hash_from_keys(&host_keys);
673 break;
674
675 default:
676 dsthost_hash = 0;
677 srchost_hash = 0;
678 }
679
680 /* This *must* be after the above switch, since as a
681 * side-effect it sorts the src and dst addresses.
682 */
683 if (flow_mode & CAKE_FLOW_FLOWS)
684 flow_hash = flow_hash_from_keys(&keys);
685
686 skip_hash:
687 if (flow_override)
688 flow_hash = flow_override - 1;
689 if (host_override) {
690 dsthost_hash = host_override - 1;
691 srchost_hash = host_override - 1;
692 }
693
694 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
695 if (flow_mode & CAKE_FLOW_SRC_IP)
696 flow_hash ^= srchost_hash;
697
698 if (flow_mode & CAKE_FLOW_DST_IP)
699 flow_hash ^= dsthost_hash;
700 }
701
702 reduced_hash = flow_hash % CAKE_QUEUES;
703
704 /* set-associative hashing */
705 /* fast path if no hash collision (direct lookup succeeds) */
706 if (likely(q->tags[reduced_hash] == flow_hash &&
707 q->flows[reduced_hash].set)) {
708 q->way_directs++;
709 } else {
710 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
711 u32 outer_hash = reduced_hash - inner_hash;
712 bool allocate_src = false;
713 bool allocate_dst = false;
714 u32 i, k;
715
716 /* check if any active queue in the set is reserved for
717 * this flow.
718 */
719 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
720 i++, k = (k + 1) % CAKE_SET_WAYS) {
721 if (q->tags[outer_hash + k] == flow_hash) {
722 if (i)
723 q->way_hits++;
724
725 if (!q->flows[outer_hash + k].set) {
726 /* need to increment host refcnts */
727 allocate_src = cake_dsrc(flow_mode);
728 allocate_dst = cake_ddst(flow_mode);
729 }
730
731 goto found;
732 }
733 }
734
735 /* no queue is reserved for this flow, look for an
736 * empty one.
737 */
738 for (i = 0; i < CAKE_SET_WAYS;
739 i++, k = (k + 1) % CAKE_SET_WAYS) {
740 if (!q->flows[outer_hash + k].set) {
741 q->way_misses++;
742 allocate_src = cake_dsrc(flow_mode);
743 allocate_dst = cake_ddst(flow_mode);
744 goto found;
745 }
746 }
747
748 /* With no empty queues, default to the original
749 * queue, accept the collision, update the host tags.
750 */
751 q->way_collisions++;
752 if (q->flows[outer_hash + k].set == CAKE_SET_BULK) {
753 q->hosts[q->flows[reduced_hash].srchost].srchost_bulk_flow_count--;
754 q->hosts[q->flows[reduced_hash].dsthost].dsthost_bulk_flow_count--;
755 }
756 allocate_src = cake_dsrc(flow_mode);
757 allocate_dst = cake_ddst(flow_mode);
758 found:
759 /* reserve queue for future packets in same flow */
760 reduced_hash = outer_hash + k;
761 q->tags[reduced_hash] = flow_hash;
762
763 if (allocate_src) {
764 srchost_idx = srchost_hash % CAKE_QUEUES;
765 inner_hash = srchost_idx % CAKE_SET_WAYS;
766 outer_hash = srchost_idx - inner_hash;
767 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
768 i++, k = (k + 1) % CAKE_SET_WAYS) {
769 if (q->hosts[outer_hash + k].srchost_tag ==
770 srchost_hash)
771 goto found_src;
772 }
773 for (i = 0; i < CAKE_SET_WAYS;
774 i++, k = (k + 1) % CAKE_SET_WAYS) {
775 if (!q->hosts[outer_hash + k].srchost_bulk_flow_count)
776 break;
777 }
778 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
779 found_src:
780 srchost_idx = outer_hash + k;
781 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
782 q->hosts[srchost_idx].srchost_bulk_flow_count++;
783 q->flows[reduced_hash].srchost = srchost_idx;
784 }
785
786 if (allocate_dst) {
787 dsthost_idx = dsthost_hash % CAKE_QUEUES;
788 inner_hash = dsthost_idx % CAKE_SET_WAYS;
789 outer_hash = dsthost_idx - inner_hash;
790 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
791 i++, k = (k + 1) % CAKE_SET_WAYS) {
792 if (q->hosts[outer_hash + k].dsthost_tag ==
793 dsthost_hash)
794 goto found_dst;
795 }
796 for (i = 0; i < CAKE_SET_WAYS;
797 i++, k = (k + 1) % CAKE_SET_WAYS) {
798 if (!q->hosts[outer_hash + k].dsthost_bulk_flow_count)
799 break;
800 }
801 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
802 found_dst:
803 dsthost_idx = outer_hash + k;
804 if (q->flows[reduced_hash].set == CAKE_SET_BULK)
805 q->hosts[dsthost_idx].dsthost_bulk_flow_count++;
806 q->flows[reduced_hash].dsthost = dsthost_idx;
807 }
808 }
809
810 return reduced_hash;
811 }
812
813 /* helper functions : might be changed when/if skb use a standard list_head */
814 /* remove one skb from head of slot queue */
815
816 static struct sk_buff *dequeue_head(struct cake_flow *flow)
817 {
818 struct sk_buff *skb = flow->head;
819
820 if (skb) {
821 flow->head = skb->next;
822 skb_mark_not_on_list(skb);
823 }
824
825 return skb;
826 }
827
828 /* add skb to flow queue (tail add) */
829
830 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
831 {
832 if (!flow->head)
833 flow->head = skb;
834 else
835 flow->tail->next = skb;
836 flow->tail = skb;
837 skb->next = NULL;
838 }
839
840 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
841 struct ipv6hdr *buf)
842 {
843 unsigned int offset = skb_network_offset(skb);
844 struct iphdr *iph;
845
846 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
847
848 if (!iph)
849 return NULL;
850
851 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
852 return skb_header_pointer(skb, offset + iph->ihl * 4,
853 sizeof(struct ipv6hdr), buf);
854
855 else if (iph->version == 4)
856 return iph;
857
858 else if (iph->version == 6)
859 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
860 buf);
861
862 return NULL;
863 }
864
865 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
866 void *buf, unsigned int bufsize)
867 {
868 unsigned int offset = skb_network_offset(skb);
869 const struct ipv6hdr *ipv6h;
870 const struct tcphdr *tcph;
871 const struct iphdr *iph;
872 struct ipv6hdr _ipv6h;
873 struct tcphdr _tcph;
874
875 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
876
877 if (!ipv6h)
878 return NULL;
879
880 if (ipv6h->version == 4) {
881 iph = (struct iphdr *)ipv6h;
882 offset += iph->ihl * 4;
883
884 /* special-case 6in4 tunnelling, as that is a common way to get
885 * v6 connectivity in the home
886 */
887 if (iph->protocol == IPPROTO_IPV6) {
888 ipv6h = skb_header_pointer(skb, offset,
889 sizeof(_ipv6h), &_ipv6h);
890
891 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
892 return NULL;
893
894 offset += sizeof(struct ipv6hdr);
895
896 } else if (iph->protocol != IPPROTO_TCP) {
897 return NULL;
898 }
899
900 } else if (ipv6h->version == 6) {
901 if (ipv6h->nexthdr != IPPROTO_TCP)
902 return NULL;
903
904 offset += sizeof(struct ipv6hdr);
905 } else {
906 return NULL;
907 }
908
909 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
910 if (!tcph)
911 return NULL;
912
913 return skb_header_pointer(skb, offset,
914 min(__tcp_hdrlen(tcph), bufsize), buf);
915 }
916
917 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
918 int code, int *oplen)
919 {
920 /* inspired by tcp_parse_options in tcp_input.c */
921 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
922 const u8 *ptr = (const u8 *)(tcph + 1);
923
924 while (length > 0) {
925 int opcode = *ptr++;
926 int opsize;
927
928 if (opcode == TCPOPT_EOL)
929 break;
930 if (opcode == TCPOPT_NOP) {
931 length--;
932 continue;
933 }
934 opsize = *ptr++;
935 if (opsize < 2 || opsize > length)
936 break;
937
938 if (opcode == code) {
939 *oplen = opsize;
940 return ptr;
941 }
942
943 ptr += opsize - 2;
944 length -= opsize;
945 }
946
947 return NULL;
948 }
949
950 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
951 * bytes than the other. In the case where both sequences ACKs bytes that the
952 * other doesn't, A is considered greater. DSACKs in A also makes A be
953 * considered greater.
954 *
955 * @return -1, 0 or 1 as normal compare functions
956 */
957 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
958 const struct tcphdr *tcph_b)
959 {
960 const struct tcp_sack_block_wire *sack_a, *sack_b;
961 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
962 u32 bytes_a = 0, bytes_b = 0;
963 int oplen_a, oplen_b;
964 bool first = true;
965
966 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
967 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
968
969 /* pointers point to option contents */
970 oplen_a -= TCPOLEN_SACK_BASE;
971 oplen_b -= TCPOLEN_SACK_BASE;
972
973 if (sack_a && oplen_a >= sizeof(*sack_a) &&
974 (!sack_b || oplen_b < sizeof(*sack_b)))
975 return -1;
976 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
977 (!sack_a || oplen_a < sizeof(*sack_a)))
978 return 1;
979 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
980 (!sack_b || oplen_b < sizeof(*sack_b)))
981 return 0;
982
983 while (oplen_a >= sizeof(*sack_a)) {
984 const struct tcp_sack_block_wire *sack_tmp = sack_b;
985 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
986 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
987 int oplen_tmp = oplen_b;
988 bool found = false;
989
990 /* DSACK; always considered greater to prevent dropping */
991 if (before(start_a, ack_seq_a))
992 return -1;
993
994 bytes_a += end_a - start_a;
995
996 while (oplen_tmp >= sizeof(*sack_tmp)) {
997 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
998 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
999
1000 /* first time through we count the total size */
1001 if (first)
1002 bytes_b += end_b - start_b;
1003
1004 if (!after(start_b, start_a) && !before(end_b, end_a)) {
1005 found = true;
1006 if (!first)
1007 break;
1008 }
1009 oplen_tmp -= sizeof(*sack_tmp);
1010 sack_tmp++;
1011 }
1012
1013 if (!found)
1014 return -1;
1015
1016 oplen_a -= sizeof(*sack_a);
1017 sack_a++;
1018 first = false;
1019 }
1020
1021 /* If we made it this far, all ranges SACKed by A are covered by B, so
1022 * either the SACKs are equal, or B SACKs more bytes.
1023 */
1024 return bytes_b > bytes_a ? 1 : 0;
1025 }
1026
1027 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1028 u32 *tsval, u32 *tsecr)
1029 {
1030 const u8 *ptr;
1031 int opsize;
1032
1033 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1034
1035 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1036 *tsval = get_unaligned_be32(ptr);
1037 *tsecr = get_unaligned_be32(ptr + 4);
1038 }
1039 }
1040
1041 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1042 u32 tstamp_new, u32 tsecr_new)
1043 {
1044 /* inspired by tcp_parse_options in tcp_input.c */
1045 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1046 const u8 *ptr = (const u8 *)(tcph + 1);
1047 u32 tstamp, tsecr;
1048
1049 /* 3 reserved flags must be unset to avoid future breakage
1050 * ACK must be set
1051 * ECE/CWR are handled separately
1052 * All other flags URG/PSH/RST/SYN/FIN must be unset
1053 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1054 * 0x00C00000 = CWR/ECE (handled separately)
1055 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1056 */
1057 if (((tcp_flag_word(tcph) &
1058 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1059 return false;
1060
1061 while (length > 0) {
1062 int opcode = *ptr++;
1063 int opsize;
1064
1065 if (opcode == TCPOPT_EOL)
1066 break;
1067 if (opcode == TCPOPT_NOP) {
1068 length--;
1069 continue;
1070 }
1071 opsize = *ptr++;
1072 if (opsize < 2 || opsize > length)
1073 break;
1074
1075 switch (opcode) {
1076 case TCPOPT_MD5SIG: /* doesn't influence state */
1077 break;
1078
1079 case TCPOPT_SACK: /* stricter checking performed later */
1080 if (opsize % 8 != 2)
1081 return false;
1082 break;
1083
1084 case TCPOPT_TIMESTAMP:
1085 /* only drop timestamps lower than new */
1086 if (opsize != TCPOLEN_TIMESTAMP)
1087 return false;
1088 tstamp = get_unaligned_be32(ptr);
1089 tsecr = get_unaligned_be32(ptr + 4);
1090 if (after(tstamp, tstamp_new) ||
1091 after(tsecr, tsecr_new))
1092 return false;
1093 break;
1094
1095 case TCPOPT_MSS: /* these should only be set on SYN */
1096 case TCPOPT_WINDOW:
1097 case TCPOPT_SACK_PERM:
1098 case TCPOPT_FASTOPEN:
1099 case TCPOPT_EXP:
1100 default: /* don't drop if any unknown options are present */
1101 return false;
1102 }
1103
1104 ptr += opsize - 2;
1105 length -= opsize;
1106 }
1107
1108 return true;
1109 }
1110
1111 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1112 struct cake_flow *flow)
1113 {
1114 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1115 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1116 struct sk_buff *skb_check, *skb_prev = NULL;
1117 const struct ipv6hdr *ipv6h, *ipv6h_check;
1118 unsigned char _tcph[64], _tcph_check[64];
1119 const struct tcphdr *tcph, *tcph_check;
1120 const struct iphdr *iph, *iph_check;
1121 struct ipv6hdr _iph, _iph_check;
1122 const struct sk_buff *skb;
1123 int seglen, num_found = 0;
1124 u32 tstamp = 0, tsecr = 0;
1125 __be32 elig_flags = 0;
1126 int sack_comp;
1127
1128 /* no other possible ACKs to filter */
1129 if (flow->head == flow->tail)
1130 return NULL;
1131
1132 skb = flow->tail;
1133 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1134 iph = cake_get_iphdr(skb, &_iph);
1135 if (!tcph)
1136 return NULL;
1137
1138 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1139
1140 /* the 'triggering' packet need only have the ACK flag set.
1141 * also check that SYN is not set, as there won't be any previous ACKs.
1142 */
1143 if ((tcp_flag_word(tcph) &
1144 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1145 return NULL;
1146
1147 /* the 'triggering' ACK is at the tail of the queue, we have already
1148 * returned if it is the only packet in the flow. loop through the rest
1149 * of the queue looking for pure ACKs with the same 5-tuple as the
1150 * triggering one.
1151 */
1152 for (skb_check = flow->head;
1153 skb_check && skb_check != skb;
1154 skb_prev = skb_check, skb_check = skb_check->next) {
1155 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1156 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1157 sizeof(_tcph_check));
1158
1159 /* only TCP packets with matching 5-tuple are eligible, and only
1160 * drop safe headers
1161 */
1162 if (!tcph_check || iph->version != iph_check->version ||
1163 tcph_check->source != tcph->source ||
1164 tcph_check->dest != tcph->dest)
1165 continue;
1166
1167 if (iph_check->version == 4) {
1168 if (iph_check->saddr != iph->saddr ||
1169 iph_check->daddr != iph->daddr)
1170 continue;
1171
1172 seglen = ntohs(iph_check->tot_len) -
1173 (4 * iph_check->ihl);
1174 } else if (iph_check->version == 6) {
1175 ipv6h = (struct ipv6hdr *)iph;
1176 ipv6h_check = (struct ipv6hdr *)iph_check;
1177
1178 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1179 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1180 continue;
1181
1182 seglen = ntohs(ipv6h_check->payload_len);
1183 } else {
1184 WARN_ON(1); /* shouldn't happen */
1185 continue;
1186 }
1187
1188 /* If the ECE/CWR flags changed from the previous eligible
1189 * packet in the same flow, we should no longer be dropping that
1190 * previous packet as this would lose information.
1191 */
1192 if (elig_ack && (tcp_flag_word(tcph_check) &
1193 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1194 elig_ack = NULL;
1195 elig_ack_prev = NULL;
1196 num_found--;
1197 }
1198
1199 /* Check TCP options and flags, don't drop ACKs with segment
1200 * data, and don't drop ACKs with a higher cumulative ACK
1201 * counter than the triggering packet. Check ACK seqno here to
1202 * avoid parsing SACK options of packets we are going to exclude
1203 * anyway.
1204 */
1205 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1206 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1207 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1208 continue;
1209
1210 /* Check SACK options. The triggering packet must SACK more data
1211 * than the ACK under consideration, or SACK the same range but
1212 * have a larger cumulative ACK counter. The latter is a
1213 * pathological case, but is contained in the following check
1214 * anyway, just to be safe.
1215 */
1216 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1217
1218 if (sack_comp < 0 ||
1219 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1220 sack_comp == 0))
1221 continue;
1222
1223 /* At this point we have found an eligible pure ACK to drop; if
1224 * we are in aggressive mode, we are done. Otherwise, keep
1225 * searching unless this is the second eligible ACK we
1226 * found.
1227 *
1228 * Since we want to drop ACK closest to the head of the queue,
1229 * save the first eligible ACK we find, even if we need to loop
1230 * again.
1231 */
1232 if (!elig_ack) {
1233 elig_ack = skb_check;
1234 elig_ack_prev = skb_prev;
1235 elig_flags = (tcp_flag_word(tcph_check)
1236 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1237 }
1238
1239 if (num_found++ > 0)
1240 goto found;
1241 }
1242
1243 /* We made it through the queue without finding two eligible ACKs . If
1244 * we found a single eligible ACK we can drop it in aggressive mode if
1245 * we can guarantee that this does not interfere with ECN flag
1246 * information. We ensure this by dropping it only if the enqueued
1247 * packet is consecutive with the eligible ACK, and their flags match.
1248 */
1249 if (elig_ack && aggressive && elig_ack->next == skb &&
1250 (elig_flags == (tcp_flag_word(tcph) &
1251 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1252 goto found;
1253
1254 return NULL;
1255
1256 found:
1257 if (elig_ack_prev)
1258 elig_ack_prev->next = elig_ack->next;
1259 else
1260 flow->head = elig_ack->next;
1261
1262 skb_mark_not_on_list(elig_ack);
1263
1264 return elig_ack;
1265 }
1266
1267 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1268 {
1269 avg -= avg >> shift;
1270 avg += sample >> shift;
1271 return avg;
1272 }
1273
1274 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1275 {
1276 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1277 len -= off;
1278
1279 if (q->max_netlen < len)
1280 q->max_netlen = len;
1281 if (q->min_netlen > len)
1282 q->min_netlen = len;
1283
1284 len += q->rate_overhead;
1285
1286 if (len < q->rate_mpu)
1287 len = q->rate_mpu;
1288
1289 if (q->atm_mode == CAKE_ATM_ATM) {
1290 len += 47;
1291 len /= 48;
1292 len *= 53;
1293 } else if (q->atm_mode == CAKE_ATM_PTM) {
1294 /* Add one byte per 64 bytes or part thereof.
1295 * This is conservative and easier to calculate than the
1296 * precise value.
1297 */
1298 len += (len + 63) / 64;
1299 }
1300
1301 if (q->max_adjlen < len)
1302 q->max_adjlen = len;
1303 if (q->min_adjlen > len)
1304 q->min_adjlen = len;
1305
1306 return len;
1307 }
1308
1309 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1310 {
1311 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1312 unsigned int hdr_len, last_len = 0;
1313 u32 off = skb_network_offset(skb);
1314 u32 len = qdisc_pkt_len(skb);
1315 u16 segs = 1;
1316
1317 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1318
1319 if (!shinfo->gso_size)
1320 return cake_calc_overhead(q, len, off);
1321
1322 /* borrowed from qdisc_pkt_len_init() */
1323 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1324
1325 /* + transport layer */
1326 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1327 SKB_GSO_TCPV6))) {
1328 const struct tcphdr *th;
1329 struct tcphdr _tcphdr;
1330
1331 th = skb_header_pointer(skb, skb_transport_offset(skb),
1332 sizeof(_tcphdr), &_tcphdr);
1333 if (likely(th))
1334 hdr_len += __tcp_hdrlen(th);
1335 } else {
1336 struct udphdr _udphdr;
1337
1338 if (skb_header_pointer(skb, skb_transport_offset(skb),
1339 sizeof(_udphdr), &_udphdr))
1340 hdr_len += sizeof(struct udphdr);
1341 }
1342
1343 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1344 segs = DIV_ROUND_UP(skb->len - hdr_len,
1345 shinfo->gso_size);
1346 else
1347 segs = shinfo->gso_segs;
1348
1349 len = shinfo->gso_size + hdr_len;
1350 last_len = skb->len - shinfo->gso_size * (segs - 1);
1351
1352 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1353 cake_calc_overhead(q, last_len, off));
1354 }
1355
1356 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1357 {
1358 struct cake_heap_entry ii = q->overflow_heap[i];
1359 struct cake_heap_entry jj = q->overflow_heap[j];
1360
1361 q->overflow_heap[i] = jj;
1362 q->overflow_heap[j] = ii;
1363
1364 q->tins[ii.t].overflow_idx[ii.b] = j;
1365 q->tins[jj.t].overflow_idx[jj.b] = i;
1366 }
1367
1368 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1369 {
1370 struct cake_heap_entry ii = q->overflow_heap[i];
1371
1372 return q->tins[ii.t].backlogs[ii.b];
1373 }
1374
1375 static void cake_heapify(struct cake_sched_data *q, u16 i)
1376 {
1377 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1378 u32 mb = cake_heap_get_backlog(q, i);
1379 u32 m = i;
1380
1381 while (m < a) {
1382 u32 l = m + m + 1;
1383 u32 r = l + 1;
1384
1385 if (l < a) {
1386 u32 lb = cake_heap_get_backlog(q, l);
1387
1388 if (lb > mb) {
1389 m = l;
1390 mb = lb;
1391 }
1392 }
1393
1394 if (r < a) {
1395 u32 rb = cake_heap_get_backlog(q, r);
1396
1397 if (rb > mb) {
1398 m = r;
1399 mb = rb;
1400 }
1401 }
1402
1403 if (m != i) {
1404 cake_heap_swap(q, i, m);
1405 i = m;
1406 } else {
1407 break;
1408 }
1409 }
1410 }
1411
1412 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1413 {
1414 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1415 u16 p = (i - 1) >> 1;
1416 u32 ib = cake_heap_get_backlog(q, i);
1417 u32 pb = cake_heap_get_backlog(q, p);
1418
1419 if (ib > pb) {
1420 cake_heap_swap(q, i, p);
1421 i = p;
1422 } else {
1423 break;
1424 }
1425 }
1426 }
1427
1428 static int cake_advance_shaper(struct cake_sched_data *q,
1429 struct cake_tin_data *b,
1430 struct sk_buff *skb,
1431 ktime_t now, bool drop)
1432 {
1433 u32 len = get_cobalt_cb(skb)->adjusted_len;
1434
1435 /* charge packet bandwidth to this tin
1436 * and to the global shaper.
1437 */
1438 if (q->rate_ns) {
1439 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1440 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1441 u64 failsafe_dur = global_dur + (global_dur >> 1);
1442
1443 if (ktime_before(b->time_next_packet, now))
1444 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1445 tin_dur);
1446
1447 else if (ktime_before(b->time_next_packet,
1448 ktime_add_ns(now, tin_dur)))
1449 b->time_next_packet = ktime_add_ns(now, tin_dur);
1450
1451 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1452 global_dur);
1453 if (!drop)
1454 q->failsafe_next_packet = \
1455 ktime_add_ns(q->failsafe_next_packet,
1456 failsafe_dur);
1457 }
1458 return len;
1459 }
1460
1461 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1462 {
1463 struct cake_sched_data *q = qdisc_priv(sch);
1464 ktime_t now = ktime_get();
1465 u32 idx = 0, tin = 0, len;
1466 struct cake_heap_entry qq;
1467 struct cake_tin_data *b;
1468 struct cake_flow *flow;
1469 struct sk_buff *skb;
1470
1471 if (!q->overflow_timeout) {
1472 int i;
1473 /* Build fresh max-heap */
1474 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1475 cake_heapify(q, i);
1476 }
1477 q->overflow_timeout = 65535;
1478
1479 /* select longest queue for pruning */
1480 qq = q->overflow_heap[0];
1481 tin = qq.t;
1482 idx = qq.b;
1483
1484 b = &q->tins[tin];
1485 flow = &b->flows[idx];
1486 skb = dequeue_head(flow);
1487 if (unlikely(!skb)) {
1488 /* heap has gone wrong, rebuild it next time */
1489 q->overflow_timeout = 0;
1490 return idx + (tin << 16);
1491 }
1492
1493 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1494 b->unresponsive_flow_count++;
1495
1496 len = qdisc_pkt_len(skb);
1497 q->buffer_used -= skb->truesize;
1498 b->backlogs[idx] -= len;
1499 b->tin_backlog -= len;
1500 sch->qstats.backlog -= len;
1501 qdisc_tree_reduce_backlog(sch, 1, len);
1502
1503 flow->dropped++;
1504 b->tin_dropped++;
1505 sch->qstats.drops++;
1506
1507 if (q->rate_flags & CAKE_FLAG_INGRESS)
1508 cake_advance_shaper(q, b, skb, now, true);
1509
1510 __qdisc_drop(skb, to_free);
1511 sch->q.qlen--;
1512
1513 cake_heapify(q, 0);
1514
1515 return idx + (tin << 16);
1516 }
1517
1518 static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
1519 {
1520 u8 dscp;
1521
1522 switch (skb->protocol) {
1523 case htons(ETH_P_IP):
1524 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
1525 if (wash && dscp)
1526 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1527 return dscp;
1528
1529 case htons(ETH_P_IPV6):
1530 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
1531 if (wash && dscp)
1532 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1533 return dscp;
1534
1535 case htons(ETH_P_ARP):
1536 return 0x38; /* CS7 - Net Control */
1537
1538 default:
1539 /* If there is no Diffserv field, treat as best-effort */
1540 return 0;
1541 }
1542 }
1543
1544 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1545 struct sk_buff *skb)
1546 {
1547 struct cake_sched_data *q = qdisc_priv(sch);
1548 u32 tin, mark;
1549 u8 dscp;
1550
1551 /* Tin selection: Default to diffserv-based selection, allow overriding
1552 * using firewall marks or skb->priority.
1553 */
1554 dscp = cake_handle_diffserv(skb,
1555 q->rate_flags & CAKE_FLAG_WASH);
1556 mark = (skb->mark & q->fwmark_mask) >> q->fwmark_shft;
1557
1558 if (q->tin_mode == CAKE_DIFFSERV_BESTEFFORT)
1559 tin = 0;
1560
1561 else if (mark && mark <= q->tin_cnt)
1562 tin = q->tin_order[mark - 1];
1563
1564 else if (TC_H_MAJ(skb->priority) == sch->handle &&
1565 TC_H_MIN(skb->priority) > 0 &&
1566 TC_H_MIN(skb->priority) <= q->tin_cnt)
1567 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1568
1569 else {
1570 tin = q->tin_index[dscp];
1571
1572 if (unlikely(tin >= q->tin_cnt))
1573 tin = 0;
1574 }
1575
1576 return &q->tins[tin];
1577 }
1578
1579 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1580 struct sk_buff *skb, int flow_mode, int *qerr)
1581 {
1582 struct cake_sched_data *q = qdisc_priv(sch);
1583 struct tcf_proto *filter;
1584 struct tcf_result res;
1585 u16 flow = 0, host = 0;
1586 int result;
1587
1588 filter = rcu_dereference_bh(q->filter_list);
1589 if (!filter)
1590 goto hash;
1591
1592 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1593 result = tcf_classify(skb, filter, &res, false);
1594
1595 if (result >= 0) {
1596 #ifdef CONFIG_NET_CLS_ACT
1597 switch (result) {
1598 case TC_ACT_STOLEN:
1599 case TC_ACT_QUEUED:
1600 case TC_ACT_TRAP:
1601 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1602 /* fall through */
1603 case TC_ACT_SHOT:
1604 return 0;
1605 }
1606 #endif
1607 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1608 flow = TC_H_MIN(res.classid);
1609 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1610 host = TC_H_MAJ(res.classid) >> 16;
1611 }
1612 hash:
1613 *t = cake_select_tin(sch, skb);
1614 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1615 }
1616
1617 static void cake_reconfigure(struct Qdisc *sch);
1618
1619 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1620 struct sk_buff **to_free)
1621 {
1622 struct cake_sched_data *q = qdisc_priv(sch);
1623 int len = qdisc_pkt_len(skb);
1624 int uninitialized_var(ret);
1625 struct sk_buff *ack = NULL;
1626 ktime_t now = ktime_get();
1627 struct cake_tin_data *b;
1628 struct cake_flow *flow;
1629 u32 idx;
1630
1631 /* choose flow to insert into */
1632 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1633 if (idx == 0) {
1634 if (ret & __NET_XMIT_BYPASS)
1635 qdisc_qstats_drop(sch);
1636 __qdisc_drop(skb, to_free);
1637 return ret;
1638 }
1639 idx--;
1640 flow = &b->flows[idx];
1641
1642 /* ensure shaper state isn't stale */
1643 if (!b->tin_backlog) {
1644 if (ktime_before(b->time_next_packet, now))
1645 b->time_next_packet = now;
1646
1647 if (!sch->q.qlen) {
1648 if (ktime_before(q->time_next_packet, now)) {
1649 q->failsafe_next_packet = now;
1650 q->time_next_packet = now;
1651 } else if (ktime_after(q->time_next_packet, now) &&
1652 ktime_after(q->failsafe_next_packet, now)) {
1653 u64 next = \
1654 min(ktime_to_ns(q->time_next_packet),
1655 ktime_to_ns(
1656 q->failsafe_next_packet));
1657 sch->qstats.overlimits++;
1658 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1659 }
1660 }
1661 }
1662
1663 if (unlikely(len > b->max_skblen))
1664 b->max_skblen = len;
1665
1666 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1667 struct sk_buff *segs, *nskb;
1668 netdev_features_t features = netif_skb_features(skb);
1669 unsigned int slen = 0, numsegs = 0;
1670
1671 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1672 if (IS_ERR_OR_NULL(segs))
1673 return qdisc_drop(skb, sch, to_free);
1674
1675 while (segs) {
1676 nskb = segs->next;
1677 skb_mark_not_on_list(segs);
1678 qdisc_skb_cb(segs)->pkt_len = segs->len;
1679 cobalt_set_enqueue_time(segs, now);
1680 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1681 segs);
1682 flow_queue_add(flow, segs);
1683
1684 sch->q.qlen++;
1685 numsegs++;
1686 slen += segs->len;
1687 q->buffer_used += segs->truesize;
1688 b->packets++;
1689 segs = nskb;
1690 }
1691
1692 /* stats */
1693 b->bytes += slen;
1694 b->backlogs[idx] += slen;
1695 b->tin_backlog += slen;
1696 sch->qstats.backlog += slen;
1697 q->avg_window_bytes += slen;
1698
1699 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1700 consume_skb(skb);
1701 } else {
1702 /* not splitting */
1703 cobalt_set_enqueue_time(skb, now);
1704 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1705 flow_queue_add(flow, skb);
1706
1707 if (q->ack_filter)
1708 ack = cake_ack_filter(q, flow);
1709
1710 if (ack) {
1711 b->ack_drops++;
1712 sch->qstats.drops++;
1713 b->bytes += qdisc_pkt_len(ack);
1714 len -= qdisc_pkt_len(ack);
1715 q->buffer_used += skb->truesize - ack->truesize;
1716 if (q->rate_flags & CAKE_FLAG_INGRESS)
1717 cake_advance_shaper(q, b, ack, now, true);
1718
1719 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1720 consume_skb(ack);
1721 } else {
1722 sch->q.qlen++;
1723 q->buffer_used += skb->truesize;
1724 }
1725
1726 /* stats */
1727 b->packets++;
1728 b->bytes += len;
1729 b->backlogs[idx] += len;
1730 b->tin_backlog += len;
1731 sch->qstats.backlog += len;
1732 q->avg_window_bytes += len;
1733 }
1734
1735 if (q->overflow_timeout)
1736 cake_heapify_up(q, b->overflow_idx[idx]);
1737
1738 /* incoming bandwidth capacity estimate */
1739 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1740 u64 packet_interval = \
1741 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1742
1743 if (packet_interval > NSEC_PER_SEC)
1744 packet_interval = NSEC_PER_SEC;
1745
1746 /* filter out short-term bursts, eg. wifi aggregation */
1747 q->avg_packet_interval = \
1748 cake_ewma(q->avg_packet_interval,
1749 packet_interval,
1750 (packet_interval > q->avg_packet_interval ?
1751 2 : 8));
1752
1753 q->last_packet_time = now;
1754
1755 if (packet_interval > q->avg_packet_interval) {
1756 u64 window_interval = \
1757 ktime_to_ns(ktime_sub(now,
1758 q->avg_window_begin));
1759 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1760
1761 do_div(b, window_interval);
1762 q->avg_peak_bandwidth =
1763 cake_ewma(q->avg_peak_bandwidth, b,
1764 b > q->avg_peak_bandwidth ? 2 : 8);
1765 q->avg_window_bytes = 0;
1766 q->avg_window_begin = now;
1767
1768 if (ktime_after(now,
1769 ktime_add_ms(q->last_reconfig_time,
1770 250))) {
1771 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1772 cake_reconfigure(sch);
1773 }
1774 }
1775 } else {
1776 q->avg_window_bytes = 0;
1777 q->last_packet_time = now;
1778 }
1779
1780 /* flowchain */
1781 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1782 struct cake_host *srchost = &b->hosts[flow->srchost];
1783 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1784 u16 host_load = 1;
1785
1786 if (!flow->set) {
1787 list_add_tail(&flow->flowchain, &b->new_flows);
1788 } else {
1789 b->decaying_flow_count--;
1790 list_move_tail(&flow->flowchain, &b->new_flows);
1791 }
1792 flow->set = CAKE_SET_SPARSE;
1793 b->sparse_flow_count++;
1794
1795 if (cake_dsrc(q->flow_mode))
1796 host_load = max(host_load, srchost->srchost_bulk_flow_count);
1797
1798 if (cake_ddst(q->flow_mode))
1799 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
1800
1801 flow->deficit = (b->flow_quantum *
1802 quantum_div[host_load]) >> 16;
1803 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1804 struct cake_host *srchost = &b->hosts[flow->srchost];
1805 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1806
1807 /* this flow was empty, accounted as a sparse flow, but actually
1808 * in the bulk rotation.
1809 */
1810 flow->set = CAKE_SET_BULK;
1811 b->sparse_flow_count--;
1812 b->bulk_flow_count++;
1813
1814 if (cake_dsrc(q->flow_mode))
1815 srchost->srchost_bulk_flow_count++;
1816
1817 if (cake_ddst(q->flow_mode))
1818 dsthost->dsthost_bulk_flow_count++;
1819
1820 }
1821
1822 if (q->buffer_used > q->buffer_max_used)
1823 q->buffer_max_used = q->buffer_used;
1824
1825 if (q->buffer_used > q->buffer_limit) {
1826 u32 dropped = 0;
1827
1828 while (q->buffer_used > q->buffer_limit) {
1829 dropped++;
1830 cake_drop(sch, to_free);
1831 }
1832 b->drop_overlimit += dropped;
1833 }
1834 return NET_XMIT_SUCCESS;
1835 }
1836
1837 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1838 {
1839 struct cake_sched_data *q = qdisc_priv(sch);
1840 struct cake_tin_data *b = &q->tins[q->cur_tin];
1841 struct cake_flow *flow = &b->flows[q->cur_flow];
1842 struct sk_buff *skb = NULL;
1843 u32 len;
1844
1845 if (flow->head) {
1846 skb = dequeue_head(flow);
1847 len = qdisc_pkt_len(skb);
1848 b->backlogs[q->cur_flow] -= len;
1849 b->tin_backlog -= len;
1850 sch->qstats.backlog -= len;
1851 q->buffer_used -= skb->truesize;
1852 sch->q.qlen--;
1853
1854 if (q->overflow_timeout)
1855 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1856 }
1857 return skb;
1858 }
1859
1860 /* Discard leftover packets from a tin no longer in use. */
1861 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1862 {
1863 struct cake_sched_data *q = qdisc_priv(sch);
1864 struct sk_buff *skb;
1865
1866 q->cur_tin = tin;
1867 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1868 while (!!(skb = cake_dequeue_one(sch)))
1869 kfree_skb(skb);
1870 }
1871
1872 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1873 {
1874 struct cake_sched_data *q = qdisc_priv(sch);
1875 struct cake_tin_data *b = &q->tins[q->cur_tin];
1876 struct cake_host *srchost, *dsthost;
1877 ktime_t now = ktime_get();
1878 struct cake_flow *flow;
1879 struct list_head *head;
1880 bool first_flow = true;
1881 struct sk_buff *skb;
1882 u16 host_load;
1883 u64 delay;
1884 u32 len;
1885
1886 begin:
1887 if (!sch->q.qlen)
1888 return NULL;
1889
1890 /* global hard shaper */
1891 if (ktime_after(q->time_next_packet, now) &&
1892 ktime_after(q->failsafe_next_packet, now)) {
1893 u64 next = min(ktime_to_ns(q->time_next_packet),
1894 ktime_to_ns(q->failsafe_next_packet));
1895
1896 sch->qstats.overlimits++;
1897 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1898 return NULL;
1899 }
1900
1901 /* Choose a class to work on. */
1902 if (!q->rate_ns) {
1903 /* In unlimited mode, can't rely on shaper timings, just balance
1904 * with DRR
1905 */
1906 bool wrapped = false, empty = true;
1907
1908 while (b->tin_deficit < 0 ||
1909 !(b->sparse_flow_count + b->bulk_flow_count)) {
1910 if (b->tin_deficit <= 0)
1911 b->tin_deficit += b->tin_quantum_band;
1912 if (b->sparse_flow_count + b->bulk_flow_count)
1913 empty = false;
1914
1915 q->cur_tin++;
1916 b++;
1917 if (q->cur_tin >= q->tin_cnt) {
1918 q->cur_tin = 0;
1919 b = q->tins;
1920
1921 if (wrapped) {
1922 /* It's possible for q->qlen to be
1923 * nonzero when we actually have no
1924 * packets anywhere.
1925 */
1926 if (empty)
1927 return NULL;
1928 } else {
1929 wrapped = true;
1930 }
1931 }
1932 }
1933 } else {
1934 /* In shaped mode, choose:
1935 * - Highest-priority tin with queue and meeting schedule, or
1936 * - The earliest-scheduled tin with queue.
1937 */
1938 ktime_t best_time = KTIME_MAX;
1939 int tin, best_tin = 0;
1940
1941 for (tin = 0; tin < q->tin_cnt; tin++) {
1942 b = q->tins + tin;
1943 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1944 ktime_t time_to_pkt = \
1945 ktime_sub(b->time_next_packet, now);
1946
1947 if (ktime_to_ns(time_to_pkt) <= 0 ||
1948 ktime_compare(time_to_pkt,
1949 best_time) <= 0) {
1950 best_time = time_to_pkt;
1951 best_tin = tin;
1952 }
1953 }
1954 }
1955
1956 q->cur_tin = best_tin;
1957 b = q->tins + best_tin;
1958
1959 /* No point in going further if no packets to deliver. */
1960 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1961 return NULL;
1962 }
1963
1964 retry:
1965 /* service this class */
1966 head = &b->decaying_flows;
1967 if (!first_flow || list_empty(head)) {
1968 head = &b->new_flows;
1969 if (list_empty(head)) {
1970 head = &b->old_flows;
1971 if (unlikely(list_empty(head))) {
1972 head = &b->decaying_flows;
1973 if (unlikely(list_empty(head)))
1974 goto begin;
1975 }
1976 }
1977 }
1978 flow = list_first_entry(head, struct cake_flow, flowchain);
1979 q->cur_flow = flow - b->flows;
1980 first_flow = false;
1981
1982 /* triple isolation (modified DRR++) */
1983 srchost = &b->hosts[flow->srchost];
1984 dsthost = &b->hosts[flow->dsthost];
1985 host_load = 1;
1986
1987 /* flow isolation (DRR++) */
1988 if (flow->deficit <= 0) {
1989 /* Keep all flows with deficits out of the sparse and decaying
1990 * rotations. No non-empty flow can go into the decaying
1991 * rotation, so they can't get deficits
1992 */
1993 if (flow->set == CAKE_SET_SPARSE) {
1994 if (flow->head) {
1995 b->sparse_flow_count--;
1996 b->bulk_flow_count++;
1997
1998 if (cake_dsrc(q->flow_mode))
1999 srchost->srchost_bulk_flow_count++;
2000
2001 if (cake_ddst(q->flow_mode))
2002 dsthost->dsthost_bulk_flow_count++;
2003
2004 flow->set = CAKE_SET_BULK;
2005 } else {
2006 /* we've moved it to the bulk rotation for
2007 * correct deficit accounting but we still want
2008 * to count it as a sparse flow, not a bulk one.
2009 */
2010 flow->set = CAKE_SET_SPARSE_WAIT;
2011 }
2012 }
2013
2014 if (cake_dsrc(q->flow_mode))
2015 host_load = max(host_load, srchost->srchost_bulk_flow_count);
2016
2017 if (cake_ddst(q->flow_mode))
2018 host_load = max(host_load, dsthost->dsthost_bulk_flow_count);
2019
2020 WARN_ON(host_load > CAKE_QUEUES);
2021
2022 /* The shifted prandom_u32() is a way to apply dithering to
2023 * avoid accumulating roundoff errors
2024 */
2025 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
2026 (prandom_u32() >> 16)) >> 16;
2027 list_move_tail(&flow->flowchain, &b->old_flows);
2028
2029 goto retry;
2030 }
2031
2032 /* Retrieve a packet via the AQM */
2033 while (1) {
2034 skb = cake_dequeue_one(sch);
2035 if (!skb) {
2036 /* this queue was actually empty */
2037 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2038 b->unresponsive_flow_count--;
2039
2040 if (flow->cvars.p_drop || flow->cvars.count ||
2041 ktime_before(now, flow->cvars.drop_next)) {
2042 /* keep in the flowchain until the state has
2043 * decayed to rest
2044 */
2045 list_move_tail(&flow->flowchain,
2046 &b->decaying_flows);
2047 if (flow->set == CAKE_SET_BULK) {
2048 b->bulk_flow_count--;
2049
2050 if (cake_dsrc(q->flow_mode))
2051 srchost->srchost_bulk_flow_count--;
2052
2053 if (cake_ddst(q->flow_mode))
2054 dsthost->dsthost_bulk_flow_count--;
2055
2056 b->decaying_flow_count++;
2057 } else if (flow->set == CAKE_SET_SPARSE ||
2058 flow->set == CAKE_SET_SPARSE_WAIT) {
2059 b->sparse_flow_count--;
2060 b->decaying_flow_count++;
2061 }
2062 flow->set = CAKE_SET_DECAYING;
2063 } else {
2064 /* remove empty queue from the flowchain */
2065 list_del_init(&flow->flowchain);
2066 if (flow->set == CAKE_SET_SPARSE ||
2067 flow->set == CAKE_SET_SPARSE_WAIT)
2068 b->sparse_flow_count--;
2069 else if (flow->set == CAKE_SET_BULK) {
2070 b->bulk_flow_count--;
2071
2072 if (cake_dsrc(q->flow_mode))
2073 srchost->srchost_bulk_flow_count--;
2074
2075 if (cake_ddst(q->flow_mode))
2076 dsthost->dsthost_bulk_flow_count--;
2077
2078 } else
2079 b->decaying_flow_count--;
2080
2081 flow->set = CAKE_SET_NONE;
2082 }
2083 goto begin;
2084 }
2085
2086 /* Last packet in queue may be marked, shouldn't be dropped */
2087 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2088 (b->bulk_flow_count *
2089 !!(q->rate_flags &
2090 CAKE_FLAG_INGRESS))) ||
2091 !flow->head)
2092 break;
2093
2094 /* drop this packet, get another one */
2095 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2096 len = cake_advance_shaper(q, b, skb,
2097 now, true);
2098 flow->deficit -= len;
2099 b->tin_deficit -= len;
2100 }
2101 flow->dropped++;
2102 b->tin_dropped++;
2103 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2104 qdisc_qstats_drop(sch);
2105 kfree_skb(skb);
2106 if (q->rate_flags & CAKE_FLAG_INGRESS)
2107 goto retry;
2108 }
2109
2110 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2111 qdisc_bstats_update(sch, skb);
2112
2113 /* collect delay stats */
2114 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2115 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2116 b->peak_delay = cake_ewma(b->peak_delay, delay,
2117 delay > b->peak_delay ? 2 : 8);
2118 b->base_delay = cake_ewma(b->base_delay, delay,
2119 delay < b->base_delay ? 2 : 8);
2120
2121 len = cake_advance_shaper(q, b, skb, now, false);
2122 flow->deficit -= len;
2123 b->tin_deficit -= len;
2124
2125 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2126 u64 next = min(ktime_to_ns(q->time_next_packet),
2127 ktime_to_ns(q->failsafe_next_packet));
2128
2129 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2130 } else if (!sch->q.qlen) {
2131 int i;
2132
2133 for (i = 0; i < q->tin_cnt; i++) {
2134 if (q->tins[i].decaying_flow_count) {
2135 ktime_t next = \
2136 ktime_add_ns(now,
2137 q->tins[i].cparams.target);
2138
2139 qdisc_watchdog_schedule_ns(&q->watchdog,
2140 ktime_to_ns(next));
2141 break;
2142 }
2143 }
2144 }
2145
2146 if (q->overflow_timeout)
2147 q->overflow_timeout--;
2148
2149 return skb;
2150 }
2151
2152 static void cake_reset(struct Qdisc *sch)
2153 {
2154 u32 c;
2155
2156 for (c = 0; c < CAKE_MAX_TINS; c++)
2157 cake_clear_tin(sch, c);
2158 }
2159
2160 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2161 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2162 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2163 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2164 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2165 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2166 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2167 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2168 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2169 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2170 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2171 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2172 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2173 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2174 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2175 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2176 [TCA_CAKE_FWMARK] = { .type = NLA_U32 },
2177 };
2178
2179 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2180 u64 target_ns, u64 rtt_est_ns)
2181 {
2182 /* convert byte-rate into time-per-byte
2183 * so it will always unwedge in reasonable time.
2184 */
2185 static const u64 MIN_RATE = 64;
2186 u32 byte_target = mtu;
2187 u64 byte_target_ns;
2188 u8 rate_shft = 0;
2189 u64 rate_ns = 0;
2190
2191 b->flow_quantum = 1514;
2192 if (rate) {
2193 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2194 rate_shft = 34;
2195 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2196 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2197 while (!!(rate_ns >> 34)) {
2198 rate_ns >>= 1;
2199 rate_shft--;
2200 }
2201 } /* else unlimited, ie. zero delay */
2202
2203 b->tin_rate_bps = rate;
2204 b->tin_rate_ns = rate_ns;
2205 b->tin_rate_shft = rate_shft;
2206
2207 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2208
2209 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2210 b->cparams.interval = max(rtt_est_ns +
2211 b->cparams.target - target_ns,
2212 b->cparams.target * 2);
2213 b->cparams.mtu_time = byte_target_ns;
2214 b->cparams.p_inc = 1 << 24; /* 1/256 */
2215 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2216 }
2217
2218 static int cake_config_besteffort(struct Qdisc *sch)
2219 {
2220 struct cake_sched_data *q = qdisc_priv(sch);
2221 struct cake_tin_data *b = &q->tins[0];
2222 u32 mtu = psched_mtu(qdisc_dev(sch));
2223 u64 rate = q->rate_bps;
2224
2225 q->tin_cnt = 1;
2226
2227 q->tin_index = besteffort;
2228 q->tin_order = normal_order;
2229
2230 cake_set_rate(b, rate, mtu,
2231 us_to_ns(q->target), us_to_ns(q->interval));
2232 b->tin_quantum_band = 65535;
2233 b->tin_quantum_prio = 65535;
2234
2235 return 0;
2236 }
2237
2238 static int cake_config_precedence(struct Qdisc *sch)
2239 {
2240 /* convert high-level (user visible) parameters into internal format */
2241 struct cake_sched_data *q = qdisc_priv(sch);
2242 u32 mtu = psched_mtu(qdisc_dev(sch));
2243 u64 rate = q->rate_bps;
2244 u32 quantum1 = 256;
2245 u32 quantum2 = 256;
2246 u32 i;
2247
2248 q->tin_cnt = 8;
2249 q->tin_index = precedence;
2250 q->tin_order = normal_order;
2251
2252 for (i = 0; i < q->tin_cnt; i++) {
2253 struct cake_tin_data *b = &q->tins[i];
2254
2255 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2256 us_to_ns(q->interval));
2257
2258 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2259 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2260
2261 /* calculate next class's parameters */
2262 rate *= 7;
2263 rate >>= 3;
2264
2265 quantum1 *= 3;
2266 quantum1 >>= 1;
2267
2268 quantum2 *= 7;
2269 quantum2 >>= 3;
2270 }
2271
2272 return 0;
2273 }
2274
2275 /* List of known Diffserv codepoints:
2276 *
2277 * Least Effort (CS1)
2278 * Best Effort (CS0)
2279 * Max Reliability & LLT "Lo" (TOS1)
2280 * Max Throughput (TOS2)
2281 * Min Delay (TOS4)
2282 * LLT "La" (TOS5)
2283 * Assured Forwarding 1 (AF1x) - x3
2284 * Assured Forwarding 2 (AF2x) - x3
2285 * Assured Forwarding 3 (AF3x) - x3
2286 * Assured Forwarding 4 (AF4x) - x3
2287 * Precedence Class 2 (CS2)
2288 * Precedence Class 3 (CS3)
2289 * Precedence Class 4 (CS4)
2290 * Precedence Class 5 (CS5)
2291 * Precedence Class 6 (CS6)
2292 * Precedence Class 7 (CS7)
2293 * Voice Admit (VA)
2294 * Expedited Forwarding (EF)
2295
2296 * Total 25 codepoints.
2297 */
2298
2299 /* List of traffic classes in RFC 4594:
2300 * (roughly descending order of contended priority)
2301 * (roughly ascending order of uncontended throughput)
2302 *
2303 * Network Control (CS6,CS7) - routing traffic
2304 * Telephony (EF,VA) - aka. VoIP streams
2305 * Signalling (CS5) - VoIP setup
2306 * Multimedia Conferencing (AF4x) - aka. video calls
2307 * Realtime Interactive (CS4) - eg. games
2308 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2309 * Broadcast Video (CS3)
2310 * Low Latency Data (AF2x,TOS4) - eg. database
2311 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2312 * Standard Service (CS0 & unrecognised codepoints)
2313 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2314 * Low Priority Data (CS1) - eg. BitTorrent
2315
2316 * Total 12 traffic classes.
2317 */
2318
2319 static int cake_config_diffserv8(struct Qdisc *sch)
2320 {
2321 /* Pruned list of traffic classes for typical applications:
2322 *
2323 * Network Control (CS6, CS7)
2324 * Minimum Latency (EF, VA, CS5, CS4)
2325 * Interactive Shell (CS2, TOS1)
2326 * Low Latency Transactions (AF2x, TOS4)
2327 * Video Streaming (AF4x, AF3x, CS3)
2328 * Bog Standard (CS0 etc.)
2329 * High Throughput (AF1x, TOS2)
2330 * Background Traffic (CS1)
2331 *
2332 * Total 8 traffic classes.
2333 */
2334
2335 struct cake_sched_data *q = qdisc_priv(sch);
2336 u32 mtu = psched_mtu(qdisc_dev(sch));
2337 u64 rate = q->rate_bps;
2338 u32 quantum1 = 256;
2339 u32 quantum2 = 256;
2340 u32 i;
2341
2342 q->tin_cnt = 8;
2343
2344 /* codepoint to class mapping */
2345 q->tin_index = diffserv8;
2346 q->tin_order = normal_order;
2347
2348 /* class characteristics */
2349 for (i = 0; i < q->tin_cnt; i++) {
2350 struct cake_tin_data *b = &q->tins[i];
2351
2352 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2353 us_to_ns(q->interval));
2354
2355 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2356 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2357
2358 /* calculate next class's parameters */
2359 rate *= 7;
2360 rate >>= 3;
2361
2362 quantum1 *= 3;
2363 quantum1 >>= 1;
2364
2365 quantum2 *= 7;
2366 quantum2 >>= 3;
2367 }
2368
2369 return 0;
2370 }
2371
2372 static int cake_config_diffserv4(struct Qdisc *sch)
2373 {
2374 /* Further pruned list of traffic classes for four-class system:
2375 *
2376 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2377 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2378 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2379 * Background Traffic (CS1)
2380 *
2381 * Total 4 traffic classes.
2382 */
2383
2384 struct cake_sched_data *q = qdisc_priv(sch);
2385 u32 mtu = psched_mtu(qdisc_dev(sch));
2386 u64 rate = q->rate_bps;
2387 u32 quantum = 1024;
2388
2389 q->tin_cnt = 4;
2390
2391 /* codepoint to class mapping */
2392 q->tin_index = diffserv4;
2393 q->tin_order = bulk_order;
2394
2395 /* class characteristics */
2396 cake_set_rate(&q->tins[0], rate, mtu,
2397 us_to_ns(q->target), us_to_ns(q->interval));
2398 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2399 us_to_ns(q->target), us_to_ns(q->interval));
2400 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2401 us_to_ns(q->target), us_to_ns(q->interval));
2402 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2403 us_to_ns(q->target), us_to_ns(q->interval));
2404
2405 /* priority weights */
2406 q->tins[0].tin_quantum_prio = quantum;
2407 q->tins[1].tin_quantum_prio = quantum >> 4;
2408 q->tins[2].tin_quantum_prio = quantum << 2;
2409 q->tins[3].tin_quantum_prio = quantum << 4;
2410
2411 /* bandwidth-sharing weights */
2412 q->tins[0].tin_quantum_band = quantum;
2413 q->tins[1].tin_quantum_band = quantum >> 4;
2414 q->tins[2].tin_quantum_band = quantum >> 1;
2415 q->tins[3].tin_quantum_band = quantum >> 2;
2416
2417 return 0;
2418 }
2419
2420 static int cake_config_diffserv3(struct Qdisc *sch)
2421 {
2422 /* Simplified Diffserv structure with 3 tins.
2423 * Low Priority (CS1)
2424 * Best Effort
2425 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2426 */
2427 struct cake_sched_data *q = qdisc_priv(sch);
2428 u32 mtu = psched_mtu(qdisc_dev(sch));
2429 u64 rate = q->rate_bps;
2430 u32 quantum = 1024;
2431
2432 q->tin_cnt = 3;
2433
2434 /* codepoint to class mapping */
2435 q->tin_index = diffserv3;
2436 q->tin_order = bulk_order;
2437
2438 /* class characteristics */
2439 cake_set_rate(&q->tins[0], rate, mtu,
2440 us_to_ns(q->target), us_to_ns(q->interval));
2441 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2442 us_to_ns(q->target), us_to_ns(q->interval));
2443 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2444 us_to_ns(q->target), us_to_ns(q->interval));
2445
2446 /* priority weights */
2447 q->tins[0].tin_quantum_prio = quantum;
2448 q->tins[1].tin_quantum_prio = quantum >> 4;
2449 q->tins[2].tin_quantum_prio = quantum << 4;
2450
2451 /* bandwidth-sharing weights */
2452 q->tins[0].tin_quantum_band = quantum;
2453 q->tins[1].tin_quantum_band = quantum >> 4;
2454 q->tins[2].tin_quantum_band = quantum >> 2;
2455
2456 return 0;
2457 }
2458
2459 static void cake_reconfigure(struct Qdisc *sch)
2460 {
2461 struct cake_sched_data *q = qdisc_priv(sch);
2462 int c, ft;
2463
2464 switch (q->tin_mode) {
2465 case CAKE_DIFFSERV_BESTEFFORT:
2466 ft = cake_config_besteffort(sch);
2467 break;
2468
2469 case CAKE_DIFFSERV_PRECEDENCE:
2470 ft = cake_config_precedence(sch);
2471 break;
2472
2473 case CAKE_DIFFSERV_DIFFSERV8:
2474 ft = cake_config_diffserv8(sch);
2475 break;
2476
2477 case CAKE_DIFFSERV_DIFFSERV4:
2478 ft = cake_config_diffserv4(sch);
2479 break;
2480
2481 case CAKE_DIFFSERV_DIFFSERV3:
2482 default:
2483 ft = cake_config_diffserv3(sch);
2484 break;
2485 }
2486
2487 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2488 cake_clear_tin(sch, c);
2489 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2490 }
2491
2492 q->rate_ns = q->tins[ft].tin_rate_ns;
2493 q->rate_shft = q->tins[ft].tin_rate_shft;
2494
2495 if (q->buffer_config_limit) {
2496 q->buffer_limit = q->buffer_config_limit;
2497 } else if (q->rate_bps) {
2498 u64 t = q->rate_bps * q->interval;
2499
2500 do_div(t, USEC_PER_SEC / 4);
2501 q->buffer_limit = max_t(u32, t, 4U << 20);
2502 } else {
2503 q->buffer_limit = ~0;
2504 }
2505
2506 sch->flags &= ~TCQ_F_CAN_BYPASS;
2507
2508 q->buffer_limit = min(q->buffer_limit,
2509 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2510 q->buffer_config_limit));
2511 }
2512
2513 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2514 struct netlink_ext_ack *extack)
2515 {
2516 struct cake_sched_data *q = qdisc_priv(sch);
2517 struct nlattr *tb[TCA_CAKE_MAX + 1];
2518 int err;
2519
2520 if (!opt)
2521 return -EINVAL;
2522
2523 err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
2524 if (err < 0)
2525 return err;
2526
2527 if (tb[TCA_CAKE_NAT]) {
2528 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2529 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2530 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2531 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2532 #else
2533 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2534 "No conntrack support in kernel");
2535 return -EOPNOTSUPP;
2536 #endif
2537 }
2538
2539 if (tb[TCA_CAKE_BASE_RATE64])
2540 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2541
2542 if (tb[TCA_CAKE_DIFFSERV_MODE])
2543 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2544
2545 if (tb[TCA_CAKE_WASH]) {
2546 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2547 q->rate_flags |= CAKE_FLAG_WASH;
2548 else
2549 q->rate_flags &= ~CAKE_FLAG_WASH;
2550 }
2551
2552 if (tb[TCA_CAKE_FLOW_MODE])
2553 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2554 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2555 CAKE_FLOW_MASK));
2556
2557 if (tb[TCA_CAKE_ATM])
2558 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2559
2560 if (tb[TCA_CAKE_OVERHEAD]) {
2561 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2562 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2563
2564 q->max_netlen = 0;
2565 q->max_adjlen = 0;
2566 q->min_netlen = ~0;
2567 q->min_adjlen = ~0;
2568 }
2569
2570 if (tb[TCA_CAKE_RAW]) {
2571 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2572
2573 q->max_netlen = 0;
2574 q->max_adjlen = 0;
2575 q->min_netlen = ~0;
2576 q->min_adjlen = ~0;
2577 }
2578
2579 if (tb[TCA_CAKE_MPU])
2580 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2581
2582 if (tb[TCA_CAKE_RTT]) {
2583 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2584
2585 if (!q->interval)
2586 q->interval = 1;
2587 }
2588
2589 if (tb[TCA_CAKE_TARGET]) {
2590 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2591
2592 if (!q->target)
2593 q->target = 1;
2594 }
2595
2596 if (tb[TCA_CAKE_AUTORATE]) {
2597 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2598 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2599 else
2600 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2601 }
2602
2603 if (tb[TCA_CAKE_INGRESS]) {
2604 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2605 q->rate_flags |= CAKE_FLAG_INGRESS;
2606 else
2607 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2608 }
2609
2610 if (tb[TCA_CAKE_ACK_FILTER])
2611 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2612
2613 if (tb[TCA_CAKE_MEMORY])
2614 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2615
2616 if (tb[TCA_CAKE_SPLIT_GSO]) {
2617 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2618 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2619 else
2620 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2621 }
2622
2623 if (tb[TCA_CAKE_FWMARK]) {
2624 q->fwmark_mask = nla_get_u32(tb[TCA_CAKE_FWMARK]);
2625 q->fwmark_shft = q->fwmark_mask ? __ffs(q->fwmark_mask) : 0;
2626 }
2627
2628 if (q->tins) {
2629 sch_tree_lock(sch);
2630 cake_reconfigure(sch);
2631 sch_tree_unlock(sch);
2632 }
2633
2634 return 0;
2635 }
2636
2637 static void cake_destroy(struct Qdisc *sch)
2638 {
2639 struct cake_sched_data *q = qdisc_priv(sch);
2640
2641 qdisc_watchdog_cancel(&q->watchdog);
2642 tcf_block_put(q->block);
2643 kvfree(q->tins);
2644 }
2645
2646 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2647 struct netlink_ext_ack *extack)
2648 {
2649 struct cake_sched_data *q = qdisc_priv(sch);
2650 int i, j, err;
2651
2652 sch->limit = 10240;
2653 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2654 q->flow_mode = CAKE_FLOW_TRIPLE;
2655
2656 q->rate_bps = 0; /* unlimited by default */
2657
2658 q->interval = 100000; /* 100ms default */
2659 q->target = 5000; /* 5ms: codel RFC argues
2660 * for 5 to 10% of interval
2661 */
2662 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2663 q->cur_tin = 0;
2664 q->cur_flow = 0;
2665
2666 qdisc_watchdog_init(&q->watchdog, sch);
2667
2668 if (opt) {
2669 int err = cake_change(sch, opt, extack);
2670
2671 if (err)
2672 return err;
2673 }
2674
2675 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2676 if (err)
2677 return err;
2678
2679 quantum_div[0] = ~0;
2680 for (i = 1; i <= CAKE_QUEUES; i++)
2681 quantum_div[i] = 65535 / i;
2682
2683 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2684 GFP_KERNEL);
2685 if (!q->tins)
2686 goto nomem;
2687
2688 for (i = 0; i < CAKE_MAX_TINS; i++) {
2689 struct cake_tin_data *b = q->tins + i;
2690
2691 INIT_LIST_HEAD(&b->new_flows);
2692 INIT_LIST_HEAD(&b->old_flows);
2693 INIT_LIST_HEAD(&b->decaying_flows);
2694 b->sparse_flow_count = 0;
2695 b->bulk_flow_count = 0;
2696 b->decaying_flow_count = 0;
2697
2698 for (j = 0; j < CAKE_QUEUES; j++) {
2699 struct cake_flow *flow = b->flows + j;
2700 u32 k = j * CAKE_MAX_TINS + i;
2701
2702 INIT_LIST_HEAD(&flow->flowchain);
2703 cobalt_vars_init(&flow->cvars);
2704
2705 q->overflow_heap[k].t = i;
2706 q->overflow_heap[k].b = j;
2707 b->overflow_idx[j] = k;
2708 }
2709 }
2710
2711 cake_reconfigure(sch);
2712 q->avg_peak_bandwidth = q->rate_bps;
2713 q->min_netlen = ~0;
2714 q->min_adjlen = ~0;
2715 return 0;
2716
2717 nomem:
2718 cake_destroy(sch);
2719 return -ENOMEM;
2720 }
2721
2722 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2723 {
2724 struct cake_sched_data *q = qdisc_priv(sch);
2725 struct nlattr *opts;
2726
2727 opts = nla_nest_start(skb, TCA_OPTIONS);
2728 if (!opts)
2729 goto nla_put_failure;
2730
2731 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2732 TCA_CAKE_PAD))
2733 goto nla_put_failure;
2734
2735 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2736 q->flow_mode & CAKE_FLOW_MASK))
2737 goto nla_put_failure;
2738
2739 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2740 goto nla_put_failure;
2741
2742 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2743 goto nla_put_failure;
2744
2745 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2746 goto nla_put_failure;
2747
2748 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2749 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2750 goto nla_put_failure;
2751
2752 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2753 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2754 goto nla_put_failure;
2755
2756 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2757 goto nla_put_failure;
2758
2759 if (nla_put_u32(skb, TCA_CAKE_NAT,
2760 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2761 goto nla_put_failure;
2762
2763 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2764 goto nla_put_failure;
2765
2766 if (nla_put_u32(skb, TCA_CAKE_WASH,
2767 !!(q->rate_flags & CAKE_FLAG_WASH)))
2768 goto nla_put_failure;
2769
2770 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2771 goto nla_put_failure;
2772
2773 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2774 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2775 goto nla_put_failure;
2776
2777 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2778 goto nla_put_failure;
2779
2780 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2781 goto nla_put_failure;
2782
2783 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2784 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2785 goto nla_put_failure;
2786
2787 if (nla_put_u32(skb, TCA_CAKE_FWMARK, q->fwmark_mask))
2788 goto nla_put_failure;
2789
2790 return nla_nest_end(skb, opts);
2791
2792 nla_put_failure:
2793 return -1;
2794 }
2795
2796 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2797 {
2798 struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
2799 struct cake_sched_data *q = qdisc_priv(sch);
2800 struct nlattr *tstats, *ts;
2801 int i;
2802
2803 if (!stats)
2804 return -1;
2805
2806 #define PUT_STAT_U32(attr, data) do { \
2807 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2808 goto nla_put_failure; \
2809 } while (0)
2810 #define PUT_STAT_U64(attr, data) do { \
2811 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2812 data, TCA_CAKE_STATS_PAD)) \
2813 goto nla_put_failure; \
2814 } while (0)
2815
2816 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2817 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2818 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2819 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2820 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2821 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2822 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2823 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2824
2825 #undef PUT_STAT_U32
2826 #undef PUT_STAT_U64
2827
2828 tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
2829 if (!tstats)
2830 goto nla_put_failure;
2831
2832 #define PUT_TSTAT_U32(attr, data) do { \
2833 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2834 goto nla_put_failure; \
2835 } while (0)
2836 #define PUT_TSTAT_U64(attr, data) do { \
2837 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2838 data, TCA_CAKE_TIN_STATS_PAD)) \
2839 goto nla_put_failure; \
2840 } while (0)
2841
2842 for (i = 0; i < q->tin_cnt; i++) {
2843 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2844
2845 ts = nla_nest_start(d->skb, i + 1);
2846 if (!ts)
2847 goto nla_put_failure;
2848
2849 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2850 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2851 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2852
2853 PUT_TSTAT_U32(TARGET_US,
2854 ktime_to_us(ns_to_ktime(b->cparams.target)));
2855 PUT_TSTAT_U32(INTERVAL_US,
2856 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2857
2858 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2859 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2860 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2861 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2862
2863 PUT_TSTAT_U32(PEAK_DELAY_US,
2864 ktime_to_us(ns_to_ktime(b->peak_delay)));
2865 PUT_TSTAT_U32(AVG_DELAY_US,
2866 ktime_to_us(ns_to_ktime(b->avge_delay)));
2867 PUT_TSTAT_U32(BASE_DELAY_US,
2868 ktime_to_us(ns_to_ktime(b->base_delay)));
2869
2870 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2871 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2872 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2873
2874 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2875 b->decaying_flow_count);
2876 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2877 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2878 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2879
2880 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2881 nla_nest_end(d->skb, ts);
2882 }
2883
2884 #undef PUT_TSTAT_U32
2885 #undef PUT_TSTAT_U64
2886
2887 nla_nest_end(d->skb, tstats);
2888 return nla_nest_end(d->skb, stats);
2889
2890 nla_put_failure:
2891 nla_nest_cancel(d->skb, stats);
2892 return -1;
2893 }
2894
2895 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2896 {
2897 return NULL;
2898 }
2899
2900 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2901 {
2902 return 0;
2903 }
2904
2905 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2906 u32 classid)
2907 {
2908 return 0;
2909 }
2910
2911 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2912 {
2913 }
2914
2915 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2916 struct netlink_ext_ack *extack)
2917 {
2918 struct cake_sched_data *q = qdisc_priv(sch);
2919
2920 if (cl)
2921 return NULL;
2922 return q->block;
2923 }
2924
2925 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2926 struct sk_buff *skb, struct tcmsg *tcm)
2927 {
2928 tcm->tcm_handle |= TC_H_MIN(cl);
2929 return 0;
2930 }
2931
2932 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2933 struct gnet_dump *d)
2934 {
2935 struct cake_sched_data *q = qdisc_priv(sch);
2936 const struct cake_flow *flow = NULL;
2937 struct gnet_stats_queue qs = { 0 };
2938 struct nlattr *stats;
2939 u32 idx = cl - 1;
2940
2941 if (idx < CAKE_QUEUES * q->tin_cnt) {
2942 const struct cake_tin_data *b = \
2943 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2944 const struct sk_buff *skb;
2945
2946 flow = &b->flows[idx % CAKE_QUEUES];
2947
2948 if (flow->head) {
2949 sch_tree_lock(sch);
2950 skb = flow->head;
2951 while (skb) {
2952 qs.qlen++;
2953 skb = skb->next;
2954 }
2955 sch_tree_unlock(sch);
2956 }
2957 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2958 qs.drops = flow->dropped;
2959 }
2960 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2961 return -1;
2962 if (flow) {
2963 ktime_t now = ktime_get();
2964
2965 stats = nla_nest_start(d->skb, TCA_STATS_APP);
2966 if (!stats)
2967 return -1;
2968
2969 #define PUT_STAT_U32(attr, data) do { \
2970 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2971 goto nla_put_failure; \
2972 } while (0)
2973 #define PUT_STAT_S32(attr, data) do { \
2974 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2975 goto nla_put_failure; \
2976 } while (0)
2977
2978 PUT_STAT_S32(DEFICIT, flow->deficit);
2979 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2980 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2981 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2982 if (flow->cvars.p_drop) {
2983 PUT_STAT_S32(BLUE_TIMER_US,
2984 ktime_to_us(
2985 ktime_sub(now,
2986 flow->cvars.blue_timer)));
2987 }
2988 if (flow->cvars.dropping) {
2989 PUT_STAT_S32(DROP_NEXT_US,
2990 ktime_to_us(
2991 ktime_sub(now,
2992 flow->cvars.drop_next)));
2993 }
2994
2995 if (nla_nest_end(d->skb, stats) < 0)
2996 return -1;
2997 }
2998
2999 return 0;
3000
3001 nla_put_failure:
3002 nla_nest_cancel(d->skb, stats);
3003 return -1;
3004 }
3005
3006 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
3007 {
3008 struct cake_sched_data *q = qdisc_priv(sch);
3009 unsigned int i, j;
3010
3011 if (arg->stop)
3012 return;
3013
3014 for (i = 0; i < q->tin_cnt; i++) {
3015 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
3016
3017 for (j = 0; j < CAKE_QUEUES; j++) {
3018 if (list_empty(&b->flows[j].flowchain) ||
3019 arg->count < arg->skip) {
3020 arg->count++;
3021 continue;
3022 }
3023 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
3024 arg->stop = 1;
3025 break;
3026 }
3027 arg->count++;
3028 }
3029 }
3030 }
3031
3032 static const struct Qdisc_class_ops cake_class_ops = {
3033 .leaf = cake_leaf,
3034 .find = cake_find,
3035 .tcf_block = cake_tcf_block,
3036 .bind_tcf = cake_bind,
3037 .unbind_tcf = cake_unbind,
3038 .dump = cake_dump_class,
3039 .dump_stats = cake_dump_class_stats,
3040 .walk = cake_walk,
3041 };
3042
3043 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3044 .cl_ops = &cake_class_ops,
3045 .id = "cake",
3046 .priv_size = sizeof(struct cake_sched_data),
3047 .enqueue = cake_enqueue,
3048 .dequeue = cake_dequeue,
3049 .peek = qdisc_peek_dequeued,
3050 .init = cake_init,
3051 .reset = cake_reset,
3052 .destroy = cake_destroy,
3053 .change = cake_change,
3054 .dump = cake_dump,
3055 .dump_stats = cake_dump_stats,
3056 .owner = THIS_MODULE,
3057 };
3058
3059 static int __init cake_module_init(void)
3060 {
3061 return register_qdisc(&cake_qdisc_ops);
3062 }
3063
3064 static void __exit cake_module_exit(void)
3065 {
3066 unregister_qdisc(&cake_qdisc_ops);
3067 }
3068
3069 module_init(cake_module_init)
3070 module_exit(cake_module_exit)
3071 MODULE_AUTHOR("Jonathan Morton");
3072 MODULE_LICENSE("Dual BSD/GPL");
3073 MODULE_DESCRIPTION("The CAKE shaper.");