]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - net/sched/sch_cake.c
Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec
[mirror_ubuntu-eoan-kernel.git] / net / sched / sch_cake.c
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2
3 /* COMMON Applications Kept Enhanced (CAKE) discipline
4 *
5 * Copyright (C) 2014-2018 Jonathan Morton <chromatix99@gmail.com>
6 * Copyright (C) 2015-2018 Toke Høiland-Jørgensen <toke@toke.dk>
7 * Copyright (C) 2014-2018 Dave Täht <dave.taht@gmail.com>
8 * Copyright (C) 2015-2018 Sebastian Moeller <moeller0@gmx.de>
9 * (C) 2015-2018 Kevin Darbyshire-Bryant <kevin@darbyshire-bryant.me.uk>
10 * Copyright (C) 2017-2018 Ryan Mounce <ryan@mounce.com.au>
11 *
12 * The CAKE Principles:
13 * (or, how to have your cake and eat it too)
14 *
15 * This is a combination of several shaping, AQM and FQ techniques into one
16 * easy-to-use package:
17 *
18 * - An overall bandwidth shaper, to move the bottleneck away from dumb CPE
19 * equipment and bloated MACs. This operates in deficit mode (as in sch_fq),
20 * eliminating the need for any sort of burst parameter (eg. token bucket
21 * depth). Burst support is limited to that necessary to overcome scheduling
22 * latency.
23 *
24 * - A Diffserv-aware priority queue, giving more priority to certain classes,
25 * up to a specified fraction of bandwidth. Above that bandwidth threshold,
26 * the priority is reduced to avoid starving other tins.
27 *
28 * - Each priority tin has a separate Flow Queue system, to isolate traffic
29 * flows from each other. This prevents a burst on one flow from increasing
30 * the delay to another. Flows are distributed to queues using a
31 * set-associative hash function.
32 *
33 * - Each queue is actively managed by Cobalt, which is a combination of the
34 * Codel and Blue AQM algorithms. This serves flows fairly, and signals
35 * congestion early via ECN (if available) and/or packet drops, to keep
36 * latency low. The codel parameters are auto-tuned based on the bandwidth
37 * setting, as is necessary at low bandwidths.
38 *
39 * The configuration parameters are kept deliberately simple for ease of use.
40 * Everything has sane defaults. Complete generality of configuration is *not*
41 * a goal.
42 *
43 * The priority queue operates according to a weighted DRR scheme, combined with
44 * a bandwidth tracker which reuses the shaper logic to detect which side of the
45 * bandwidth sharing threshold the tin is operating. This determines whether a
46 * priority-based weight (high) or a bandwidth-based weight (low) is used for
47 * that tin in the current pass.
48 *
49 * This qdisc was inspired by Eric Dumazet's fq_codel code, which he kindly
50 * granted us permission to leverage.
51 */
52
53 #include <linux/module.h>
54 #include <linux/types.h>
55 #include <linux/kernel.h>
56 #include <linux/jiffies.h>
57 #include <linux/string.h>
58 #include <linux/in.h>
59 #include <linux/errno.h>
60 #include <linux/init.h>
61 #include <linux/skbuff.h>
62 #include <linux/jhash.h>
63 #include <linux/slab.h>
64 #include <linux/vmalloc.h>
65 #include <linux/reciprocal_div.h>
66 #include <net/netlink.h>
67 #include <linux/if_vlan.h>
68 #include <net/pkt_sched.h>
69 #include <net/pkt_cls.h>
70 #include <net/tcp.h>
71 #include <net/flow_dissector.h>
72
73 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
74 #include <net/netfilter/nf_conntrack_core.h>
75 #endif
76
77 #define CAKE_SET_WAYS (8)
78 #define CAKE_MAX_TINS (8)
79 #define CAKE_QUEUES (1024)
80 #define CAKE_FLOW_MASK 63
81 #define CAKE_FLOW_NAT_FLAG 64
82
83 /* struct cobalt_params - contains codel and blue parameters
84 * @interval: codel initial drop rate
85 * @target: maximum persistent sojourn time & blue update rate
86 * @mtu_time: serialisation delay of maximum-size packet
87 * @p_inc: increment of blue drop probability (0.32 fxp)
88 * @p_dec: decrement of blue drop probability (0.32 fxp)
89 */
90 struct cobalt_params {
91 u64 interval;
92 u64 target;
93 u64 mtu_time;
94 u32 p_inc;
95 u32 p_dec;
96 };
97
98 /* struct cobalt_vars - contains codel and blue variables
99 * @count: codel dropping frequency
100 * @rec_inv_sqrt: reciprocal value of sqrt(count) >> 1
101 * @drop_next: time to drop next packet, or when we dropped last
102 * @blue_timer: Blue time to next drop
103 * @p_drop: BLUE drop probability (0.32 fxp)
104 * @dropping: set if in dropping state
105 * @ecn_marked: set if marked
106 */
107 struct cobalt_vars {
108 u32 count;
109 u32 rec_inv_sqrt;
110 ktime_t drop_next;
111 ktime_t blue_timer;
112 u32 p_drop;
113 bool dropping;
114 bool ecn_marked;
115 };
116
117 enum {
118 CAKE_SET_NONE = 0,
119 CAKE_SET_SPARSE,
120 CAKE_SET_SPARSE_WAIT, /* counted in SPARSE, actually in BULK */
121 CAKE_SET_BULK,
122 CAKE_SET_DECAYING
123 };
124
125 struct cake_flow {
126 /* this stuff is all needed per-flow at dequeue time */
127 struct sk_buff *head;
128 struct sk_buff *tail;
129 struct list_head flowchain;
130 s32 deficit;
131 u32 dropped;
132 struct cobalt_vars cvars;
133 u16 srchost; /* index into cake_host table */
134 u16 dsthost;
135 u8 set;
136 }; /* please try to keep this structure <= 64 bytes */
137
138 struct cake_host {
139 u32 srchost_tag;
140 u32 dsthost_tag;
141 u16 srchost_refcnt;
142 u16 dsthost_refcnt;
143 };
144
145 struct cake_heap_entry {
146 u16 t:3, b:10;
147 };
148
149 struct cake_tin_data {
150 struct cake_flow flows[CAKE_QUEUES];
151 u32 backlogs[CAKE_QUEUES];
152 u32 tags[CAKE_QUEUES]; /* for set association */
153 u16 overflow_idx[CAKE_QUEUES];
154 struct cake_host hosts[CAKE_QUEUES]; /* for triple isolation */
155 u16 flow_quantum;
156
157 struct cobalt_params cparams;
158 u32 drop_overlimit;
159 u16 bulk_flow_count;
160 u16 sparse_flow_count;
161 u16 decaying_flow_count;
162 u16 unresponsive_flow_count;
163
164 u32 max_skblen;
165
166 struct list_head new_flows;
167 struct list_head old_flows;
168 struct list_head decaying_flows;
169
170 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
171 ktime_t time_next_packet;
172 u64 tin_rate_ns;
173 u64 tin_rate_bps;
174 u16 tin_rate_shft;
175
176 u16 tin_quantum_prio;
177 u16 tin_quantum_band;
178 s32 tin_deficit;
179 u32 tin_backlog;
180 u32 tin_dropped;
181 u32 tin_ecn_mark;
182
183 u32 packets;
184 u64 bytes;
185
186 u32 ack_drops;
187
188 /* moving averages */
189 u64 avge_delay;
190 u64 peak_delay;
191 u64 base_delay;
192
193 /* hash function stats */
194 u32 way_directs;
195 u32 way_hits;
196 u32 way_misses;
197 u32 way_collisions;
198 }; /* number of tins is small, so size of this struct doesn't matter much */
199
200 struct cake_sched_data {
201 struct tcf_proto __rcu *filter_list; /* optional external classifier */
202 struct tcf_block *block;
203 struct cake_tin_data *tins;
204
205 struct cake_heap_entry overflow_heap[CAKE_QUEUES * CAKE_MAX_TINS];
206 u16 overflow_timeout;
207
208 u16 tin_cnt;
209 u8 tin_mode;
210 u8 flow_mode;
211 u8 ack_filter;
212 u8 atm_mode;
213
214 /* time_next = time_this + ((len * rate_ns) >> rate_shft) */
215 u16 rate_shft;
216 ktime_t time_next_packet;
217 ktime_t failsafe_next_packet;
218 u64 rate_ns;
219 u64 rate_bps;
220 u16 rate_flags;
221 s16 rate_overhead;
222 u16 rate_mpu;
223 u64 interval;
224 u64 target;
225
226 /* resource tracking */
227 u32 buffer_used;
228 u32 buffer_max_used;
229 u32 buffer_limit;
230 u32 buffer_config_limit;
231
232 /* indices for dequeue */
233 u16 cur_tin;
234 u16 cur_flow;
235
236 struct qdisc_watchdog watchdog;
237 const u8 *tin_index;
238 const u8 *tin_order;
239
240 /* bandwidth capacity estimate */
241 ktime_t last_packet_time;
242 ktime_t avg_window_begin;
243 u64 avg_packet_interval;
244 u64 avg_window_bytes;
245 u64 avg_peak_bandwidth;
246 ktime_t last_reconfig_time;
247
248 /* packet length stats */
249 u32 avg_netoff;
250 u16 max_netlen;
251 u16 max_adjlen;
252 u16 min_netlen;
253 u16 min_adjlen;
254 };
255
256 enum {
257 CAKE_FLAG_OVERHEAD = BIT(0),
258 CAKE_FLAG_AUTORATE_INGRESS = BIT(1),
259 CAKE_FLAG_INGRESS = BIT(2),
260 CAKE_FLAG_WASH = BIT(3),
261 CAKE_FLAG_SPLIT_GSO = BIT(4)
262 };
263
264 /* COBALT operates the Codel and BLUE algorithms in parallel, in order to
265 * obtain the best features of each. Codel is excellent on flows which
266 * respond to congestion signals in a TCP-like way. BLUE is more effective on
267 * unresponsive flows.
268 */
269
270 struct cobalt_skb_cb {
271 ktime_t enqueue_time;
272 u32 adjusted_len;
273 };
274
275 static u64 us_to_ns(u64 us)
276 {
277 return us * NSEC_PER_USEC;
278 }
279
280 static struct cobalt_skb_cb *get_cobalt_cb(const struct sk_buff *skb)
281 {
282 qdisc_cb_private_validate(skb, sizeof(struct cobalt_skb_cb));
283 return (struct cobalt_skb_cb *)qdisc_skb_cb(skb)->data;
284 }
285
286 static ktime_t cobalt_get_enqueue_time(const struct sk_buff *skb)
287 {
288 return get_cobalt_cb(skb)->enqueue_time;
289 }
290
291 static void cobalt_set_enqueue_time(struct sk_buff *skb,
292 ktime_t now)
293 {
294 get_cobalt_cb(skb)->enqueue_time = now;
295 }
296
297 static u16 quantum_div[CAKE_QUEUES + 1] = {0};
298
299 /* Diffserv lookup tables */
300
301 static const u8 precedence[] = {
302 0, 0, 0, 0, 0, 0, 0, 0,
303 1, 1, 1, 1, 1, 1, 1, 1,
304 2, 2, 2, 2, 2, 2, 2, 2,
305 3, 3, 3, 3, 3, 3, 3, 3,
306 4, 4, 4, 4, 4, 4, 4, 4,
307 5, 5, 5, 5, 5, 5, 5, 5,
308 6, 6, 6, 6, 6, 6, 6, 6,
309 7, 7, 7, 7, 7, 7, 7, 7,
310 };
311
312 static const u8 diffserv8[] = {
313 2, 5, 1, 2, 4, 2, 2, 2,
314 0, 2, 1, 2, 1, 2, 1, 2,
315 5, 2, 4, 2, 4, 2, 4, 2,
316 3, 2, 3, 2, 3, 2, 3, 2,
317 6, 2, 3, 2, 3, 2, 3, 2,
318 6, 2, 2, 2, 6, 2, 6, 2,
319 7, 2, 2, 2, 2, 2, 2, 2,
320 7, 2, 2, 2, 2, 2, 2, 2,
321 };
322
323 static const u8 diffserv4[] = {
324 0, 2, 0, 0, 2, 0, 0, 0,
325 1, 0, 0, 0, 0, 0, 0, 0,
326 2, 0, 2, 0, 2, 0, 2, 0,
327 2, 0, 2, 0, 2, 0, 2, 0,
328 3, 0, 2, 0, 2, 0, 2, 0,
329 3, 0, 0, 0, 3, 0, 3, 0,
330 3, 0, 0, 0, 0, 0, 0, 0,
331 3, 0, 0, 0, 0, 0, 0, 0,
332 };
333
334 static const u8 diffserv3[] = {
335 0, 0, 0, 0, 2, 0, 0, 0,
336 1, 0, 0, 0, 0, 0, 0, 0,
337 0, 0, 0, 0, 0, 0, 0, 0,
338 0, 0, 0, 0, 0, 0, 0, 0,
339 0, 0, 0, 0, 0, 0, 0, 0,
340 0, 0, 0, 0, 2, 0, 2, 0,
341 2, 0, 0, 0, 0, 0, 0, 0,
342 2, 0, 0, 0, 0, 0, 0, 0,
343 };
344
345 static const u8 besteffort[] = {
346 0, 0, 0, 0, 0, 0, 0, 0,
347 0, 0, 0, 0, 0, 0, 0, 0,
348 0, 0, 0, 0, 0, 0, 0, 0,
349 0, 0, 0, 0, 0, 0, 0, 0,
350 0, 0, 0, 0, 0, 0, 0, 0,
351 0, 0, 0, 0, 0, 0, 0, 0,
352 0, 0, 0, 0, 0, 0, 0, 0,
353 0, 0, 0, 0, 0, 0, 0, 0,
354 };
355
356 /* tin priority order for stats dumping */
357
358 static const u8 normal_order[] = {0, 1, 2, 3, 4, 5, 6, 7};
359 static const u8 bulk_order[] = {1, 0, 2, 3};
360
361 #define REC_INV_SQRT_CACHE (16)
362 static u32 cobalt_rec_inv_sqrt_cache[REC_INV_SQRT_CACHE] = {0};
363
364 /* http://en.wikipedia.org/wiki/Methods_of_computing_square_roots
365 * new_invsqrt = (invsqrt / 2) * (3 - count * invsqrt^2)
366 *
367 * Here, invsqrt is a fixed point number (< 1.0), 32bit mantissa, aka Q0.32
368 */
369
370 static void cobalt_newton_step(struct cobalt_vars *vars)
371 {
372 u32 invsqrt, invsqrt2;
373 u64 val;
374
375 invsqrt = vars->rec_inv_sqrt;
376 invsqrt2 = ((u64)invsqrt * invsqrt) >> 32;
377 val = (3LL << 32) - ((u64)vars->count * invsqrt2);
378
379 val >>= 2; /* avoid overflow in following multiply */
380 val = (val * invsqrt) >> (32 - 2 + 1);
381
382 vars->rec_inv_sqrt = val;
383 }
384
385 static void cobalt_invsqrt(struct cobalt_vars *vars)
386 {
387 if (vars->count < REC_INV_SQRT_CACHE)
388 vars->rec_inv_sqrt = cobalt_rec_inv_sqrt_cache[vars->count];
389 else
390 cobalt_newton_step(vars);
391 }
392
393 /* There is a big difference in timing between the accurate values placed in
394 * the cache and the approximations given by a single Newton step for small
395 * count values, particularly when stepping from count 1 to 2 or vice versa.
396 * Above 16, a single Newton step gives sufficient accuracy in either
397 * direction, given the precision stored.
398 *
399 * The magnitude of the error when stepping up to count 2 is such as to give
400 * the value that *should* have been produced at count 4.
401 */
402
403 static void cobalt_cache_init(void)
404 {
405 struct cobalt_vars v;
406
407 memset(&v, 0, sizeof(v));
408 v.rec_inv_sqrt = ~0U;
409 cobalt_rec_inv_sqrt_cache[0] = v.rec_inv_sqrt;
410
411 for (v.count = 1; v.count < REC_INV_SQRT_CACHE; v.count++) {
412 cobalt_newton_step(&v);
413 cobalt_newton_step(&v);
414 cobalt_newton_step(&v);
415 cobalt_newton_step(&v);
416
417 cobalt_rec_inv_sqrt_cache[v.count] = v.rec_inv_sqrt;
418 }
419 }
420
421 static void cobalt_vars_init(struct cobalt_vars *vars)
422 {
423 memset(vars, 0, sizeof(*vars));
424
425 if (!cobalt_rec_inv_sqrt_cache[0]) {
426 cobalt_cache_init();
427 cobalt_rec_inv_sqrt_cache[0] = ~0;
428 }
429 }
430
431 /* CoDel control_law is t + interval/sqrt(count)
432 * We maintain in rec_inv_sqrt the reciprocal value of sqrt(count) to avoid
433 * both sqrt() and divide operation.
434 */
435 static ktime_t cobalt_control(ktime_t t,
436 u64 interval,
437 u32 rec_inv_sqrt)
438 {
439 return ktime_add_ns(t, reciprocal_scale(interval,
440 rec_inv_sqrt));
441 }
442
443 /* Call this when a packet had to be dropped due to queue overflow. Returns
444 * true if the BLUE state was quiescent before but active after this call.
445 */
446 static bool cobalt_queue_full(struct cobalt_vars *vars,
447 struct cobalt_params *p,
448 ktime_t now)
449 {
450 bool up = false;
451
452 if (ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
453 up = !vars->p_drop;
454 vars->p_drop += p->p_inc;
455 if (vars->p_drop < p->p_inc)
456 vars->p_drop = ~0;
457 vars->blue_timer = now;
458 }
459 vars->dropping = true;
460 vars->drop_next = now;
461 if (!vars->count)
462 vars->count = 1;
463
464 return up;
465 }
466
467 /* Call this when the queue was serviced but turned out to be empty. Returns
468 * true if the BLUE state was active before but quiescent after this call.
469 */
470 static bool cobalt_queue_empty(struct cobalt_vars *vars,
471 struct cobalt_params *p,
472 ktime_t now)
473 {
474 bool down = false;
475
476 if (vars->p_drop &&
477 ktime_to_ns(ktime_sub(now, vars->blue_timer)) > p->target) {
478 if (vars->p_drop < p->p_dec)
479 vars->p_drop = 0;
480 else
481 vars->p_drop -= p->p_dec;
482 vars->blue_timer = now;
483 down = !vars->p_drop;
484 }
485 vars->dropping = false;
486
487 if (vars->count && ktime_to_ns(ktime_sub(now, vars->drop_next)) >= 0) {
488 vars->count--;
489 cobalt_invsqrt(vars);
490 vars->drop_next = cobalt_control(vars->drop_next,
491 p->interval,
492 vars->rec_inv_sqrt);
493 }
494
495 return down;
496 }
497
498 /* Call this with a freshly dequeued packet for possible congestion marking.
499 * Returns true as an instruction to drop the packet, false for delivery.
500 */
501 static bool cobalt_should_drop(struct cobalt_vars *vars,
502 struct cobalt_params *p,
503 ktime_t now,
504 struct sk_buff *skb,
505 u32 bulk_flows)
506 {
507 bool next_due, over_target, drop = false;
508 ktime_t schedule;
509 u64 sojourn;
510
511 /* The 'schedule' variable records, in its sign, whether 'now' is before or
512 * after 'drop_next'. This allows 'drop_next' to be updated before the next
513 * scheduling decision is actually branched, without destroying that
514 * information. Similarly, the first 'schedule' value calculated is preserved
515 * in the boolean 'next_due'.
516 *
517 * As for 'drop_next', we take advantage of the fact that 'interval' is both
518 * the delay between first exceeding 'target' and the first signalling event,
519 * *and* the scaling factor for the signalling frequency. It's therefore very
520 * natural to use a single mechanism for both purposes, and eliminates a
521 * significant amount of reference Codel's spaghetti code. To help with this,
522 * both the '0' and '1' entries in the invsqrt cache are 0xFFFFFFFF, as close
523 * as possible to 1.0 in fixed-point.
524 */
525
526 sojourn = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
527 schedule = ktime_sub(now, vars->drop_next);
528 over_target = sojourn > p->target &&
529 sojourn > p->mtu_time * bulk_flows * 2 &&
530 sojourn > p->mtu_time * 4;
531 next_due = vars->count && ktime_to_ns(schedule) >= 0;
532
533 vars->ecn_marked = false;
534
535 if (over_target) {
536 if (!vars->dropping) {
537 vars->dropping = true;
538 vars->drop_next = cobalt_control(now,
539 p->interval,
540 vars->rec_inv_sqrt);
541 }
542 if (!vars->count)
543 vars->count = 1;
544 } else if (vars->dropping) {
545 vars->dropping = false;
546 }
547
548 if (next_due && vars->dropping) {
549 /* Use ECN mark if possible, otherwise drop */
550 drop = !(vars->ecn_marked = INET_ECN_set_ce(skb));
551
552 vars->count++;
553 if (!vars->count)
554 vars->count--;
555 cobalt_invsqrt(vars);
556 vars->drop_next = cobalt_control(vars->drop_next,
557 p->interval,
558 vars->rec_inv_sqrt);
559 schedule = ktime_sub(now, vars->drop_next);
560 } else {
561 while (next_due) {
562 vars->count--;
563 cobalt_invsqrt(vars);
564 vars->drop_next = cobalt_control(vars->drop_next,
565 p->interval,
566 vars->rec_inv_sqrt);
567 schedule = ktime_sub(now, vars->drop_next);
568 next_due = vars->count && ktime_to_ns(schedule) >= 0;
569 }
570 }
571
572 /* Simple BLUE implementation. Lack of ECN is deliberate. */
573 if (vars->p_drop)
574 drop |= (prandom_u32() < vars->p_drop);
575
576 /* Overload the drop_next field as an activity timeout */
577 if (!vars->count)
578 vars->drop_next = ktime_add_ns(now, p->interval);
579 else if (ktime_to_ns(schedule) > 0 && !drop)
580 vars->drop_next = now;
581
582 return drop;
583 }
584
585 static void cake_update_flowkeys(struct flow_keys *keys,
586 const struct sk_buff *skb)
587 {
588 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
589 struct nf_conntrack_tuple tuple = {};
590 bool rev = !skb->_nfct;
591
592 if (tc_skb_protocol(skb) != htons(ETH_P_IP))
593 return;
594
595 if (!nf_ct_get_tuple_skb(&tuple, skb))
596 return;
597
598 keys->addrs.v4addrs.src = rev ? tuple.dst.u3.ip : tuple.src.u3.ip;
599 keys->addrs.v4addrs.dst = rev ? tuple.src.u3.ip : tuple.dst.u3.ip;
600
601 if (keys->ports.ports) {
602 keys->ports.src = rev ? tuple.dst.u.all : tuple.src.u.all;
603 keys->ports.dst = rev ? tuple.src.u.all : tuple.dst.u.all;
604 }
605 #endif
606 }
607
608 /* Cake has several subtle multiple bit settings. In these cases you
609 * would be matching triple isolate mode as well.
610 */
611
612 static bool cake_dsrc(int flow_mode)
613 {
614 return (flow_mode & CAKE_FLOW_DUAL_SRC) == CAKE_FLOW_DUAL_SRC;
615 }
616
617 static bool cake_ddst(int flow_mode)
618 {
619 return (flow_mode & CAKE_FLOW_DUAL_DST) == CAKE_FLOW_DUAL_DST;
620 }
621
622 static u32 cake_hash(struct cake_tin_data *q, const struct sk_buff *skb,
623 int flow_mode, u16 flow_override, u16 host_override)
624 {
625 u32 flow_hash = 0, srchost_hash = 0, dsthost_hash = 0;
626 u16 reduced_hash, srchost_idx, dsthost_idx;
627 struct flow_keys keys, host_keys;
628
629 if (unlikely(flow_mode == CAKE_FLOW_NONE))
630 return 0;
631
632 /* If both overrides are set we can skip packet dissection entirely */
633 if ((flow_override || !(flow_mode & CAKE_FLOW_FLOWS)) &&
634 (host_override || !(flow_mode & CAKE_FLOW_HOSTS)))
635 goto skip_hash;
636
637 skb_flow_dissect_flow_keys(skb, &keys,
638 FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
639
640 if (flow_mode & CAKE_FLOW_NAT_FLAG)
641 cake_update_flowkeys(&keys, skb);
642
643 /* flow_hash_from_keys() sorts the addresses by value, so we have
644 * to preserve their order in a separate data structure to treat
645 * src and dst host addresses as independently selectable.
646 */
647 host_keys = keys;
648 host_keys.ports.ports = 0;
649 host_keys.basic.ip_proto = 0;
650 host_keys.keyid.keyid = 0;
651 host_keys.tags.flow_label = 0;
652
653 switch (host_keys.control.addr_type) {
654 case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
655 host_keys.addrs.v4addrs.src = 0;
656 dsthost_hash = flow_hash_from_keys(&host_keys);
657 host_keys.addrs.v4addrs.src = keys.addrs.v4addrs.src;
658 host_keys.addrs.v4addrs.dst = 0;
659 srchost_hash = flow_hash_from_keys(&host_keys);
660 break;
661
662 case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
663 memset(&host_keys.addrs.v6addrs.src, 0,
664 sizeof(host_keys.addrs.v6addrs.src));
665 dsthost_hash = flow_hash_from_keys(&host_keys);
666 host_keys.addrs.v6addrs.src = keys.addrs.v6addrs.src;
667 memset(&host_keys.addrs.v6addrs.dst, 0,
668 sizeof(host_keys.addrs.v6addrs.dst));
669 srchost_hash = flow_hash_from_keys(&host_keys);
670 break;
671
672 default:
673 dsthost_hash = 0;
674 srchost_hash = 0;
675 }
676
677 /* This *must* be after the above switch, since as a
678 * side-effect it sorts the src and dst addresses.
679 */
680 if (flow_mode & CAKE_FLOW_FLOWS)
681 flow_hash = flow_hash_from_keys(&keys);
682
683 skip_hash:
684 if (flow_override)
685 flow_hash = flow_override - 1;
686 if (host_override) {
687 dsthost_hash = host_override - 1;
688 srchost_hash = host_override - 1;
689 }
690
691 if (!(flow_mode & CAKE_FLOW_FLOWS)) {
692 if (flow_mode & CAKE_FLOW_SRC_IP)
693 flow_hash ^= srchost_hash;
694
695 if (flow_mode & CAKE_FLOW_DST_IP)
696 flow_hash ^= dsthost_hash;
697 }
698
699 reduced_hash = flow_hash % CAKE_QUEUES;
700
701 /* set-associative hashing */
702 /* fast path if no hash collision (direct lookup succeeds) */
703 if (likely(q->tags[reduced_hash] == flow_hash &&
704 q->flows[reduced_hash].set)) {
705 q->way_directs++;
706 } else {
707 u32 inner_hash = reduced_hash % CAKE_SET_WAYS;
708 u32 outer_hash = reduced_hash - inner_hash;
709 bool allocate_src = false;
710 bool allocate_dst = false;
711 u32 i, k;
712
713 /* check if any active queue in the set is reserved for
714 * this flow.
715 */
716 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
717 i++, k = (k + 1) % CAKE_SET_WAYS) {
718 if (q->tags[outer_hash + k] == flow_hash) {
719 if (i)
720 q->way_hits++;
721
722 if (!q->flows[outer_hash + k].set) {
723 /* need to increment host refcnts */
724 allocate_src = cake_dsrc(flow_mode);
725 allocate_dst = cake_ddst(flow_mode);
726 }
727
728 goto found;
729 }
730 }
731
732 /* no queue is reserved for this flow, look for an
733 * empty one.
734 */
735 for (i = 0; i < CAKE_SET_WAYS;
736 i++, k = (k + 1) % CAKE_SET_WAYS) {
737 if (!q->flows[outer_hash + k].set) {
738 q->way_misses++;
739 allocate_src = cake_dsrc(flow_mode);
740 allocate_dst = cake_ddst(flow_mode);
741 goto found;
742 }
743 }
744
745 /* With no empty queues, default to the original
746 * queue, accept the collision, update the host tags.
747 */
748 q->way_collisions++;
749 q->hosts[q->flows[reduced_hash].srchost].srchost_refcnt--;
750 q->hosts[q->flows[reduced_hash].dsthost].dsthost_refcnt--;
751 allocate_src = cake_dsrc(flow_mode);
752 allocate_dst = cake_ddst(flow_mode);
753 found:
754 /* reserve queue for future packets in same flow */
755 reduced_hash = outer_hash + k;
756 q->tags[reduced_hash] = flow_hash;
757
758 if (allocate_src) {
759 srchost_idx = srchost_hash % CAKE_QUEUES;
760 inner_hash = srchost_idx % CAKE_SET_WAYS;
761 outer_hash = srchost_idx - inner_hash;
762 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
763 i++, k = (k + 1) % CAKE_SET_WAYS) {
764 if (q->hosts[outer_hash + k].srchost_tag ==
765 srchost_hash)
766 goto found_src;
767 }
768 for (i = 0; i < CAKE_SET_WAYS;
769 i++, k = (k + 1) % CAKE_SET_WAYS) {
770 if (!q->hosts[outer_hash + k].srchost_refcnt)
771 break;
772 }
773 q->hosts[outer_hash + k].srchost_tag = srchost_hash;
774 found_src:
775 srchost_idx = outer_hash + k;
776 q->hosts[srchost_idx].srchost_refcnt++;
777 q->flows[reduced_hash].srchost = srchost_idx;
778 }
779
780 if (allocate_dst) {
781 dsthost_idx = dsthost_hash % CAKE_QUEUES;
782 inner_hash = dsthost_idx % CAKE_SET_WAYS;
783 outer_hash = dsthost_idx - inner_hash;
784 for (i = 0, k = inner_hash; i < CAKE_SET_WAYS;
785 i++, k = (k + 1) % CAKE_SET_WAYS) {
786 if (q->hosts[outer_hash + k].dsthost_tag ==
787 dsthost_hash)
788 goto found_dst;
789 }
790 for (i = 0; i < CAKE_SET_WAYS;
791 i++, k = (k + 1) % CAKE_SET_WAYS) {
792 if (!q->hosts[outer_hash + k].dsthost_refcnt)
793 break;
794 }
795 q->hosts[outer_hash + k].dsthost_tag = dsthost_hash;
796 found_dst:
797 dsthost_idx = outer_hash + k;
798 q->hosts[dsthost_idx].dsthost_refcnt++;
799 q->flows[reduced_hash].dsthost = dsthost_idx;
800 }
801 }
802
803 return reduced_hash;
804 }
805
806 /* helper functions : might be changed when/if skb use a standard list_head */
807 /* remove one skb from head of slot queue */
808
809 static struct sk_buff *dequeue_head(struct cake_flow *flow)
810 {
811 struct sk_buff *skb = flow->head;
812
813 if (skb) {
814 flow->head = skb->next;
815 skb_mark_not_on_list(skb);
816 }
817
818 return skb;
819 }
820
821 /* add skb to flow queue (tail add) */
822
823 static void flow_queue_add(struct cake_flow *flow, struct sk_buff *skb)
824 {
825 if (!flow->head)
826 flow->head = skb;
827 else
828 flow->tail->next = skb;
829 flow->tail = skb;
830 skb->next = NULL;
831 }
832
833 static struct iphdr *cake_get_iphdr(const struct sk_buff *skb,
834 struct ipv6hdr *buf)
835 {
836 unsigned int offset = skb_network_offset(skb);
837 struct iphdr *iph;
838
839 iph = skb_header_pointer(skb, offset, sizeof(struct iphdr), buf);
840
841 if (!iph)
842 return NULL;
843
844 if (iph->version == 4 && iph->protocol == IPPROTO_IPV6)
845 return skb_header_pointer(skb, offset + iph->ihl * 4,
846 sizeof(struct ipv6hdr), buf);
847
848 else if (iph->version == 4)
849 return iph;
850
851 else if (iph->version == 6)
852 return skb_header_pointer(skb, offset, sizeof(struct ipv6hdr),
853 buf);
854
855 return NULL;
856 }
857
858 static struct tcphdr *cake_get_tcphdr(const struct sk_buff *skb,
859 void *buf, unsigned int bufsize)
860 {
861 unsigned int offset = skb_network_offset(skb);
862 const struct ipv6hdr *ipv6h;
863 const struct tcphdr *tcph;
864 const struct iphdr *iph;
865 struct ipv6hdr _ipv6h;
866 struct tcphdr _tcph;
867
868 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
869
870 if (!ipv6h)
871 return NULL;
872
873 if (ipv6h->version == 4) {
874 iph = (struct iphdr *)ipv6h;
875 offset += iph->ihl * 4;
876
877 /* special-case 6in4 tunnelling, as that is a common way to get
878 * v6 connectivity in the home
879 */
880 if (iph->protocol == IPPROTO_IPV6) {
881 ipv6h = skb_header_pointer(skb, offset,
882 sizeof(_ipv6h), &_ipv6h);
883
884 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
885 return NULL;
886
887 offset += sizeof(struct ipv6hdr);
888
889 } else if (iph->protocol != IPPROTO_TCP) {
890 return NULL;
891 }
892
893 } else if (ipv6h->version == 6) {
894 if (ipv6h->nexthdr != IPPROTO_TCP)
895 return NULL;
896
897 offset += sizeof(struct ipv6hdr);
898 } else {
899 return NULL;
900 }
901
902 tcph = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
903 if (!tcph)
904 return NULL;
905
906 return skb_header_pointer(skb, offset,
907 min(__tcp_hdrlen(tcph), bufsize), buf);
908 }
909
910 static const void *cake_get_tcpopt(const struct tcphdr *tcph,
911 int code, int *oplen)
912 {
913 /* inspired by tcp_parse_options in tcp_input.c */
914 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
915 const u8 *ptr = (const u8 *)(tcph + 1);
916
917 while (length > 0) {
918 int opcode = *ptr++;
919 int opsize;
920
921 if (opcode == TCPOPT_EOL)
922 break;
923 if (opcode == TCPOPT_NOP) {
924 length--;
925 continue;
926 }
927 opsize = *ptr++;
928 if (opsize < 2 || opsize > length)
929 break;
930
931 if (opcode == code) {
932 *oplen = opsize;
933 return ptr;
934 }
935
936 ptr += opsize - 2;
937 length -= opsize;
938 }
939
940 return NULL;
941 }
942
943 /* Compare two SACK sequences. A sequence is considered greater if it SACKs more
944 * bytes than the other. In the case where both sequences ACKs bytes that the
945 * other doesn't, A is considered greater. DSACKs in A also makes A be
946 * considered greater.
947 *
948 * @return -1, 0 or 1 as normal compare functions
949 */
950 static int cake_tcph_sack_compare(const struct tcphdr *tcph_a,
951 const struct tcphdr *tcph_b)
952 {
953 const struct tcp_sack_block_wire *sack_a, *sack_b;
954 u32 ack_seq_a = ntohl(tcph_a->ack_seq);
955 u32 bytes_a = 0, bytes_b = 0;
956 int oplen_a, oplen_b;
957 bool first = true;
958
959 sack_a = cake_get_tcpopt(tcph_a, TCPOPT_SACK, &oplen_a);
960 sack_b = cake_get_tcpopt(tcph_b, TCPOPT_SACK, &oplen_b);
961
962 /* pointers point to option contents */
963 oplen_a -= TCPOLEN_SACK_BASE;
964 oplen_b -= TCPOLEN_SACK_BASE;
965
966 if (sack_a && oplen_a >= sizeof(*sack_a) &&
967 (!sack_b || oplen_b < sizeof(*sack_b)))
968 return -1;
969 else if (sack_b && oplen_b >= sizeof(*sack_b) &&
970 (!sack_a || oplen_a < sizeof(*sack_a)))
971 return 1;
972 else if ((!sack_a || oplen_a < sizeof(*sack_a)) &&
973 (!sack_b || oplen_b < sizeof(*sack_b)))
974 return 0;
975
976 while (oplen_a >= sizeof(*sack_a)) {
977 const struct tcp_sack_block_wire *sack_tmp = sack_b;
978 u32 start_a = get_unaligned_be32(&sack_a->start_seq);
979 u32 end_a = get_unaligned_be32(&sack_a->end_seq);
980 int oplen_tmp = oplen_b;
981 bool found = false;
982
983 /* DSACK; always considered greater to prevent dropping */
984 if (before(start_a, ack_seq_a))
985 return -1;
986
987 bytes_a += end_a - start_a;
988
989 while (oplen_tmp >= sizeof(*sack_tmp)) {
990 u32 start_b = get_unaligned_be32(&sack_tmp->start_seq);
991 u32 end_b = get_unaligned_be32(&sack_tmp->end_seq);
992
993 /* first time through we count the total size */
994 if (first)
995 bytes_b += end_b - start_b;
996
997 if (!after(start_b, start_a) && !before(end_b, end_a)) {
998 found = true;
999 if (!first)
1000 break;
1001 }
1002 oplen_tmp -= sizeof(*sack_tmp);
1003 sack_tmp++;
1004 }
1005
1006 if (!found)
1007 return -1;
1008
1009 oplen_a -= sizeof(*sack_a);
1010 sack_a++;
1011 first = false;
1012 }
1013
1014 /* If we made it this far, all ranges SACKed by A are covered by B, so
1015 * either the SACKs are equal, or B SACKs more bytes.
1016 */
1017 return bytes_b > bytes_a ? 1 : 0;
1018 }
1019
1020 static void cake_tcph_get_tstamp(const struct tcphdr *tcph,
1021 u32 *tsval, u32 *tsecr)
1022 {
1023 const u8 *ptr;
1024 int opsize;
1025
1026 ptr = cake_get_tcpopt(tcph, TCPOPT_TIMESTAMP, &opsize);
1027
1028 if (ptr && opsize == TCPOLEN_TIMESTAMP) {
1029 *tsval = get_unaligned_be32(ptr);
1030 *tsecr = get_unaligned_be32(ptr + 4);
1031 }
1032 }
1033
1034 static bool cake_tcph_may_drop(const struct tcphdr *tcph,
1035 u32 tstamp_new, u32 tsecr_new)
1036 {
1037 /* inspired by tcp_parse_options in tcp_input.c */
1038 int length = __tcp_hdrlen(tcph) - sizeof(struct tcphdr);
1039 const u8 *ptr = (const u8 *)(tcph + 1);
1040 u32 tstamp, tsecr;
1041
1042 /* 3 reserved flags must be unset to avoid future breakage
1043 * ACK must be set
1044 * ECE/CWR are handled separately
1045 * All other flags URG/PSH/RST/SYN/FIN must be unset
1046 * 0x0FFF0000 = all TCP flags (confirm ACK=1, others zero)
1047 * 0x00C00000 = CWR/ECE (handled separately)
1048 * 0x0F3F0000 = 0x0FFF0000 & ~0x00C00000
1049 */
1050 if (((tcp_flag_word(tcph) &
1051 cpu_to_be32(0x0F3F0000)) != TCP_FLAG_ACK))
1052 return false;
1053
1054 while (length > 0) {
1055 int opcode = *ptr++;
1056 int opsize;
1057
1058 if (opcode == TCPOPT_EOL)
1059 break;
1060 if (opcode == TCPOPT_NOP) {
1061 length--;
1062 continue;
1063 }
1064 opsize = *ptr++;
1065 if (opsize < 2 || opsize > length)
1066 break;
1067
1068 switch (opcode) {
1069 case TCPOPT_MD5SIG: /* doesn't influence state */
1070 break;
1071
1072 case TCPOPT_SACK: /* stricter checking performed later */
1073 if (opsize % 8 != 2)
1074 return false;
1075 break;
1076
1077 case TCPOPT_TIMESTAMP:
1078 /* only drop timestamps lower than new */
1079 if (opsize != TCPOLEN_TIMESTAMP)
1080 return false;
1081 tstamp = get_unaligned_be32(ptr);
1082 tsecr = get_unaligned_be32(ptr + 4);
1083 if (after(tstamp, tstamp_new) ||
1084 after(tsecr, tsecr_new))
1085 return false;
1086 break;
1087
1088 case TCPOPT_MSS: /* these should only be set on SYN */
1089 case TCPOPT_WINDOW:
1090 case TCPOPT_SACK_PERM:
1091 case TCPOPT_FASTOPEN:
1092 case TCPOPT_EXP:
1093 default: /* don't drop if any unknown options are present */
1094 return false;
1095 }
1096
1097 ptr += opsize - 2;
1098 length -= opsize;
1099 }
1100
1101 return true;
1102 }
1103
1104 static struct sk_buff *cake_ack_filter(struct cake_sched_data *q,
1105 struct cake_flow *flow)
1106 {
1107 bool aggressive = q->ack_filter == CAKE_ACK_AGGRESSIVE;
1108 struct sk_buff *elig_ack = NULL, *elig_ack_prev = NULL;
1109 struct sk_buff *skb_check, *skb_prev = NULL;
1110 const struct ipv6hdr *ipv6h, *ipv6h_check;
1111 unsigned char _tcph[64], _tcph_check[64];
1112 const struct tcphdr *tcph, *tcph_check;
1113 const struct iphdr *iph, *iph_check;
1114 struct ipv6hdr _iph, _iph_check;
1115 const struct sk_buff *skb;
1116 int seglen, num_found = 0;
1117 u32 tstamp = 0, tsecr = 0;
1118 __be32 elig_flags = 0;
1119 int sack_comp;
1120
1121 /* no other possible ACKs to filter */
1122 if (flow->head == flow->tail)
1123 return NULL;
1124
1125 skb = flow->tail;
1126 tcph = cake_get_tcphdr(skb, _tcph, sizeof(_tcph));
1127 iph = cake_get_iphdr(skb, &_iph);
1128 if (!tcph)
1129 return NULL;
1130
1131 cake_tcph_get_tstamp(tcph, &tstamp, &tsecr);
1132
1133 /* the 'triggering' packet need only have the ACK flag set.
1134 * also check that SYN is not set, as there won't be any previous ACKs.
1135 */
1136 if ((tcp_flag_word(tcph) &
1137 (TCP_FLAG_ACK | TCP_FLAG_SYN)) != TCP_FLAG_ACK)
1138 return NULL;
1139
1140 /* the 'triggering' ACK is at the tail of the queue, we have already
1141 * returned if it is the only packet in the flow. loop through the rest
1142 * of the queue looking for pure ACKs with the same 5-tuple as the
1143 * triggering one.
1144 */
1145 for (skb_check = flow->head;
1146 skb_check && skb_check != skb;
1147 skb_prev = skb_check, skb_check = skb_check->next) {
1148 iph_check = cake_get_iphdr(skb_check, &_iph_check);
1149 tcph_check = cake_get_tcphdr(skb_check, &_tcph_check,
1150 sizeof(_tcph_check));
1151
1152 /* only TCP packets with matching 5-tuple are eligible, and only
1153 * drop safe headers
1154 */
1155 if (!tcph_check || iph->version != iph_check->version ||
1156 tcph_check->source != tcph->source ||
1157 tcph_check->dest != tcph->dest)
1158 continue;
1159
1160 if (iph_check->version == 4) {
1161 if (iph_check->saddr != iph->saddr ||
1162 iph_check->daddr != iph->daddr)
1163 continue;
1164
1165 seglen = ntohs(iph_check->tot_len) -
1166 (4 * iph_check->ihl);
1167 } else if (iph_check->version == 6) {
1168 ipv6h = (struct ipv6hdr *)iph;
1169 ipv6h_check = (struct ipv6hdr *)iph_check;
1170
1171 if (ipv6_addr_cmp(&ipv6h_check->saddr, &ipv6h->saddr) ||
1172 ipv6_addr_cmp(&ipv6h_check->daddr, &ipv6h->daddr))
1173 continue;
1174
1175 seglen = ntohs(ipv6h_check->payload_len);
1176 } else {
1177 WARN_ON(1); /* shouldn't happen */
1178 continue;
1179 }
1180
1181 /* If the ECE/CWR flags changed from the previous eligible
1182 * packet in the same flow, we should no longer be dropping that
1183 * previous packet as this would lose information.
1184 */
1185 if (elig_ack && (tcp_flag_word(tcph_check) &
1186 (TCP_FLAG_ECE | TCP_FLAG_CWR)) != elig_flags) {
1187 elig_ack = NULL;
1188 elig_ack_prev = NULL;
1189 num_found--;
1190 }
1191
1192 /* Check TCP options and flags, don't drop ACKs with segment
1193 * data, and don't drop ACKs with a higher cumulative ACK
1194 * counter than the triggering packet. Check ACK seqno here to
1195 * avoid parsing SACK options of packets we are going to exclude
1196 * anyway.
1197 */
1198 if (!cake_tcph_may_drop(tcph_check, tstamp, tsecr) ||
1199 (seglen - __tcp_hdrlen(tcph_check)) != 0 ||
1200 after(ntohl(tcph_check->ack_seq), ntohl(tcph->ack_seq)))
1201 continue;
1202
1203 /* Check SACK options. The triggering packet must SACK more data
1204 * than the ACK under consideration, or SACK the same range but
1205 * have a larger cumulative ACK counter. The latter is a
1206 * pathological case, but is contained in the following check
1207 * anyway, just to be safe.
1208 */
1209 sack_comp = cake_tcph_sack_compare(tcph_check, tcph);
1210
1211 if (sack_comp < 0 ||
1212 (ntohl(tcph_check->ack_seq) == ntohl(tcph->ack_seq) &&
1213 sack_comp == 0))
1214 continue;
1215
1216 /* At this point we have found an eligible pure ACK to drop; if
1217 * we are in aggressive mode, we are done. Otherwise, keep
1218 * searching unless this is the second eligible ACK we
1219 * found.
1220 *
1221 * Since we want to drop ACK closest to the head of the queue,
1222 * save the first eligible ACK we find, even if we need to loop
1223 * again.
1224 */
1225 if (!elig_ack) {
1226 elig_ack = skb_check;
1227 elig_ack_prev = skb_prev;
1228 elig_flags = (tcp_flag_word(tcph_check)
1229 & (TCP_FLAG_ECE | TCP_FLAG_CWR));
1230 }
1231
1232 if (num_found++ > 0)
1233 goto found;
1234 }
1235
1236 /* We made it through the queue without finding two eligible ACKs . If
1237 * we found a single eligible ACK we can drop it in aggressive mode if
1238 * we can guarantee that this does not interfere with ECN flag
1239 * information. We ensure this by dropping it only if the enqueued
1240 * packet is consecutive with the eligible ACK, and their flags match.
1241 */
1242 if (elig_ack && aggressive && elig_ack->next == skb &&
1243 (elig_flags == (tcp_flag_word(tcph) &
1244 (TCP_FLAG_ECE | TCP_FLAG_CWR))))
1245 goto found;
1246
1247 return NULL;
1248
1249 found:
1250 if (elig_ack_prev)
1251 elig_ack_prev->next = elig_ack->next;
1252 else
1253 flow->head = elig_ack->next;
1254
1255 skb_mark_not_on_list(elig_ack);
1256
1257 return elig_ack;
1258 }
1259
1260 static u64 cake_ewma(u64 avg, u64 sample, u32 shift)
1261 {
1262 avg -= avg >> shift;
1263 avg += sample >> shift;
1264 return avg;
1265 }
1266
1267 static u32 cake_calc_overhead(struct cake_sched_data *q, u32 len, u32 off)
1268 {
1269 if (q->rate_flags & CAKE_FLAG_OVERHEAD)
1270 len -= off;
1271
1272 if (q->max_netlen < len)
1273 q->max_netlen = len;
1274 if (q->min_netlen > len)
1275 q->min_netlen = len;
1276
1277 len += q->rate_overhead;
1278
1279 if (len < q->rate_mpu)
1280 len = q->rate_mpu;
1281
1282 if (q->atm_mode == CAKE_ATM_ATM) {
1283 len += 47;
1284 len /= 48;
1285 len *= 53;
1286 } else if (q->atm_mode == CAKE_ATM_PTM) {
1287 /* Add one byte per 64 bytes or part thereof.
1288 * This is conservative and easier to calculate than the
1289 * precise value.
1290 */
1291 len += (len + 63) / 64;
1292 }
1293
1294 if (q->max_adjlen < len)
1295 q->max_adjlen = len;
1296 if (q->min_adjlen > len)
1297 q->min_adjlen = len;
1298
1299 return len;
1300 }
1301
1302 static u32 cake_overhead(struct cake_sched_data *q, const struct sk_buff *skb)
1303 {
1304 const struct skb_shared_info *shinfo = skb_shinfo(skb);
1305 unsigned int hdr_len, last_len = 0;
1306 u32 off = skb_network_offset(skb);
1307 u32 len = qdisc_pkt_len(skb);
1308 u16 segs = 1;
1309
1310 q->avg_netoff = cake_ewma(q->avg_netoff, off << 16, 8);
1311
1312 if (!shinfo->gso_size)
1313 return cake_calc_overhead(q, len, off);
1314
1315 /* borrowed from qdisc_pkt_len_init() */
1316 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
1317
1318 /* + transport layer */
1319 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 |
1320 SKB_GSO_TCPV6))) {
1321 const struct tcphdr *th;
1322 struct tcphdr _tcphdr;
1323
1324 th = skb_header_pointer(skb, skb_transport_offset(skb),
1325 sizeof(_tcphdr), &_tcphdr);
1326 if (likely(th))
1327 hdr_len += __tcp_hdrlen(th);
1328 } else {
1329 struct udphdr _udphdr;
1330
1331 if (skb_header_pointer(skb, skb_transport_offset(skb),
1332 sizeof(_udphdr), &_udphdr))
1333 hdr_len += sizeof(struct udphdr);
1334 }
1335
1336 if (unlikely(shinfo->gso_type & SKB_GSO_DODGY))
1337 segs = DIV_ROUND_UP(skb->len - hdr_len,
1338 shinfo->gso_size);
1339 else
1340 segs = shinfo->gso_segs;
1341
1342 len = shinfo->gso_size + hdr_len;
1343 last_len = skb->len - shinfo->gso_size * (segs - 1);
1344
1345 return (cake_calc_overhead(q, len, off) * (segs - 1) +
1346 cake_calc_overhead(q, last_len, off));
1347 }
1348
1349 static void cake_heap_swap(struct cake_sched_data *q, u16 i, u16 j)
1350 {
1351 struct cake_heap_entry ii = q->overflow_heap[i];
1352 struct cake_heap_entry jj = q->overflow_heap[j];
1353
1354 q->overflow_heap[i] = jj;
1355 q->overflow_heap[j] = ii;
1356
1357 q->tins[ii.t].overflow_idx[ii.b] = j;
1358 q->tins[jj.t].overflow_idx[jj.b] = i;
1359 }
1360
1361 static u32 cake_heap_get_backlog(const struct cake_sched_data *q, u16 i)
1362 {
1363 struct cake_heap_entry ii = q->overflow_heap[i];
1364
1365 return q->tins[ii.t].backlogs[ii.b];
1366 }
1367
1368 static void cake_heapify(struct cake_sched_data *q, u16 i)
1369 {
1370 static const u32 a = CAKE_MAX_TINS * CAKE_QUEUES;
1371 u32 mb = cake_heap_get_backlog(q, i);
1372 u32 m = i;
1373
1374 while (m < a) {
1375 u32 l = m + m + 1;
1376 u32 r = l + 1;
1377
1378 if (l < a) {
1379 u32 lb = cake_heap_get_backlog(q, l);
1380
1381 if (lb > mb) {
1382 m = l;
1383 mb = lb;
1384 }
1385 }
1386
1387 if (r < a) {
1388 u32 rb = cake_heap_get_backlog(q, r);
1389
1390 if (rb > mb) {
1391 m = r;
1392 mb = rb;
1393 }
1394 }
1395
1396 if (m != i) {
1397 cake_heap_swap(q, i, m);
1398 i = m;
1399 } else {
1400 break;
1401 }
1402 }
1403 }
1404
1405 static void cake_heapify_up(struct cake_sched_data *q, u16 i)
1406 {
1407 while (i > 0 && i < CAKE_MAX_TINS * CAKE_QUEUES) {
1408 u16 p = (i - 1) >> 1;
1409 u32 ib = cake_heap_get_backlog(q, i);
1410 u32 pb = cake_heap_get_backlog(q, p);
1411
1412 if (ib > pb) {
1413 cake_heap_swap(q, i, p);
1414 i = p;
1415 } else {
1416 break;
1417 }
1418 }
1419 }
1420
1421 static int cake_advance_shaper(struct cake_sched_data *q,
1422 struct cake_tin_data *b,
1423 struct sk_buff *skb,
1424 ktime_t now, bool drop)
1425 {
1426 u32 len = get_cobalt_cb(skb)->adjusted_len;
1427
1428 /* charge packet bandwidth to this tin
1429 * and to the global shaper.
1430 */
1431 if (q->rate_ns) {
1432 u64 tin_dur = (len * b->tin_rate_ns) >> b->tin_rate_shft;
1433 u64 global_dur = (len * q->rate_ns) >> q->rate_shft;
1434 u64 failsafe_dur = global_dur + (global_dur >> 1);
1435
1436 if (ktime_before(b->time_next_packet, now))
1437 b->time_next_packet = ktime_add_ns(b->time_next_packet,
1438 tin_dur);
1439
1440 else if (ktime_before(b->time_next_packet,
1441 ktime_add_ns(now, tin_dur)))
1442 b->time_next_packet = ktime_add_ns(now, tin_dur);
1443
1444 q->time_next_packet = ktime_add_ns(q->time_next_packet,
1445 global_dur);
1446 if (!drop)
1447 q->failsafe_next_packet = \
1448 ktime_add_ns(q->failsafe_next_packet,
1449 failsafe_dur);
1450 }
1451 return len;
1452 }
1453
1454 static unsigned int cake_drop(struct Qdisc *sch, struct sk_buff **to_free)
1455 {
1456 struct cake_sched_data *q = qdisc_priv(sch);
1457 ktime_t now = ktime_get();
1458 u32 idx = 0, tin = 0, len;
1459 struct cake_heap_entry qq;
1460 struct cake_tin_data *b;
1461 struct cake_flow *flow;
1462 struct sk_buff *skb;
1463
1464 if (!q->overflow_timeout) {
1465 int i;
1466 /* Build fresh max-heap */
1467 for (i = CAKE_MAX_TINS * CAKE_QUEUES / 2; i >= 0; i--)
1468 cake_heapify(q, i);
1469 }
1470 q->overflow_timeout = 65535;
1471
1472 /* select longest queue for pruning */
1473 qq = q->overflow_heap[0];
1474 tin = qq.t;
1475 idx = qq.b;
1476
1477 b = &q->tins[tin];
1478 flow = &b->flows[idx];
1479 skb = dequeue_head(flow);
1480 if (unlikely(!skb)) {
1481 /* heap has gone wrong, rebuild it next time */
1482 q->overflow_timeout = 0;
1483 return idx + (tin << 16);
1484 }
1485
1486 if (cobalt_queue_full(&flow->cvars, &b->cparams, now))
1487 b->unresponsive_flow_count++;
1488
1489 len = qdisc_pkt_len(skb);
1490 q->buffer_used -= skb->truesize;
1491 b->backlogs[idx] -= len;
1492 b->tin_backlog -= len;
1493 sch->qstats.backlog -= len;
1494 qdisc_tree_reduce_backlog(sch, 1, len);
1495
1496 flow->dropped++;
1497 b->tin_dropped++;
1498 sch->qstats.drops++;
1499
1500 if (q->rate_flags & CAKE_FLAG_INGRESS)
1501 cake_advance_shaper(q, b, skb, now, true);
1502
1503 __qdisc_drop(skb, to_free);
1504 sch->q.qlen--;
1505
1506 cake_heapify(q, 0);
1507
1508 return idx + (tin << 16);
1509 }
1510
1511 static void cake_wash_diffserv(struct sk_buff *skb)
1512 {
1513 switch (skb->protocol) {
1514 case htons(ETH_P_IP):
1515 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1516 break;
1517 case htons(ETH_P_IPV6):
1518 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1519 break;
1520 default:
1521 break;
1522 }
1523 }
1524
1525 static u8 cake_handle_diffserv(struct sk_buff *skb, u16 wash)
1526 {
1527 u8 dscp;
1528
1529 switch (skb->protocol) {
1530 case htons(ETH_P_IP):
1531 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
1532 if (wash && dscp)
1533 ipv4_change_dsfield(ip_hdr(skb), INET_ECN_MASK, 0);
1534 return dscp;
1535
1536 case htons(ETH_P_IPV6):
1537 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
1538 if (wash && dscp)
1539 ipv6_change_dsfield(ipv6_hdr(skb), INET_ECN_MASK, 0);
1540 return dscp;
1541
1542 case htons(ETH_P_ARP):
1543 return 0x38; /* CS7 - Net Control */
1544
1545 default:
1546 /* If there is no Diffserv field, treat as best-effort */
1547 return 0;
1548 }
1549 }
1550
1551 static struct cake_tin_data *cake_select_tin(struct Qdisc *sch,
1552 struct sk_buff *skb)
1553 {
1554 struct cake_sched_data *q = qdisc_priv(sch);
1555 u32 tin;
1556
1557 if (TC_H_MAJ(skb->priority) == sch->handle &&
1558 TC_H_MIN(skb->priority) > 0 &&
1559 TC_H_MIN(skb->priority) <= q->tin_cnt) {
1560 tin = q->tin_order[TC_H_MIN(skb->priority) - 1];
1561
1562 if (q->rate_flags & CAKE_FLAG_WASH)
1563 cake_wash_diffserv(skb);
1564 } else if (q->tin_mode != CAKE_DIFFSERV_BESTEFFORT) {
1565 /* extract the Diffserv Precedence field, if it exists */
1566 /* and clear DSCP bits if washing */
1567 tin = q->tin_index[cake_handle_diffserv(skb,
1568 q->rate_flags & CAKE_FLAG_WASH)];
1569 if (unlikely(tin >= q->tin_cnt))
1570 tin = 0;
1571 } else {
1572 tin = 0;
1573 if (q->rate_flags & CAKE_FLAG_WASH)
1574 cake_wash_diffserv(skb);
1575 }
1576
1577 return &q->tins[tin];
1578 }
1579
1580 static u32 cake_classify(struct Qdisc *sch, struct cake_tin_data **t,
1581 struct sk_buff *skb, int flow_mode, int *qerr)
1582 {
1583 struct cake_sched_data *q = qdisc_priv(sch);
1584 struct tcf_proto *filter;
1585 struct tcf_result res;
1586 u16 flow = 0, host = 0;
1587 int result;
1588
1589 filter = rcu_dereference_bh(q->filter_list);
1590 if (!filter)
1591 goto hash;
1592
1593 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
1594 result = tcf_classify(skb, filter, &res, false);
1595
1596 if (result >= 0) {
1597 #ifdef CONFIG_NET_CLS_ACT
1598 switch (result) {
1599 case TC_ACT_STOLEN:
1600 case TC_ACT_QUEUED:
1601 case TC_ACT_TRAP:
1602 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
1603 /* fall through */
1604 case TC_ACT_SHOT:
1605 return 0;
1606 }
1607 #endif
1608 if (TC_H_MIN(res.classid) <= CAKE_QUEUES)
1609 flow = TC_H_MIN(res.classid);
1610 if (TC_H_MAJ(res.classid) <= (CAKE_QUEUES << 16))
1611 host = TC_H_MAJ(res.classid) >> 16;
1612 }
1613 hash:
1614 *t = cake_select_tin(sch, skb);
1615 return cake_hash(*t, skb, flow_mode, flow, host) + 1;
1616 }
1617
1618 static void cake_reconfigure(struct Qdisc *sch);
1619
1620 static s32 cake_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1621 struct sk_buff **to_free)
1622 {
1623 struct cake_sched_data *q = qdisc_priv(sch);
1624 int len = qdisc_pkt_len(skb);
1625 int uninitialized_var(ret);
1626 struct sk_buff *ack = NULL;
1627 ktime_t now = ktime_get();
1628 struct cake_tin_data *b;
1629 struct cake_flow *flow;
1630 u32 idx;
1631
1632 /* choose flow to insert into */
1633 idx = cake_classify(sch, &b, skb, q->flow_mode, &ret);
1634 if (idx == 0) {
1635 if (ret & __NET_XMIT_BYPASS)
1636 qdisc_qstats_drop(sch);
1637 __qdisc_drop(skb, to_free);
1638 return ret;
1639 }
1640 idx--;
1641 flow = &b->flows[idx];
1642
1643 /* ensure shaper state isn't stale */
1644 if (!b->tin_backlog) {
1645 if (ktime_before(b->time_next_packet, now))
1646 b->time_next_packet = now;
1647
1648 if (!sch->q.qlen) {
1649 if (ktime_before(q->time_next_packet, now)) {
1650 q->failsafe_next_packet = now;
1651 q->time_next_packet = now;
1652 } else if (ktime_after(q->time_next_packet, now) &&
1653 ktime_after(q->failsafe_next_packet, now)) {
1654 u64 next = \
1655 min(ktime_to_ns(q->time_next_packet),
1656 ktime_to_ns(
1657 q->failsafe_next_packet));
1658 sch->qstats.overlimits++;
1659 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1660 }
1661 }
1662 }
1663
1664 if (unlikely(len > b->max_skblen))
1665 b->max_skblen = len;
1666
1667 if (skb_is_gso(skb) && q->rate_flags & CAKE_FLAG_SPLIT_GSO) {
1668 struct sk_buff *segs, *nskb;
1669 netdev_features_t features = netif_skb_features(skb);
1670 unsigned int slen = 0, numsegs = 0;
1671
1672 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
1673 if (IS_ERR_OR_NULL(segs))
1674 return qdisc_drop(skb, sch, to_free);
1675
1676 while (segs) {
1677 nskb = segs->next;
1678 skb_mark_not_on_list(segs);
1679 qdisc_skb_cb(segs)->pkt_len = segs->len;
1680 cobalt_set_enqueue_time(segs, now);
1681 get_cobalt_cb(segs)->adjusted_len = cake_overhead(q,
1682 segs);
1683 flow_queue_add(flow, segs);
1684
1685 sch->q.qlen++;
1686 numsegs++;
1687 slen += segs->len;
1688 q->buffer_used += segs->truesize;
1689 b->packets++;
1690 segs = nskb;
1691 }
1692
1693 /* stats */
1694 b->bytes += slen;
1695 b->backlogs[idx] += slen;
1696 b->tin_backlog += slen;
1697 sch->qstats.backlog += slen;
1698 q->avg_window_bytes += slen;
1699
1700 qdisc_tree_reduce_backlog(sch, 1-numsegs, len-slen);
1701 consume_skb(skb);
1702 } else {
1703 /* not splitting */
1704 cobalt_set_enqueue_time(skb, now);
1705 get_cobalt_cb(skb)->adjusted_len = cake_overhead(q, skb);
1706 flow_queue_add(flow, skb);
1707
1708 if (q->ack_filter)
1709 ack = cake_ack_filter(q, flow);
1710
1711 if (ack) {
1712 b->ack_drops++;
1713 sch->qstats.drops++;
1714 b->bytes += qdisc_pkt_len(ack);
1715 len -= qdisc_pkt_len(ack);
1716 q->buffer_used += skb->truesize - ack->truesize;
1717 if (q->rate_flags & CAKE_FLAG_INGRESS)
1718 cake_advance_shaper(q, b, ack, now, true);
1719
1720 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(ack));
1721 consume_skb(ack);
1722 } else {
1723 sch->q.qlen++;
1724 q->buffer_used += skb->truesize;
1725 }
1726
1727 /* stats */
1728 b->packets++;
1729 b->bytes += len;
1730 b->backlogs[idx] += len;
1731 b->tin_backlog += len;
1732 sch->qstats.backlog += len;
1733 q->avg_window_bytes += len;
1734 }
1735
1736 if (q->overflow_timeout)
1737 cake_heapify_up(q, b->overflow_idx[idx]);
1738
1739 /* incoming bandwidth capacity estimate */
1740 if (q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS) {
1741 u64 packet_interval = \
1742 ktime_to_ns(ktime_sub(now, q->last_packet_time));
1743
1744 if (packet_interval > NSEC_PER_SEC)
1745 packet_interval = NSEC_PER_SEC;
1746
1747 /* filter out short-term bursts, eg. wifi aggregation */
1748 q->avg_packet_interval = \
1749 cake_ewma(q->avg_packet_interval,
1750 packet_interval,
1751 (packet_interval > q->avg_packet_interval ?
1752 2 : 8));
1753
1754 q->last_packet_time = now;
1755
1756 if (packet_interval > q->avg_packet_interval) {
1757 u64 window_interval = \
1758 ktime_to_ns(ktime_sub(now,
1759 q->avg_window_begin));
1760 u64 b = q->avg_window_bytes * (u64)NSEC_PER_SEC;
1761
1762 do_div(b, window_interval);
1763 q->avg_peak_bandwidth =
1764 cake_ewma(q->avg_peak_bandwidth, b,
1765 b > q->avg_peak_bandwidth ? 2 : 8);
1766 q->avg_window_bytes = 0;
1767 q->avg_window_begin = now;
1768
1769 if (ktime_after(now,
1770 ktime_add_ms(q->last_reconfig_time,
1771 250))) {
1772 q->rate_bps = (q->avg_peak_bandwidth * 15) >> 4;
1773 cake_reconfigure(sch);
1774 }
1775 }
1776 } else {
1777 q->avg_window_bytes = 0;
1778 q->last_packet_time = now;
1779 }
1780
1781 /* flowchain */
1782 if (!flow->set || flow->set == CAKE_SET_DECAYING) {
1783 struct cake_host *srchost = &b->hosts[flow->srchost];
1784 struct cake_host *dsthost = &b->hosts[flow->dsthost];
1785 u16 host_load = 1;
1786
1787 if (!flow->set) {
1788 list_add_tail(&flow->flowchain, &b->new_flows);
1789 } else {
1790 b->decaying_flow_count--;
1791 list_move_tail(&flow->flowchain, &b->new_flows);
1792 }
1793 flow->set = CAKE_SET_SPARSE;
1794 b->sparse_flow_count++;
1795
1796 if (cake_dsrc(q->flow_mode))
1797 host_load = max(host_load, srchost->srchost_refcnt);
1798
1799 if (cake_ddst(q->flow_mode))
1800 host_load = max(host_load, dsthost->dsthost_refcnt);
1801
1802 flow->deficit = (b->flow_quantum *
1803 quantum_div[host_load]) >> 16;
1804 } else if (flow->set == CAKE_SET_SPARSE_WAIT) {
1805 /* this flow was empty, accounted as a sparse flow, but actually
1806 * in the bulk rotation.
1807 */
1808 flow->set = CAKE_SET_BULK;
1809 b->sparse_flow_count--;
1810 b->bulk_flow_count++;
1811 }
1812
1813 if (q->buffer_used > q->buffer_max_used)
1814 q->buffer_max_used = q->buffer_used;
1815
1816 if (q->buffer_used > q->buffer_limit) {
1817 u32 dropped = 0;
1818
1819 while (q->buffer_used > q->buffer_limit) {
1820 dropped++;
1821 cake_drop(sch, to_free);
1822 }
1823 b->drop_overlimit += dropped;
1824 }
1825 return NET_XMIT_SUCCESS;
1826 }
1827
1828 static struct sk_buff *cake_dequeue_one(struct Qdisc *sch)
1829 {
1830 struct cake_sched_data *q = qdisc_priv(sch);
1831 struct cake_tin_data *b = &q->tins[q->cur_tin];
1832 struct cake_flow *flow = &b->flows[q->cur_flow];
1833 struct sk_buff *skb = NULL;
1834 u32 len;
1835
1836 if (flow->head) {
1837 skb = dequeue_head(flow);
1838 len = qdisc_pkt_len(skb);
1839 b->backlogs[q->cur_flow] -= len;
1840 b->tin_backlog -= len;
1841 sch->qstats.backlog -= len;
1842 q->buffer_used -= skb->truesize;
1843 sch->q.qlen--;
1844
1845 if (q->overflow_timeout)
1846 cake_heapify(q, b->overflow_idx[q->cur_flow]);
1847 }
1848 return skb;
1849 }
1850
1851 /* Discard leftover packets from a tin no longer in use. */
1852 static void cake_clear_tin(struct Qdisc *sch, u16 tin)
1853 {
1854 struct cake_sched_data *q = qdisc_priv(sch);
1855 struct sk_buff *skb;
1856
1857 q->cur_tin = tin;
1858 for (q->cur_flow = 0; q->cur_flow < CAKE_QUEUES; q->cur_flow++)
1859 while (!!(skb = cake_dequeue_one(sch)))
1860 kfree_skb(skb);
1861 }
1862
1863 static struct sk_buff *cake_dequeue(struct Qdisc *sch)
1864 {
1865 struct cake_sched_data *q = qdisc_priv(sch);
1866 struct cake_tin_data *b = &q->tins[q->cur_tin];
1867 struct cake_host *srchost, *dsthost;
1868 ktime_t now = ktime_get();
1869 struct cake_flow *flow;
1870 struct list_head *head;
1871 bool first_flow = true;
1872 struct sk_buff *skb;
1873 u16 host_load;
1874 u64 delay;
1875 u32 len;
1876
1877 begin:
1878 if (!sch->q.qlen)
1879 return NULL;
1880
1881 /* global hard shaper */
1882 if (ktime_after(q->time_next_packet, now) &&
1883 ktime_after(q->failsafe_next_packet, now)) {
1884 u64 next = min(ktime_to_ns(q->time_next_packet),
1885 ktime_to_ns(q->failsafe_next_packet));
1886
1887 sch->qstats.overlimits++;
1888 qdisc_watchdog_schedule_ns(&q->watchdog, next);
1889 return NULL;
1890 }
1891
1892 /* Choose a class to work on. */
1893 if (!q->rate_ns) {
1894 /* In unlimited mode, can't rely on shaper timings, just balance
1895 * with DRR
1896 */
1897 bool wrapped = false, empty = true;
1898
1899 while (b->tin_deficit < 0 ||
1900 !(b->sparse_flow_count + b->bulk_flow_count)) {
1901 if (b->tin_deficit <= 0)
1902 b->tin_deficit += b->tin_quantum_band;
1903 if (b->sparse_flow_count + b->bulk_flow_count)
1904 empty = false;
1905
1906 q->cur_tin++;
1907 b++;
1908 if (q->cur_tin >= q->tin_cnt) {
1909 q->cur_tin = 0;
1910 b = q->tins;
1911
1912 if (wrapped) {
1913 /* It's possible for q->qlen to be
1914 * nonzero when we actually have no
1915 * packets anywhere.
1916 */
1917 if (empty)
1918 return NULL;
1919 } else {
1920 wrapped = true;
1921 }
1922 }
1923 }
1924 } else {
1925 /* In shaped mode, choose:
1926 * - Highest-priority tin with queue and meeting schedule, or
1927 * - The earliest-scheduled tin with queue.
1928 */
1929 ktime_t best_time = KTIME_MAX;
1930 int tin, best_tin = 0;
1931
1932 for (tin = 0; tin < q->tin_cnt; tin++) {
1933 b = q->tins + tin;
1934 if ((b->sparse_flow_count + b->bulk_flow_count) > 0) {
1935 ktime_t time_to_pkt = \
1936 ktime_sub(b->time_next_packet, now);
1937
1938 if (ktime_to_ns(time_to_pkt) <= 0 ||
1939 ktime_compare(time_to_pkt,
1940 best_time) <= 0) {
1941 best_time = time_to_pkt;
1942 best_tin = tin;
1943 }
1944 }
1945 }
1946
1947 q->cur_tin = best_tin;
1948 b = q->tins + best_tin;
1949
1950 /* No point in going further if no packets to deliver. */
1951 if (unlikely(!(b->sparse_flow_count + b->bulk_flow_count)))
1952 return NULL;
1953 }
1954
1955 retry:
1956 /* service this class */
1957 head = &b->decaying_flows;
1958 if (!first_flow || list_empty(head)) {
1959 head = &b->new_flows;
1960 if (list_empty(head)) {
1961 head = &b->old_flows;
1962 if (unlikely(list_empty(head))) {
1963 head = &b->decaying_flows;
1964 if (unlikely(list_empty(head)))
1965 goto begin;
1966 }
1967 }
1968 }
1969 flow = list_first_entry(head, struct cake_flow, flowchain);
1970 q->cur_flow = flow - b->flows;
1971 first_flow = false;
1972
1973 /* triple isolation (modified DRR++) */
1974 srchost = &b->hosts[flow->srchost];
1975 dsthost = &b->hosts[flow->dsthost];
1976 host_load = 1;
1977
1978 if (cake_dsrc(q->flow_mode))
1979 host_load = max(host_load, srchost->srchost_refcnt);
1980
1981 if (cake_ddst(q->flow_mode))
1982 host_load = max(host_load, dsthost->dsthost_refcnt);
1983
1984 WARN_ON(host_load > CAKE_QUEUES);
1985
1986 /* flow isolation (DRR++) */
1987 if (flow->deficit <= 0) {
1988 /* The shifted prandom_u32() is a way to apply dithering to
1989 * avoid accumulating roundoff errors
1990 */
1991 flow->deficit += (b->flow_quantum * quantum_div[host_load] +
1992 (prandom_u32() >> 16)) >> 16;
1993 list_move_tail(&flow->flowchain, &b->old_flows);
1994
1995 /* Keep all flows with deficits out of the sparse and decaying
1996 * rotations. No non-empty flow can go into the decaying
1997 * rotation, so they can't get deficits
1998 */
1999 if (flow->set == CAKE_SET_SPARSE) {
2000 if (flow->head) {
2001 b->sparse_flow_count--;
2002 b->bulk_flow_count++;
2003 flow->set = CAKE_SET_BULK;
2004 } else {
2005 /* we've moved it to the bulk rotation for
2006 * correct deficit accounting but we still want
2007 * to count it as a sparse flow, not a bulk one.
2008 */
2009 flow->set = CAKE_SET_SPARSE_WAIT;
2010 }
2011 }
2012 goto retry;
2013 }
2014
2015 /* Retrieve a packet via the AQM */
2016 while (1) {
2017 skb = cake_dequeue_one(sch);
2018 if (!skb) {
2019 /* this queue was actually empty */
2020 if (cobalt_queue_empty(&flow->cvars, &b->cparams, now))
2021 b->unresponsive_flow_count--;
2022
2023 if (flow->cvars.p_drop || flow->cvars.count ||
2024 ktime_before(now, flow->cvars.drop_next)) {
2025 /* keep in the flowchain until the state has
2026 * decayed to rest
2027 */
2028 list_move_tail(&flow->flowchain,
2029 &b->decaying_flows);
2030 if (flow->set == CAKE_SET_BULK) {
2031 b->bulk_flow_count--;
2032 b->decaying_flow_count++;
2033 } else if (flow->set == CAKE_SET_SPARSE ||
2034 flow->set == CAKE_SET_SPARSE_WAIT) {
2035 b->sparse_flow_count--;
2036 b->decaying_flow_count++;
2037 }
2038 flow->set = CAKE_SET_DECAYING;
2039 } else {
2040 /* remove empty queue from the flowchain */
2041 list_del_init(&flow->flowchain);
2042 if (flow->set == CAKE_SET_SPARSE ||
2043 flow->set == CAKE_SET_SPARSE_WAIT)
2044 b->sparse_flow_count--;
2045 else if (flow->set == CAKE_SET_BULK)
2046 b->bulk_flow_count--;
2047 else
2048 b->decaying_flow_count--;
2049
2050 flow->set = CAKE_SET_NONE;
2051 srchost->srchost_refcnt--;
2052 dsthost->dsthost_refcnt--;
2053 }
2054 goto begin;
2055 }
2056
2057 /* Last packet in queue may be marked, shouldn't be dropped */
2058 if (!cobalt_should_drop(&flow->cvars, &b->cparams, now, skb,
2059 (b->bulk_flow_count *
2060 !!(q->rate_flags &
2061 CAKE_FLAG_INGRESS))) ||
2062 !flow->head)
2063 break;
2064
2065 /* drop this packet, get another one */
2066 if (q->rate_flags & CAKE_FLAG_INGRESS) {
2067 len = cake_advance_shaper(q, b, skb,
2068 now, true);
2069 flow->deficit -= len;
2070 b->tin_deficit -= len;
2071 }
2072 flow->dropped++;
2073 b->tin_dropped++;
2074 qdisc_tree_reduce_backlog(sch, 1, qdisc_pkt_len(skb));
2075 qdisc_qstats_drop(sch);
2076 kfree_skb(skb);
2077 if (q->rate_flags & CAKE_FLAG_INGRESS)
2078 goto retry;
2079 }
2080
2081 b->tin_ecn_mark += !!flow->cvars.ecn_marked;
2082 qdisc_bstats_update(sch, skb);
2083
2084 /* collect delay stats */
2085 delay = ktime_to_ns(ktime_sub(now, cobalt_get_enqueue_time(skb)));
2086 b->avge_delay = cake_ewma(b->avge_delay, delay, 8);
2087 b->peak_delay = cake_ewma(b->peak_delay, delay,
2088 delay > b->peak_delay ? 2 : 8);
2089 b->base_delay = cake_ewma(b->base_delay, delay,
2090 delay < b->base_delay ? 2 : 8);
2091
2092 len = cake_advance_shaper(q, b, skb, now, false);
2093 flow->deficit -= len;
2094 b->tin_deficit -= len;
2095
2096 if (ktime_after(q->time_next_packet, now) && sch->q.qlen) {
2097 u64 next = min(ktime_to_ns(q->time_next_packet),
2098 ktime_to_ns(q->failsafe_next_packet));
2099
2100 qdisc_watchdog_schedule_ns(&q->watchdog, next);
2101 } else if (!sch->q.qlen) {
2102 int i;
2103
2104 for (i = 0; i < q->tin_cnt; i++) {
2105 if (q->tins[i].decaying_flow_count) {
2106 ktime_t next = \
2107 ktime_add_ns(now,
2108 q->tins[i].cparams.target);
2109
2110 qdisc_watchdog_schedule_ns(&q->watchdog,
2111 ktime_to_ns(next));
2112 break;
2113 }
2114 }
2115 }
2116
2117 if (q->overflow_timeout)
2118 q->overflow_timeout--;
2119
2120 return skb;
2121 }
2122
2123 static void cake_reset(struct Qdisc *sch)
2124 {
2125 u32 c;
2126
2127 for (c = 0; c < CAKE_MAX_TINS; c++)
2128 cake_clear_tin(sch, c);
2129 }
2130
2131 static const struct nla_policy cake_policy[TCA_CAKE_MAX + 1] = {
2132 [TCA_CAKE_BASE_RATE64] = { .type = NLA_U64 },
2133 [TCA_CAKE_DIFFSERV_MODE] = { .type = NLA_U32 },
2134 [TCA_CAKE_ATM] = { .type = NLA_U32 },
2135 [TCA_CAKE_FLOW_MODE] = { .type = NLA_U32 },
2136 [TCA_CAKE_OVERHEAD] = { .type = NLA_S32 },
2137 [TCA_CAKE_RTT] = { .type = NLA_U32 },
2138 [TCA_CAKE_TARGET] = { .type = NLA_U32 },
2139 [TCA_CAKE_AUTORATE] = { .type = NLA_U32 },
2140 [TCA_CAKE_MEMORY] = { .type = NLA_U32 },
2141 [TCA_CAKE_NAT] = { .type = NLA_U32 },
2142 [TCA_CAKE_RAW] = { .type = NLA_U32 },
2143 [TCA_CAKE_WASH] = { .type = NLA_U32 },
2144 [TCA_CAKE_MPU] = { .type = NLA_U32 },
2145 [TCA_CAKE_INGRESS] = { .type = NLA_U32 },
2146 [TCA_CAKE_ACK_FILTER] = { .type = NLA_U32 },
2147 };
2148
2149 static void cake_set_rate(struct cake_tin_data *b, u64 rate, u32 mtu,
2150 u64 target_ns, u64 rtt_est_ns)
2151 {
2152 /* convert byte-rate into time-per-byte
2153 * so it will always unwedge in reasonable time.
2154 */
2155 static const u64 MIN_RATE = 64;
2156 u32 byte_target = mtu;
2157 u64 byte_target_ns;
2158 u8 rate_shft = 0;
2159 u64 rate_ns = 0;
2160
2161 b->flow_quantum = 1514;
2162 if (rate) {
2163 b->flow_quantum = max(min(rate >> 12, 1514ULL), 300ULL);
2164 rate_shft = 34;
2165 rate_ns = ((u64)NSEC_PER_SEC) << rate_shft;
2166 rate_ns = div64_u64(rate_ns, max(MIN_RATE, rate));
2167 while (!!(rate_ns >> 34)) {
2168 rate_ns >>= 1;
2169 rate_shft--;
2170 }
2171 } /* else unlimited, ie. zero delay */
2172
2173 b->tin_rate_bps = rate;
2174 b->tin_rate_ns = rate_ns;
2175 b->tin_rate_shft = rate_shft;
2176
2177 byte_target_ns = (byte_target * rate_ns) >> rate_shft;
2178
2179 b->cparams.target = max((byte_target_ns * 3) / 2, target_ns);
2180 b->cparams.interval = max(rtt_est_ns +
2181 b->cparams.target - target_ns,
2182 b->cparams.target * 2);
2183 b->cparams.mtu_time = byte_target_ns;
2184 b->cparams.p_inc = 1 << 24; /* 1/256 */
2185 b->cparams.p_dec = 1 << 20; /* 1/4096 */
2186 }
2187
2188 static int cake_config_besteffort(struct Qdisc *sch)
2189 {
2190 struct cake_sched_data *q = qdisc_priv(sch);
2191 struct cake_tin_data *b = &q->tins[0];
2192 u32 mtu = psched_mtu(qdisc_dev(sch));
2193 u64 rate = q->rate_bps;
2194
2195 q->tin_cnt = 1;
2196
2197 q->tin_index = besteffort;
2198 q->tin_order = normal_order;
2199
2200 cake_set_rate(b, rate, mtu,
2201 us_to_ns(q->target), us_to_ns(q->interval));
2202 b->tin_quantum_band = 65535;
2203 b->tin_quantum_prio = 65535;
2204
2205 return 0;
2206 }
2207
2208 static int cake_config_precedence(struct Qdisc *sch)
2209 {
2210 /* convert high-level (user visible) parameters into internal format */
2211 struct cake_sched_data *q = qdisc_priv(sch);
2212 u32 mtu = psched_mtu(qdisc_dev(sch));
2213 u64 rate = q->rate_bps;
2214 u32 quantum1 = 256;
2215 u32 quantum2 = 256;
2216 u32 i;
2217
2218 q->tin_cnt = 8;
2219 q->tin_index = precedence;
2220 q->tin_order = normal_order;
2221
2222 for (i = 0; i < q->tin_cnt; i++) {
2223 struct cake_tin_data *b = &q->tins[i];
2224
2225 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2226 us_to_ns(q->interval));
2227
2228 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2229 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2230
2231 /* calculate next class's parameters */
2232 rate *= 7;
2233 rate >>= 3;
2234
2235 quantum1 *= 3;
2236 quantum1 >>= 1;
2237
2238 quantum2 *= 7;
2239 quantum2 >>= 3;
2240 }
2241
2242 return 0;
2243 }
2244
2245 /* List of known Diffserv codepoints:
2246 *
2247 * Least Effort (CS1)
2248 * Best Effort (CS0)
2249 * Max Reliability & LLT "Lo" (TOS1)
2250 * Max Throughput (TOS2)
2251 * Min Delay (TOS4)
2252 * LLT "La" (TOS5)
2253 * Assured Forwarding 1 (AF1x) - x3
2254 * Assured Forwarding 2 (AF2x) - x3
2255 * Assured Forwarding 3 (AF3x) - x3
2256 * Assured Forwarding 4 (AF4x) - x3
2257 * Precedence Class 2 (CS2)
2258 * Precedence Class 3 (CS3)
2259 * Precedence Class 4 (CS4)
2260 * Precedence Class 5 (CS5)
2261 * Precedence Class 6 (CS6)
2262 * Precedence Class 7 (CS7)
2263 * Voice Admit (VA)
2264 * Expedited Forwarding (EF)
2265
2266 * Total 25 codepoints.
2267 */
2268
2269 /* List of traffic classes in RFC 4594:
2270 * (roughly descending order of contended priority)
2271 * (roughly ascending order of uncontended throughput)
2272 *
2273 * Network Control (CS6,CS7) - routing traffic
2274 * Telephony (EF,VA) - aka. VoIP streams
2275 * Signalling (CS5) - VoIP setup
2276 * Multimedia Conferencing (AF4x) - aka. video calls
2277 * Realtime Interactive (CS4) - eg. games
2278 * Multimedia Streaming (AF3x) - eg. YouTube, NetFlix, Twitch
2279 * Broadcast Video (CS3)
2280 * Low Latency Data (AF2x,TOS4) - eg. database
2281 * Ops, Admin, Management (CS2,TOS1) - eg. ssh
2282 * Standard Service (CS0 & unrecognised codepoints)
2283 * High Throughput Data (AF1x,TOS2) - eg. web traffic
2284 * Low Priority Data (CS1) - eg. BitTorrent
2285
2286 * Total 12 traffic classes.
2287 */
2288
2289 static int cake_config_diffserv8(struct Qdisc *sch)
2290 {
2291 /* Pruned list of traffic classes for typical applications:
2292 *
2293 * Network Control (CS6, CS7)
2294 * Minimum Latency (EF, VA, CS5, CS4)
2295 * Interactive Shell (CS2, TOS1)
2296 * Low Latency Transactions (AF2x, TOS4)
2297 * Video Streaming (AF4x, AF3x, CS3)
2298 * Bog Standard (CS0 etc.)
2299 * High Throughput (AF1x, TOS2)
2300 * Background Traffic (CS1)
2301 *
2302 * Total 8 traffic classes.
2303 */
2304
2305 struct cake_sched_data *q = qdisc_priv(sch);
2306 u32 mtu = psched_mtu(qdisc_dev(sch));
2307 u64 rate = q->rate_bps;
2308 u32 quantum1 = 256;
2309 u32 quantum2 = 256;
2310 u32 i;
2311
2312 q->tin_cnt = 8;
2313
2314 /* codepoint to class mapping */
2315 q->tin_index = diffserv8;
2316 q->tin_order = normal_order;
2317
2318 /* class characteristics */
2319 for (i = 0; i < q->tin_cnt; i++) {
2320 struct cake_tin_data *b = &q->tins[i];
2321
2322 cake_set_rate(b, rate, mtu, us_to_ns(q->target),
2323 us_to_ns(q->interval));
2324
2325 b->tin_quantum_prio = max_t(u16, 1U, quantum1);
2326 b->tin_quantum_band = max_t(u16, 1U, quantum2);
2327
2328 /* calculate next class's parameters */
2329 rate *= 7;
2330 rate >>= 3;
2331
2332 quantum1 *= 3;
2333 quantum1 >>= 1;
2334
2335 quantum2 *= 7;
2336 quantum2 >>= 3;
2337 }
2338
2339 return 0;
2340 }
2341
2342 static int cake_config_diffserv4(struct Qdisc *sch)
2343 {
2344 /* Further pruned list of traffic classes for four-class system:
2345 *
2346 * Latency Sensitive (CS7, CS6, EF, VA, CS5, CS4)
2347 * Streaming Media (AF4x, AF3x, CS3, AF2x, TOS4, CS2, TOS1)
2348 * Best Effort (CS0, AF1x, TOS2, and those not specified)
2349 * Background Traffic (CS1)
2350 *
2351 * Total 4 traffic classes.
2352 */
2353
2354 struct cake_sched_data *q = qdisc_priv(sch);
2355 u32 mtu = psched_mtu(qdisc_dev(sch));
2356 u64 rate = q->rate_bps;
2357 u32 quantum = 1024;
2358
2359 q->tin_cnt = 4;
2360
2361 /* codepoint to class mapping */
2362 q->tin_index = diffserv4;
2363 q->tin_order = bulk_order;
2364
2365 /* class characteristics */
2366 cake_set_rate(&q->tins[0], rate, mtu,
2367 us_to_ns(q->target), us_to_ns(q->interval));
2368 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2369 us_to_ns(q->target), us_to_ns(q->interval));
2370 cake_set_rate(&q->tins[2], rate >> 1, mtu,
2371 us_to_ns(q->target), us_to_ns(q->interval));
2372 cake_set_rate(&q->tins[3], rate >> 2, mtu,
2373 us_to_ns(q->target), us_to_ns(q->interval));
2374
2375 /* priority weights */
2376 q->tins[0].tin_quantum_prio = quantum;
2377 q->tins[1].tin_quantum_prio = quantum >> 4;
2378 q->tins[2].tin_quantum_prio = quantum << 2;
2379 q->tins[3].tin_quantum_prio = quantum << 4;
2380
2381 /* bandwidth-sharing weights */
2382 q->tins[0].tin_quantum_band = quantum;
2383 q->tins[1].tin_quantum_band = quantum >> 4;
2384 q->tins[2].tin_quantum_band = quantum >> 1;
2385 q->tins[3].tin_quantum_band = quantum >> 2;
2386
2387 return 0;
2388 }
2389
2390 static int cake_config_diffserv3(struct Qdisc *sch)
2391 {
2392 /* Simplified Diffserv structure with 3 tins.
2393 * Low Priority (CS1)
2394 * Best Effort
2395 * Latency Sensitive (TOS4, VA, EF, CS6, CS7)
2396 */
2397 struct cake_sched_data *q = qdisc_priv(sch);
2398 u32 mtu = psched_mtu(qdisc_dev(sch));
2399 u64 rate = q->rate_bps;
2400 u32 quantum = 1024;
2401
2402 q->tin_cnt = 3;
2403
2404 /* codepoint to class mapping */
2405 q->tin_index = diffserv3;
2406 q->tin_order = bulk_order;
2407
2408 /* class characteristics */
2409 cake_set_rate(&q->tins[0], rate, mtu,
2410 us_to_ns(q->target), us_to_ns(q->interval));
2411 cake_set_rate(&q->tins[1], rate >> 4, mtu,
2412 us_to_ns(q->target), us_to_ns(q->interval));
2413 cake_set_rate(&q->tins[2], rate >> 2, mtu,
2414 us_to_ns(q->target), us_to_ns(q->interval));
2415
2416 /* priority weights */
2417 q->tins[0].tin_quantum_prio = quantum;
2418 q->tins[1].tin_quantum_prio = quantum >> 4;
2419 q->tins[2].tin_quantum_prio = quantum << 4;
2420
2421 /* bandwidth-sharing weights */
2422 q->tins[0].tin_quantum_band = quantum;
2423 q->tins[1].tin_quantum_band = quantum >> 4;
2424 q->tins[2].tin_quantum_band = quantum >> 2;
2425
2426 return 0;
2427 }
2428
2429 static void cake_reconfigure(struct Qdisc *sch)
2430 {
2431 struct cake_sched_data *q = qdisc_priv(sch);
2432 int c, ft;
2433
2434 switch (q->tin_mode) {
2435 case CAKE_DIFFSERV_BESTEFFORT:
2436 ft = cake_config_besteffort(sch);
2437 break;
2438
2439 case CAKE_DIFFSERV_PRECEDENCE:
2440 ft = cake_config_precedence(sch);
2441 break;
2442
2443 case CAKE_DIFFSERV_DIFFSERV8:
2444 ft = cake_config_diffserv8(sch);
2445 break;
2446
2447 case CAKE_DIFFSERV_DIFFSERV4:
2448 ft = cake_config_diffserv4(sch);
2449 break;
2450
2451 case CAKE_DIFFSERV_DIFFSERV3:
2452 default:
2453 ft = cake_config_diffserv3(sch);
2454 break;
2455 }
2456
2457 for (c = q->tin_cnt; c < CAKE_MAX_TINS; c++) {
2458 cake_clear_tin(sch, c);
2459 q->tins[c].cparams.mtu_time = q->tins[ft].cparams.mtu_time;
2460 }
2461
2462 q->rate_ns = q->tins[ft].tin_rate_ns;
2463 q->rate_shft = q->tins[ft].tin_rate_shft;
2464
2465 if (q->buffer_config_limit) {
2466 q->buffer_limit = q->buffer_config_limit;
2467 } else if (q->rate_bps) {
2468 u64 t = q->rate_bps * q->interval;
2469
2470 do_div(t, USEC_PER_SEC / 4);
2471 q->buffer_limit = max_t(u32, t, 4U << 20);
2472 } else {
2473 q->buffer_limit = ~0;
2474 }
2475
2476 sch->flags &= ~TCQ_F_CAN_BYPASS;
2477
2478 q->buffer_limit = min(q->buffer_limit,
2479 max(sch->limit * psched_mtu(qdisc_dev(sch)),
2480 q->buffer_config_limit));
2481 }
2482
2483 static int cake_change(struct Qdisc *sch, struct nlattr *opt,
2484 struct netlink_ext_ack *extack)
2485 {
2486 struct cake_sched_data *q = qdisc_priv(sch);
2487 struct nlattr *tb[TCA_CAKE_MAX + 1];
2488 int err;
2489
2490 if (!opt)
2491 return -EINVAL;
2492
2493 err = nla_parse_nested(tb, TCA_CAKE_MAX, opt, cake_policy, extack);
2494 if (err < 0)
2495 return err;
2496
2497 if (tb[TCA_CAKE_NAT]) {
2498 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
2499 q->flow_mode &= ~CAKE_FLOW_NAT_FLAG;
2500 q->flow_mode |= CAKE_FLOW_NAT_FLAG *
2501 !!nla_get_u32(tb[TCA_CAKE_NAT]);
2502 #else
2503 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_CAKE_NAT],
2504 "No conntrack support in kernel");
2505 return -EOPNOTSUPP;
2506 #endif
2507 }
2508
2509 if (tb[TCA_CAKE_BASE_RATE64])
2510 q->rate_bps = nla_get_u64(tb[TCA_CAKE_BASE_RATE64]);
2511
2512 if (tb[TCA_CAKE_DIFFSERV_MODE])
2513 q->tin_mode = nla_get_u32(tb[TCA_CAKE_DIFFSERV_MODE]);
2514
2515 if (tb[TCA_CAKE_WASH]) {
2516 if (!!nla_get_u32(tb[TCA_CAKE_WASH]))
2517 q->rate_flags |= CAKE_FLAG_WASH;
2518 else
2519 q->rate_flags &= ~CAKE_FLAG_WASH;
2520 }
2521
2522 if (tb[TCA_CAKE_FLOW_MODE])
2523 q->flow_mode = ((q->flow_mode & CAKE_FLOW_NAT_FLAG) |
2524 (nla_get_u32(tb[TCA_CAKE_FLOW_MODE]) &
2525 CAKE_FLOW_MASK));
2526
2527 if (tb[TCA_CAKE_ATM])
2528 q->atm_mode = nla_get_u32(tb[TCA_CAKE_ATM]);
2529
2530 if (tb[TCA_CAKE_OVERHEAD]) {
2531 q->rate_overhead = nla_get_s32(tb[TCA_CAKE_OVERHEAD]);
2532 q->rate_flags |= CAKE_FLAG_OVERHEAD;
2533
2534 q->max_netlen = 0;
2535 q->max_adjlen = 0;
2536 q->min_netlen = ~0;
2537 q->min_adjlen = ~0;
2538 }
2539
2540 if (tb[TCA_CAKE_RAW]) {
2541 q->rate_flags &= ~CAKE_FLAG_OVERHEAD;
2542
2543 q->max_netlen = 0;
2544 q->max_adjlen = 0;
2545 q->min_netlen = ~0;
2546 q->min_adjlen = ~0;
2547 }
2548
2549 if (tb[TCA_CAKE_MPU])
2550 q->rate_mpu = nla_get_u32(tb[TCA_CAKE_MPU]);
2551
2552 if (tb[TCA_CAKE_RTT]) {
2553 q->interval = nla_get_u32(tb[TCA_CAKE_RTT]);
2554
2555 if (!q->interval)
2556 q->interval = 1;
2557 }
2558
2559 if (tb[TCA_CAKE_TARGET]) {
2560 q->target = nla_get_u32(tb[TCA_CAKE_TARGET]);
2561
2562 if (!q->target)
2563 q->target = 1;
2564 }
2565
2566 if (tb[TCA_CAKE_AUTORATE]) {
2567 if (!!nla_get_u32(tb[TCA_CAKE_AUTORATE]))
2568 q->rate_flags |= CAKE_FLAG_AUTORATE_INGRESS;
2569 else
2570 q->rate_flags &= ~CAKE_FLAG_AUTORATE_INGRESS;
2571 }
2572
2573 if (tb[TCA_CAKE_INGRESS]) {
2574 if (!!nla_get_u32(tb[TCA_CAKE_INGRESS]))
2575 q->rate_flags |= CAKE_FLAG_INGRESS;
2576 else
2577 q->rate_flags &= ~CAKE_FLAG_INGRESS;
2578 }
2579
2580 if (tb[TCA_CAKE_ACK_FILTER])
2581 q->ack_filter = nla_get_u32(tb[TCA_CAKE_ACK_FILTER]);
2582
2583 if (tb[TCA_CAKE_MEMORY])
2584 q->buffer_config_limit = nla_get_u32(tb[TCA_CAKE_MEMORY]);
2585
2586 if (tb[TCA_CAKE_SPLIT_GSO]) {
2587 if (!!nla_get_u32(tb[TCA_CAKE_SPLIT_GSO]))
2588 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2589 else
2590 q->rate_flags &= ~CAKE_FLAG_SPLIT_GSO;
2591 }
2592
2593 if (q->tins) {
2594 sch_tree_lock(sch);
2595 cake_reconfigure(sch);
2596 sch_tree_unlock(sch);
2597 }
2598
2599 return 0;
2600 }
2601
2602 static void cake_destroy(struct Qdisc *sch)
2603 {
2604 struct cake_sched_data *q = qdisc_priv(sch);
2605
2606 qdisc_watchdog_cancel(&q->watchdog);
2607 tcf_block_put(q->block);
2608 kvfree(q->tins);
2609 }
2610
2611 static int cake_init(struct Qdisc *sch, struct nlattr *opt,
2612 struct netlink_ext_ack *extack)
2613 {
2614 struct cake_sched_data *q = qdisc_priv(sch);
2615 int i, j, err;
2616
2617 sch->limit = 10240;
2618 q->tin_mode = CAKE_DIFFSERV_DIFFSERV3;
2619 q->flow_mode = CAKE_FLOW_TRIPLE;
2620
2621 q->rate_bps = 0; /* unlimited by default */
2622
2623 q->interval = 100000; /* 100ms default */
2624 q->target = 5000; /* 5ms: codel RFC argues
2625 * for 5 to 10% of interval
2626 */
2627 q->rate_flags |= CAKE_FLAG_SPLIT_GSO;
2628 q->cur_tin = 0;
2629 q->cur_flow = 0;
2630
2631 qdisc_watchdog_init(&q->watchdog, sch);
2632
2633 if (opt) {
2634 int err = cake_change(sch, opt, extack);
2635
2636 if (err)
2637 return err;
2638 }
2639
2640 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
2641 if (err)
2642 return err;
2643
2644 quantum_div[0] = ~0;
2645 for (i = 1; i <= CAKE_QUEUES; i++)
2646 quantum_div[i] = 65535 / i;
2647
2648 q->tins = kvcalloc(CAKE_MAX_TINS, sizeof(struct cake_tin_data),
2649 GFP_KERNEL);
2650 if (!q->tins)
2651 goto nomem;
2652
2653 for (i = 0; i < CAKE_MAX_TINS; i++) {
2654 struct cake_tin_data *b = q->tins + i;
2655
2656 INIT_LIST_HEAD(&b->new_flows);
2657 INIT_LIST_HEAD(&b->old_flows);
2658 INIT_LIST_HEAD(&b->decaying_flows);
2659 b->sparse_flow_count = 0;
2660 b->bulk_flow_count = 0;
2661 b->decaying_flow_count = 0;
2662
2663 for (j = 0; j < CAKE_QUEUES; j++) {
2664 struct cake_flow *flow = b->flows + j;
2665 u32 k = j * CAKE_MAX_TINS + i;
2666
2667 INIT_LIST_HEAD(&flow->flowchain);
2668 cobalt_vars_init(&flow->cvars);
2669
2670 q->overflow_heap[k].t = i;
2671 q->overflow_heap[k].b = j;
2672 b->overflow_idx[j] = k;
2673 }
2674 }
2675
2676 cake_reconfigure(sch);
2677 q->avg_peak_bandwidth = q->rate_bps;
2678 q->min_netlen = ~0;
2679 q->min_adjlen = ~0;
2680 return 0;
2681
2682 nomem:
2683 cake_destroy(sch);
2684 return -ENOMEM;
2685 }
2686
2687 static int cake_dump(struct Qdisc *sch, struct sk_buff *skb)
2688 {
2689 struct cake_sched_data *q = qdisc_priv(sch);
2690 struct nlattr *opts;
2691
2692 opts = nla_nest_start(skb, TCA_OPTIONS);
2693 if (!opts)
2694 goto nla_put_failure;
2695
2696 if (nla_put_u64_64bit(skb, TCA_CAKE_BASE_RATE64, q->rate_bps,
2697 TCA_CAKE_PAD))
2698 goto nla_put_failure;
2699
2700 if (nla_put_u32(skb, TCA_CAKE_FLOW_MODE,
2701 q->flow_mode & CAKE_FLOW_MASK))
2702 goto nla_put_failure;
2703
2704 if (nla_put_u32(skb, TCA_CAKE_RTT, q->interval))
2705 goto nla_put_failure;
2706
2707 if (nla_put_u32(skb, TCA_CAKE_TARGET, q->target))
2708 goto nla_put_failure;
2709
2710 if (nla_put_u32(skb, TCA_CAKE_MEMORY, q->buffer_config_limit))
2711 goto nla_put_failure;
2712
2713 if (nla_put_u32(skb, TCA_CAKE_AUTORATE,
2714 !!(q->rate_flags & CAKE_FLAG_AUTORATE_INGRESS)))
2715 goto nla_put_failure;
2716
2717 if (nla_put_u32(skb, TCA_CAKE_INGRESS,
2718 !!(q->rate_flags & CAKE_FLAG_INGRESS)))
2719 goto nla_put_failure;
2720
2721 if (nla_put_u32(skb, TCA_CAKE_ACK_FILTER, q->ack_filter))
2722 goto nla_put_failure;
2723
2724 if (nla_put_u32(skb, TCA_CAKE_NAT,
2725 !!(q->flow_mode & CAKE_FLOW_NAT_FLAG)))
2726 goto nla_put_failure;
2727
2728 if (nla_put_u32(skb, TCA_CAKE_DIFFSERV_MODE, q->tin_mode))
2729 goto nla_put_failure;
2730
2731 if (nla_put_u32(skb, TCA_CAKE_WASH,
2732 !!(q->rate_flags & CAKE_FLAG_WASH)))
2733 goto nla_put_failure;
2734
2735 if (nla_put_u32(skb, TCA_CAKE_OVERHEAD, q->rate_overhead))
2736 goto nla_put_failure;
2737
2738 if (!(q->rate_flags & CAKE_FLAG_OVERHEAD))
2739 if (nla_put_u32(skb, TCA_CAKE_RAW, 0))
2740 goto nla_put_failure;
2741
2742 if (nla_put_u32(skb, TCA_CAKE_ATM, q->atm_mode))
2743 goto nla_put_failure;
2744
2745 if (nla_put_u32(skb, TCA_CAKE_MPU, q->rate_mpu))
2746 goto nla_put_failure;
2747
2748 if (nla_put_u32(skb, TCA_CAKE_SPLIT_GSO,
2749 !!(q->rate_flags & CAKE_FLAG_SPLIT_GSO)))
2750 goto nla_put_failure;
2751
2752 return nla_nest_end(skb, opts);
2753
2754 nla_put_failure:
2755 return -1;
2756 }
2757
2758 static int cake_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2759 {
2760 struct nlattr *stats = nla_nest_start(d->skb, TCA_STATS_APP);
2761 struct cake_sched_data *q = qdisc_priv(sch);
2762 struct nlattr *tstats, *ts;
2763 int i;
2764
2765 if (!stats)
2766 return -1;
2767
2768 #define PUT_STAT_U32(attr, data) do { \
2769 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2770 goto nla_put_failure; \
2771 } while (0)
2772 #define PUT_STAT_U64(attr, data) do { \
2773 if (nla_put_u64_64bit(d->skb, TCA_CAKE_STATS_ ## attr, \
2774 data, TCA_CAKE_STATS_PAD)) \
2775 goto nla_put_failure; \
2776 } while (0)
2777
2778 PUT_STAT_U64(CAPACITY_ESTIMATE64, q->avg_peak_bandwidth);
2779 PUT_STAT_U32(MEMORY_LIMIT, q->buffer_limit);
2780 PUT_STAT_U32(MEMORY_USED, q->buffer_max_used);
2781 PUT_STAT_U32(AVG_NETOFF, ((q->avg_netoff + 0x8000) >> 16));
2782 PUT_STAT_U32(MAX_NETLEN, q->max_netlen);
2783 PUT_STAT_U32(MAX_ADJLEN, q->max_adjlen);
2784 PUT_STAT_U32(MIN_NETLEN, q->min_netlen);
2785 PUT_STAT_U32(MIN_ADJLEN, q->min_adjlen);
2786
2787 #undef PUT_STAT_U32
2788 #undef PUT_STAT_U64
2789
2790 tstats = nla_nest_start(d->skb, TCA_CAKE_STATS_TIN_STATS);
2791 if (!tstats)
2792 goto nla_put_failure;
2793
2794 #define PUT_TSTAT_U32(attr, data) do { \
2795 if (nla_put_u32(d->skb, TCA_CAKE_TIN_STATS_ ## attr, data)) \
2796 goto nla_put_failure; \
2797 } while (0)
2798 #define PUT_TSTAT_U64(attr, data) do { \
2799 if (nla_put_u64_64bit(d->skb, TCA_CAKE_TIN_STATS_ ## attr, \
2800 data, TCA_CAKE_TIN_STATS_PAD)) \
2801 goto nla_put_failure; \
2802 } while (0)
2803
2804 for (i = 0; i < q->tin_cnt; i++) {
2805 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2806
2807 ts = nla_nest_start(d->skb, i + 1);
2808 if (!ts)
2809 goto nla_put_failure;
2810
2811 PUT_TSTAT_U64(THRESHOLD_RATE64, b->tin_rate_bps);
2812 PUT_TSTAT_U64(SENT_BYTES64, b->bytes);
2813 PUT_TSTAT_U32(BACKLOG_BYTES, b->tin_backlog);
2814
2815 PUT_TSTAT_U32(TARGET_US,
2816 ktime_to_us(ns_to_ktime(b->cparams.target)));
2817 PUT_TSTAT_U32(INTERVAL_US,
2818 ktime_to_us(ns_to_ktime(b->cparams.interval)));
2819
2820 PUT_TSTAT_U32(SENT_PACKETS, b->packets);
2821 PUT_TSTAT_U32(DROPPED_PACKETS, b->tin_dropped);
2822 PUT_TSTAT_U32(ECN_MARKED_PACKETS, b->tin_ecn_mark);
2823 PUT_TSTAT_U32(ACKS_DROPPED_PACKETS, b->ack_drops);
2824
2825 PUT_TSTAT_U32(PEAK_DELAY_US,
2826 ktime_to_us(ns_to_ktime(b->peak_delay)));
2827 PUT_TSTAT_U32(AVG_DELAY_US,
2828 ktime_to_us(ns_to_ktime(b->avge_delay)));
2829 PUT_TSTAT_U32(BASE_DELAY_US,
2830 ktime_to_us(ns_to_ktime(b->base_delay)));
2831
2832 PUT_TSTAT_U32(WAY_INDIRECT_HITS, b->way_hits);
2833 PUT_TSTAT_U32(WAY_MISSES, b->way_misses);
2834 PUT_TSTAT_U32(WAY_COLLISIONS, b->way_collisions);
2835
2836 PUT_TSTAT_U32(SPARSE_FLOWS, b->sparse_flow_count +
2837 b->decaying_flow_count);
2838 PUT_TSTAT_U32(BULK_FLOWS, b->bulk_flow_count);
2839 PUT_TSTAT_U32(UNRESPONSIVE_FLOWS, b->unresponsive_flow_count);
2840 PUT_TSTAT_U32(MAX_SKBLEN, b->max_skblen);
2841
2842 PUT_TSTAT_U32(FLOW_QUANTUM, b->flow_quantum);
2843 nla_nest_end(d->skb, ts);
2844 }
2845
2846 #undef PUT_TSTAT_U32
2847 #undef PUT_TSTAT_U64
2848
2849 nla_nest_end(d->skb, tstats);
2850 return nla_nest_end(d->skb, stats);
2851
2852 nla_put_failure:
2853 nla_nest_cancel(d->skb, stats);
2854 return -1;
2855 }
2856
2857 static struct Qdisc *cake_leaf(struct Qdisc *sch, unsigned long arg)
2858 {
2859 return NULL;
2860 }
2861
2862 static unsigned long cake_find(struct Qdisc *sch, u32 classid)
2863 {
2864 return 0;
2865 }
2866
2867 static unsigned long cake_bind(struct Qdisc *sch, unsigned long parent,
2868 u32 classid)
2869 {
2870 return 0;
2871 }
2872
2873 static void cake_unbind(struct Qdisc *q, unsigned long cl)
2874 {
2875 }
2876
2877 static struct tcf_block *cake_tcf_block(struct Qdisc *sch, unsigned long cl,
2878 struct netlink_ext_ack *extack)
2879 {
2880 struct cake_sched_data *q = qdisc_priv(sch);
2881
2882 if (cl)
2883 return NULL;
2884 return q->block;
2885 }
2886
2887 static int cake_dump_class(struct Qdisc *sch, unsigned long cl,
2888 struct sk_buff *skb, struct tcmsg *tcm)
2889 {
2890 tcm->tcm_handle |= TC_H_MIN(cl);
2891 return 0;
2892 }
2893
2894 static int cake_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2895 struct gnet_dump *d)
2896 {
2897 struct cake_sched_data *q = qdisc_priv(sch);
2898 const struct cake_flow *flow = NULL;
2899 struct gnet_stats_queue qs = { 0 };
2900 struct nlattr *stats;
2901 u32 idx = cl - 1;
2902
2903 if (idx < CAKE_QUEUES * q->tin_cnt) {
2904 const struct cake_tin_data *b = \
2905 &q->tins[q->tin_order[idx / CAKE_QUEUES]];
2906 const struct sk_buff *skb;
2907
2908 flow = &b->flows[idx % CAKE_QUEUES];
2909
2910 if (flow->head) {
2911 sch_tree_lock(sch);
2912 skb = flow->head;
2913 while (skb) {
2914 qs.qlen++;
2915 skb = skb->next;
2916 }
2917 sch_tree_unlock(sch);
2918 }
2919 qs.backlog = b->backlogs[idx % CAKE_QUEUES];
2920 qs.drops = flow->dropped;
2921 }
2922 if (gnet_stats_copy_queue(d, NULL, &qs, qs.qlen) < 0)
2923 return -1;
2924 if (flow) {
2925 ktime_t now = ktime_get();
2926
2927 stats = nla_nest_start(d->skb, TCA_STATS_APP);
2928 if (!stats)
2929 return -1;
2930
2931 #define PUT_STAT_U32(attr, data) do { \
2932 if (nla_put_u32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2933 goto nla_put_failure; \
2934 } while (0)
2935 #define PUT_STAT_S32(attr, data) do { \
2936 if (nla_put_s32(d->skb, TCA_CAKE_STATS_ ## attr, data)) \
2937 goto nla_put_failure; \
2938 } while (0)
2939
2940 PUT_STAT_S32(DEFICIT, flow->deficit);
2941 PUT_STAT_U32(DROPPING, flow->cvars.dropping);
2942 PUT_STAT_U32(COBALT_COUNT, flow->cvars.count);
2943 PUT_STAT_U32(P_DROP, flow->cvars.p_drop);
2944 if (flow->cvars.p_drop) {
2945 PUT_STAT_S32(BLUE_TIMER_US,
2946 ktime_to_us(
2947 ktime_sub(now,
2948 flow->cvars.blue_timer)));
2949 }
2950 if (flow->cvars.dropping) {
2951 PUT_STAT_S32(DROP_NEXT_US,
2952 ktime_to_us(
2953 ktime_sub(now,
2954 flow->cvars.drop_next)));
2955 }
2956
2957 if (nla_nest_end(d->skb, stats) < 0)
2958 return -1;
2959 }
2960
2961 return 0;
2962
2963 nla_put_failure:
2964 nla_nest_cancel(d->skb, stats);
2965 return -1;
2966 }
2967
2968 static void cake_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2969 {
2970 struct cake_sched_data *q = qdisc_priv(sch);
2971 unsigned int i, j;
2972
2973 if (arg->stop)
2974 return;
2975
2976 for (i = 0; i < q->tin_cnt; i++) {
2977 struct cake_tin_data *b = &q->tins[q->tin_order[i]];
2978
2979 for (j = 0; j < CAKE_QUEUES; j++) {
2980 if (list_empty(&b->flows[j].flowchain) ||
2981 arg->count < arg->skip) {
2982 arg->count++;
2983 continue;
2984 }
2985 if (arg->fn(sch, i * CAKE_QUEUES + j + 1, arg) < 0) {
2986 arg->stop = 1;
2987 break;
2988 }
2989 arg->count++;
2990 }
2991 }
2992 }
2993
2994 static const struct Qdisc_class_ops cake_class_ops = {
2995 .leaf = cake_leaf,
2996 .find = cake_find,
2997 .tcf_block = cake_tcf_block,
2998 .bind_tcf = cake_bind,
2999 .unbind_tcf = cake_unbind,
3000 .dump = cake_dump_class,
3001 .dump_stats = cake_dump_class_stats,
3002 .walk = cake_walk,
3003 };
3004
3005 static struct Qdisc_ops cake_qdisc_ops __read_mostly = {
3006 .cl_ops = &cake_class_ops,
3007 .id = "cake",
3008 .priv_size = sizeof(struct cake_sched_data),
3009 .enqueue = cake_enqueue,
3010 .dequeue = cake_dequeue,
3011 .peek = qdisc_peek_dequeued,
3012 .init = cake_init,
3013 .reset = cake_reset,
3014 .destroy = cake_destroy,
3015 .change = cake_change,
3016 .dump = cake_dump,
3017 .dump_stats = cake_dump_stats,
3018 .owner = THIS_MODULE,
3019 };
3020
3021 static int __init cake_module_init(void)
3022 {
3023 return register_qdisc(&cake_qdisc_ops);
3024 }
3025
3026 static void __exit cake_module_exit(void)
3027 {
3028 unregister_qdisc(&cake_qdisc_ops);
3029 }
3030
3031 module_init(cake_module_init)
3032 module_exit(cake_module_exit)
3033 MODULE_AUTHOR("Jonathan Morton");
3034 MODULE_LICENSE("Dual BSD/GPL");
3035 MODULE_DESCRIPTION("The CAKE shaper.");